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Abstract

The development of automated monitoring systems for detection of singularities such as leakages

in dikes is indispensable to avoid mass disaster. An efficient solution for dikes survey is the use of

Distributed Temperature Sensors (DTS) based on optical fiber, offering multitude of advantages such as

low-cost, extreme robustness, long range measurement, etc. However, the temperature data acquired with

DTS, being not directly interpretable, require intervention of signal processing techniques. The current

work addresses this signal processing aspect, exploiting the key idea that the temperature variations over

the course of a day for singular zones are quite different from those for nonsingular zones. A daily

reference temperature variation, representative of the nonsingular zones, is estimated using the Singular

Value Decomposition (SVD). The residue subspace of SVD contains information linked to the deviations

from this reference; thus allowing the degree of singularity to be quantified by a dissimilarity measure

such as the L2 norm. In order to detect only the singularitiesin dikes, such as leakages or drains, a

Constant False Alarm Rate (CFAR) detector is proposed by modeling each daily dissimilarity measure

with a mixture of Gamma and Uniform distributions. The proposed automatic singularity detection system

was validated under different scenarios on real data over periods from 2005 to 2007. The first scenario

depicted the detection of percolation type artificial leakages with their detection strength depending on

their flow rates. Another scenario allowed to detect the presence of a real water leakage at the site,

previously unobserved during manual inspections. The repeatability of the system was also verified by

periodic analysis.

Index Terms

Distributed temperature sensors, Dikes, Automated system, Leakage detection, Probability of false
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alarm, Singular Value Decomposition, Thermometric data.

I. I NTRODUCTION

The recent advances in development and deployment of fiber optic sensors as measurement technology

has resulted in a multitude of interesting applications. Thesectors that have greatly benefited include

monitoring of engineering structures, parameter sensing in oil and gas industry, chemical sensing for

environmental control and safety, early fire detection systems, biomechanical engineering, etc [1]–[5].

Many aging engineering structures like dams and dikes become vulnerable due to degradations caused

by internal erosion, adverse climatic conditions and natural damage. It is therefore imperative to identify

the anomalies, like the water leakages in dikes, well in advance in order to avert disaster at mass level.

The conventional methods for leakage detection in dikes werebased on manual inspections at the site.

The measurement of different parameters like pressure, flow, temperature, deformation, etc. are also used

as indicators for anomaly detection. The systems currently employed are based on measurement of self-

potential, resistivity and temperature [6]–[9]. While theself-potential and the resistivity methods provide

efficient measurements, the drawback lies in the fact that these methods are still manual. Moreover,

they require careful placement and utilization of electronic equipments at site. On the contrary, the

temperature based methods present a semi-automatic solution through the use of fiber optic based

distributed temperature sensors (DTS). The fact that DTS use low-cost telecommunication grade optical

fiber with an ability to multiplex large number of sensors enhance their economic viability while at the

same time their robustness and immunity to electromagneticinterference allows their deployment in harsh

environments. DTS are capable of long range measurements of up to 30 km with different spatial and

temperature resolutions (a typical scale of measurement is1 m for spatial resolution and0.01◦C for

temperature resolution achievable with Sensornet’s Sentinel device).

The method adopted for data acquisition by DTS ispassive method, a natural measure of temperature.

The method takes its name from the fact that in the absence of any anomaly, the measured temperature is

driven by the phenomenon of conduction : the transfer of heatis attributed to the interaction between the

air temperature and the temperature of water present naturally in the ground. The basic idea for anomaly

identification using DTS systems is that a significant flow of waterthrough the dike due to leakage brings

along additional heat by the phenomenon of advection [7]. Thus, when advection superposes conduction,

thermometric measurements can help in detecting leakages.The leakage detection depends not only on

the flow rate but also on the temperature difference between ground (which in turn depends on the

air temperature depending on the depth) and water. The acquired temperature at certain distances can
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also be influenced by the existing structures (drains) as wellas by the self-response of the ground in

which the optical fiber cable is buried. In addition, precipitations, seasonal effects, day/night variations,

etc. can also bring some change in ground temperature. The thermometric data acquired through DTS

is therefore not directly interpretable for anomaly detection thus posing a new research problem for

the signal processing community. The leakages, the drains and the singularity of the ground response

constitute the possible singularities along the length of the dike. The contribution of this work is to

propose a new system for singularity detection in dikes withthe eventual goal of having an automated

functional device. The aim is to localize the singularities in distance for further investigation with detailed

physical inspections. The proposed system exploited the temperature variations over the course of a day

at all the sensing distances. While, most of the distances showed a common trend of these variations,

the singularity zones presented a deviation from this common trend. Thus, considering the temperature

signal for all the distances over a24-hour period, a dissimilarity method for singularity identification

based on the classical data decomposition technique like Singular Value Decomposition (SVD) [10]–[12]

is proposed. The resulting dissimilarity measure is then thresholded using constant false alarm rate criteria

by modeling it as a mixture of Gamma and Uniform distributions.

We start in Section II with the working principle of the DTS acquisition systems along with a

representation of the data set acquired at an experimental site of Electricit́e de France (EDF). The

problem is formulated in Section III, with a brief theoretical description of SVD followed by the proposed

methodology used for devising the dissimilarity measure and the proposed detector based on Constant

False Alarm Rate (CFAR). Section IV deals with the application and validation of the proposed system

on real temperature data sets. Particularly interesting amongst the tested scenarios are those of artificial

leakages and the real water leakages. A comprehensive discussion is proposed to conclude the paper.

II. A CQUISITION PRINCIPLE AND DATA DESCRIPTION

The temperature data were acquired using the optical fiber based Distributed Temperature Sensors

which have proved to be highly efficient in a large number of applications [2], [13], [14]. Most of the

commercial distributed temperature sensors are based on Raman scattering using Optical Time Domain

Reflectometry (OTDR) technique [15]. The OTDR setup has three major components : a pulsed laser

source, a directional coupler and an optical fiber cable whichforms the temperature sensing element.

The photons emitted by the laser source interact with the molecules of the fiber material. The thermally

induced molecular vibrations result in backscattering of some photons attributed to Raman scattering [16].

The intensity ratioR(T ), between the two components of Raman backscattered light: the temperature
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dependent Anti-Stokes and temperature independent Stokes scattering, serves as a measure of temperature:

R(T ) =

(

ν0 + νk

ν0 − νk

)4

exp

(

−
hνk

kT

)

, (1)

with ν0 the frequency of the input laser,νk the frequency-shift of Raman scattering,h the Planck’s

constant andk the Boltzmann’s constant. Measuring this ratio and pulse travel time at the fiber input, the

relationship between travel time and distance gives the temperature profile along the entire fiber length.

DTS offer several advantages [13], [14] over conventional sensors, the major one being their commercial

viability owing to the use of low-cost optical fiber cable. Moreover, they are capable of long-range

measurements with high spatial (1 m) and temperature resolutions (0.01◦C). The electrical isolation,

immunity to electromagnetic interference and ruggedness associated with the optical fiber render these

sensors extremely useful for harsh environments like oil and gas industry and engineering structures. The

a priori knowledge about number and placement of sensors also becomes irrelevant. For all DTS devices,

there is a trade off between temperature resolution, spatial resolution, range and speed of measurement.

Allowing the DTS device more time to acquire data results in a higher temperature resolution at the cost

of reduced measurement speed. Likewise, for a given acquisition time, the measurement range varies

inversely with the temperature resolution.

A thermometric data monitoring system has been installed byElectricit́e de France (EDF) at an

experimental test site to study the leakages. The aim of this site is to extract the information (location

in distance, flow rate, etc.) pertaining to leakages (both natural and controlled) in the dike of a canal. A

schematic representation of this installation is given in Fig. 1. A fiber optic cable containing4 optical

fibers (type multimode50/125) was buried at the downstream toe of the canal at a depth of1 m to

intercept water leakages from the canal. The two distinct elevation levels present at the site (Zone1,

from approximately0.1 km to 1.25 km and Zone2, from approximately1.25 km to 2.2 km) are exposed

with varying intensities to direct sunlight. The cable also circumvents two drains, D1 and D2, situated

at 0.561 km and 0.858 km, respectively. The temperature data was recorded by a commercial device

Sensornet, Sentinel DTS-MR, a medium range device capable of covering up to8 km. The temperature

resolution of this device is0.01◦C with 1-meter spatial resolution which would allow us to detect very

closely the occurrence of water leakages.

Each acquisition of the temperature signal is a function of displacement along the fiber. Continuous

temperature monitoring is important in order to track the evolution of the leakages over time. Several

acquisitions were therefore made during different periodsfrom years2005 to 2007 which allowed us to

analyze different scenarios. A sampling interval of1-hour gave us24 acquisitions per day. The recorded
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Fig. 1. Schematic of the data acquisition system using DTS with a temperature resolution of0.01
◦C and a spatial resolution

of 1 m at the experimental site. The2.2 km long optical fiber cable circumvents two drains, whereas two different elevation

levels are exposed with varying intensities to sunlight.

data set for a day“i” can be written as:

Yi =
{

yi(t, x) | 1 ≤ t ≤ Nt, 1 ≤ x ≤ Nx

}

, i = 1, . . . , Ni (2)

whereNt = 24 represents the number of acquisitions per day,Nx the number of observation points and

Ni the number of days analyzed.

A sample real data set over a period of nonconsecutive11 days in year2005 with similar meteorological

conditions is shown in Fig. 2. The gray scale represents the intensity of the recorded temperature. The
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Fig. 2. Real DTS temperature data set for11 nonconsecutive days, having no precipitation instances, during summer 2005.

The gray scale map shows different observed temperatures with increasing temperatures from black to white. White rectangle

represents the temperature signals acquired on the1
st day and the arrows correspond to two singular (x2 and x3) and two

nonsingular (x1 andx4) zones referred to in Fig. 3.
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similar meteorological trend refers to the days where thereare no instances of significant precipitations or

other phenomena which could greatly alter the daily temperature profile. If the meteorological conditions

are also recorded along with the data, they can be used to extract from the data different time zones

sharing the same meteorological conditions. Otherwise, incase of long period acquisitions or non-

homogeneous meteorological conditions, it is possible to select similar zones by using a criterion based

on the measurement of change in the recorded data statistics. Here, a criterion based on the higher order

statistics of skewness and kurtosis, previously proposed by the authors [17] was used to identify such

phenomena.

The methodology adopted to exploit this kind of data set to localize the singularities would be presented

in the next section.

III. S INGULARITY DETECTION METHODOLOGY

The acquired temperature data are a mixture of various factors amongst them different singularities

(leakages, existing structures, etc). The current work focuses on the detection of these singularities,

specially the leakages, and their localization in distance. A singularity detector is proposed here by

exploiting the fact that the singularities respond differently to daily temperature variations than the

homogeneous nonsingularity zones. The detector uses a dissimilarity measure to identify the singularities

based on the deviation of their daily temperature profile fromthe nonsingularity zones.

Consider for example the temperature signals for day1 from Fig. 2 (see white rectangle) at4 distances

marked by arrows. Fig. 3 (solid lines) shows these temperature variations over a24-hour period at these

4 distances. Two of these distances (x2 andx3) correspond to the two drains,D1 andD2, whereas the

remaining two (x1 andx4) to the homogeneous nonsingularity zones (0.3 km and1.264 km). It can be

observed that the drains (which are assimilated with singularities) show a different trend of variation

compared to the homogeneous nonsingularity zones. This24-hour temperature variation thus contains

useful information regarding the singularities. The idea for singularity detection is thus based on the

estimation of a reference vector from the24-hour temperature variations at all the sensing distances

which could then be compared to vectors at all the distances.The resulting deviation from the reference

would be smaller for nonsingular zones and larger for singular zones. Among the different approaches

that could be used for estimation of the reference vector, the Singular Value Decomposition (SVD) offers

a very efficient solution [18] as would be explained next.
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Fig. 3. (Solid Lines): The24-hour temperature profiles on day1 at 4 different distances of image in Fig. 2 (see white rectangle

and arrows). The singular zones (D1 andD2) present a different trend as compared to nonsingular zones (0.3 km and1.264

km). (Dashed Lines):Y1

sig at same day and distances as solid lines, showing that estimated reference vectors for singular zones

have large deviations as compared to nonsingular zones.

A. Singular Value Decomposition

The singular value decomposition (SVD) of a signal,Yi ∈ RNt×Nx is defined as [11], [12]:

Yi = Ui
N∆i

NViT
N =

N
∑

j=1

σi
ju

i
jv

i
j
T
, (3)

whereN = min(Nt, Nx), ∆i
N ∈ RN×N is a matrix containing on its diagonal the singular values,σi

j ≥ 0,

arranged in a descending order andUi
N ∈ RNt×N andVi

N ∈ RNx×N are orthogonal matrices, containing

the left and right singular vectors,ui
j ∈ RNt andvi

j ∈ RNx , respectively. The left singular vectorsui
j

are identified as estimators of reference vectors and are orthogonal to each other. These vectors are a

function of time and may differ from one day to another. The singular values given by SVD are sorted

in a descending order with their magnitude indicating the degree of coherence of estimated vectors from

the most coherent to the least coherent. The right singular vectors,vi
j , represent the spatial variations

of the estimated reference vectors. SVD allows to decompose the initial data space into complementary

subspaces. More specifically, it can be used to achieve separation between signal and noise subspaces

[12]:

Yi = Yi
sig + Yi

residue =
P

∑

j=1

σi
ju

i
jv

iT
j +

N
∑

j=P+1

σi
ju

i
jv

iT
j (4)
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where the signal subspace,Yi
sig, is formed withP most energetic singular values and the noise or residue

subspace as we call it here,Yi
residue, with remainingN − P singular values. The singularities at the

data site can be identified with their peculiar behavior of giving temperature variations over a period of

a day that are different from those of non-singular zones. SVDwas thus used as the first step to identify

from amongst the24-hour temperature profiles, at different observation distances, the one which is a

representative of the nonsingularities. This reference vector can be estimated by observing the singular

values obtained by application of SVD as in (3). Generally, the first singular value contains most of the

signal energy and the first vector,ui
1, being the most energetic, is the most coherent component ofthe

processed signal. It can therefore serve as a suitable estimate of the reference vector with the vector

vi
1 representing its spatial variation. The corresponding signal subspace for this reference vector,Yi

sig,

can be constructed usingP = 1 in (4). The signal subspace,Yi
sig, represents an estimate of the ground

response for each day [19]. It can be interpreted in our case as a subspace constructed by the reference

vector,ui
1, extracted from the24-hour temperature variations at all the distances.

B. Dissimilarity Measure Using SVD

A quick analysis of the signal or so called reference subspace, Yi
sig, instantly reveals the underlying

idea. The dotted lines in Fig. 3 show this reference subspace,Y1
sig, on dayi = 1 of the current data

set at the4 distances referred to earlier in the section. Two of these distances (drains,D1 and D2)

correspond to singularities, whereas the other two to reference nonsingularity zones (0.3 km and1.264

km). It can be observed that the estimated reference vectors(dashed lines) are close to the original

temperature variations in the initial data (solid lines) only for the nonsingularity zones, whereas they

show large deviations in case of singularity zones. This validates the fact that the reference vectorui
1 is

indeed a good representative of the nonsingularity zones. The residue subspace of the SVD,Yi
residue,

contains the information linked to the deviation from the reference vector. The singularities can thus be

identified by using a measure of dissimilarity between the estimated reference vector and the recorded

data at all distances. One possible measure for this dissimilarity is theL2 norm, ‖.‖, for each column,

yi
residue(x), of the residue subspace,Yi

residue, as each column of this subspace represents the deviation

from the reference vector. This can be formulated as follows:

di(x) =
∥

∥yi
residue(x)

∥

∥

2
, x = 1, ..., Nx; i = 1, ..., Ni. (5)

It should be mentioned that although euclidean distance wasemployed here, tests with other distances

resulted in no significant difference in the dissimilarity.
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Considering the ideal case as the one with identical nonsingularity zones and a few singularity

zones, not necessarily identical, the dissimilarity measure obtained using the proposed method should

only contain information related to the singularities. In other words, the histogram of the dissimilarity

measure for any given day,di(x), should be like the one in Fig. 4(a), indicating that the dissimilarity

value is zero for most of the distances (no singularity). The dissimilarity measure should ideally be

non zero only for distances corresponding to singularitiesbeing distributed uniformly with the range,

ui = ] 0, max(di(x)) ]. However, owing to the fact that different nonsingularity zones show a similar

response that may not be identical and that the reference vector is only an estimation of the daily

temperature variations in the nonsingular zones, the histogram would present a spread around the zero.

Fig. 4(b) shows such a histogram for the dissimilarity measure, d1(x), obtained on day1 of the data in

Fig. 2. We propose an approach for thresholding the dissimilarity measure based on this histogram to

complete the singularity detection.

0 0.15 0.3 0.45

(a) Ideal Dissimilarity His-

togram

0.2 0.4 0.6 0.8

(b) Dissimilarity Histogram

day 1

0.2 0.4 0.6 0.8
 

 

Dissimilarity histogram
Gamma distribution fit
Uniform distribution fit

(c) Mixture probability fitting

0.4 0.6 0.8
 

 

ηi

P
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(d) Threshold calculation

(Zoomed version of (c))

Fig. 4. Thresholding using constant probability of false alarm approach. Ideally the dissimilarity should be zero for most of

the zones except singularities (a) but practically this is not the case (b). The resulting histogram for any given day could be

modeled by a Gamma and Uniform distribution mixture with their parameters estimated using EM-algorithm (c). Fixing the

probability of false alarm (Pfa, shaded region) allows to find a unique threshold,ηi, for each day thus accounting for effects

of daily climatic changes (d). Notation “O” highlights the values of dissimilarity measures for singularities.
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C. Singularity Detection Using CFAR

Considering Fig. 4(b), the part of histogram corresponding to nonsingular distances can be modeled by

a Gamma distribution. The choice of Gamma distribution is inspired by the fact that its two parameters,

α andβ allow adaptability of the distribution shape to adjust to different situations. Moreover, Gamma

distribution explicitly takes into account positivity of the modeled dissimilarity measure. The singular

zones (marked by circles in Fig. 4) would not be captured by theGamma model and instead a Uniform

distribution is assumed for the singularities. The dissimilarity measure can thus be modeled with a

mixture of Gamma and Uniform distributions whose parameters can be estimated using the maximum

likelihood approach. In this regard, the Expectation-Maximization (EM) algorithm is an efficient tool

that maximizes the likelihood with respect to the distribution parameters [20]. Tan et al. [21] recently

proposed a formulation for parameter estimation for such a mixture based on the EM algorithm, which

was employed for the present work. The log-likelihood function of the mixture for any given day“i”

can be written as:

L(di
∣

∣ αi, βi, ui) =

Nx
∑

x=1

γi
x

(

−αi log βi +
(

αi − 1
)

log di (x)

− log Γ
(

αi
)

−
di(x)

βi
+ log πi

)

+

Nx
∑

x=1

(

1 − γi
x

)

log
(

1 − πi
)

, (6)

with πi the prior probability of Gamma distribution in the mixture,Γ(.) the Gamma function andγi
x the

responsibility vector given by [21]:

γi
x =

πifΓ

(

di(x) |αi, βi
)

πifΓ (di(x) |αi, βi) + (1 − πi) (ui)−1 , (7)

where fΓ(.) is the probability density function of Gamma distribution and ui the range of Uniform

distribution. The mixture parameters and the prior probabilities are estimated using a recursive procedure

by maximizing Eq. (6) with respect to the parameters as presented in [21]. The histogram of Fig. 4(b)

fitted with the estimated Gamma and Uniform distributions is shown in the Fig. 4(c). Having estimated

the fitting distributions, the next step is to establish a threshold so as to detect only the singularities. At

any given distance, the obtained dissimilarity measure mayshow variations over different days owing

to several factors. These include the duration and intensityof the sunlight on a particular day, the air

temperature, the wind speed, etc. The resolution of the acquisition material could also be one of the

factors. Since the estimated reference temperature variations are not necessarily the same for each day,
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preselecting a constant threshold may not be a good idea. A popular approach for variable thresholding

applications is based on the Constant False Alarm Rate (CFAR) whereby a probability of false alarm

(Pfa) is fixed rather than a threshold. The probability of false alarm is usually system dependent and fixed

in terms of the system deployment by experts. In our case, false alarm is raised when the detector detects

a singularity while there actually was none. Thus assuming the desiredPfa as known, the threshold,ηi,

can be computed for each day“i” as shown in Fig. 4(d), using the expression:

Pfa =

∫

∞

ηi

z(αi
−1)e−z/βi

βiα
i

Γ(αi)
dz (8)

The detector thus takes the decision based on this threshold as:

di
th(x) =







di(x) if di(x) > ηi

0 otherwise
(9)

D. Automated Singularity Detection System

The proposed detector gives a map of the singularities in two dimensional spatio-temporal space(x, i),

with a spatial resolution of1 m and a temporal resolution of24 hours. The system can be implemented

as shown in Fig. 5. In the next section, the proposed system is analyzed on real temperature data under

different scenarios to show its efficiency.

Fig. 5. SVD and CFAR based singularity detection system. The residue subspace of SVD on24-hour data contains information

on the singularities. By takingL2 norm at each distance, the resulting dissimilarity is modeled as a mixture of Gamma and

Uniform distributions and thresholded by fixing a probability of false alarm.
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TABLE I

CHARACTERIZATION OF THE STRUCTURES AND INTRODUCTION OF ARTIFICIAL LEAKAGES AT THE TEST SITE

Drains Leakages HotPoint

D1 D2 L1 L2 L3 HP

Location (km) 0.561 0.858 1.566 1.551 1.573 0.674

Time (day) - - 8 (noon) 10 (noon) 10 (eve) 8 (noon)

Flow rate (l/min) - - 5 1 1 -

IV. A PPLICATION ON DTS TEMPERATURE DATA SET

The real temperature data presented in Fig. 2 are first analyzed.These data were recorded over a

period of11 non-consecutive days in year2005. With reference to the days shown in Fig. 2, the different

phenomena present at the site are tabulated in Tab. I with regards to their position and occurrence time.

Three artificial leakages of percolation-type,L1, L2, andL3, with different flow rates, were introduced

along with a hot point (HP ) simulating artificial flow of hot water on days8 and10. The data over the

days with neither any artificial nor any real leakages serve asa reference for different scenarios. Moreover,

similar meteorological conditions (e.g., no precipitation instances) were ensured here using the higher

order statistics based criteria [17]. It should be highlighted that if days with intense precipitation are

considered for analysis, the detector would give non-zero outputs for most of the distances along the

fiber as opposed to only a few for singularities in the absence of precipitation. The first singular value,

σi
1, obtained by application of SVD on daily dataYi, is extremely energetic amounting to about99% of

the total energy. Therefore, the first SVD source vector,ui
1, being a very good representative of the“ith”

24-hour temperature response of the site under study, was selected as the reference vector. The reference

subspace,Yi
sig, is thus constructed using the spatial variation of this source withP = 1 while the residue

subspace,Yi
residue, using the remaining singular values. The residue subspace,representing deviation

from the reference subspace, contains useful information from the singularity detection perspective. The

dissimilarity measure,di(x), was obtained by taking theL2-norm of (see Eq. (5)) at all the distances.

Fig. 6 shows the resulting measure for day1, whose histogram was presented in Fig. 4(b)-4(c). It can be

observed that drains,D1 andD2, offer a strong dissimilarity depicting a behavior different from other

zones. The rest of the dissimilarity measure could be thoughtof as background noise.

The dissimilarity measure was thresholded using the CFAR based thresholding scheme described in
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sig, thus putting into evidence the singularities.
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Fig. 7. Detection results for data set shown in Fig. 3. The amplitudes shownare normalized for each day with respect to the

maximum for that day. The drains,D1 andD2 constitute omnipresent singularities and thus always detected. A singularityof

ground is observed around1.7 km on several days. Artificial percolation type leakages (L1, L2, L3) are also detected from

days8 to 11 with their strength relative to the drains indicating their intensity. The hot point (HP) is also detected on day8.

Sec. III-C. ThePfa being an input parameter to the current system, we are conducting experiments

in consultation with the experts to associate physical justification to Pfa selection. For this study, we

consider aPfa of 10−4. The detection results,di
th(x) are shown in Fig. 7 for the data set under study with
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distance on abscissa and days on ordinate. The amplitudes foreach day were normalized with respect to

the maximum for each day, thus peaks amplitudes would give usan information about the strength of the

underlying singularities on any given day. The drains,D1 and D2 constitute omnipresent singularities

hence detected on all the days. Moreover, a singularity is detected around1.7 km as evident on days4

to 10. It corresponds to a singularity of the ground in a zone wherethe material composition is different

from other zones. The different material composition results in different conduction properties owing to

differences such as soil permeability, composition, etc.

At the present site, we have acquisitions over different periods from year2005 to 2007. The system

repeatability was thus verified by testing it on the data acquired in 2006 with another DTS device with

different sensitivity over the days with same acquisition conditions (meteorological). The results obtained

were concurrent with the ones obtained in2005 with the two drains and the ground singularity detected

as the singularities. Moreover, the results do not depend onthe season when acquisitions are done. The

results are not shown in order to avoid repetition.

A. Artificial Leakage Detection

We next focus our attention to the three artificial leakages (L1, L2, L3) and the hot point (HP ). These

leakages are impulsional in distance and exist momentarilyin time as well. The resultant flow of water

due to these leakages would bring about a change in the groundtemperature thus presenting a source of

singularity. The detection results for the case of artificial leakages is shown in Fig. 7 from days8 to 11

with the corresponding zoomed version shown in Fig. 8. It can be observed that a very good localization

in distance of the leakages is achieved with a very good precision (see Fig. 8). Moreover, the leakages are
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Fig. 8. Zoom on detection results for artificial leakages depicting a good localization of the leakages in distance.

identified at their original locations along with the hot point. L1 is detected as the most energetic leakage
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on day8 in accordance with its highest flow rate (5l/min) and it persists for3 days with decreasing

strength. The other two leakages are also detected albeit with lower amplitudes. Since the system was

designed to work as a daily detector and normalization was carried out for each day, the comparison of

the leakages strengths could be done by their amplitudes relative to the drain amplitudes for each day.

The leakages sustained only over2 − 3 days as was expected due to their controlled impulsive nature.

B. Periodic Analysis and Real Leakage Detection

As an example of periodic analysis, the proposed system was tested on the data acquired in2007. The

detection results for4 days in2007 when there were no precipitations (like the case of2005) are shown

in Fig. 9. A comparison with the results obtained for year2005 (see Fig. 7) show that while the two

drains,D1 andD2 and the ground singularity are identified as before, an additional singularity zone is

observed just after the second drain at a distance around0.91 km. This points to an occurrence of a new

event in2007 which was not there in the first place in2005 or 2006.
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Fig. 9. Detection results for4 days in2007 reveal real leakage zone just after drainD2 in addition to the previously observed

drains and the singularity of the ground. Note that there are days whenD1, D2 do not appear which could be explained by the

possible climatic conditions.

The investigation into this singularity by physical inspection at the acquisition site revealed existence

of a suspected real water leakage in the dike structure just after the drainD2. This real leakage has a non

impulsive signature as opposed to the artificial percolation-type leakages. Its detection as a singularity is
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justified by the fact that it brings additional water around the optical fiber thus providing more conduction

and different temperature variation than the homogeneous nonsingular zones. Further investigations are

underway to quantify this leakage by measuring its flow rate, determining its seasonal dependence, etc.

V. CONCLUSION

The use of distributed temperature sensors for anomaly detection in dikes is a very efficient solution

due to their long-term and automatic monitoring capabilities with the added advantage of using low-cost

and robust optical fiber cable. The acquired temperature data using DTS is not immediately exploitable

in terms of anomaly detection and signal processing is inevitable to extract this information. A detector

was proposed in this paper based on SVD and a fixed probability offalse alarm. It was shown that the

temperature variations over the course of a day do not show same variations at all the sensing distances

and these daily temperature variations can be exploited to characterize a given distance as a singularity or

nonsingularity. A reference vector for the temperature variation over a24-hour period can be estimated

using SVD as it is linked to the first singular value of SVD. This reference vector being a representative of

the nonsingular zones, the residue subspace contains the deviation from this reference and thus serves as

an indicator of singularity. A dissimilarity measure is constructed employing theL2 norm on this residue

subspace. The resulting measure is then modeled by a mixture of Gamma and Uniform distributions with

the Gamma distribution accounting for the small deviationsfrom the nonsingularity due to estimation and

the Uniform accounting for the anomalies or the singularities. The distribution parameters are estimated

using an EM-algorithm and then a thresholding scheme is designed based on the constant probability of

false alarm. Fixing the probability of false alarm allows to estimate the threshold for each day which may

vary from one day to another due to factors such as duration and intensity of sunlight, air temperature,

wind speed, etc. The application of the proposed system on real data showed that drains present a

significant singularity and since they form part of permanentstructures, they are always detected. The

proposed system was validated under different scenarios and the repeatability of the system was also

verified by periodic analysis. Amongst the scenarios discussed were that of the detection of percolation

type artificial leakages with their detection strength depending on their flow rate. The tests on year2007

allowed to detect the presence of a real water leakage at the site which was previously unobserved during

manual inspections. The future work would focus on the testing of this system on other data sets acquired

at different sites as well as the development of other measures to characterize not only a dissimilarity,

but also to quantify the shapes and variability of singularity zones.
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