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Learning and adaptive estimation for

marker-dependent counting processes

Stéphane Gäıffas1 Agathe Guilloux1,2

September 29, 2009

Abstract

We consider the problem of statistical learning for the intensity of a count-
ing process with covariates. In this context, we introduce an empirical risk,
and prove risk bounds for the corresponding empirical risk minimizers. Then,
we give an oracle inequality for the popular algorithm of aggregation with ex-
ponential weights. This provides a way of constructing estimators that are
adaptive to the smoothness and to the structure of the intensity. We prove
that these estimators are adaptive over anisotropic Besov balls. The probabilis-
tic tools are maximal inequalities using the generic chaining mechanism, which
was introduced by Talagrand (2005), together with Bernstein’s inequality for
the underlying martingales.

Keywords. Counting processes, Statistical learning, Adaptive estimation, Em-
pirical risk minimization, Aggregation with exponential weights, Generic chain-
ing

1 Introduction

Over the last decade, statistical learning theory (initiated by Vapnik, see for instance
Vapnik (2000)) has known a tremendous amount of mathematical developments. By
mathematical developments, we mean risk bounds for learning algorithms, such as
empirical risk minimization, penalization or aggregation. However, in the vast ma-
jority of papers, such bounds are derived in the context of regression, density or
classification. In the regression model, one observes independent copies of (X,Y ),
where X is an input, or a covariate, and Y is a real output, or label. The aim is
then to infer on E(Y |X). The aim of this paper is to study the same learning algo-
rithms (such as empirical risk minimization) in a more sophisticated setting, where
the output is not a real number, but a stochastic process. Namely, we focus on the
situation where, roughly, the output is a counting process, which has an intensity
that depends on the covariate X . The aim is then to infer on this intensity. This
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framework contains many models, that are of importance in practical situations, such
as in medicine, actuarial science or econometrics, see Andersen et al. (1993).

In this paper, we give risk bounds for empirical risk minimization and aggrega-
tion algorithms. In summary, we try to “find back” the kind of results one usually
has in more “standard” models (see below for references). Then, as an application
of these results, we construct estimators that have the property to adapt to the
smoothness and to the structure of the intensity (in the context of a single-index
model). Several papers work in a setting close to ours. Model selection has been
first studied in Reynaud-Bouret (2003) for the non-conditional intensity of a Pois-
son process, see also Reynaud-Bouret (2006), Birge (2007), Baraud and Birgé (2009)
and Brunel and Comte (2005). Model selection for the same problem as the one
considered here has been studied in Comte et al. (2008).

The agenda of the paper is the following. In this Section, we describe the general
setting and the corresponding estimation problem. Section 1.2 is devoted to a pre-
sentation of the main examples embedded in this setting. The main objects (such as
the empirical risk) and the basic deviation inequalities are described in Section 2. In
Section 3, we give risk bounds for the empirical risk minimization (ERM) algorithm.
To that end, we provide useful uniform deviation inequalities using the generic chain-
ing mechanism introduced in Talagrand (2005) (see Theorem 1 and Corollary 1), and
we give a general risk bound for the ERM in Theorem 3 and its Corollary 2. In
Section 4, we adapt a popular aggregation algorithm (aggregation with exponential
weights) to our setup, and give an oracle inequality (see Theorem 4). In Section 5,
we use the results from Sections 3 and 4 to construct estimators that adapt to the
smoothness and to the structure of the intensity. We compute the convergence rates
of the estimators, that are minimax optimal over anisotropic Besov balls. Section 6
contains the proofs. Some useful results and tools are recalled in the Appendices.

1.1 The model

Let (Ω,F , P ) be a probability space and (Ft)t≥0 a filtration satisfying the usual
conditions, see Jacod and Shiryaev (1987). Let N be a marked counting process with
compensator Λ with respect to (Ft)t≥0, so that M = N − Λ is a (Ft)t≥0-martingale.
We assume that N is a marked point process satisfying the Aalen multiplicative
intensity model. This means that Λ writes

Λ(t) =

∫ t

0

α0(u,X)Y (u)du (1)

for all t ≥ 0, where:

• α0 is an unknown deterministic and nonnegative function called intensity;

• X ∈ R
d is a F0-measurable random vector called covariates or marks ;

• Y is a predictable random process in [0, 1].

With differential notations, this model can be written has

dN(t) = α0(t,X)Y (t)dt+ dM(t) (2)
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for all t ≥ 0 with the same notations as before, and taking N(0) = 0. Now, assume
that we observe n i.i.d. copies

Dn = {(Xi, N
i(t), Y i(t)) : t ∈ [0, 1], 1 ≤ i ≤ n} (3)

of {(X,N(t), Y (t)) : t ∈ [0, 1]}. This means that we can write

dN i(t) = α0(t,Xi)Y
i(t)dt + dM i(t)

for any i = 1, . . . , n where M i are independent (Ft)t≥0-martingales. In this setting,
the random variable N i(t) is the number of observed failures during the time interval
[0, t] of the individual i.

The aim of the paper is to recover the intensity α0 on [0, 1] based on the observa-
tion of the sample Dn. This general setting includes several specific problems where
the estimation of α0 is of importance for practical applications, see Section 1.2. In all
what follows, we assume that the support of PX is compact, but in order to simplify
the presentation, we shall assume the following.

Assumption 1. The support of PX is [0, 1]d, and

‖α‖∞ := sup
(t,x)∈[0,1]d+1

|α(t, x)| (4)

is finite.

These assumptions on the model are very mild, excepted for the i.i.d assumption
of the sample, meaning that the individuals i are independent. Let us give several
examples of interest that fit in this general setting.

1.2 Examples

1.2.1 Regression model for right-censored data

Let T be a nonnegative random variable (r.v.) and X a vector of covariates in R
d.

In this model, T is not directly observable: what we observe instead is

TC := min(T,C) and δ := I(T ≤ C), (5)

where C is a nonnegative random variable called censoring. This setting, where the
data is right censored, is of first importance in applications, especially in medicine,
biology and econometrics. In these cases, the r.v. T can represent the lifetime of an
individual, the time from the the onset of a disease to the healing, the duration of
unemployment, etc. The r.v. C is often the time of last contact or the duration of
follow-up. In this model we assume the following mild assumption:

T and C are independent conditionally to X, (6)

which allows the censoring to depend on the covariates, see Heuchenne and Van Keilegom
(2007). This assumption is weaker than the more common assumption that T and C
are independent, see in particular Stute (1996).

In this case, the counting process writes

N i(t) = I(TCi ≤ t, δi = 1) and Y i : Y i(t) = I(TCi ≥ t),
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see e.g. Andersen et al. (1993). In this setting, the intensity α0 is the conditional
hazard rate of T given X = x, which is defined for all t > 0 and x ∈ R

d by

α0(t, x) = αT |X(t, x) =
fT |X(t, x)

1 − FT |X(t, x)
,

where fT |X and FT |X are the conditional probability density function (p.d.f.) and
the conditional distribution function (d.f.) of T given X respectively. The available
data in this setting becomes

Dn := [(Xi, T
C
i , δi) : 1 ≤ i ≤ n],

where (Xi, T
C
i , δi) are i.i.d. copies of (X,TC , δ), where we assumed (6), namely Ti

and Ci are independent conditionally to Xi for 1 ≤ i ≤ n.
The nonparametric estimation of the hazard rate was initiated by Beran (1981),

Stute (1986), Dabrowska (1987), McKeague and Utikal (1990) and Li and Doss (1995)
extended his results. Many authors have considered semiparametric estimation of the
hazard rate, beginning with Cox (1972), see Andersen et al. (1993) for a review of
the enormous literature on semiparemetric models. We refer to Huang (1999) and
Linton et al. (2003) for some recent developments. As far as we know, adaptive
nonparametric estimation for censored data in presence of covariates has only been
considered in Brunel et al. (2007), who constructed an optimal adaptive estimator of
the conditional density.

1.2.2 Cox processes

Let ηi, 1 ≤ i ≤ n, be n independent Cox processes on R+, with mean-measure Ai

given by :

Ai(t) =

∫ t

0

α(s,Xi)ds,

where Xi is a vector of covariates in R
d. This is a particular case of longitudinal data,

see e.g. Example VII.2.15 in Andersen et al. (1993). The nonparametric estimation
of the intensity of Poisson processes without covariates has been considered in several
papers. We refer to Reynaud-Bouret (2003) for the adaptive estimation (using model
selection) for the intensity of nonhomogeneous Poisson processes in a general space

1.2.3 Regression model for transition intensities of Markov processes

Consider a n-sample of nonhomogeneous time-continuous Markov processes P 1, . . . , Pn

with finite state space {1, . . . , k} and denote by λjl the transition intensity from state
j to state l. For an individual i with covariate Xi, the r.v. N i

jl(t) counts the number
of observed direct transitions from j to l before time t (we allow the possibility of
right-censoring for example). Conditionally on the initial state, the counting process
N i
jl verifies the following Aalen multiplicative intensity model:

N i
jl(t) =

∫ t

0

λjl(Xi, z)Y
i
j (z)dz +M i(t) for all t ≥ 0,

where Y ij (t) = I(P i(t−) = j) for all t ≥ 0, see Andersen et al. (1993) or Jacobsen
(1982). This setting is discussed in Andersen et al. (1993), see Example VII.11 on
mortality and nephropathy for insulin dependent diabetics.
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We finally cite three papers, where the estimation of the intensity of counting pro-
cesses was considered, gathering as a consequence all the previous examples, but in
none of them the presence of covariates was considered. Ramlau-Hansen (1983) pro-
posed a kernel-type estimator, Grégoire (1993) studied least squares cross-validation.
More recently, Reynaud-Bouret (2006) considered adaptive estimation by projection
and Baraud and Birgé (2009) considered the adaptive estimation of the intensity of
a random measure by histogram-type estimators.

1.3 Some notations

From now on, we will denote by L an absolute constant that can vary from place to
place (even in the same line), and by c a constant that depends on some parameters,
that we shall indicate into subscripts. In all of what follows, Dn is an i.i.d. sample
satisfying model (2), and we take (X, (Yt), (Nt)) independent of Dn that satisfies also
model (2). Note that we will use both notations (Zt)t≥0 and (Z(t))t≥0 for a stochastic
process Z. We denote by Pn[·] the joint law of Dn and P[·] the law of (X, (Yt), (Nt)),
and by En[·] and E[·] the corresponding expectations.

2 Main constructions and objects

2.1 An empirical risk

Let x ∈ R
d and (yt), (nt) be functions [0, 1] → R

+ with bounded variations, and
let α : [0, 1]d+1 → R

+ be a bounded and predictable function (that can eventually
depend on Dn). We define the loss function

ℓα(x, (yt), (nt)) =

∫ 1

0

α(t, x)2y(t)dt− 2

∫ 1

0

α(t, x)dn(t).

We define the least-squares type empirical risk of α as:

Pn(ℓα) :=
1

n

n
∑

i=1

ℓα(Xi, (Y
i
t ), (N i

t ))

=
1

n

n
∑

i=1

∫ 1

0

α(t,Xi)
2Y i(t)dt− 2

n

n
∑

i=1

∫ 1

0

α(t,Xi)dN
i(t). (7)

This quantity measures the goodness-of-fit of α to the data from Dn. It has been
used in Comte et al. (2008) to perform model selection. It is the empirical version of
the theoretical risk

P (ℓα) := E[ℓα(X, (Yt), (Nt)) |Dn]

= E

[

∫ 1

0

α(t,X)2Y (t)dt− 2

∫ 1

0

α(t,X)dN(t)
∣

∣Dn

]

.
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This risk is natural in this model. Indeed, if α is independent of Dn, we have in view
of (2), since M(t) is centered:

P (ℓα) = E

[

∫ 1

0

(α(t,X)2 − 2α(t,X)α0(t,X))Y (t)dt
]

− 2E

[

∫ 1

0

α(t,X)dM(t)
]

= ‖α‖2 − 2〈α, α0〉 (8)

= ‖α− α0‖2 − ‖α0‖2, (9)

where:

〈α, α0〉 :=

∫

Rd

∫ 1

0

α(t, x)α0(t, x)E[Y (t)|X = x]dtPX(dx), ‖α‖2 := 〈α, α〉. (10)

This is an inner product with respect to the bounded measure (it is smaller than 1)

dµ(t, x) := E[Y (t)|X = x]dtPX(dx). (11)

We will denote by L
2(µ) the corresponding Hilbert space, and define L

∞(µ) as the
subset of L

2(µ) consisting of functions α such that ‖α‖∞ < +∞.
In view of (8), P (ℓα) − P (ℓα0

) (called excess risk) is equal to ‖α − α0‖2. As a
consequence, α0 minimizes α 7→ P (ℓα), so a natural way to recover α0 is to take a
minimizer of α 7→ Pn(ℓα). This is the basic idea of empirical risk minimization, for
which we propose risk bounds in Section 3 below. Let us define the empirical norm

‖α‖2
n :=

1

n

n
∑

i=1

∫ 1

0

α(t,Xi)
2Y i(t)dt, (12)

so that we have En‖α‖2
n = ‖α‖2 if α is deterministic. Note that ‖α‖n ≤ ‖α‖∞ and

‖α‖ ≤ ‖α‖∞. An important fact is that (2) entails

Pn(ℓα) − Pn(ℓα0
) = ‖α− α0‖2

n − 2√
n
Zn(α− α0), (13)

where Zn(·) is given by

Zn(α) =
1√
n

n
∑

i=1

∫ 1

0

α(t,Xi)dM
i(t), (14)

where M i are the independent copies of the martingale innovation from (2). The
decomposition (13) will be of importance in the analysis of the problem.

Remark 1 (Regression model for right-censored data). In the problem of censored
survival times with covariates, see Section 1.2.1, the semi-norm of estimation becomes

‖α‖2 =

∫ ∫ 1

0

α(t, x)2H̄TC |X(t, x)dtPX(dx),

where H̄TC |X(t, x) := P[TC > t|X = x], and where by (5) and (6):

H̄TC |X(t, x) = P[T > t|X = x]P[C > t|X = x].

This weighting of the norm is natural and, somehow, unavoidable in models with
censored data. The same normalization can be found, for instance, in the Dvoretzky-
Kiefer-Wolfowitz concentration inequality for the Kaplan-Meier estimator (without
covariates), see Theorem 1 in Bitouzé et al. (1999).
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2.2 Deviation inequalities

Let us denote by 〈Z〉 the predictable variation of a random process Z. Note that we
have, using Assumption 1:

〈Zn(α)〉 =
1

n

n
∑

i=1

∫ 1

0

α(t,Xi)
2α0(t,X)Y i(t)dt ≤ ‖α0‖∞‖α‖2

n. (15)

A useful result is then the following. First, introduce, for δ > 0,

ψn,δ(h) := log E
n[ehZn(α)1〈Zn(α)〉≤δ2 ]

and the Cramér transform ψ∗
n,δ(z) := suph>0(hz − ψn,δ(h)).

Proposition 1. For any bounded α and any z, δ > 0, the following inequality holds:

ψ∗
n,δ(z) ≥

nδ2

‖α‖2
∞
g
(z‖α‖∞
δ2
√
n

)

, (16)

where g(x) := (1 + x) log(1 + x) − x.

This result and the deviation inequalities stated below are related to standard re-
sults concerning martingales with jumps, see Liptser and Shiryayev (1989), van de Geer
(1995) or Reynaud-Bouret (2006), among others. For the sake of completeness we
give a proof of Proposition 1 in Section 6. From the minoration (16), we can de-
rive several deviation inequalities. Using the Cramér-Chernoff bound P

n[Zn(α) >
z, 〈Zn(α)〉 ≤ δ2] ≤ exp(−ψ∗

n,δ(z)), we obtain the following Benett’s inequality:

P
n[Zn(α) > z, 〈Zn(α)〉 ≤ δ2] ≤ exp

(

− nδ2

‖α‖2
∞
g
(z‖α‖∞
δ2
√
n

))

for any z > 0. As a consequence, since g(x) ≥ 3x2/(2(x+3)) for any x ≥ 0, we obtain
the following Bernstein’s inequality:

P
n[Zn(α) > z, 〈Zn(α)〉 ≤ δ2] ≤ exp

(

− z2

2(δ2 + z‖α‖∞/(3
√
n)

)

. (17)

Another useful Bernstein’s inequality can be derived using the following trick from Birgé and Massart
(1998): since g(x) ≥ g2(x) for any x ≥ 0 where g2(x) = x + 1 −

√
1 + 2x, and since

g−1
2 (y) =

√
2y + y, we have

P
n
[

Zn(α) > δ
√

2x+
‖α‖∞x√

n
, 〈Zn(α)〉 ≤ δ2

]

≤ exp(−x) (18)

for any x > 0. Note that from (16), we can derive a uniform deviation inequality.
Consider a family (Zn(α) : α ∈ A), where A is a set of bounded functions with finite
cardinality N . Since ψ∗−1

n,δ (z) ≤ z‖α‖∞/
√
n+δ

√
2z (see above) we have, using Pisier’s

argument (see Section 2 in Massart (2007)), that

P
n
[

Zn(α) > δ
√

2(lnN + x) +
‖α‖∞(lnN + x)√

n
, 〈Zn(α)〉 ≤ δ2 for some α ∈ A

]

≤ exp(−x). (19)

In view of the next Lemma, we can remove the event {〈Zn(α)〉 ≤ δ2} from the
previous inequalities. Indeed, a consequence of (18) is the following.
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Lemma 1. If α is bounded, we have for any x > 0:

P
n
[

Zn(α) ≥ c‖α‖
√
x+ (c+ 1)

‖α‖∞x√
n

]

≤ 2 exp(−x),

where c = c‖α0‖∞
:= [

√
2(
√

2 + 1)‖α0‖∞]1/2.

Proof. Since E[(
∫ 1

0
α(t,X)2Y (t)dt)2] ≤ ‖α2‖2 and ‖

∫ 1

0
α(t,X)2Y (t)dt‖∞ ≤ ‖α‖2

∞,
Bernstein’s inequality for the deviation of the sum of i.i.d. random variables gives:

P
n
[

‖α‖2
n − ‖α‖2 >

‖α2‖
√

2x√
n

+
‖α‖2

∞x

n

]

≤ exp(−x). (20)

Take δ2n,x := ‖α‖2 + ‖α2‖
√

2x/
√
n+ ‖α‖2

∞x/n. We have P[‖α‖2
n > δ2n,x] ≤ exp(−x)

and

δn,x
√

2‖α0‖∞x+
‖α‖∞x√

n
≤ c‖α0‖∞

√
x‖α‖ + (c‖α0‖∞

+ 1)
‖α‖∞x√

n
.

Now, use (15) and (18) to obtain

P

[

Zn(α) ≥ δn,x
√

2‖α0‖∞x+
‖α‖∞x√

n
, ‖α‖2

n ≤ δ2n,x

]

≤ exp(−x)

for any x > 0. This concludes the proof of the Lemma, by a decomposition over
{‖α‖n > δn,x} and {‖α‖n ≤ δn,x}.

These deviation inequalities are the starting point of the proof of risk bounds
for the algorithm of empirical risk minimization (ERM). Such a bound is given in
Section 3 below, see Theorem 3. It requires a generalization of the bound (19) to a
general set A, which is given in Section 3.2.

3 Empirical risk minimization

The very basic idea of empirical risk minimization (ERM) is the following. Since
α0 minimizes the risk α 7→ P (ℓα), a natural estimate of α0 is a minimizer of the
empirical risk α 7→ Pn(ℓα) over some set of function A, usually called a sieve. There
is hope that such an empirical minimizer is close to α0, at least if α0 is not far from A
and if (P − Pn)(ℓα) is small (more details below). Also known as M-estimation, this
algorithm has been studied extensively, see for instance Birgé and Massart (1998),
Vapnik (2000), van de Geer (2000), Massart (2007), Bartlett and Mendelson (2006),
among many others.

If no minimizer of the empirical risk exists, we can simply consider, as this is
usually done in the literature, a ρ-minimizer according to the following definition.

Definition 1 (ρ-ERM). Let ρ > 0 be fixed. A ρ-Empirical Risk Minimizer (ρ-ERM)
is an estimator ᾱn ∈ A satisfying

Pn(ℓᾱn) ≤ ρ+ inf
α∈A

Pn(ℓα),

where Pn(ℓα) is the empirical risk (7).
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For what follows, one can take ρ = 1/n, since typically, the risk of ᾱn is larger than
that. To prove a risk bound for the ERM, one usually needs a deviation inequality
for

ζn(A) := sup
α∈A

(P − Pn)(ℓα).

However, when A is not countable, ζn may be not measurable. This is not a problem
since we can always consider the outer expectation in the statement of the deviation
(see van der Vaart and Wellner (1996)), or simply assume the following.

Assumption 2. There is a countable subset A′ of A such that almost surely,

sup
α∈A′

Pn(ℓα) = sup
α∈A

Pn(ℓα).

Moreover, assume that there is b > 0 such that ‖α‖∞ ≤ b for every α ∈ A.

The map α 7→ Pn(ℓα) is continuous over C([0, 1]d+1) endowed with the norm ‖·‖∞.
So, given that A ⊂ C([0, 1]d+1), the first part of Assumption 2 is met. Note that this
embedding holds in the examples considered in Section 5. The second part is rather
unpleasant, but mandatory if no extra assumption is made on A, and since an L

2

metric is considered for the estimation of α0.
From now on, we take α∗ such that P (ℓα∗

) = infα∈A P (ℓα) (if no such α∗ exists, we
can simply consider α∗ such that P (ℓα∗

) ≤ infα∈A P (ℓα)+ ρ). Note that α∗ may not
be unique at this point, we just pick one of the minimizers. The function α∗ is usually
called the target function, or the oracle in learning theory, see Cucker and Smale
(2002) for instance.

3.1 Peeling

A common way to prove a risk bound for the ERM uses the idea of localization or
peeling (see for instance Massart (2007), Lemma 4.23 and van de Geer (2000, 2007),
among others). The idea presented here is very close to these references. First, do a
shift: take ǫ > 0, and use the fact that ᾱn is a ρ-ERM to obtain

P (ℓᾱn) − P (ℓα∗
) ≤ (1 + ǫ)ρ+ P (ℓᾱn) − P (ℓα∗

) − (1 + ǫ)(Pn(ℓᾱn) − Pn(ℓα∗
))

≤ (1 + ǫ)ρ+ ξn,ǫ(A),

where
ξn,ǫ(A) := sup

α∈A

(

(1 + ǫ)(P − Pn)(ℓα − ℓα∗
) − ǫP (ℓα − ℓα∗

)
)

.

Then, for some constants δ > 0 and q > 1, decompose the supremum over A into
suprema over annuli Aj(δ), where A(δ) = {α ∈ A : P (ℓα) − P (ℓα∗

) ≤ δ}, and for
j ≥ 1, Aj(δ) = {α ∈ A : qjδ < P (ℓα) − P (ℓα∗

) ≤ qj+1δ}. Assume for the moment
that there exists an increasing function ψ : R

+ → R
+ and δmin > 0 such that for any

x > 0 and δ > δmin, we have with a probability larger than 1− Le−x:

sup
α∈A(δ)

(P − Pn)(ℓα − ℓα∗
) ≤ ψ(δ)(1 +

√
x ∨ x)√

n
. (21)

Such an inequality will be proved in Section 3.2 below. It entails that, with a proba-
bility larger than 1− Le−x:

ξn,ǫ(A) ≤ (1+ǫ)
ψ(δ)(1 +

√
x ∨ x)√

n
+sup
j≥1

(

(1+ǫ)
ψ(qj+1δ)(1 +

√
x ∨ x)√

n
−ǫqjδ

)

. (22)
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Assume further that ψ is continuous, increasing, such that δ 7→ ψ(δ)/δ is decreasing
and ψ−1 is strictly convex. We can define the convex conjugate of ψ−1 as

ψ−1∗(δ) := sup
x>0

{xδ − ψ−1(x)}. (23)

The following Lemma comes in handy to choose a parameter δ that kills the second
term in the right hand side of (22).

Lemma 2. Let ψ : R
+ → R

+ be a continuous and increasing function and assume
that ψ−1 is strictly convex. If δ := ψ−1∗(2x/y), we have

xψ(δ) ≤ yδ

for any x, y > 0.

Proof. Simply write

xψ(δ) =
y

2

2x

y
ψ

(

ψ−1∗
(2x

y

))

≤ y

2

(

ψ−1∗
(2x

y

)

+ ψ−1∗
(2x

y

))

,

where the trick is to use the fact that uv ≤ ψ−1∗(u) + ψ−1(v) for any u, v > 0.

Using Lemma 2 and the fact that ψ(qj+1δ) ≤ qj+1ψ(δ), we obtain that for the
choice

δn,ǫ(x) := ψ−1∗
(2q(1 + ǫ)(1 +

√
x ∨ x)

ǫ
√
n

)

,

we have, with a probability larger than 1 − Le−x:

P (ℓᾱn) − P (ℓα∗
) ≤ (1 + ǫ)ρ+ ǫδn,ǫ(x).

We have proved the following result.

Proposition 2 (Peeling). Assume that (21) holds for any δ > δmin, where ψ : R
+ →

R
+ is a continuous and increasing function such that ψ−1 is strictly convex and

δ 7→ ψ(δ)/δ is decreasing. If ᾱn is a ρ-ERM according to Definition 1, we have for
any x > 0:

P (ℓᾱn) ≤ P (ℓα∗
) + (1 + ǫ)ρ+ ǫδn,ǫ(x)

with probability larger than 1 − Le−x, where

δn,ǫ(x) := ψ−1∗
(2(1 + ǫ)q(1 +

√
x ∨ x)

ǫ
√
n

)

∨ δmin.

In the next section, we prove Inequality (21) using the generic chaining mechanism,
under an assumption on the complexity of A.

3.2 Generic chaining

The generic chaining technique, which is introduced in Talagrand (2005) is, in our
setting, a nice way to prove (21). It is based on the γν(A, d) functional (see below)
which is an alternative to Dudley’s entropy integral (see Dudley (1978) for instance).
The idea is to decompose A using an approximating sequence of partitions, instead
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of nets with decreasing radius, as this is done in the standard chaining method. Let
us briefly recall some necessary notions that can be found in details in Talagrand
(2005), Chapter 1.

Let (A, d) be a metric space (d can be a semi-distance). Denote by ∆(A, d) :=
supa,b∈B d(a, b) the diameter of A. An admissible sequence of A is an increasing
sequence (Aj)j≥0 of partitions of A (every set of Aj+1 is included in a set of Aj) such

that |Aj | ≤ 22j

and |A0| = 1. If a ∈ A, we denote by Aj(a) the unique element of Aj

that contains a. For ν > 0, define the function

γν(A, d) := inf sup
a∈A

∑

j≥0

2j/ν∆(Aj(a), d) (24)

where the infimum is taken among all admissible sequence of A. This quantity is an
alternative (and an improvement, see Talagrand (2005), in particular Theorem 3.3.2)
of the Dudley’s entropy integral (see for instance van der Vaart and Wellner (1996)).
Indeed, we have:

γν(A, d) ≤ L

∫ ∆(A,d)

0

(logN(A, ε, d))1/νdε, (25)

where N(A, ε, d) is the covering number of A, namely the smallest integer N such
that there is B ⊂ A satisfying |B| ≤ N and d(a,B) ≤ ε for any a ∈ A.

Introduce d2(a, b) := ‖a − b‖ where ‖ · ‖ is the semi-norm given by (10) and
d∞(a, b) = ‖a − b‖∞, where ‖ · ‖∞ is the uniform norm (4). Using the generic
chaining argument, we obtain the following deviation inequality.

Theorem 1. Grant Assumptions 1 and 2. For any x > 0, we have

sup
α∈A

√
n(P − Pn)(ℓα − ℓα∗

) ≤ c
(

γ2(A, d2)(1 +
√
x) + γ1(A, d∞)

1 + x√
n

)

(26)

with a probability larger than 1 − Le−x, where c = cb,‖α0‖∞
= 4(b + ‖α0‖∞) +

2([
√

2(
√

2 + 1)‖α0‖∞]1/2 + 1) (and L ≈ 1.545433).

The proof of Theorem 1 is given in Section 6 below. In (26), the function γ2 is
related to the subgaussian term of the Bernstein inequality (18), while γ1 is related to
the subexponential term. However, if we have an extra condition on the complexity
of A, it is possible to “remove” the γ1 term from (26). This is called the adaptive
truncation argument, which is related to the use of brackets (instead of balls) to
construct a covering of A.

3.3 Brackets

Entropy with bracketing has been introduced by Dudley (1978). The adaptive trun-
cation argument was introduced by Bass (1985) for partial sum process and Ossiander
(1987) for the empirical process. We refer to van de Geer (2000) (in particular the
proof of Theorem 8.13) herein and Massart (2007) (see the proof of Theorem 6.8)
for the use of this technique with statistical applications in mind. In the context of
generic chaining, bracketing can defined as follows. Following Talagrand (2005) (see
in particular Theorem 2.7.10), we consider

γ[](A) := inf sup
a∈A

∑

j≥0

2j/2‖BAj(a)‖, (27)

11



where the infimum is taken among all admissible sequences of A, where we recall that
‖ · ‖ is defined by (10), and where

BA(z) := sup
a,a′∈A

|a(z) − a′(z)|

for any z ∈ [0, 1]d+1. If aL, aU ∈ A, the bracket [aL, aU ] is the band

[aL, aU ] := {a ∈ A : aL ≤ a ≤ aU pointwise}.

The quantity ‖aU − aL‖ is the diameter of the bracket. We denote by N [](A, ǫ) the
minimal number of brackets with diameter not larger than ǫ necessary to cover A.
Analogously to (25), one has

γ[](A) ≤ L

∫ ∆(A,d∞)

0

(logN [](A, ǫ))1/2dǫ. (28)

Entropy with bracketing is a refinement of L
∞-entropy, that can be suitable for some

class of functions, for instance functions with uniformly bounded variation, see for
instance van de Geer (1993) and Bitouzé et al. (1999). In our setting, it is useful to
“remove” the γ1 term from (26), thanks to the following result, which is Talagrand’s
version of the adaptive truncation argument.

Theorem 2 (Talagrand (2005), Theorem 2.7.11). Let A be a countable set of mea-
surable functions, and let u > 0. If γ[](A) ≤ Γ, we can find two sets A1, A2 with the
following properties :

• γ2(A1, d2) ≤ LΓ, γ1(A1, d∞) ≤ LuΓ,

• γ2(A2, d2) ≤ LΓ, γ1(A2, d∞) ≤ LuΓ,

• for any a ∈ A2, we have a ≥ 0 and ‖a‖1 ≤ LΓ/u, and

A ⊂ A1 +A′
2, where A′

2 = {a′ : ∃a ∈ A2, |a′| ≤ a}.

Indeed, an immediate consequence of Proposition 1 and Theorem 2 (simply take
u =

√
n in Theorem 2) is the following.

Corollary 1. Grant Assumptions 1 and 2. For any x > 0, we have

sup
α∈A

√
n(P − Pn)(ℓα − ℓα∗

) ≤ cγ[](A)(1 +
√
x ∨ x)

with a probability larger than 1 − Le−x, where c = cb,‖α0‖∞
is the same as in Theo-

rem 1.

3.4 A risk bound for the ERM

Corollary 1 is close to the concentration inequality (21) required in the peeling argu-
ment, see Proposition 2 above. However, note that the peeling was done using sets
A(δ) = {α ∈ A : P (ℓα) − P (ℓα∗

) ≤ δ} for δ > 0, while we can bound from above
the entropy (and consequently the functionals γ and γ[]) of balls B(δ) = {α ∈ A :
‖α− α∗‖ ≤ δ} using a standard result (see Section 3.5). Hence, it will be convenient
to work under the following assumption.
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Assumption 3. Assume that ‖α− α∗‖2 ≤ P (ℓα) − P (ℓα∗
) for every α ∈ A.

This assumption is a bit stronger than the standard margin assumption, see
Mammen and Tsybakov (1999); Tsybakov (2004), or the β-Bernstein condition, see
Bartlett and Mendelson (2006) [Note that here β = 1, as in most statistical models,
see Lecué (2007).] Indeed, let us prove that Assumption 3 entails, together with
Assumptions 1 and 2:

P ((ℓα − ℓα∗
)2) ≤ cP (ℓα − ℓα∗

) for every α ∈ A, (29)

where c = cb,‖α0‖∞
:= 8((b + ‖α0‖∞)2 + ‖α0‖∞), which is the (1, c)−Bernstein con-

dition from Bartlett and Mendelson (2006). We have using (2):

ℓα(X, (Yt), (Nt)) = ℓ′α(X, (Yt)) − 2

∫ 1

0

α(t,X)dM(t),

where ℓ′α is the loss function

ℓ′α(x, (yt)) :=

∫ 1

0

α(t, x)2y(t)dt− 2

∫ 1

0

α(t, x)α0(t, x)y(t)dt,

so the following decomposition holds:

ℓα(X, (Yt),(Nt)) − ℓα∗
(X, (Yt), (Nt))

= ℓ′α(X, (Yt)) − ℓ′α∗
(X, (Yt)) + 2

∫ 1

0

(α∗(t,X) − α(t,X))dM(t)

=

∫ 1

0

(α(t,X) − α∗(t,X))(α(t,X) + α∗(t,X) − 2α0(t,X))Y (t)dt

+ 2

∫ 1

0

(α∗(t,X) − α(t,X))dM(t).

Hence, using Assumptions 1 and 2, we have:

P ((ℓα − ℓα∗
)2) ≤ 8(b+ ‖α0‖∞)2‖α− α∗‖2

+ 8E

[

∫ 1

0

(α∗(t,X) − α(t,X))2α0(t,X)Y (t)dt
]

≤ 8((b+ ‖α0‖∞)2 + ‖α0‖∞)‖α− α∗‖2,

and (29) follows using Assumption 3. Now, let us show that Assumption 3 is mild:
it is met when A is convex, for instance. The fact that convexity entails the margin
assumption is true in most statistical models, such a in regression, see for instance
Lee et al. (1998).

Lemma 3. Grant Assumption 1 and let A be a convex class of functions bounded by
b > 0. Then, Assumption 3 is met.

Proof. Since A is convex and P (α∗) = infα∈A P (ℓα), we have 〈α∗ −α0, α∗, α〉 ≤ 0 for
any α ∈ A, where we recall that the inner product is given by (10). This entails

P (ℓα − ℓα∗
) = ‖α‖2 − 2〈α, α0〉 − ‖α∗‖2 + 2〈α∗, α0〉
= ‖α− α∗‖2 − 2〈α∗ − α0, α∗ − α〉
≥ ‖α− α∗‖2.
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We are now in position to state the following risk bound for the ERM, under a
condition on the complexity of A.

Theorem 3. Grant Assumptions 1, 2 and 3. Assume that there is δmin > 0 and a
continuous and increasing function ϕ : R

+ → R
+ such that for any δ > δmin, any

α′ ∈ A and any
√
δ-ball B(

√
δ) = {α ∈ A : ‖α− α′‖2 ≤ δ}, we have either :

ϕ(δ) ≥ γ2(B(
√
δ), d2) +

1√
n
γ1(B(

√
δ), d∞) for any δ > δmin,

or :
ϕ(δ) ≥ γ[](B(

√
δ)) for any δ > δmin.

Assume further that ϕ−1 is strictly convex and that δ 7→ ϕ(δ)/δ is decreasing. Then,
if ᾱn is a ρ-ERM according to Definition 1, we have for any ǫ > 0, x > 0:

P (ℓᾱn) ≤ P (ℓα∗
) + (1 + ǫ)ρ+ ǫδn,ǫ(x)

with a probability larger than 1 − Le−x, where

δn,ǫ(x) := ϕ−1∗
(c(1 + ǫ)(1 +

√
x ∨ x)

ǫ
√
n

)

∨ δmin,

and c = cb,‖α0‖∞
is the same as in Theorem 1.

Proof. Because of Assumption 3, we have A(δ) ⊂ B(
√
δ), so Inequality (21) is sat-

isfied under the assumptions of the theorem with ψ(δ) = cϕ(δ), using Theorem 1 or
Corollary 1. Hence, we can apply Proposition 2, which entails the Theorem since
ψ−1∗(x) = ϕ−1∗(cx).

Remark 2 (Comparison). This bound for the ERM is of the same nature as previ-
ous bounds for the ERM in more “standard” models, such as density, regression or
classification. The rate given in Theorem 3 gives, on examples, the same rate (up
to constants) as the one given in Massart (2007) (see Theorem 8.3), for instance.
Consider the situation where ϕ(δ) = cδα for c > 0 and α ∈ (0, 1) (ϕ(δ) is of order√
Dδ when A has a finite dimension, see Section 3.5 below). In this case, we have

ϕ−1∗(x) = (1 − α)αα/(1−α)(cx)1/(1−α), so δn,ǫ(x) is of order (c/
√
n)1/(1−α). The

rate ε2∗ in the bound by Massart is solution to the equation
√
nε2 = ϕ(ε2), hence

ε2∗ = (c/
√
n)1/(1−α), and both rates have the same order.

Remark 3 (Talagrand’s inequality). Usually, the complexity of the sieveA is measured
by the functional φ(B) =

√
nEn[supα∈B(P − Pn)(ℓα − ℓα∗

)] where B are balls in A,
like in Massart (2007) or spheres in A, see Bartlett and Mendelson (2006). The rate
is then the solution of a fixed point problem involving these functional, such as,
roughly, the equation φ(B(ε)) =

√
nε2 from Massart (2007). Note that the main tool

in the proof of these results is Talagrand’s deviation inequality, see Massart (2000),
Rio (2001) or Bousquet (2002). In Theorem 3, we were not able to state the bound
with a rate defined in such a way. Indeed, we needed a “stronger” control on the
complexity, given by the γ functionals, to define δn,ǫ. This is related to the fact that
we cannot use a Talagrand’s type deviation inequality in the general model (2) for

sup
α∈A

(P − Pn)(ℓα − ℓα∗
) − E

n[sup
α∈A

(P − Pn)(ℓα − ℓα∗
)].
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Indeed,
∫ 1

0
α(t,X)dM(t) is not, in general, bounded (think of the Poisson process for

instance, which is a particular case of Section 1.2.2).
However, the story is different when N(t) is bounded, such as in the models of

regression for right-censored data, and of transition intensities of Markov processes
(see Sections 1.2.1 and 1.2.3). It is then possible to use the strength of Talagrand’s
inequality, following the arguments from Bartlett and Mendelson (2006) (up to sig-
nificant modifications, since the analysis is conducted in the regression model).

A case of importance (particularly in practice) is when A is included in a linear
space Ā with a finite dimension D (see Birgé and Massart (1998) and Massart (2007)
for instance). Using the version of Massart (2007) of a classical result concerning L

∞-
coverings of a ball in such a space (see below), we can show that δn,ǫ(x) is smaller
than a quantity of order D/n. This will be useful to compute rates of convergence in
Section 5 below.

3.5 When A is finite dimensional

Let us now consider the case where A is a subset of some linear space Ā ⊂ L
2 ∩

L
∞[0, 1]d+1 with finite dimensionD. Following Birgé and Massart (1998) and Barron et al.

(1999), we can consider the L
∞-index

r(Ā) :=
1√
D

inf
ψ

sup
β 6=0

‖∑

λ∈Λ βλψλ‖∞
|β|∞

,

where |β|∞ = maxλ∈Λ |βλ| and where the infimum is taken over all orthonormal basis
{ψλ : λ ∈ Λ} of Ā.

This index can be estimated for all the linear spaces usually chosen as approxima-
tion spaces for adaptive estimation, see Birgé and Massart (1998) and Barron et al.
(1999). In particular, if Ā is spanned by a localized basis, then r(Ā) can be bounded
independently of D (think of a wavelet basis for instance, more on that in Section 5
below).

Using this index, we can derive a bound for γ[](B(
√
δ)). For any ε ∈ (0, δ], the

following holds (see Massart (2007), Lemma 7.14):

N(B(δ), ε, d∞) ≤
(Lr(Ā)δ

ε

)D

, (30)

where L can be
√

3πe/2. But, using (28) together with the fact that N [](A, ǫ/2) ≤
N(A, ǫ, d∞), we obtain

γ[](B(δ)) ≤
√
D

∫ δ

0

√

ln
(2Lr(Ā)δ

ε

)

dǫ ≤ Lδ
√

D(ln r(Ā) + 1). (31)

So, we have the control required in Theorem 3: γ[](B(
√
δ)) ≤ Lϕ(δ), with

ϕ(δ) =
√
δ
√

D(ln r(Ā) + 1),

which is a function that satisfies the assumptions of Theorem 3. Note that

ϕ−1∗(x) =
x2D ln(r(Ā) + 1)

4
, (32)

so we have the following.
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Corollary 2. Grant Assumptions 1 and 2, and assume that A ⊂ Ā, where Ā is a lin-
ear space with finite dimension D. Then, if ᾱn is a ρ-ERM according to Definition 1,
we have for any ǫ > 0 and x > 0:

P (ℓᾱn) ≤ P (ℓα∗
) + (1 + ǫ)ρ+

c(1 + ǫ)2 ln(r(Ā) + 1)

ǫ

D

n
(1 + x ∨

√
x)2

with a probability larger than 1 − Le−x, where c = cb,‖α0‖∞
. In particular, we obtain

E
n‖ᾱn − α0‖2 ≤ 2ρ+ inf

α∈A
‖α− α0‖2 + c ln(r(Ā) + 1)

D

n
. (33)

Proof. Note that Assumption 3 is met since Ā is linear. So, Theorem 3 together
with (32) gives the first inequality. The second inequality follows by choosing ǫ = 1,
by subtracting P (ℓα0

) at both sides of the inequality, and by integration with respect
to x.

The next step is, usually, to have a control on the approximation or bias term
infα∈A ‖α − α0‖2, and to choose a sieve with a dimension that equilibrates the bias
term with the “variance” term D/n, hence the name bias-variance problem, see
Cucker and Smale (2002) for instance. Usually, this is done using the assumption
that α0 belongs to some smoothness class of functions, together with some results
from approximation theory. This is where the problem of adaptive estimation arises:
the choice of the optimal D depends on the parameters of the smoothness class itself,
which is unknown in practice. So, one has to find a procedure with the capability
to select automatically a sieve or a model among a collection {Am : m ∈ M}. This
is usually done using model-selection, see the seminal paper Barron et al. (1999).
Model selection in the setup considered here has been studied in Comte et al. (2008).
In Section 4 below, we consider an alternative approach, based on a popular aggrega-
tion procedure. It will allow the construction of smoothness and structure adaptive
estimators, see Section 5.

4 Agnostic learning, aggregation

Let A = A(Λ) := {αλ : λ ∈ Λ} be a set of arbitrary functions called dictionary
with cardinality M . For instance, this can be a set of so-called weak estimators,
computed based on a set of observations independent of the sample Dn. We consider
the problem of agnostic learning: without any assumption on α0, excepted for some
boundedness assumption, we want to construct (from the data) a procedure α̂n with
a risk as close as possible to the smallest risk over A. Namely, we want to obtain an
oracle inequality of the form

E
n‖α̂n − α0‖2 ≤ cmin

α∈A
‖α− α0‖2 + φ(n,M),

where c ≥ 1 and φ(n,M) is called the residue or rate of aggregation, which is a
quantity that we want to be small as n increases. An oracle inequality that holds
with c = 1 is called sharp.

This problem has been considered in several statistical models, mainly in regres-
sion, density and classification, see among others Nemirovski (2000); Catoni (2001);
Juditsky et al. (2006); Leung and Barron (2006); Dalalyan and Tsybakov (2007); Yang
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(2000); Audibert (2009). For instance, we know from Tsybakov (2003) that the opti-
mal rate of aggregation in the Gaussian regression model is φ(n,M) = (logM)/n (in
the sharp oracle inequality context). This rate is achieved by the algorithms of ag-
gregation with cumulative exponential weights, see Juditsky et al. (2006); Audibert
(2009) and aggregation with exponential weights, see Dalalyan and Tsybakov (2007)
(when the error of estimation is measured by the empirical norm, a similar result for
the integrated norm is, as far as we know, still a conjecture).

Aggregation with exponential weights is a popular algorithm. It is of importance
in machine learning, for estimation, prediction using expert advice, in PAC-Bayesian
learning and other settings, see Cesa-Bianchi and Lugosi (2006), Audibert (2009) and
Catoni (2001), among others. However, there is no result for this algorithm in the
general model (2), nor for any of the particular cases given in Section (1.2). In this
Section, we construct this algorithm for model (2), and give in Theorem 4 below an
oracle inequality.

The idea of aggregation is to mix the elements from A(Λ): using the data, compute
weights θ(α) ∈ [0, 1] for each α ∈ A(Λ) satisfying

∑

λ∈Λ θ(αλ) = 1. These weights
give a level of significance to α. The aggregate is the convex combination

α̂n :=
∑

λ∈Λ

θ(αλ)αλ, (34)

where the weight of α ∈ A(Λ) is given by

θ(α) :=
exp

(

− nPn(ℓα)/T
)

∑

λ∈Λ exp
(

− nPn(ℓαλ
)/T

) , (35)

where T > 0 is the so-called temperature parameter and where we recall that

Pn(ℓα) =
1

n

n
∑

i=1

∫ 1

0

α(t,Xi)
2Y i(t)dt− 2

n

n
∑

i=1

∫ 1

0

α(t,Xi)dN
i(t)

is the empirical risk of α. The shape of this mixing estimator is easily explained.
Indeed, the weighting scheme (35) is the only minimizer of

Rn(θ) +
T

n

∑

λ∈Λ

θλ log θλ (36)

among all θ ∈ Θ (we use the convention 0 log 0 = 0) where

Θ :=
{

θ ∈ R
M : θλ ≥ 0,

∑

λ∈Λ

θλ = 1
}

,

and where Rn(θ) is the linearized empirical risk

Rn(θ) :=
∑

λ∈Λ

θλPn(ℓαλ
).

Equation (36) is the linearized risk of θ ∈ Θ, which is penalized by a quantity pro-
portional to the Shannon’s entropy of θ. The resulting aggregated estimator α̂n is
then something between the ERM among the elements of A(Λ) (when T is small),
and the mean of the elements of A(Λ) (when T is large).
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Theorem 4. Assume that ‖α0‖∞ < +∞, and that there is b > 0 such that ‖α‖∞ ≤ b
for any α ∈ A(Λ). Then, for any ǫ > 0, the mixing estimator α̂n defined by (34)
satisfies

E
n‖α̂n − α0‖2 ≤ (1 + ǫ) inf

λ∈Λ
‖αλ − α0‖2 +

c logM

n

for any n ≥ 1, where c = cb,‖α0‖∞,T,ǫ.

Theorem 4 is a model-selection type oracle inequality for the aggregation proce-
dure given by (34). The residual term in the oracle inequality is of order (logM)/n,
which is the correct rate of convex aggregation, see Tsybakov (2003) (in the Gaussian
regression setup, and for other models with margin parameter equal to 1, see Lecué
(2007)).

Remark 4. The main criticism one can make about Theorem 4 is that it is not sharp:
the leading constant is 1+ǫ instead of 1 in front of infλ∈Λ ‖αλ−α0‖2, and the constant
c in front of the residue is far from being optimal. The consequence is that we are not
able in this setting to give a theoretically optimal value for T . Sharp oracle inequalities
are available for aggregation with exponential weights or cumulative weights, see
Dalalyan and Tsybakov (2007), Juditsky et al. (2006) and Audibert (2009), see also
references mentioned above. However, in the setup considered here, the proof of a
sharp oracle inequality seems quite challenging, and will be the subject of further
investigations.

5 Structure and smoothness adaptive estimation

In this Section, we propose an application of the results obtained in Sections 3 and 4.
We construct an estimator that adapts to the smoothness of α0 in a purely non-
parametric setting, see Section 5.1, and to its structure in a single-index setup, see
Section 5.2. The steps of the construction of the estimator are given in Definition 2
below. As usual with algorithms coming from statistical learning theory, we need
to split the sample (a very particular exception can be found in Leung and Barron
(2006)). To simplify, we shall assume that the sample size is 2n, see (3), so D2n is
the full sample.

Definition 2. The steps for the computation of an aggregated estimator α̂n are the
following:

1. split the whole sample D2n (see (3)) into a training sample Dn,1 of size n and
a learning sample Dn,2 of size n;

2. choose a collection of sieves {Am : m ∈ Mn} and compute, using Dn,1, the
corresponding empirical risk minimizers {ᾱm : m ∈ Mn} (see Definition 1);

3. using the learning sample Dn,2, compute the aggregated estimator α̂n based on
the dictionary {ᾱm : m ∈ Mn}, see (34) and (35).

Examples of collections {Am : m ∈ Mn} are given in Appendix A.1, together with
the necessary control of the L

∞-index (see Section 3.5), and a useful approximation
result.
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Remark 5 (Jackknife). The behavior of the aggregate α̂n typically depends on the
split selected in Step 1, in particular when the number of observations is small. Hence,
a good strategy is to jackknife: repeat, say, J times Steps 1–3 to obtain aggregates

{α̂(1)
n , . . . , α̂

(J)
n }, and compute the mean:

α̂n :=
1

J

J
∑

j=1

α̂(j)
n .

This jackknifed estimator should provide more stable results than a single aggregate.
Moreover, by convexity of the risk α 7→ P (ℓα), the jackknifed estimator satisfies the
same risk bounds as a single aggregate.

5.1 Adaptive estimation in the purely nonparametric setting

In model (2), the behaviour of α0(t, x) with respect to time t and with respect to the
covariates x have no statistical reason to be linked. So, in a purely nonparametric
setting, it is mandatory to consider anisotropic smoothness for α0. We shall assume
in the statement of the upper bound, see Theorem 5 below, that α0 ∈ Bs

2,∞, where
α0 ∈ Bs

2,∞ is an anisotropic Besov space (see Appendix A.1) and s = (s1, . . . , sd+1)
is a vector of smoothness, where si is the smoothness in the ith coordinate. For the
construction of the adaptive estimator, see Step 2 above, we need a collection of sieves
{Am : m ∈ Mn}.
Definition 3 (Collection). We take {A′

m : m ∈ Mn} as:

• a collection of linear spaces spanned by piecewise polynomials (see Section A.1.1),
with degrees not larger than li in the ith coordinate, or

• a collection of linear spaces spanned by wavelets (see Section A.1.2) with li
vanishing moments in the ith coordinate.

In both cases, we say that (l1, . . . , ld+1) is the smoothness of the collection, and we
take

Mn := {(m1, . . . ,md+1) ∈ N
d+1 : 2mi ≤ n1/(d+1) for i = 1, . . . , d+ 1}.

Finally, we fix a constant b > 0 and take Am := {α ∈ A′
m : ‖α‖∞ ≤ b} for every

m ∈ Mn.

For the statement of the adaptive upper bound, we need the following assumption,
which is a stronger version of the previous Assumption 1.

Assumption 4. Assume that PX has a density fX with respect to the Lebesgue
measure, which is bounded and with support [0, 1]d+1. Moreover, we assume that
‖α0‖∞ ≤ b, where b is known (it is used in the definition of the sieves, see Defini-
tion 3).

Now, we can use together Corollary 2 (see Section 3.5), Theorem 4 (see Section 4)
and Lemma 5 (see Appendix A.1) to derive an adaptive upper bound. Take ρ = 1/n
in Corollary 2 and, say, ǫ = 1 in Theorem 4, to obtain

E
2n‖α̂n − α0‖2 ≤ 2 inf

m∈Mn

(

inf
α∈Am

‖α− α0‖2 +
cbDm

n

)

+ cb,T
log |Mn|

n
,
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where for m = (m1, . . . ,md+1) ∈ Mn,

Dm :=

d+1
∏

j=1

Dmj =

d+1
∏

j=1

2mj .

Let us assume that α0 ∈ Bs

2,∞, where s = (s1, . . . , sd+1) satisfies si > (d + 1)/2
for each i = 1, . . . , d + 1. Assumption 4 entails ‖α‖2 ≤ ‖fX‖∞‖α‖2

2 for any α ∈
L

2[0, 1]d+1, where ‖α‖2
2 =

∫

[0,1]

∫

[0,1]d
α(t, x)2dtdx. So, using Lemma 5, we have when

α0 ∈ Bs

2,∞:

E
2n‖α̂n − α0‖2 ≤ c

(

d+1
∑

j=1

D−2sj
mj

+

∏d+1
j=1 Dmj

n
+

log |Mn|
n

)

,

where c = cb,T,s,d,‖fX‖∞,|α0|Bs

2,∞
. Note that (log |Mn|)/n ≤ cd(logn)/n, so the rate

of convergence is given by the optimal tradeoff between the bias and the variance
terms. Since si > (d+1)/2 for any i = 1, . . . , d+1, we have ns̄/si(2s̄+d+1) ≤ n1/(d+1),
so we can choose m = (m1, . . . ,md+1) ∈ Mn such that

2mi−1 ≤ n
s̄/si

2s̄+d+1 ≤ 2mi for i = 1, . . . , d+ 1. (37)

This gives
d+1
∑

j=1

D−2sj
mj

+

∏d+1
j=1 Dmj

n
= cdn

−2s̄/(2s̄+d+1),

so we proved the following theorem.

Theorem 5. Grant Assumption 4, and consider a collection {Am : m ∈ Mn} given
by Definition 3 with smoothness (l1, . . . , ld+1). Assume that α0 ∈ Bs

2,∞, where s =
(s1, . . . , sd+1) satisfies (d + 1)/2 < si ≤ li for each i = 1, . . . , d + 1. Then, if α̂n is
the aggregated estimator given by Steps 1-3, we have

E
2n‖α̂n − α0‖2 ≤ cn−2s̄/(2s̄+d+1),

where c = cb,T,s,d,‖fX‖∞,|α0|Bs

2,∞
.

The rate n−2s̄/(2s̄+d+1) is the optimal rate of convergence (in the minimax sense)
in this model, under the extra assumption that fX is bounded away from zero on
[0, 1]d, see Theorem 3 in Comte et al. (2008). Hence, Theorem 5 shows that α̂n adapts
to the smoothness of α0 over a range of Besov spaces Bs

2,∞, for (d+ 1)/2 < si ≤ li.

5.2 Dimension reduction, single-index

The mark X is d-dimensional so the intensity α0 takes d+ 1 variables. As with any
other nonparametric estimation model, we know that when d gets large the dimension
has a significant impact on the accuracy of estimation. This the so-called curse of
dimensionality phenomenon, which is reflected by the rate n−2s̄/(2s̄+d+1), see Theo-
rem 5 above. This rate is slow if d is large compared to s̄. In this Section, we propose
a way to “get back” the rate n−2s̄/(2s̄+2), using single-index modelling. Thanks to
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our approach based on aggregation, we are able to construct an estimator that au-
tomatically takes advantage (without any prior testing) of the single-index structure
when possible: the rate is then n−2s̄/(2s̄+2), otherwise it is the the purely nonpara-
metric rate n−2s̄/(2s̄+d+1). This idea of mixing nonparametric and semiparametric
estimators can be also found in Yang (2000) for density estimation.

Dimension reduction techniques usually involves an assumption on the structure
of the object to be estimated. Main examples are the additive and the single-index
models. Additive modelling was proposed by Linton et al. (2003) in the same context
as the one considered here, with very different techniques (kernel estimation and back-
fitting). In this paper, we focus on single-index modelling (see Remark 6 below). On
single-index models (mainly in regression) and the corresponding estimation problems
(estimation of the link function, estimation of the index), see Hristache et al. (2001),
Delecroix et al. (2003), Xia and Härdle (2006), Delecroix et al. (2006), Geenens and Delecroix
(2005), Gaiffas and Lecue (2007), Dalalyan et al. (2008) among many others. The
single-index structure is as follows: assume that there is an unknown function β0 :
R+ × R → R+ (called link function, with has unknown smoothness here) and an
unknown vector v0 ∈ R

d (called index ) such that

α0(t, x) = β0(t, v
⊤
0 x). (38)

In order to make the representation (38) unique (identifiability), we shall assume (see
Assumption 5 below) that v0 ∈ Sd−1

+ , where Sd−1
+ is the half-unit sphere defined by

Sd−1
+ =

{

v ∈ R
d : |v|2 = 1 and vd ≥ 0

}

, (39)

where | · |2 is the Euclidean norm over R
d;

The steps of the construction of the adaptive estimator in this context follows the
ones from Definition 2, but the dictionary is enlarged by a set {ᾱSIM

m,v : m ∈ MSIM
n , v ∈

Sd−1
∆ }, of empirical risk minimizers, where Sd−1

∆ is a ∆-net of Sd−1
+ . So, compared to

Section 5.1, the idea is simply to add estimators that works under the single-index
assumption in the dictionary.

Definition 4. The steps for the computation of the aggregated estimator α̂n are the
following:

1. split the whole sample D2n (see (3)) into a training sample Dn,1 of size n and
a learning sample Dn,2 of size n;

2. Compute a ∆ = (n logn)−1/2-net of the half-unit sphere Sd−1
+ denoted by Sd−1

∆

and for each v ∈ Sd−1
∆ compute the pseudo-training samples

Dn,1(v) :=
[

(v⊤Xi, N
i(t), Y i(t)) : t ∈ [0, 1], 1 ≤ i ≤ n

]

, (40)

where the d-dimensional marks Xi are simply replaced univariate marks v⊤Xi.

3. Fix a collection of 2-dimensional sieves (d = 1) {ASIM
m : m ∈ MSIM

n } given
by Definition 3. Compute, for every m ∈ MSIM

n and v ∈ Sd−1
∆ , empirical risk

minimizers β̄SIM
m,v , over ASIM

m , of the empirical risks

P
(v)
n,1(ℓα) =

1

n

n
∑

i=1

∫ 1

0

α(t, v⊤Xi)
2Y i(t)dt− 2

n

n
∑

i=1

∫ 1

0

α(t, v⊤Xi)dN
i(t),
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and define
ᾱSIM
m,v (·, ·) := β̄SIM

m,v (·, v⊤·).

(so that each ᾱSIM
m,v works as if v were the true index).

4. follow Steps 2 and 3 from Definition 2, where we add the estimators {β̄SIM
m,v : m ∈

MSIM
n , v ∈ Sd−1

∆ } to the set of purely nonparametric estimators {ᾱm : m ∈ Mn}
in the aggregation step.

An important point of this algorithm is that we do not estimate the index directly:
we mix estimators in order to adapt to the unknown v0 and to the unknown smooth-
ness of β0. This approach was previously adopted in Gaiffas and Lecue (2007) for
the estimation of the regression function. Note that the size of S+

∆ increases strongly
with n and d, so this method is restricted to a reasonably small d. High dimensional
covariates cannot be handled in such a semiparametric approach, this problem will
be the subject of another work. About high dimension, see Tibshirani (1997), where
the LASSO has been studied in the Cox model.

The following set of assumptions gives the identifiability of model (38) (see for
instance the survey paper by Geenens and Delecroix (2005), or Chapter 2 in Horowitz
(1998)), excepted for (41) and (42) which are technical assumptions.

Assumption 5. Assume that (38) holds, and that

• x 7→ β0(t, x) is not constant over the support of v⊤0 X;

• X admits at least one continuously distributed coordinate (w.r.t. the Lebesgue
measure);

• the support of X is not contained in any linear subspace of R
d;

• v0 ∈ Sd−1
+ ;

• there is c0 > 0 such that for any x, y ∈ [0, 1]d, any t ≥ 0:

|β0(t, x) − β0(t, y)| ≤ c0|x− y|; (41)

• there is b0 > 0 such that

inf
(t,x)∈[0,1]d+1

β0(t, x) ≥ b0. (42)

Remark 6. In the problem of estimating the intensity of a counting process in presence
of covariates, two of the most popular models are special cases of the single-index
model, as described in Equation (38):

• the Cox model (see Cox (1972)), where there exists an unknown function β0

such that:
α0(t, x) = β0(t) exp(v⊤0 x). (43)

and

• the Aalen model (see Aalen (1980)), which can be written as:

α0(t, x) = β0(t) + v⊤0 x. (44)
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This emphasizes the relevance of considering single-index models in this context, and
the use of anisotropic smoothness. This paper is only a first step in this direction, for
the expected rate of convergence in these two models would be n−2s/(2s+1) when the
link function has smoothness s in some sense. Adaptive estimation by aggregation,
including the Cox and Aalen models, will be addressed in a forthcoming paper.

Theorem 6. Grant the same assumptions as in Theorem 5 and let α̂n be the aggre-
gated estimator from Definition 4.

• If Assumption 5 holds (single-index) with β0 ∈ Bs

2,∞, where s = (s1, s2) satisfies
1 < si ≤ li for i = 1, 2, we have

E
2n‖α̂n − α0‖2 ≤ cn−2s̄/(2s̄+2)

for n large enough, where c = cb,T,s,d,‖fX‖∞,|β0|Bs

2,∞
,v0,b0,c0.

• Otherwise, we have, when α0 ∈ Bs

2,∞, where s = (s1, . . . , sd+1) satisfies (d +
1)/2 < si ≤ li for each i = 1, . . . , d+ 1, that

E
2n‖α̂n − α0‖2 ≤ cn−2s̄/(2s̄+d+1),

for n large enough, where c = cb,T,s,d,‖fX‖∞,|α0|Bs

2,∞
.

The proof of this theorem is given in Section 6. This theorem proves that α̂n
adapts to the smoothness of the intensity, and to its structure: if the single-index
model (38) holds, then the rate is n−2s̄/(2s̄+2), which is the optimal rate when X
is one-dimensional. Otherwise, the rate of convergence is n−2s̄/(2s̄+d+1) when the
covariate is d-dimensional. Of course, this result is not surprising, since any kind of
estimator can be used in the dictionary to be aggregated. However, note that the
proof of Theorem 6 involves a technical tool concerning counting processes, namely
a concentration inequality for the likelihood ratio between two indexes in Sd−1

+ , see
Lemma 4 in Section 6.

6 Proofs

Proof of Proposition 1

Proof of Proposition 1. Let us define the process

Zn(α, t) :=
1√
n

n
∑

i=1

∫ t

0

α(u,Xi)dM
i(u) :=

n
∑

i=1

Zin(α, t),

so that Zn(α) = Zn(α, 1). The predictable variation of M i is given by 〈M i(t)〉 =
∫ t

0
α0(u,Xi)Y

i(u)du, so we have

〈Zin(α, t)〉 =
1

n

∫ t

0

α(u,Xi)
2α0(u,Xi)Y

i(u)du

for any t ∈ [0, 1]. Moreover, we have ∆M i(t) ∈ {0, 1} for any i = 1, . . . , n since the
counting processes N i have an intensity. We can write Zin = Zi,cn + Zi,dn where Zi,cn
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is a continuous martingale and where Zi,dn is a purely discrete martingale (see e.g.
Liptser and Shiryayev (1989)). Let h > 0 be fixed and define U ih(t) := hZin(α, t) −
Sih(t), where Sih(t) is the compensator of

1

2
h2〈Zi,cn (α, t)〉 +

∑

s≤t

(

exp(h|∆Zin(α, s)|) − 1 − h|∆Zin(α, s)|
)

. (45)

We know from the proof of Lemma 2.2 and Corollary 2.3 of van de Geer (1995), see
also Liptser and Shiryayev (1989), that exp(U ih(t)) is a super-martingale. Then, if
Sh :=

∑n
i=1 S

i
h, Uh :=

∑n
i=1 U

i
h, we have

E
n[ehZn(α)1〈Zn(α)〉≤δ2 ] ≤

(

E
n[e2Uh(1)]

)1/2(
E
n[e2Sh(1)1〈Zn(α)〉≤δ2 ]

)1/2

≤
(

E
n[e2Sh(1)1〈Zn(α)〉≤δ2 ]

)1/2
. (46)

The last inequality holds since exp(U ih(t)) = exp(hZin(α, t) − Sih(t)) are independent
super-martingales with U ih(0) = 0, so that E[exp(2U ih(t))] ≤ 1, for i = 1, . . . , n. Let
us decompose M i = M i,c + M i,d, with M i,c a continuous martingale and M i,d a
purely discrete martingale. The process V i2 (t) := 〈M i(t)〉 is the compensator of the
quadratic variation process [M i(t)] = 〈M i,c(t)〉+∑

s≤t |∆M i(t)|2. If k ≥ 3, we define

V ik (t) as the compensator of the k-variation process
∑

s≤t |∆M i(t)|k of M i(t). Since

∆M i(t) ∈ {0, 1} for all 0 ≤ t ≤ 1, the V ik are all equal for k ≥ 3 and such that
V ik (t) ≤ V i2 (t), for all k ≥ 3. The process Sih(t) has been defined as the compensator
of (45). As a consequence, we have:

Sih(t) =
∑

k≥2

1

k!

( h√
n

)k
∫ t

0

|α(u,Xi)|kdV ik (u)

≤
∫ t

0

α(u,Xi)
2dV i2 (u) ×

∑

k≥2

‖α‖k−2
∞
k!

( h√
n

)k

and if 〈Zn(α)〉 ≤ δ2

Sh(1) ≤ nδ2

‖α‖2
∞

(

exp
(h‖α‖∞√

n

)

− 1 − h‖α‖∞√
n

)

.

Thus, plugging this in (46) gives

ψn,δ(h) ≤
nδ2

‖α‖2
∞

(

exp
(h‖α‖∞√

n

)

− 1 − h‖α‖∞√
n

)

for any h > 0. Now, choosing

h :=

√
n

‖α‖∞
log

(z‖α‖∞
δ2
√
n

+ 1
)

entails (16).
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Proof of Theorem 1

Proof of Theorem 1. First, note that (2) entails

ℓα(X, (Yt), (Nt)) = ℓ′α(X, (Yt)) − 2

∫ 1

0

α(t,X)dM(t),

where ℓ′α is the loss function

ℓ′α(x, (yt)) :=

∫ 1

0

α(t, x)2y(t)dt− 2

∫ 1

0

α(t, x)α0(t, x)y(t)dt.

So, the following decomposition holds:

(P − Pn)(ℓα − ℓα∗
) = (P − Pn)(ℓ′α − ℓ′α∗

) +
2√
n
Zn(α∗ − α),

where we recall that Zn(·) is given by (14), and where P (ℓ′α) := E[ℓ′α(X, (Yt))] and
Pn(ℓ′α) := 1

n

∑n
i=1 ℓ

′
α(Xi, (Y

i
t )). First, let us prove the concentration inequality for

supα∈A(Zn(α∗) − Zn(α)). The proof follows the lines of the proof of Theorem 1.2.7
in Talagrand (2005). Consider admissible sequences (Bj)j≥0 and (Cj)j≥0 such that

∑

j≥0

2j∆(Bj(α), d∞) ≤ 2γ1(A, d∞) and
∑

j≥0

2j/2∆(Cj(α), d2) ≤ 2γ2(A, d2)

for any α ∈ A. We construct partitions Aj of A as follows. Set A0 = {A} and for
j ≥ 1, Aj is the partition generated by Bj−1 and Cj−1, namely the partition consisting

of every set B ∩ C where B ∈ Bj−1 and C ∈ Cj−1. Note that |Aj | ≤ (22j−1

)2 = 22j

so that (Aj) is admissible. Define a sequence (Aj)j≥0 of increasing subsets of A
by taking exactly one element in each set of Aj . Such a set Aj is then used as an

approximation of A, and is such that |Aj | ≤ 22j

. Define πj(α) by the relation

Aj ∩Aj(α) = {πj(α)},

and take π0(α) = α∗. In view of Lemma 1, we have with a probability larger than
1 − 2 exp(−(x + 2j+1)):

Zn(πj−1(α)) − Zn(πj(α)) ≤ C0d2(πj(a), πj−1(α))
√

x+ 2j+1

+ (C0 + 1)
d∞(πj(α), πj−1(α))(x + 2j+1)√

n
.

Now, for a fixed α ∈ A, decompose the increment Zn(α∗) − Zn(α) along the chain
(πj(α))j≥0:

Zn(α∗) − Zn(α) =
∑

j≥1

(

Zn(πj−1(α)) − Zn(πj(α))
)

,

and note that the number of pairs {πj(α), πj−1(α)} is at most 22j × 22j−1 ≤ 22j+1

.
This gives, together with union bounds for each term of the chain:

sup
α∈A

(Zn(α∗) − Zn(α)) ≤ sup
α∈A

∑

j≥1

(

C0

√

x+ 2j+1d2(πj(α), πj−1(α))

+
C0 + 1√

n
(x+ 2j+1)d∞(πj(α), πj−1(α))

)
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with a probability larger than 1 − 2
∑

j≥1 22j+1

exp(−(x + 2j+1)) ≥ 1 − L exp(−x)
(with L ≈ 0.773). But, for any j ≥ 2, πj(α), πj−1(α) ∈ Aj−1(α) ⊂ Bj−2(α), so
d∞(πj(α), πj−1(α)) ≤ ∆(Bj−2(α), d∞) and d∞(π1(α), π0(α)) ≤ ∆(B0(α), d∞) =
∆(A, d∞). Doing the same for d2, we obtain that, with probability ≥ 1−L exp(−x):

sup
α∈A

(Zn(α∗) − Zn(α)) ≤ 2C0(1 +
√
x)γ2(A, d2) +

2(C0 + 1)√
n

(1 + x)γ1(A, d∞). (47)

We can do the same job for supα∈A(P − Pn)(ℓ′α − ℓ′α∗
). Note that

ℓα(X, (Yt)) − ℓα∗
(X, (Yt))

=

∫ 1

0

(α(t,X) − α∗(t,X))(α(t,X) + α∗(t,X) − 2α0(t,X))Y (t)dt,

so using Assumptions 1 and 2, we have |ℓα(X, (Yt))−ℓα∗
(X, (Yt))| ≤ 2(b+‖α0‖∞)‖α−

α∗‖∞ and

E[ℓα(X, (Yt)) − ℓα∗
(X, (Yt)))

2] ≤ 4(b+ ‖α0‖∞)2‖α− α∗‖2.

Therefore, the Bernstein’s inequality (for the sum of i.i.d. random variables) entails
that

(P − Pn)(ℓ
′
α − ℓ′α∗

) ≤ 2(b+ ‖α0‖∞)
(‖α− α∗‖

√
2x√

n
+

‖α− α∗‖∞x
n

)

holds with a probability larger than 1 − e−x. Then, we can apply again the generic
chaining argument to prove that with a probability larger than 1 − Le−x:

sup
α∈A

(P − Pn)(ℓ
′
α − ℓ′α∗

) ≤ 4(b+ ‖α0‖∞)
(γ2(A, d2)(1 +

√
x)√

n
+
γ1(A, d∞)(1 + x)

n

)

.

This concludes the proof of the Theorem.

Proof of Theorem 4

Proof of Theorem 4. Recall that the linearized risk over A(Λ) is given by

R(θ) :=
∑

λ∈Λ

θλP (ℓαλ
)

for θ ∈ Θ, where we recall that

Θ = {θ ∈ R
M : θλ ≥ 0,

∑

λ∈Λ

θλ = 1},

and the linearized empirical risk is given by

Rn(θ) =
∑

λ∈Λ

θλPn(ℓαλ
).

We recall that the mixing estimator α̂ is given by

α̂ :=
∑

λ∈Λ

θ̂λαλ,
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where the Gibbs weights θ̂ = (θ̂λ)λ∈Λ := (θ(αλ))λ∈Λ are given by (35) and are the
unique solution of the minimization problem (36). By convexity of the risk, we have
for any ǫ > 0:

P (ℓα̂ − ℓα0
) ≤ (1 + ǫ)(Rn(θ̂) − Pn(ℓα0

)) + Rn,

where we introduced the residual term

Rn := R(θ̂) − P (ℓα0
) − (1 + ǫ)(Rn(θ̂) − Pn(ℓα0

))

=
∑

λ∈Λ

θ̂λ

(

P (ℓαλ
− ℓα0

) − (1 + ǫ)Pn(ℓαλ
− ℓα0

)
)

.

Let λ̂ be such that αλ̂ is the empirical risk minimizer in A(Λ), namely

Pn(ℓαλ̂
) = min

λ∈Λ
Pn(ℓαλ

).

Since
∑

λ∈Λ

θ̂λ log
( θ̂λ

1/M

)

= K(θ̂, u) ≥ 0,

where K(θ̂, u) denotes the Kullback-Leibler divergence between the weights θ̂ and the
uniform weights u := (1/M)λ∈Λ, we have

Rn(θ̂) ≤ Rn(θ̂) +
T

n
K(θ̂, u)

= Rn(θ̂) +
T

n

∑

λ∈Λ

θ̂λ log θ̂λ +
T logM

n

≤ Rn(eλ̂) +
T logM

n

= Pn(ℓαλ̂
) +

T logM

n
,

where eλ ∈ Θ is the vector with all its coordinates equal to 0 excepted for the λ-th
which is equal to 1. This gives

P (ℓα̂ − ℓα0
) ≤ (1 + ǫ)min

λ∈Λ
Pn(ℓαλ

− ℓα0
) + Rn,

and consequently

E
n‖α̂− α0‖2 ≤ (1 + ǫ)min

λ∈Λ
‖αλ − α0‖2 + (1 + ǫ)

T logM

n
+ E

n[Rn].

Hence, it remains to prove that for some constant C = Cǫ,b,‖α‖∞
, we have

E
n[Rn] ≤ C logM

n
. (48)

Since R(·) and Rn(·) are linear on Θ, we have

Rn ≤ max
α∈A(Λ)

(

(1 + ǫ)
(

P (ℓα − ℓα0
) − Pn(ℓα − ℓα0

)
)

− ǫP (ℓα − ℓα0
)
)

.
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The following decomposition holds (see Section 3.4):

(P − Pn)(ℓα − ℓα0
) = (P − Pn)(ℓ

′
α − ℓ′α0

) +
2√
n
Zn(α0 − α).

The Bernstein’s inequality for the sum of i.i.d. variables (see the proof of Theorem 1)
gives

(P − Pn)(ℓ′α − ℓ′α0
) ≤ (b+ ‖α0‖∞)

(‖α− α0‖
√

2x√
n

+
‖α− α0‖∞x

n

)

,

so together with Lemma 1, and since P (ℓα − ℓα0
) = ‖α− α0‖2, we obtain that

(P − Pn)(ℓα − ℓα0
) ≤

C1
‖α0‖∞,b

√

2xP (ℓα − ℓα0
)

√
n

+
C2

‖α0‖∞,bx

n

with probability larger than 1−3e−x, where C1
‖α0‖∞,b := C‖α0‖∞

/
√

2+b+‖α0‖∞ and

C2
‖α0‖∞,b := (C‖α0‖∞

+ 1 + b + ‖α‖∞)(b + ‖α0‖∞), with C‖α0‖∞
given in Lemma 1.

Now, using the fact that

C1
‖α0‖∞,b

√

2xP (ℓα − ℓα0
)

√
n

≤ ǫ

1 + ǫ
P (ℓα − ℓα0

) +
(1 + ǫ)(C1

‖α0‖∞,b)
2

ǫ

x

n
,

we obtain that with a probability larger than 1 − 3e−x:

(1 + ǫ)
(

P (ℓα − ℓα0
) − Pn(ℓα − ℓα0

)
)

− ǫP (ℓα − ℓα0
) ≤ Cǫ,‖α0‖∞,b

x

n
,

where Cǫ,‖α0‖∞,b := (C1
‖α0‖∞,b)

2(1 + ǫ)2/ǫ + (1 + ǫ)C2
‖α0‖∞,b. This subexponential

deviation entails that for any x > 0:

E
n
[

Rn

]

≤ 2x+
3MC exp(−nx/C)

n
,

where C = Cǫ,‖α0‖∞,b. If we denote by x(y) the unique solution of x = y exp(−x),
where y > 0, we obtain

E
n
[

Rn

]

≤ 5C logM

n

for the choice x = Cx(M)/n, since we have x(M) ≤ logM . This concludes the proof
of Theorem 4.

Proof of Theorem 6. Assume for now that (38) holds. Take v∆ ∈ S+
∆ such that

|v∆ − v0|2 ≤ ∆, and let m∗ = (m∗
1,m

∗
2) be the oracle dimension of the sieve for the

link function, that satisfies (37) with d = 1. Denote for short the oracle estimator

ᾱ∗ = β̄m∗,v∆(·, v⊤∆·),

that is, the element of Am∗ that minimizes the empirical risk computed using the
training sample Dn,1(v∆).

Note that the cardinality of S+
∆ is smaller than c/∆d−1, where ∆ = (n logn)−1/2,

so the cardinality of the whole dictionary {ᾱm : m ∈ Mn} ∪ {ᾱSIM
m,v : m ∈ MSIM

n , v ∈
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Sd−1
∆ } is of order cn(d−1)/2(log n)2+1/2 + (logn)d+1. As a consequence, Theorem 4

gives

E
2n‖α̂n − α0‖2 ≤ 2E

n‖ᾱ∗ − α0‖2 + c
logn

n
.

Note that (41) entails ‖β0(·, v⊤∆·) − β0(·, v⊤0 ·)‖2 ≤ c∆2 = c/(n logn). Hence,

‖ᾱ∗ − α0‖2 ≤ 2‖ᾱ∗ − β0(·, v⊤∆·)‖2 +
2c

n logn
.

We shall denote in what follows by Env the expectation wrt Pnv , the joint law of the
observations when the intensity writes β0(·, v⊤·) (the true index is v). For two indexes
v, v0 ∈ Sd−1

+ , we introduce the following likelihood ratio:

Ln(v0, v) =
dPn

β0(·,v⊤0 ·)
dPn

β0(·,v⊤·)
,

which is the likelihood ratio of the training data Dn,1 “between” the two indexes
v and v0. It can be explicitly computed using Jacod’s formula, see Appendix A.2
below. Of course, when v and v0 are close to each other, we expect Ln(v0, v) to be
small. This is the statement of the next Lemma.

Lemma 4. Grant Assumption 5, and let v, v0 ∈ Sd−1
+ be such that ‖v − v0‖2 ≤ ∆n,

where ∆n = (n logn)−1/2. Then, if n is large enough, one has for any x > 0:

P
n
v0 [Ln(v0, v) ≥ x] ≤

√
xn−c(logx)2 ,

where c = b0/(2dc
2
0).

The proof of this Lemma can be found below. It uses the same kind of arguments
as the proof of Proposition 1. Let x > 0 to be chosen later on, and decompose the
expectation over {Ln(v0, v∆) > x} and {Ln(v0, v∆) ≤ x} to get

E
n
v0‖ᾱ∗ − β0(·, v⊤∆·)‖2 = E

n
v∆ [‖ᾱ∗ − β0(·, v⊤∆·)‖21Ln(v0,v∆)≤xLn(v0, v∆)]

+ E
n
v0 [‖ᾱ∗ − β0(·, v⊤∆·)‖21Ln(v0,v∆)>x]

so using Assumption 3 and Lemma 4, we obtain

E
n
v0‖ᾱ∗ − β0(·, v⊤∆·)‖2 ≤ xEnv∆‖ᾱ∗ − β0(·, v⊤∆·)‖2 + 4b2

√
xn−c(logx)2 ,

so for x = e1/
√
c, we have

E
n
v0‖ᾱ∗ − β0(·, v⊤∆·)‖2 ≤ cEnv∆‖ᾱ∗ − β0(·, v⊤∆·)‖2 +

c

n
.

But, E
n
v∆‖ᾱ∗−β0(·, v⊤∆·)‖2 is nothing but the risk of the minimizer β̄m∗ of the empirical

risk R
(v∆)
n,1 over the sieve Am∗ : in this risk, the “true covariate” is now v⊤∆X . Indeed,

E
n
v∆‖ᾱ∗ − β0(·, v⊤∆·)‖2

= E
n
v∆

[

∫ 1

0

∫

(β̄m∗(t, v⊤∆x) − β0(t, v
⊤
∆x))

2
E[Y (t)|X = x]dtPX(dx)

]

= E
n
v∆

[

∫ 1

0

∫

(β̄m∗(t, x′) − β0(t, x
′))2E[Y (t)|v⊤∆X = x′]dtPv⊤

∆
X(dx′)

]

,
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so conducting the same analysis as in Section 5.1, we can prove that the choice of m∗

entails that
E
n
v∆‖ᾱ∗ − β0(·, v⊤∆·)‖2 ≤ cn−2s̄/(2s̄+2).

This concludes the proof of Theorem 6 in the single-index case. If (38) does not hold,
then in the oracle inequality we take the oracle purely nonparametric element, using
the same analysis as in Section 5.1.

Proof of Lemma 4. In view of Equation (54), see Appendix A.2, we can write, us-
ing (2):

logLn(v0, v) =

n
∑

i=1

∫ 1

0

(

Lv0,v(t,Xi)dN
i(t) − Υv0,v(t,Xi)Y

i(t)dt
)

=

n
∑

i=1

∫ 1

0

Lv0,v(t,Xi)dM
i(t)

+

n
∑

i=1

∫ 1

0

{

Lv0,v(t,Xi)β0(t, v
⊤
0 Xi) − Υv0,v(t,Xi)

}

Y i(t)dt,

where we shall use the notations

Υv0,v(t,Xi) := β0(t, v
⊤
0 Xi) − β0(t, v

⊤Xi)

Lv0,v(t,Xi) := log β0(t, v
⊤
0 Xi) − log β0(t, v

⊤Xi)

throughout the proof the Lemma. Now, fix some h > 0 (to be chosen later on) and
write

P
n
v0 [Ln(v0, v) ≥ x]

≤ E
n
v0 [Ln(v0, v)

h]e−h log x

= E
n
v0

[

exp
(

n
∑

i=1

h

∫ 1

0

Lv0,v(t,Xi)dM
i(t)

+ h

n
∑

i=1

∫ 1

0

{

Lv0,v(t,Xi)β0(t, v
⊤
0 Xi) − Υv0,v(t,Xi)

}

Y i(t)dt− h log x
)]

.

We follow the main steps of the proof of Proposition 1. Define

Ũ ih(t) := h

∫ t

0

Lv0,v(s,Xi)dM
i(s) − S̃ih(t) := hOi(t) − S̃ih(t),

where S̃ih(t) is the compensator of

1

2
h2〈Oi,c(t)〉 +

∑

s≤t

(

exp(h|∆Oi(s)|) − 1 − h|∆Oi(s)|
)

, (49)

where Oi,c is the continuous part of the process Oi. We know from the proof of
Lemma 2.2 and Corollary 2.3 of van de Geer (1995), see also Liptser and Shiryayev
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(1989), that exp(Ũ ih) = exp(hOi − S̃ih), for i = 1, . . . , n are i.i.d. super-martingales.
As a consequence, we get:

Pv0 [Ln(v0, v) ≥ x] ≤ E
1/2
v0

[

exp
(

2

n
∑

i=1

Ũ ih(t)
)]

E
1/2
v0 [Ln(1)] ≤ E

1/2
v0 [Ln(1)],

where

Ln(1) := exp
(

2

n
∑

i=1

{

S̃ih(1) + h

∫ 1

0

{

Lv0,v(t,Xi)β0(t, v
⊤
0 Xi) − Υv0,v(t,Xi)

}

Y i(t)dt
}

− 2h logC
)

.

We are now establishing an upper bound for E
1/2
v0 [Ln(1)]. Looking closer to the process

S̃ih(t), we can write:

S̃ih(t) =
∑

k≥2

hk

k!

∫ t

0

|Lv0,v(s,Xi)|kdV ik (s),

where the processes V ik have been defined in the proof of Proposition 1. Assumption 5
and the fact that ‖v − v0‖2 ≤ ∆ gives

|Υv0,v(t, x)| ≤ c0
√
d∆ := ǫ (50)

for any t ≥ 0 and x ∈ [0, 1]d. In particular, we have |Υv0,v(t, x)| ≤ b0/2 when n is
large enough. This allows to write:

|Lv0,v(t,Xi)| ≤ Ψ1/β0(t,v⊤0 Xi)(Υv0,v(t,Xi)) × (1/β0(t, v
⊤
0 Xi))

where Ψa(x) := − log(1 − ax)/a for a > 0 and x < 1/a. Since Ψa(x) = − log(1 −
ax)/a ≤ x+ ax2 for any x ∈ [0, 1/(2a)], we obtain

|Lv0,v(t,Xi)| ≤
|Υv0,v(t,Xi)|

β0(t, v⊤0 Xi) ∧ β0(t, v⊤Xi)

(

1 +
|Υv0,v(t,Xi)|

β0(t, v⊤0 Xi) ∧ β0(t, v⊤Xi)

)

≤
( ǫ

b0

)(

1 +
ǫ

b0

)

.

We can write, as a consequence:

S̃ih(t) =
∑

k≥2

hk

k!

∫ t

0

|Lv0,v(s,Xi)|kdV ik (s)

≤
∫ t

0

|Lv0,v(s,Xi)|2β0(s, v
⊤
0 Xi)Y

i(s)ds ×
∑

k≥2

hk

k!

( ǫ

b0

)k−2(

1 +
ǫ

b0

)k−2

≤
∫ t

0

|Lv0,v(s,Xi)|2β0(s, v
⊤
0 Xi)Y

i(s)ds × h2

2
(1 + ch),

where

ch := 2
∑

k≥1

hk

(k + 2)!

( ǫ

b0

)k(

1 +
ǫ

b0

)k

.
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Note that ch ≤ 1 for hǫ and ǫ small enough. We obtain:

E
n
v0 [Ln(1)] ≤ Ev0

[

exp
(

n
{

∫ 1

0

|Lv0,v(t,X)|2β0(t, v
⊤
0 X)Y (t)dt × h2(1 + ch)

+ 2h

∫ 1

0

{

Lv0,v(t,X)β0(t, v
⊤
0 X) − Υv0,v(t,X)

}

Y (t)dt
}

− 2h logx
)]

.

Using again the above trick involving the function Ψa, we obtain:

Lv0,v(t,Xi)β0(t, v
⊤
0 Xi) − Υv0,v(t,Xi) ≤

Υv0,v(t,Xi)
2

β0(t, v⊤Xi)
≤ ǫ2

b0
.

Using the fact that log(x/y)2x ≤ 2ǫ2/(x ∧ y) for any x, y > 0 such that |x − y| ≤
ǫ ≤ (x ∧ y)/2 and ǫ > 0 small enough [decompose over {x ≤ y} and {x > y} and use
again the previous majoration of Ψa(x)], we have in view of (50):

Lv0,v(t, x)2β0(t, v
⊤
0 x) ≤

2ǫ2

b0

for any t ≥ 0 and x ∈ [0, 1]d and ǫ small enough. In fine, we get, using the fact that
Y i ≤ 1,

E
n
v0 [Ln(1)] ≤ Ev0

[

exp
(

n

∫ 1

0

{2ǫ2h2

b0
+

2hǫ2

b0

}

Y i(t)dt− 2h log x
)]

≤ exp
(2nǫ2h

b0
(1 + h) − 2h logx

)

for any h > 0, so for the choice h = b0 log x/(2nǫ2), we obtain

P
n
v0 [Ln(v0, v) ≥ x] ≤

√
x exp

(

− b0(log x)2

2nǫ2

)

,

and the conclusion follows, since ∆ = 1/
√
n logn and nǫ2 = dc20/ logn.

A Appendix

A.1 Some tools from approximation theory

Let us give two examples of sieves, that are spanned by localized basis. In each case,
we give the control on r̄(A) and we give a standard but useful approximation result
below. Note that other examples of sieves are available, see Barron et al. (1999) for
instance.

A.1.1 Piecewise polynomials

Fix l1, . . . , ld+1 ∈ N and m1, . . . ,md+1 ∈ N, and define the set R of rectangles
∏d+1
i=1 [(ji − 1)2−mi , ji2

−mi[ for 0 ≤ ji ≤ 2mi , i = 0, . . . , d + 1. So, R is a regular
partition of [0, 1]d+1. Take m = (m1, . . . ,md+1) and define Am as the set of functions
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f : [0, 1]d+1 → R such that for any R ∈ R, the restriction of f to R coincides with
a polynomial of degree not larger than li in the ith coordinate, for i = 1, . . . , d + 1.
The dimension of Am is then

Dm :=

d+1
∏

i=1

2mi(li + 1),

and using Barron et al. (1999), see Section 3.2.1, we have, since R is a regular parti-
tion,

r̄(Am) ≤ cl1,...,ld+1,d,

where cl1,...,ld+1,d = (
∏d+1
i=1 (li + 1)(2li + 1))1/2.

A.1.2 Wavelets

Consider a pair {φ, ψ} of scaling function and wavelet, where ψ has K vanishing
moments. Then φ and ψ have a support width of at least 2K − 1, and there is a
pair with minimal support, see Daubechies (1988). This is the starting point of the
construction of an orthonormal wavelet basis of L

2[0, 1], as proposed in Cohen et al.
(1993). Roughly, the idea is to retain the interior scaling functions (those “far” from
the edges 0 and 1), and to add adapted edge scaling functions, see Section 4 and
Theorem 4.4 in Cohen et al. (1993). This construction allows to keep the orthonor-
mality of the system and the number of vanishing moment unchanged, as well as the
number 2j of scaling function at each resolution j. More precisely, if l is such that
2l ≥ 2K, consider for j ≥ l − 1:

Ψj,k :=







































ψ0
j,k if j ≥ l and k = 0, . . . ,K − 1

ψj,k if j ≥ l and k = K, . . . , 2j −K − 1

ψ1
j,k if j ≥ l and k = 2j −K, . . . , 2j − 1

φ0
l,k if j = l − 1 and k = 0, . . . ,K − 1

φl,k if j = l − 1 and k = K, . . . , 2l −K − 1

φ1
l,k if j = l − 1 and k = 2l −K, . . . , 2l − 1

where φj,k = 2j/2φ(2j ·−x) and ψj,k = 2j/2ψ(2j ·−x) are the ”interior” dilatations and
translations of {φ, ψ}, and φ0

j,k, ψ
0
j,k, φ

1
j,k, ψ

1
j,k are, at each resolution j, dilatations of

2K edge scaling functions and wavelets (K for each edge). We know from Cohen et al.
(1993) that the collection

W := {Ψj,k : j ≥ l− 1, k = 0, . . . , 2j − 1}

is an orthonormal basis of L
2[0, 1], and the interior and edge wavelets have K van-

ishing moments. Let W (i), i = 1, . . . , d + 1 be several collections W based on pairs
{φ(i), ψ(i)} (possibly with different numbers of vanishing moments). Then, the col-
lection

{⊗d+1
i=1 Ψ

(i)
ji,ki

: ji ≥ li − 1, ki = 0, . . . , 2ji − 1, i = 1, . . . , d+ 1},

where ⊗d+1
i=1 Ψ

(i)
ji,ki

(x1, . . . , xd+1) =
∏d+1
i=1 Ψ

(i)
ji,ki

(xi), is an orthonormal basis of L
2[0, 1]d+1

that has suitable approximation properties for a function with an anisotropic smooth-
ness, see below. Let m = (m1, . . . ,md+1) ∈ N

d+1 be fixed, where mi ≥ li for any
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i ∈ {1, . . . , d+ 1}, and define the sieve

Am := span{Ψλ : λ ∈ Λ(m)}, (51)

where for λ = (j1, k1, . . . , jd+1, kd+1),

Ψλ := ⊗d+1
i=1 Ψ

(i)
ji,ki

,

and where

Λ(m) = {(j1, k1, . . . , jd+1, kd+1) : li − 1 ≤ ji ≤ mi,

ki = 0, . . . , 2ji − 1, i = 1, . . . , d+ 1}

The dimension of Am is
∏d+1
i=1 Dmi , where Dmi = 2mi − 2li ≤ 2mi. The control of

r(Am) easily follows from the fact that if the resolution levels ji ≥ li are fixed for any
i = 1, . . . , d+ 1, the tensor products Ψλ have disjoint supports, excepted for a finite
number of indexes ki, that depends only on the support of the scaling and mother
wavelet functions used in the construction of W . As a consequence, we have

r(Am) ≤ 1√
Dm

sup
β 6=0

‖∑

λ∈Λ(m) βλψλ‖∞
|β|∞

≤ cΨ,

where Dm =
∏d+1
i=1 Dmi , |β|∞ = supλ∈Λ(m) |βλ| and where cΨ is a constant that

depends only the scaling and mother wavelet functions used in the construction of
the basis, and not on the resolution level m.

In the next section, we give the definition of the anisotropic Besov space, and
recall a useful approximation result. The definitions and results presented here can
be found in Triebel (2006), in particular in Chapter 5 which is about anisotropic
spaces.

A.1.3 Anisotropic Besov space, approximation

Let {e1, . . . , ed+1} be the canonical basis of R
d+1 and s = (s1, . . . , sd+1) with si > 0

be a vector of directional smoothness, where si corresponds to the smoothness in
direction ei. If k ∈ N and x ∈ R

d+1, define

D
k
e := {x ∈ R

d+1 : x+ je ∈ [0, 1]d+1 for j = 0, . . . , k}.

If f : [0, 1]d+1 → R, we define ∆k
ef as the difference of order k ≥ 1 and step

e ∈ [0, 1]d+1, given by ∆1
ef(x) = f(x + e) − f(x) and ∆k

ef(x) = ∆1
e(∆

k−1
e f)(x)

for any x ∈ Dk
e . We say that f ∈ L

2[0, 1]d+1 belongs to the anisotropic Besov space
Bs

2,∞([0, 1]d+1) if the semi-norm

|f |Bs

2,∞
:= sup

t>0

(

d+1
∑

i=1

t−si sup
h:|h|≤t

(

∫

D
ki
hei

(∆ki

hei
f(x))2dx

)1/2)

(52)

is finite. We know that the norms

‖f‖Bs

2,∞
:= ‖f‖2 + |f |Bs

2,∞
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are equivalent for any choice of ki > si. Note that if s = (s, . . . , s) for some s > 0,
then Bs

2,∞ is the standard isotropic Besov space. Moreover, the embedding Bs

2,2 ⊂
Bs

2,∞ holds. When s = (s1, . . . , sd+1) has integer coordinates, Bs

2,2 is the anisotropic
Sobolev space

Bs

2,2 = W s

2 =
{

f ∈ L
2 :

d+1
∑

i=1

∥

∥

∥

∂sif

∂xsi

i

∥

∥

∥

2
<∞

}

.

If s has non-integer coordinates, then Bs

2,2 is the anisotropic Bessel-potential space

Hs =
{

f ∈ L
2 :

d+1
∑

i=1

∥

∥

∥
(1 + |ξi|2)si/2f̂(ξ)

∥

∥

∥

2
<∞

}

,

where f̂ is the Fourier transform of f . If f ∈ Bs

2,∞, we can give a control on the
approximation term infα∈A ‖α−α0‖, when A is spanned by piecewise polynomials or
wavelets (see above). Indeed, the next Lemma is a direct consequence of the Jackson’s
estimate given in Hochmuth (2002), together with definition (52) of the Besov space.
Note that this Lemma can be also found in Comte et al. (2008) and Lacour (2007).

Lemma 5. Assume that α0 ∈ Bs

2,∞ where s = (s1, . . . , sd+1) and let li ≥ si for
i = 1, . . . , d+ 1. Let Am be either :

• the piecewise polynomial sieve (see Section A.1.1) with degrees li in the ith
coordinate, based on a partition with rectangles of sidelengthes 2−mi, or

• the wavelet sieve (see Section A.1.2), where the wavelets have li vanishing mo-
ments in the ith coordinate.

Then, there is a constant c = cs,d > 0 such that

inf
α∈Am

‖α− α0‖2 ≤ c|α0|Bs

2,∞

d+1
∑

i=1

2−simi .

A.2 Some tools from the theory of counting processes and

stochastic calculus

Let Pα0
be the joint law of {(X,N(t), Y (t)) : t ∈ [0, 1]} when (2) holds (the intensity

is α0). We want to explain why the log-likelihood ratio ℓ(α, α0) := log(dPα/dPα0
)

writes, when both α and α0 are assumed to be positive on [0, 1]d+1:

ℓ(α, α0) =

∫ 1

0

log
( α(t,X)

α0(t,X)

)

dN(t) −
∫ 1

0

(α(t,X) − α0(t,X))Y (t)dt. (53)

This will entail that the log-likelihood ratio ℓn(α, α0) := log(dPnα /dP
n
α0

) of the inde-
pendent sample (3) satisfies

ℓn(α, α0) =

n
∑

i=1

(

∫ 1

0

log
( α(t,Xi)

α0(t,Xi)

)

dN i(t)−
∫ 1

0

(α(t,Xi)−α0(t,Xi))Y
i(t)dt

)

. (54)

Equation (54) is useful in several parts of the paper (dimension reduction and lower
bounds).
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First, we recall Jacod’s formula (see Andersen et al. (1993)) for the likelihood of
a counting process. It writes, for the likelihood of N :

πt∈[0,1]

{

(α0(t,X)Y (t))∆N(t)(1 − α0(t,X)Y (t))1−∆N(t)
}

dt,

where ∆N(t) = N(t)−N(t−) and whereπ is the product-integral, see Andersen et al.
(1993) for a definition. But N has a finite number of jumps on [0, 1] and ∆N(t) ∈
{0, 1} for any t ∈ [0, 1], thus 1−∆N(t) = 1 for any t ∈ [0, 1] excepted a finite number
of times. Consequently the likelihood of N reduces to

∏

t∈[0,1]

(α0(t,X)Y (t))∆N(t) exp
(

−
∫ 1

0

α0(t,X)Y (t)dt
)

where the first product is actually finite, and where we used the fact thatπt∈[0,1](1−
f(t)) = exp(−

∫ 1

0
f(t)dt) for a continuous function f on [0, 1]. Thus, the likelihood

ratio L(α, α0) = dPα/dPα0
writes

L(α, α0) =
∏

t∈[0,1]

( α(t,X)

α0(t,X)

)∆N(t)

exp
(

−
∫ 1

0

(α(t,X) − α0(t,X)Y (t))dt
)

,

which entails (53) since
∑

t∈[0,1] f(t)∆N i(t) =
∫ 1

0
f(t)dN(t). Equation (54) is a

consequence of (53), together with the fact since N1, . . . , Nn are independent, they
cannot jump at the same time, so that

∑n
i=1 ∆N i(t) ∈ {0, 1} a.s.
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Brunel, E., Comte, F. and Lacour (2007). Adaptive estimation of the conditional density
in presence of censoring. Sankhya, 69 734–763.

Catoni, O. (2001). Statistical Learning Theory and Stochastic Optimization. Ecole d’été
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Lecué, G. (2007). ?? Ph.D. thesis, Université Pierre et Marie Curie – Paris 6.
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