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Abstract

The development of automated monitoring systems for deteaf singularities such as leakages
in dikes is indispensable to avoid mass disaster. An effick@fution for dikes survey is the use of
Distributed Temperature Sensors (DTS) based on optical, fifiering multitude of advantages such as
low-cost, extreme robustness, long range measurementi@iever, the temperature data acquired with
DTS, being not directly interpretable, require interventiof signal processing techniques. The current
work addresses this signal processing aspect, explotiadey idea that the temperature variations over
the course of a day for singular zones are quite differenthftbose for nonsingular zones. A daily
reference temperature variation, representative of tlmsingular zones, is estimated using the Singular
Value Decomposition (SVD). The residue subspace of SVDaipnstinformation linked to the deviations
from this reference; thus allowing the degree of singulaigt be quantified by a dissimilarity measure
such as the L2 norm. In order to detect only the singularitiedikes, such as leakages or drains, a
Constant False Alarm Rate (CFAR) detector is proposed byetmadeach daily dissimilarity measure
with a mixture of Gamma and Uniform distributions. The pregd automatic singularity detection system
was validated under different scenarios on real data oveogsefrom 2005 to 2007. The first scenario
depicted the detection of percolation type artificial leggs with their detection strength depending on
their flow rates. Another scenario allowed to detect the gores of a real water leakage at the site,
previously unobserved during manual inspections. Theatapdity of the system was also verified by

periodic analysis.

Index Terms

Distributed temperature sensors, Dikes, Automated systemkage detection, Probability of false



alarm, Singular Value Decomposition, Thermometric data.

I. INTRODUCTION

The recent advances in development and deployment of fiber egtisors as measurement technology
has resulted in a multitude of interesting applications. Shetors that have greatly benefited include
monitoring of engineering structures, parameter sengingiliand gas industry, chemical sensing for
environmental control and safety, early fire detection systebiomechanical engineering, etc [1]-[5].
Many aging engineering structures like dams and dikes becamnerable due to degradations caused
by internal erosion, adverse climatic conditions and retdamage. It is therefore imperative to identify
the anomalies, like the water leakages in dikes, well in adean order to avert disaster at mass level.
The conventional methods for leakage detection in dikes Wwased on manual inspections at the site.
The measurement of different parameters like pressure, foaperature, deformation, etc. are also used
as indicators for anomaly detection. The systems curremtlyl@yed are based on measurement of self-
potential, resistivity and temperature [6]-[9]. While thelf-potential and the resistivity methods provide
efficient measurements, the drawback lies in the fact thatethmethods are still manual. Moreover,
they require careful placement and utilization of eledroequipments at site. On the contrary, the
temperature based methods present a semi-automaticosolitiough the use of fiber optic based
distributed temperature sensors (DTS). The fact that DTS usedsivtelecommunication grade optical
fiber with an ability to multiplex large number of sensors erdetheir economic viability while at the
same time their robustness and immunity to electromagmggderence allows their deployment in harsh
environments. DTS are capable of long range measurements taf 0 km with different spatial and
temperature resolutions (a typical scale of measurementns for spatial resolution an@.01°C' for
temperature resolution achievable with Sensornet’'s Seérdaace).

The method adopted for data acquisition by DTPassive methqda natural measure of temperature.
The method takes its name from the fact that in the absenceyairaamaly, the measured temperature is
driven by the phenomenon of conduction : the transfer of tseattributed to the interaction between the
air temperature and the temperature of water present tigiturdhe ground. The basic idea for anomaly
identification using DTS systems is that a significant flow of wétesugh the dike due to leakage brings
along additional heat by the phenomenon of advection [7]sTinen advection superposes conduction,
thermometric measurements can help in detecting leakddpesleakage detection depends not only on
the flow rate but also on the temperature difference betweeangr (which in turn depends on the

air temperature depending on the depth) and water. The achtémperature at certain distances can



also be influenced by the existing structures (drains) as aglby the self-response of the ground in
which the optical fiber cable is buried. In addition, pre@gins, seasonal effects, day/night variations,
etc. can also bring some change in ground temperature. Thedheetric data acquired through DTS
is therefore not directly interpretable for anomaly datectthus posing a new research problem for
the signal processing community. The leakages, the draidsttem singularity of the ground response
constitute the possible singularities along the lengthhef dike. The contribution of this work is to
propose a new system for singularity detection in dikes whi eventual goal of having an automated
functional device. The aim is to localize the singularitieslistance for further investigation with detailed
physical inspections. The proposed system exploited thedeature variations over the course of a day
at all the sensing distances. While, most of the distanceweth a common trend of these variations,
the singularity zones presented a deviation from this comimend. Thus, considering the temperature
signal for all the distances over Zl-hour period, a dissimilarity method for singularity idiication
based on the classical data decomposition technique lilguBinValue Decomposition (SVD) [10]-[12]
is proposed. The resulting dissimilarity measure is theastholded using constant false alarm rate criteria
by modeling it as a mixture of Gamma and Uniform distribusion

We start in Section Il with the working principle of the DTS adition systems along with a
representation of the data set acquired at an experimeit¢alof Electricie de France (EDF). The
problem is formulated in Section Ill, with a brief theoretidascription of SVD followed by the proposed
methodology used for devising the dissimilarity measure dre proposed detector based on Constant
False Alarm Rate (CFAR). Section IV deals with the applicattmd validation of the proposed system
on real temperature data sets. Particularly interestingngst the tested scenarios are those of artificial

leakages and the real water leakages. A comprehensivesdisous proposed to conclude the paper.

[I. ACQUISITION PRINCIPLE AND DATA DESCRIPTION

The temperature data were acquired using the optical fiberdb@sstributed Temperature Sensors
which have proved to be highly efficient in a large number ofliggpfions [2], [13], [14]. Most of the
commercial distributed temperature sensors are based wrarRacattering using Optical Time Domain
Reflectometry (OTDR) technique [15]. The OTDR setup has thre@mt@mponents : a pulsed laser
source, a directional coupler and an optical fiber cable wiecms the temperature sensing element.
The photons emitted by the laser source interact with the ecatde of the fiber material. The thermally
induced molecular vibrations result in backscatteringamhe photons attributed to Raman scattering [16].

The intensity ratioR(T'), between the two components of Raman backscattered lighttetmperature



dependent Anti-Stokes and temperature independent Stokdbsrsty, serves as a measure of temperature:
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RT) = (0 ) e (). ®
with 1 the frequency of the input laser; the frequency-shift of Raman scattering,the Planck’s
constant and: the Boltzmann’s constant. Measuring this ratio and pulseetrtime at the fiber input, the
relationship between travel time and distance gives theéeature profile along the entire fiber length.
DTS offer several advantages [13], [14] over conventionakees, the major one being their commercial
viability owing to the use of low-cost optical fiber cable. Mower, they are capable of long-range
measurements with high spatial () and temperature resolution8.(1°C). The electrical isolation,
immunity to electromagnetic interference and ruggednsssdated with the optical fiber render these
sensors extremely useful for harsh environments like ail gas industry and engineering structures. The
a priori knowledge about number and placement of sensors also bedoelevant. For all DTS devices,
there is a trade off between temperature resolution, dpasalution, range and speed of measurement.
Allowing the DTS device more time to acquire data results inginér temperature resolution at the cost
of reduced measurement speed. Likewise, for a given adguidiime, the measurement range varies
inversely with the temperature resolution.

A thermometric data monitoring system has been installecElctricitt de France (EDF) at an
experimental test site to study the leakages. The aim of ttesisto extract the information (location
in distance, flow rate, etc.) pertaining to leakages (botnradnd controlled) in the dike of a canal. A
schematic representation of this installation is given ig. Ai. A fiber optic cable containing optical
fibers (type multimodes0/125) was buried at the downstream toe of the canal at a depth rof to
intercept water leakages from the canal. The two distinotagilen levels present at the site (Zome
from approximately.1 km to 1.25 km and Zone2, from approximatelyl .25 km to 2.2 km) are exposed
with varying intensities to direct sunlight. The cable als@wmnvents two drains, Dand 2, situated
at 0.561 km and0.858 km, respectively. The temperature data was recorded by a eocrahdevice
Sensornet, Sentinel DTS-MR, a medium range device capable efingwp to8 km. The temperature
resolution of this device i9.01°C with 1-meter spatial resolution which would allow us to detectyver
closely the occurrence of water leakages.

Each acquisition of the temperature signal is a function epldicement along the fiber. Continuous
temperature monitoring is important in order to track theletion of the leakages over time. Several
acquisitions were therefore made during different perids1 years2005 to 2007 which allowed us to

analyze different scenarios. A sampling intervalleiour gave uf4 acquisitions per day. The recorded
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Fig. 1. Schematic of the data acquisition system using DTS with a temperatotkition 0of0.01°C and a spatial resolution
of 1 m at the experimental site. THe2 km long optical fiber cable circumvents two drains, whereas two diffezégvation

levels are exposed with varying intensities to sunlight.

data set for a day:” can be written as:
Yi={y(t2) | I<t< N, 1<z <N}.i=1... N )

where N; = 24 represents the number of acquisitions per déy,the number of observation points and
N; the number of days analyzed.
A sample real data set over a period of nonconsecutiveays in yea2005 with similar meteorological

conditions is shown in Fig. 2. The gray scale represents tlemsity of the recorded temperature. The
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Fig. 2. Real DTS temperature data set fdr nonconsecutive days, having no precipitation instances, during sugong.
The gray scale map shows different observed temperatures withagiegetemperatures from black to white. White rectangle
represents the temperature signals acquired onlthelay and the arrows correspond to two singules énd x3) and two

nonsingular ¢, andxz4) zones referred to in Fig. 3.



similar meteorological trend refers to the days where theeeno instances of significant precipitations or
other phenomena which could greatly alter the daily tempesgorofile. If the meteorological conditions
are also recorded along with the data, they can be used tacextom the data different time zones
sharing the same meteorological conditions. Otherwisegase of long period acquisitions or non-
homogeneous meteorological conditions, it is possiblestecs similar zones by using a criterion based
on the measurement of change in the recorded data statideics, a criterion based on the higher order
statistics of skewness and kurtosis, previously proposethé authors [17] was used to identify such
phenomena.

The methodology adopted to exploit this kind of data set taliae the singularities would be presented

in the next section.

IIl. SINGULARITY DETECTIONMETHODOLOGY

The acquired temperature data are a mixture of various &uorongst them different singularities
(leakages, existing structures, etc). The current work desuon the detection of these singularities,
specially the leakages, and their localization in distankesingularity detector is proposed here by
exploiting the fact that the singularities respond difféhe to daily temperature variations than the
homogeneous nonsingularity zones. The detector uses andés#ly measure to identify the singularities
based on the deviation of their daily temperature profile ftbe nonsingularity zones.

Consider for example the temperature signals for d&pm Fig. 2 (see white rectangle) atdistances
marked by arrows. Fig. 3 (solid lines) shows these temperatariations over 24-hour period at these
4 distances. Two of these distances @ndx3) correspond to the two drain§1 and D2, whereas the
remaining two ¢; andz,) to the homogeneous nonsingularity zones km and1.264 km). It can be
observed that the drains (which are assimilated with sargigs) show a different trend of variation
compared to the homogeneous nonsingularity zones. Fhisour temperature variation thus contains
useful information regarding the singularities. The idea smgularity detection is thus based on the
estimation of a reference vector from thd-hour temperature variations at all the sensing distances
which could then be compared to vectors at all the distarides.resulting deviation from the reference
would be smaller for nonsingular zones and larger for simmgmbnes. Among the different approaches
that could be used for estimation of the reference vecterSingular Value Decomposition (SVD) offers

a very efficient solution [18] as would be explained next.
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Fig. 3. (Solid Lines): The4-hour temperature profiles on dayat 4 different distances of image in Fig. 2 (see white rectangle
and arrows). The singular zoneB 1 and D2) present a different trend as compared to nonsingular zangsn and1.264
km). (Dashed Lines)Y';

have large deviations as compared to nonsingular zones.

i, at same day and distances as solid lines, showing that estimated refeestars for singular zones

A. Singular Value Decomposition

The singular value decomposition (SVD) of a sigrgf, ¢ RV <= is defined as [11], [12]:
Y= URGARGVY =D oluivi, 3
j=1

whereN = min(Ny, N;), Ay, € RV*Y is a matrix containing on its diagonal the singular valuxf;sz 0,
arranged in a descending order ddg € RV and V¥, € RY=*¥ are orthogonal matrices, containing
the left and right singular vectors; € R"* and v’ € R+, respectively. The left singular vectors

are identified as estimators of reference vectors and aregwiial to each other. These vectors are a
function of time and may differ from one day to another. Thegslar values given by SVD are sorted
in a descending order with their magnitude indicating thgrele of coherence of estimated vectors from
the most coherent to the least coherent. The right singuletorse v; represent the spatial variations
of the estimated reference vectors. SVD allows to decompusénttial data space into complementary
subspaces. More specifically, it can be used to achieve sEpal@tween signal and noise subspaces
[12]:

P N
1 __ 7 7 _ Py Py
Y' = Ysig +Yresidue - E :Ujujvj + z : o;u;V (4)
j=1 j=P+1



where the signal subspaCﬁ;’ig, is formed with? most energetic singular values and the noise or residue

subspace as we call it her®’__.. . with remainingN — P singular values. The singularities at the
data site can be identified with their peculiar behavior ofrgjvtemperature variations over a period of
a day that are different from those of non-singular zones. 3% thus used as the first step to identify
from amongst the4-hour temperature profiles, at different observation distanthe one which is a

representative of the nonsingularities. This referenceéovezan be estimated by observing the singular
values obtained by application of SVD as in (3). Generallg, first singular value contains most of the
signal energy and the first vectar}, being the most energetic, is the most coherent componettieof

processed signal. It can therefore serve as a suitable agstiaf the reference vector with the vector

v} representing its spatial variation. The correspondingaignbspace for this reference vectdfty; ,
can be constructed using = 1 in (4). The signal subspac&{éig, represents an estimate of the ground
response for each day [19]. It can be interpreted in our case saubspace constructed by the reference

vector, u’i, extracted from th@4-hour temperature variations at all the distances.

B. Dissimilarity Measure Using SVD

A quick analysis of the signal or so called reference sutnsp‘af@ig, instantly reveals the underlying
idea. The dotted lines in Fig. 3 show this reference subspﬁ%, on dayi = 1 of the current data
set at the4 distances referred to earlier in the section. Two of thes¢adces (drainsP1 and D2)
correspond to singularities, whereas the other two to eefe nonsingularity zone$.8 km and1.264
km). It can be observed that the estimated reference ve@tiashed lines) are close to the original
temperature variations in the initial data (solid lines)yofor the nonsingularity zones, whereas they
show large deviations in case of singularity zones. Thisdeadis the fact that the reference veatéris
indeed a good representative of the nonsingularity zones.résidue subspace of the SV®;__.,. .,
contains the information linked to the deviation from thé&rence vector. The singularities can thus be
identified by using a measure of dissimilarity between themeged reference vector and the recorded
data at all distances. One possible measure for this dissityiis the Ly norm, ||.||, for each column,

Vi esiaue (@), Of the residue subspac¥;’ as each column of this subspace represents the deviation

residue’

from the reference vector. This can be formulated as follows:
d'(2) = ||Yhesidue(@)]|y 2 =1, ..., Noyi = 1,..., N (5)

It should be mentioned that although euclidean distance emgdoyed here, tests with other distances

resulted in no significant difference in the dissimilarity.



Considering the ideal case as the one with identical nooknity zones and a few singularity
zones, not necessarily identical, the dissimilarity measabtained using the proposed method should
only contain information related to the singularities. lier words, the histogram of the dissimilarity
measure for any given day!(x), should be like the one in Fig. 4(a), indicating that the disisirity
value is zero for most of the distances (no singularity). Thesichilarity measure should ideally be
non zero only for distances corresponding to singularitiesg distributed uniformly with the range,
u’ = ]0,maz(d’(z)) ]. However, owing to the fact that different nonsingularignes show a similar
response that may not be identical and that the referencervec only an estimation of the daily
temperature variations in the nonsingular zones, the driato would present a spread around the zero.
Fig. 4(b) shows such a histogram for the dissimilarity measdir(x), obtained on day of the data in
Fig. 2. We propose an approach for thresholding the disgittyilaneasure based on this histogram to

complete the singularity detection.

[CIDissimilarity histogram
n — Gamma distribution fit
- - -Uniform distribution fit

o e [ - e

2
0 0.15 03 045 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

(a) Ideal Dissimilarity His- (b) Dissimilarity Histogram (c) Mixture probability fitting
togram day 1

}
n 0.4 0.6 0.8

(d) Threshold calculation

(Zoomed version of (c))

Fig. 4. Thresholding using constant probability of false alarm approaeally the dissimilarity should be zero for most of
the zones except singularities (a) but practically this is not the case If).ré&sulting histogram for any given day could be
modeled by a Gamma and Uniform distribution mixture with their parametéinsiaed using EM-algorithm (c). Fixing the

probability of false alarm P;., shaded region) allows to find a unique threshajd, for each day thus accounting for effects

of daily climatic changes (d). Notation “O” highlights the values of dissimilarityasures for singularities.



C. Singularity Detection Using CFAR

Considering Fig. 4(b), the part of histogram correspondingansingular distances can be modeled by
a Gamma distribution. The choice of Gamma distribution ipiiresl by the fact that its two parameters,
« and § allow adaptability of the distribution shape to adjust tffedent situations. Moreover, Gamma
distribution explicitly takes into account positivity ofi¢ modeled dissimilarity measure. The singular
zones (marked by circles in Fig. 4) would not be captured byGaenma model and instead a Uniform
distribution is assumed for the singularities. The dissnity measure can thus be modeled with a
mixture of Gamma and Uniform distributions whose parangetan be estimated using the maximum
likelihood approach. In this regard, the Expectation-Maxation (EM) algorithm is an efficient tool
that maximizes the likelihood with respect to the distribatparameters [20]. Tan et al. [21] recently
proposed a formulation for parameter estimation for suchixdume based on the EM algorithm, which
was employed for the present work. The log-likelihood fumctof the mixture for any given day:”

can be written as:

N,
E(di‘ of, B ut) = Zv}v (—ai log 3% + (ozi — 1) log d’ (z)
=1

—logI (ai) — d'(z) + log 7ri>

ﬁi
NI . .
+> (1—9i)log (1—77), (6)
=1

with 7% the prior probability of Gamma distribution in the mixtudg(.) the Gamma function angl’. the
responsibility vector given by [21]:
; ﬂ,ifr di T Oéi,ﬂi
N 3 AN LT — ™)
m fr (di(z) [o, 5°) + (1 — ) ()

where fr(.) is the probability density function of Gamma distributiondau’ the range of Uniform

distribution. The mixture parameters and the prior prolisl are estimated using a recursive procedure
by maximizing Eq. (6) with respect to the parameters as pteden [21]. The histogram of Fig. 4(b)
fitted with the estimated Gamma and Uniform distributionsheven in the Fig. 4(c). Having estimated
the fitting distributions, the next step is to establish aghodd so as to detect only the singularities. At
any given distance, the obtained dissimilarity measure stayw variations over different days owing
to several factors. These include the duration and intemityhe sunlight on a particular day, the air
temperature, the wind speed, etc. The resolution of the sitigni material could also be one of the

factors. Since the estimated reference temperature vargatire not necessarily the same for each day,
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preselecting a constant threshold may not be a good ideapAlgoapproach for variable thresholding
applications is based on the Constant False Alarm Rate (CR#iereby a probability of false alarm
(Py,) is fixed rather than a threshold. The probability of falseralég usually system dependent and fixed
in terms of the system deployment by experts. In our casse falarm is raised when the detector detects
a singularity while there actually was none. Thus assumiegdisiredPs, as known, the thresholdy,
can be computed for each d&y’ as shown in Fig. 4(d), using the expression:

P [T ®

ni BT (o)

The detector thus takes the decision based on this threshold a

; di(x) if d'(z) >
in(x) = ) 9)
0 otherwise

D. Automated Singularity Detection System

The proposed detector gives a map of the singularities in imeisional spatio-temporal space i),
with a spatial resolution of m and a temporal resolution @ft hours. The system can be implemented
as shown in Fig. 5. In the next section, the proposed systemalyzed on real temperature data under

different scenarios to show its efficiency.

Conditions ;
N SVD W|th P = 1 Yresia'ue COIumn'Wise

i Y (Eq. (4)) ’| Lnorm (Eg. (5))
Mm |
d'(x)

DTS Data Distanc{e_Qcm) Meteo.

_ | CFAR based |4ulx)
thresholding

Distance (km) Distance (km)

Fig. 5. SVD and CFAR based singularity detection system. The residspacd of SVD or24-hour data contains information
on the singularities. By takind.. norm at each distance, the resulting dissimilarity is modeled as a mixture mmaaand

Uniform distributions and thresholded by fixing a probability of false alarm.
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TABLE |

CHARACTERIZATION OF THE STRUCTURES AND INTRODUCTION OF ARTHICIAL LEAKAGES AT THE TEST SITE

Drains L eakages HotPoint
D1 D2 L1 L2 L3 HP
Location (km)  0.561 0.858 1.566 1.551 1.573 0.674
Time (day) - - 8 (noon) 10 (noon) 10 (eve) & (noon)
Flow rate (I/min) - - 5 1 1

IV. APPLICATION ONDTS TEMPERATURE DATA SET

The real temperature data presented in Fig. 2 are first analyzezhe data were recorded over a
period of11 non-consecutive days in ye2a005. With reference to the days shown in Fig. 2, the different
phenomena present at the site are tabulated in Tab. | wittirdedo their position and occurrence time.
Three artificial leakages of percolation-typel, L2, and L3, with different flow rates, were introduced
along with a hot point £ P) simulating artificial flow of hot water on daysand10. The data over the
days with neither any artificial nor any real leakages sensgra$erence for different scenarios. Moreover,
similar meteorological conditions (e.g., ho precipitatimstances) were ensured here using the higher
order statistics based criteria [17]. It should be highighthat if days with intense precipitation are
considered for analysis, the detector would give non-zerpuis for most of the distances along the
fiber as opposed to only a few for singularities in the abserqeexipitation. The first singular value,
o, obtained by application of SVD on daily da¥, is extremely energetic amounting to ab®at; of
the total energy. Therefore, the first SVD source veaidr,being a very good representative of thié”
24-hour temperature response of the site under study, wastselas the reference vector. The reference
subspacer;ig, is thus constructed using the spatial variation of thiss®with P = 1 while the residue
subspaceY?, ..., using the remaining singular values. The residue subspapegsenting deviation
from the reference subspace, contains useful informatiom the singularity detection perspective. The
dissimilarity measured’(z), was obtained by taking th&,-norm of (see Eq. (5)) at all the distances.
Fig. 6 shows the resulting measure for daywvhose histogram was presented in Fig. 4(b)-4(c). It can be
observed that draind)1 and D2, offer a strong dissimilarity depicting a behavior diffetdrom other
zones. The rest of the dissimilarity measure could be thoafhs background noise.

The dissimilarity measure was thresholded using the CFARMD&#sresholding scheme described in
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Fig. 6. The residue subspac¥;..;,... obtained with SVD for dayl of nonconsecutivell days data set. This subspace

represents the deviation from the reference subspﬁ(}gg" thus putting into evidence the singularities.
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Fig. 7. Detection results for data set shown in Fig. 3. The amplitudes shosvnormalized for each day with respect to the
maximum for that day. The draind§)1 and D2 constitute omnipresent singularities and thus always detected. A singwdéarity
ground is observed aroundd7 km on several days. Artificial percolation type leakagés,(L2, L3) are also detected from

days8 to 11 with their strength relative to the drains indicating their intensity. The hot p&lfY) (s also detected on day

Sec. llI-C. The Py, being an input parameter to the current system, we are ctinguexperiments
in consultation with the experts to associate physicalfjoation to Py, selection. For this study, we

consider aPy, of 10~. The detection resultgd;, () are shown in Fig. 7 for the data set under study with
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distance on abscissa and days on ordinate. The amplitudeadbrday were normalized with respect to
the maximum for each day, thus peaks amplitudes would gianuaformation about the strength of the
underlying singularities on any given day. The draifs, and D2 constitute omnipresent singularities
hence detected on all the days. Moreover, a singularity tectted around .7 km as evident on day$

to 10. It corresponds to a singularity of the ground in a zone wlileeematerial composition is different

from other zones. The different material composition resintdifferent conduction properties owing to
differences such as soil permeability, composition, etc.

At the present site, we have acquisitions over differentoplsrfrom year2005 to 2007. The system
repeatability was thus verified by testing it on the data aegluin 2006 with another DTS device with
different sensitivity over the days with same acquisitionditions (meteorological). The results obtained
were concurrent with the ones obtained205 with the two drains and the ground singularity detected
as the singularities. Moreover, the results do not depentherseason when acquisitions are done. The

results are not shown in order to avoid repetition.

A. Atrtificial Leakage Detection

We next focus our attention to the three artificial leakades (.2, L3) and the hot point& P). These
leakages are impulsional in distance and exist momenteritime as well. The resultant flow of water
due to these leakages would bring about a change in the gteumgkrature thus presenting a source of
singularity. The detection results for the case of artifickglklages is shown in Fig. 7 from daygo 11
with the corresponding zoomed version shown in Fig. 8. It camlbserved that a very good localization

in distance of the leakages is achieved with a very good gitatisee Fig. 8). Moreover, the leakages are

L
| ;

L2

10 /NN

L2 L1

S AW

1.53 1.54 1.55 1.56 1.57 1.58 1.59
Distance (km)

Time (days)

Fig. 8. Zoom on detection results for artificial leakages depicting a goalization of the leakages in distance.

identified at their original locations along with the hot goihl is detected as the most energetic leakage
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on day8 in accordance with its highest flow ratgl(min) and it persists fo days with decreasing

strength. The other two leakages are also detected albditlaviter amplitudes. Since the system was
designed to work as a daily detector and normalization wasechout for each day, the comparison of
the leakages strengths could be done by their amplitudatvesito the drain amplitudes for each day.

The leakages sustained only o+ 3 days as was expected due to their controlled impulsive eatur

B. Periodic Analysis and Real Leakage Detection

As an example of periodic analysis, the proposed system egdsd on the data acquired2007. The
detection results fod days in2007 when there were no precipitations (like the cas@@f5) are shown
in Fig. 9. A comparison with the results obtained for y2865 (see Fig. 7) show that while the two
drains, D1 and D2 and the ground singularity are identified as before, an amditisingularity zone is
observed just after the second drain at a distance arowidkm. This points to an occurrence of a new

event in2007 which was not there in the first place 2005 or 2006.

D1 D2
1
’Q
3
—~2
®
S
'—
r\ Real Leakage
3 Zone
A | | |
0.5 1 1.5 2

Distance (km) '

Fig. 9. Detection results fot days in2007 reveal real leakage zone just after dré2 in addition to the previously observed

drains and the singularity of the ground. Note that there are days WwherD2 do not appear which could be explained by the
possible climatic conditions.

The investigation into this singularity by physical inspeotat the acquisition site revealed existence
of a suspected real water leakage in the dike structure figstthe drainD2. This real leakage has a non

impulsive signature as opposed to the artificial percolatype leakages. Its detection as a singularity is
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justified by the fact that it brings additional water around dptical fiber thus providing more conduction
and different temperature variation than the homogeneousingular zones. Further investigations are

underway to quantify this leakage by measuring its flow raggemining its seasonal dependence, etc.

V. CONCLUSION

The use of distributed temperature sensors for anomaly titeieio dikes is a very efficient solution
due to their long-term and automatic monitoring capabi#itwith the added advantage of using low-cost
and robust optical fiber cable. The acquired temperature ddtg IDTS is not immediately exploitable
in terms of anomaly detection and signal processing is iablg to extract this information. A detector
was proposed in this paper based on SVD and a fixed probabilitglsd alarm. It was shown that the
temperature variations over the course of a day do not shove sariations at all the sensing distances
and these daily temperature variations can be exploitetidoacterize a given distance as a singularity or
nonsingularity. A reference vector for the temperatur@atimm over a24-hour period can be estimated
using SVD as itis linked to the first singular value of SVD. Thiserehce vector being a representative of
the nonsingular zones, the residue subspace contains \tfaiole from this reference and thus serves as
an indicator of singularity. A dissimilarity measure is stmicted employing thé-, norm on this residue
subspace. The resulting measure is then modeled by a mixt@amma and Uniform distributions with
the Gamma distribution accounting for the small deviatifsom the nonsingularity due to estimation and
the Uniform accounting for the anomalies or the singulesitiThe distribution parameters are estimated
using an EM-algorithm and then a thresholding scheme is dedipased on the constant probability of
false alarm. Fixing the probability of false alarm allows &iimate the threshold for each day which may
vary from one day to another due to factors such as duratidnirdensity of sunlight, air temperature,
wind speed, etc. The application of the proposed system dndega showed that drains present a
significant singularity and since they form part of permars&nictures, they are always detected. The
proposed system was validated under different scenaridstten repeatability of the system was also
verified by periodic analysis. Amongst the scenarios disisgere that of the detection of percolation
type artificial leakages with their detection strength delrggn on their flow rate. The tests on yeHi07
allowed to detect the presence of a real water leakage attéhelsich was previously unobserved during
manual inspections. The future work would focus on the tgstiithis system on other data sets acquired
at different sites as well as the development of other meastar characterize not only a dissimilarity,

but also to quantify the shapes and variability of singtyazones.
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