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Najib Mahjoubi · Anthony Gravouil · 
Alain Combescure

Abstract The work presented in this publication can be cat-
egorized among domain decomposition methods of the dual
Schur type applied to structural dynamics. This approach
leads to lower CPU times and better control of the accuracy
of the time discretization and allows to take into account
multi-time-scale effects which arise in transient structural
dynamics. In order to consider incompatible time scales, one
has to enforce continuity at the interfaces between the subdo-
mains. Here, we propose a general formalism which enables
the coupling of subdomains with their own numerical time
integration scheme. The proposed method enables one to take
into account possible nonlinearities which may present dif-
ferent time scale between the subdomains in a general man-
ner for a wide range of time numerical scheme. This method
also offers an important improvement for industrial software
with easy implementation. Linear and nonlinear numerical
examples are proposed in order to show the efficiency and
the robustness of the method.

Keywords Subdomain methods · Multi-time-scale ·

Heterogeneous time integrators · Incompatible time scales

1 Introduction

Nonlinear transient dynamic structural calculations are often
very expensive in CPU time as well as in memory size. In
many applications, some regions must be very finely meshed
in time to ensure good-quality local prediction, while in other
regions this degree of refinement is unnecessary. In explicit
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nonlinear dynamics problems, the smallest mesh size deter-
mines the time step for the whole domain. Therefore, many
useless calculations end up being performed on the coarse
part of the mesh. In a more general point of view, it should
be interesting to define incompatible meshes in the various
parts of the structure and not have to worry about mesh
size and time step compatibility at the interfaces. Further-
more, another very interesting aspect consists in being able
to couple independent finite elements softwares, each deal-
ing with its own subdomain and its own time integration
scheme. These different space and time scales involve to
develop numerical methods capable of handling these mul-
tiscale aspects. The proposed multiscale approach allows to
view the global domain as an assembly of subdomains which
may present different time discretizations and different time
numerical schemes. Thus, the decomposition of the structure
into subdomains enables one to use the most suitable time
and space discretization for each subdomain. This, however,
requires the existence of a mechanism capable of handling
cases where the time and space discretizations of one subdo-
main are incompatible with those of its neighbors. Therefore,
the difficulty in performing multiscale calculations consists
in achieving communication among different models on dif-
ferent discretizations in order to recover the global response
of the structure.

The differences among the available subdomains tech-
niques reside in the treatment of the interface between the
subdomains. One can distinguish two main approaches: with
or without overlapping of the interfaces between subdomains.
Among the techniques with overlapping, one may mention
Schwarz-type methods [30] or Arlequin-type methods [6].
Among the techniques without overlapping, one can distin-
guish primal Schur-type approaches [12], where continuity of
displacements is enforced at the interfaces, dual Schur-type
approaches [27], where equilibrium of interfaces forces is
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enforced with Lagrange multipliers, and mixed approaches
[18], where one tries to achieve both conditions.

The FETI, a dual domain decomposition method (pro-
posed initially by Farhat and Roux [13]), was developed for
static problems, by dividing large domains into subdomains
in order to optimize the resolution of linear systems on paral-
lel-architecture computers. The FETI method can be viewed
as an iterative solver where Lagrange multipliers are intro-
duced in order to enforce a displacement continuity condition
at the interfaces between subdomains. In a second step, the
FETI method was extended to transient dynamic problems
(see [14,15]).

In the context of the dual Schur-type approach, Gravouil
and Combescure proposed a multi-time-scale method (GC
method) in order to couple schemes of the Newmark family
both for linear and nonlinear problems with a velocity con-
tinuity condition at the interfaces [20]. The stability prop-
erty of this method was proven through an energy method
(see [23,24]). Thus, it can be shown that the method ensures
energy balance as long as the time discretization is the same
for all subdomains. When each subdomain has its own time
scale, the method is still stable. However for large ratio of
time scales, numerical dissipation can occur at the inter-
face. Furthermore, this method was extended to the cases
of incompatible meshes, contact problems and modal meth-
ods (see [7,8,16,21,22]). In the works of Combescure et al.
previously mentioned, the calculation may be performed with
arbitrary and different pairs of parameters (γ , β) of the
Newmark scheme [28] for each subdomain. Recently, Prak-
ash and Hjelmstad [29] proposed a domain decomposition
method (inspired by the GC method) which ensures that the
work of the interface forces is zero for all schemes of the
Newmark family with different time scales.

One can mention alternative simple methods for coupling
explicit-implicit-type methods with different time scales (see
[2,11]), either by applying nodal explicit-implicit partition-
ing [1] or by using explicit-implicit elements [24]. The
method has been further extended and improved by Liu and
coworkers [3–5]. One should nevertheless notice that one
uses a single pair of parameters (γ , β) of the Newmark
scheme for the whole structure. Furthermore, one can imple-
ment automatic refinement techniques (see [9,25]) which
enable the automatic definition of a suitable time scale for
a particular zone of the structure for a given numerical time
scheme.

When different time scales occur for each subdomain,
one inevitably comes to the question of the most appropriate
numerical time integration scheme of each part. In practice,
it can be very useful to couple two subdomains, the first one
with an implicit integration scheme and the second one with
an explicit integration scheme such as the central difference
method when nonlinearities occur in a localized part of the
structure.

The present article proposes a general formalism for a
wide range of time numerical schemes which enables to
couple subdomains with their own time integration scheme
with large ratio of time scales. The decomposition method
proposed is of the dual Schur type. In Sect. 1, we present
the considered time schemes in order to establish this gen-
eral formalism. This approach relies on the Lagrange mul-
tipliers formalism associated with continuity of velocities at
the interfaces between subdomains. In Sect. 2, we present
the coupling algorithm for three families of numerical time
integration schemes. First, we study the case where all the
subdomains have the same time scale. Then, we propose an
extension of the proposed approach when different time scale
occur. The multi-scale algorithm both for linear and nonlinear
dynamic problems are detailed. A study of the accuracy and
the convergence is also proposed for different time schemes
and different time scales. Finally, Sect. 5, we illustrate the
effectiveness and the robustness of the method through linear
and nonlinear multi-time-scale examples.

2 Presentation of the integration schemes

In structural dynamics, the spatial finite element discreti-
zation of the structure leads to a system of second-order
time differential equations. In order to solve this system,
two approaches are usually considered. The first one consits
in modal superposition [17], which uses a reduced basis of
eigenmodes with a strong mechanical meaning, particularly
in linear dynamics. This approach loses its interest in nonlin-
ear dynamics because the eigenmodes must be reevaluated
as the state of the system evolves with the possible nonlinear
effects. The second approach is direct time integration, which
is better suited in the case of high nonlinearities, but requires
to control the accuracy and stability of the time scheme used.
Direct time integration has been a very active research field
for many years, and there are now many families of numerical
time schemes available. It can be noticed that time numerical
schemes can be distingushed in the following way: equilib-
rium equation is verified either in a “strong” sense, i.e. at
time tn+1, or in a “weak” sense, i.e. in an average way over
the time interval [tn, tn+1].

Among the most used numerical schemes are those of the
Newmark family [28]. Approximate relations enable one to
express the displacements un+1, velocities u̇n+1 and acceler-
ations ün+1 at time tn+1 as functions of the kinematic quanti-
ties at time tn . The advantage of this algorithm is its simplicity
and its similarity with resolution techniques for quasi-static
problems.

Another implicit time scheme dedicated to transient
dynamics problems is the midpoint scheme proposed by Simo
[31]. This scheme is unconditionally stable [31] when the
material law possibly nonlinear, derives from a potential.
The midpoint scheme seeks a solution of the equilibrium
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equation at midpoint through the time interval [tn, tn+1] and
ensured the energy balance and kinetic moment at each time
step.

More recently, a scheme written in the form of a state
vector was proposed by Krenk [26]. This scheme introduces
the independent variable v and enforces the relation v = u̇

(where u̇ is the time derivative of the displacement u). This
last expression along with the equilibrium equation leads to
an augmented system written in the form of a state vector
[uT , vT ]. In order to ensure energy balance, the augmented
system is integrated over the time interval [tn, tn+1]. In addi-
tion, numerical damping can easily be introduced into the
algorithm in the high frequency range while the dissipation
in the low-frequency range is reduced [26].

In the present paper, we will use these three families of
time schemes, which will be briefly presented in the follow-
ing parts. The Lagrange multipliers will be used to represent
either the boundary conditions of a dynamic problem or the
continuity conditions which must be verified at the interfaces
between the subdomains. The interface forces are linked to
Lagrange multipliers and ensure the velocity continuity at the
interfaces. Expressing continuity through the velocities at the
interfaces is the key point in order to couple different time
schemes with their own time scale (see [20,29]). From now
on, we will refer to the Newmark, Simo and Krenk schemes
by using the capital letters N , S and K respectively.

2.1 The Newmark scheme

The Newmark numerical time schemes consist of one time
step approach and two parameters (γ and β). The state of
the system at time tn+1 = tn +�t is calculated as a function
of the known state at time tn . In order to do that, one uses
Newmark’s relations which, for example, give an approxi-
mation of the displacements un+1 and accelerations ün+1 at
time tn+1 as functions of the state of the system at time tn
and velocities u̇n+1:

un+1 =p un +
β

γ
�t u̇n+1 (1)

ün+1 =p ün +
1

γ�t
u̇n+1 (2)

The displacement and acceleration predictors pun and pün

are defined by:

pun = un + �t

(

γ − β

γ

)

u̇n +

(

γ − 2β

2γ

)

�t2ün (3)

pün =

(

γ − 1

γ

)

ün −
1

γ�t
u̇n (4)

Then, Relations (1) and (2) are substituted into the equilib-
rium equation (5) at time tn+1:

Mün+1 + Kun+1 = fext
n+1 + LTλλλn+1 (5)

where M, K and fext
n+1 are the mass matrix, the stiffness matrix

and the vector of external forces respectively. Matrices M

and K are considered to be symmetrical; M is positive defi-
nite and K is positive semi-definite. The term LTλλλn+1 in the
equilibrium equation (5) corresponds to the interface forces.
L is the interface operator which enables one to prescribe a
condition over certain nodes of the structure (e.g. continuity
at the interface nodes between subdomains) and λλλn+1 is the
vector of the corresponding Lagrange multipliers (mechan-
ical damping is not considered here for simplicity reasons).
After simplifying and adding the continuity equation written
in terms of velocities, the system obtained can be written in
the following form:

[

M̃N −LT

−L 0

] [

u̇n+1

λλλn+1

]

=

[

fext
n+1 − Kpun − Mpün

−u̇d
n+1

]

(6)

The term u̇d
n+1 in Eq. (6) represents the prescribed velocities

at the interfaces. The dynamic operator M̃N involved in the
system (6) can be written as:

M̃N =
1

γ�t
M +

β�t

γ
K (7)

2.2 The Simo scheme

In this presentation, the midpoint scheme is written for a
linear problem for clarity sake. The equilibrium equation is
verified at the mid point tn+1/2 with:

1

2
M (ün+1 + ün) +

1

2
K (un+1 + un)

= fext
n+1/2 +

1

2
LT (λλλn+1 + λλλn) (8)

fext
n+1/2 =

1

2
(fext

n+1 + fext
n )

In the equilibrium equation (8), the interfaces forces, iner-
tia forces and internal forces are expressed at the midpoint.
The equilibrium equation (8) is associated with the New-
mark relations Eqs. (1) and (2) written with the parameters
γ = 1/2 and β = 1/4 (average acceleration scheme):

un+1 = pun +
�t

2
u̇n+1 (9)

ün+1 = pün +
2

�t
u̇n+1 (10)

In the same way as (6), one can write:

[

M̃S −LT

−L 0

] [

u̇n+1

λλλn+1

]

=

[

2fext
n+1/2+LTλλλn −Mpün −Kpun −Mün −Kun

−u̇d
n+1

]

(11)
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The dynamic operator M̃S in the system of Eq. (11) can
be written as:

M̃S =
2

�t
M +

�t

2
K (12)

Let us observe that in this case the operator (12) is identical
to the operator (7) with the parameters γ = 1/2 and β = 1/4
(average acceleration scheme).

2.3 The Krenk scheme

One recalls that the linear dynamic equilibrium equation dis-
cretized in space and continuous in time has the following
form:

Mü(t) + Ku(t) = fext(t) + LTλλλ(t) (13)

In order to transform the second-order equation (13) into a
first-order equation, let us treat the velocity as an independent
variable:

v = u̇ (14)

The augmented system consists of Eq. (13) and the defini-
tion (14) multiplied by M. This system is integrated over the
time interval [tn, tn+1]. The resulting system is expressed as
a state vector [uT , vT ] and can be written in the following
form:
⎡

⎣

0 M 0

M 0 0

0 L/2 0

⎤

⎦

⎡

⎣

[un]
[vn]
[λλλn]

⎤

⎦ + �t

⎡

⎣

K 0 −LT

0 −M 0

0 L/�t 0

⎤

⎦

×

⎡

⎣

〈un〉

〈vn〉

〈λλλn〉

⎤

⎦ =

⎡

⎣

�t
〈

fext
n

〉

0
0

⎤

⎦ (15)

The jump and average operators in the system (15), respec-
tively [•] and 〈•〉, are defined by:

[xn] = xn+1 − xn 〈xn〉 = (xn+1 + xn)/2 (16)

where x represents any discretized vector. In the case of the
Krenk scheme, the interface forces are integrated over the
time interval [tn, tn+1] in the same way as the other quan-
tities. The velocity continuity condition, third line of the
system (15), is added to the augmented system defined above.
This relation is not integrated over the time interval, but pre-
scribed only for the velocity at time tn+1. With the notations
(16), we observe that:

〈xn〉 = xn +
[xn]

2
(17)

Using Eq. (17), the second line of the system (15) can be
expressed as:

〈un〉 =
�t

2
〈vn〉 + un (18)

Substituting the Eq. (18) into the first line of the system (15)
and using the remark (17), one can write after simplification:
(

2

�t
M +

�t

2
K

)

vn+1 − LTλλλn+1

=

(

2fext
n+1/2 + LTλλλn + Bvn − 2Kun

)

fext
n+1/2 =

1

2
(fext

n+1 + fext
n ) (19)

B =
2

�t
M −

�t

2
K

From Eq. (15.b), one deduces the displacements un+1:

un+1 = un + [un] (20)

with:

[un] =
�t

2
[vn] + �tvn (21)

The Krenk time scheme can be written in a form equivalent
to (11) as:
[

M̃K −LT

−L 0

] [

vn+1

λλλn+1

]

=

[

2fext
n+1/2 + LTλλλn − 2Kun + Bvn

−vd
n+1

]

(22)

In the system (22), the dynamic operator M̃K can be written
as:

M̃K =
2

�t
M +

�t

2
K (23)

One can observe that the expression of the matrix M̃K given
by (23) is the same as the one obtained with the midpoint
scheme (Eq. 12).

2.4 Energy balance

In order to measure the numerical dissipation introduced by a
time numerical scheme, it is necessary to define a discretized
energy balance. In this respect, one introduces the discret-
ized kinetic energy, the discretized internal energy and the
work of the external forces. In the linear dynamic case, these
quantities are defined respectively as:

T (u̇) =
1

2
u̇T Mu̇

V (u) =
1

2
uT Ku (24)

W (u̇) = u̇T fext

In order to define the discretized energy balance using the
previous notations (16), one can consider the variation of the
kinetic and internal energies between tn and tn+1:

[T (u̇n)] = [u̇n]T M 〈u̇n〉 (25)

[V (un)] = [un]T K 〈un〉 (26)

4



Acc
ep

te
d 

M
an

us
cr

ip
t

Then, one can define the variation of the total energy as:

[E (un, u̇n)] = [T (u̇n)] + [V (un)] (27)

The work of the external forces is obtained by calculating the
integral:

�Wext(n→n+1) =

n+1
∫

n

u̇T fext dt (28)

The calculation of this integral depends on the discretization
of the kinematic quantities associated with the schemes pre-
sented before. The associated expressions can be written in
the following form:

�W
N
ext(n→n+1) = [un]T

〈

fext
n

〉

+

(

γ −
1

2

)

[un]T
[

fext
n

]

(29)

�W
S
ext(n→n+1) = [un]T

〈

fext
n

〉

(30)

�W
K
ext(n→n+1) = [un]T

〈

fext
n

〉

(31)

where N , S and K correspond respectively to Newmark,
Simo and Krenk numerical time schemes. In case of non dis-
sipative physical phenomena, it is interesting to calculate the
difference between the variation of the mechanical energy
and the work of the external forces between times tn and
tn+1. This enables one to quantify the numerical dissipation
introduced either by the scheme or by the work of the inter-
face forces, whose calculation is the same as for the external
forces.

We will calculate these quantities for the presented numer-
ical examples in order to assess the accuracy and stability of
the coupling method for different time scales and different
time schemes.

3 General method for subdomain coupling

One considers here a dual Schur domain decomposition
method for coupling different time numerical schemes with
their own time discretization. For such a formulation, the
question of the kinematic quantity whose continuity must be
prescribed at the interface arises. In continuum mechanics,
prescribing continuity displacements at the interface leads
to continuous velocities and accelerations. This is no longer
true for the equivalent discretized quantities in time. Prescrib-
ing that one of the three kinematic quantities (displacements,
velocities or accelerations) is continuous does not automat-
ically mean that the other two are continuous. We propose
here to ensure the continuity of the discretized velocity in a
Schur dual formulation (see [19,20]). It will be shown that
this is a judicious choice for the purpose of assembling sub-
domains with different time integration schemes.

Fig. 1 A domain � divided into three subdomains with the interface
Ŵb among the subdomains

3.1 Same time scale for all subdomains

Let us consider a domain � divided into three subdomains
with their own time integration scheme according to the time
schemes presented in the previous sections. In the following
matrix equations, the boundary conditions of the problem do
not appear explicitly. The interface forces between the sub-
domains are linked to the discretized Lagrange multipliers λλλ.
Figure 1 displays a typical subdomain decomposition where
fn+1 is the external load, Ŵu the boundary of the domain �

on which the displacements are prescribed, Ŵt the boundary
where the traction forces are prescribed. Ŵb is the interface
between the subdomains and �i with i ∈ {N , S, K }.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M̃N 0 0 −LT
N

0 M̃S 0 −LT
S

0 0 M̃K −LT
K

−LN −LS −LK 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

u̇N
n+1

u̇S
n+1

u̇K
n+1

λλλn+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

FN
n+1

FS
n+1

FK
n+1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(32)
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

FN
n+1 = f

N/ext
n+1 − MN

püN
n − KN

puN
n

FS
n+1 = 2f

S/ext
n+1/2 + LT

S λλλn − M
p

S üS
n

−K
p

S uS
n − MS üS

n − KSuS
n

FK
n+1 = 2f

K/ext
n+1/2 + LT

Kλλλn + Bvn − 2KK un

(33)

The subscripts of the matrices and the superscripts of the
vector quantities indicate the numerical time scheme used.
It was shown in [10] that if Newmark time schemes are being
used with prescribed continuity of discretized velocities at
the interface between the subdomains guarantees the stabil-
ity of the coupling method. In this work, we intend to use,
in addition to schemes of the Newmark family, the schemes
which were presented in the previous Sects. 2.1–2.3 in a more
general formalism. Similarly, we prescribe the continuity of
velocities at the interfaces between all integration schemes.
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The last line of the system (32) enables to prescribe the conti-
nuity of velocities at the interfaces between the subdomains.
The Lagrange multipliers λλλn+1 correspond to the interface
forces between each subdomain. The terms on the right-hand
side of the system (32), detailed in expressions (33), depend
on external loads and on quantities which are known at time
tn .

The strategy used in order to solve the system (32) consists
in decomposing the problem into an unconstrained problem
(free) and a problem with constraints (link). Indeed, each
kinematic quantity can be viewed as the sum of two terms:

u̇i
n+1 = u̇i

n+1/free + u̇i
n+1/link ∀i ∈ {N , S, K } (34)

where the free term u̇i
n+1/free is the solution of the free prob-

lem subject to the external loading and the term of the prob-
lem with constraints u̇i

n+1/link is obtained by applying the
interface forces. This decomposition into an unconstrained
problem and a problem with constraints can be presented in
the following form:

1. The unconstrained problem can be written as:

⎡

⎢

⎢

⎣

M̃N 0 0 0

0 M̃S 0 0

0 0 M̃K 0

0 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u̇N
n+1/free

u̇S
n+1/free

u̇K
n+1/free

λλλn+1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

FN
n+1

FS
n+1

FK
n+1
0

⎤

⎥

⎥

⎦

(35)

The structure of the system (35) enables the resolution of
the unconstrained problem independently over each sub-
domain. Thus, given the velocities of the unconstrained
problems on the boundary of each subdomain, the
other kinematic quantities can be deduced using rela-
tions which are specific to the time integration scheme
(see Sects. 2.1–2.3).

2. The constrained problem can be written as:

⎡

⎢

⎢

⎣

M̃N 0 0 −LT
N

0 M̃S 0 −LT
S

0 0 M̃K −LT
K

−LN −LS −LK 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

u̇N
n+1/link

u̇S
n+1/link

u̇K
n+1/link

λλλn+1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

0

0

0
∑

i

Li u̇
i
n+1/free

⎤

⎥

⎥

⎥

⎦

(36)

Thus, the system (36) enables the calculation of the cor-
rection terms to be added to the quantities of the free
system previously obtained (see Eq. 35). In order to do
that, a first step consists in calculating the interface forces
through the Lagrange multipliers λλλn+1, which requires

Table 1 Coefficients ai and bi Scheme ai bi

Newmark 1
γ�t

β�t
γ

Simo 2
�t

�t
2

Krenk 2
�t

�t
2

a condensation step over the interface Ŵb between the
subdomains. In this respect, the condensed problem at
the interface can be expressed as:

Hλλλn+1 = bn+1 (37)

where the condensation operator H (i.e. the Steklov-
Poincaré operator) and the right-hand side bn+1 can be
given by:

H =
∑

i

Li [ai Mi + bi Ki ]
−1 LT

i (38)

bn+1 = −
∑

i

Li u̇
i
n+1/free (39)

where ai and bi are two coefficients which depend on
the considered time scheme as indicated in Table 1.

Let us observe that the condensation operator H is obtained
as the sum of the condensation operator of each subdomain.
One can also note that for the average acceleration scheme
(γ = 1/2 and β = 1/4), the midpoint scheme and Krenk’s
scheme the condensation operators have identical coefficients
ai and bi and can be expressed in the form:

H = L

[

2

�t
M +

�t

2
K

]−1

LT (40)

The approach presented above can be extended without major
difficulty to any number of subdomains.

Remark 1 One must observe that if the method is applied
to couple only incompatible explicit time schemes the cou-
pled problem solution implies formal inversion of matrix H.
Hence the price to pay for this type of coupling is to solve a
linear system (associated to the matrix H). Nevertheless this
matrix is proportional to the time step it is hence constant in
time in case of linear explicit computation: this induces the
idea that a direct method can be chosen and hence the matrix
is “inverted” only once.

Remark 2 Let us insist that the kinematic constraints are
applied on the velocities: this implies that the continuity of
the displacement and acceleration are not impose in a strong
sense. And the kinematics of these quantities may be not
exactly the same at the interface.

6



Acc
ep

te
d 

M
an

us
cr

ip
tFig. 2 Time-hierarchical meshes

Table 2 Dynamic operators
Time Dynamic
scheme operator

Newmark
1

γ�t
M +

β�t

γ
K

Simo
2

�t
M +

�t

2
K

Krenk
2

�t
M +

�t

2
K

3.2 Independent time scales for each subdomain

The main interest of the proposed coupling method is on the
one hand to couple different time numerical schemes with
their own properties of stability and accuracy and on the
other hand to couple different time discretization subdomain
by subdomain. It can be very interesting for instance to cou-
ple explicit subdomains with their own time scale depending
on the possible localized nonlinearities or high frequency
properties of each subdomain. In this case, the equilibrium
equation of a subdomain is verified at instants which can dif-
fer from those of its neighbors. Thus, the difficulty resides in
establishing proper communication among subdomains with
different time scales. A strategy which allows to achieve such
a communication was developed by Gravouil [20] and was
also used in this work. In order to introduce this technique,
let us consider two subdomains A and B with their respec-
tive time steps �t and �T such that �T = m�t (Fig. 2), m
being an integer greater than one. When m = 1, the method
is identical to that presented in Sect. 3.1. From now on, we
will refer to a macro time scale (�T ) for subdomain A and
a micro time scale (�t) for subdomain B.

Within the framework of the subdomain coupling tech-
nique proposed in Sect. 3.1, the equilibrium equations of
subdomains A and B can be expressed in the general form:

M̃Au̇A
m = FA

m (41)

M̃B u̇B
j = FB

j ∀ j ∈ {1 . . . m} (42)

From (32), we can use for subdomains A and B any two of the
three schemes studied in the present work. Depending on the
scheme being considered, the right-hand sides of Eqs. (41)
and (42) are given in expressions (33). The operators M̃i are
summarized in Table 2.

The incompatibility of the discretized instants between
the macro and micro time scales requires the definition of an
interpolation operator from the macroscale to the microscale.
This interpolation at time t j can be linear, as proposed in [19].
In this case, the resolution of the interface problem is carried
out on the micro time scale. This interpolation operator can
be defined by:

u̇ j =

(

1 −
j

m

)

u̇0 +
j

m
u̇m (43)

Thus, for a time step �T (on the macro time scale), m time
steps �t (on the micro time scale) have to be calculated. The
method is similar to that proposed in [19], which can be sum-
marized in the following algorithm where a single time step
�T of the macro time scale is considered:

a. Resolution of the unconstrained problem on the subdo-
main A at time tm

M̃Au̇A
m/free = FA

m (44)

The other free kinematic quantities of the subdomain A
(displacement uA

m/free and acceleration üA
m/free) can be

obtained from the expressions given Sects. 2.1–2.3.
b. Loop over the m time steps of the subdomain B at time

t j j ∈ ∀{1, . . . , m}.
c. Resolution of the unconstrained problem of the subdo-

main B at time t j

M̃B u̇B
j/free = FB

j (45)

d. Interpolation of the free velocities of the subdomain A
from the macro-scale to the micre-scale

u̇A
j/free =

(

1 −
j

m

)

u̇A
0/free +

j

m
u̇A

m/free (46)

e. Calculation of the Lagrange multipliers λλλ j on the prob-
lem condensed at the interface

Hλλλ j = −
∑

i∈{A,B}

Li u̇
i
j/free (47)

f. Resolution of the problem with constraints on the sub-
domain B at time t j

M̃B u̇B
j/link = LT

Bλλλ j (48)

After calculation of the kinematic quantities of the prob-
lem with constraints (uB

m/link and üB
m/link), one can deduce
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the kinematic quantities of the global problem on subdo-
main B.

⎧

⎪

⎨

⎪

⎩

uB
j = uB

j/free + uB
j/link

u̇B
j = u̇B

j/free + u̇B
j/link

üB
j = üB

j/free + üB
j/link

(49)

g. If j = m, end of loop
h. Resolution of the problem with constraints on subdomain

A

M̃Au̇A
m/link = LT

Aλλλm (50)

After calculation of the other kinematic quantities of the
problem with constraints (uA

m/link and üA
m/link), one can

deduce the kinematic quantities of the global problem on
the subdomain A.

⎧

⎪

⎨

⎪

⎩

uA
m = uA

m/free + uA
m/link

u̇A
m = u̇A

m/free + u̇A
m/link

üA
m = üA

m/free + üA
m/link

(51)

This method can be generalized to s subdomains with hier-
archical time scales with respect to the coarsest scale, such
that:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�t1 = �t

�t2 = m2�t
...

�ts = ms�t

(52)

where {m2, . . . , ms} ∈ N∗s−1. In this case, the algorithm
is slightly more complex to implement than the presented
above with two subdomains. However the implementation is
roughly the same. Contrary to the static case (FETI method),
one can observe that in the approach proposed here the inter-
face problem is not solved iteratively with preconditioners.
Indeed, for linear transient dynamics problems, since the con-
densation operator H remains constant along time, a direct
resolution technique can be considered for the problem con-
densed at the interface. Thus, it is possible to triangularize
the operator H only once in the initialization step. Then, stan-
dard direct solvers can be used to optimize the CPU time on
the interface resolution.

The GC method is known to dissipate energy in case of
Newmark time schemes with different time steps. It is then
obvious that the proposed heterogeneous scheme coupling
will dissipate energy as in case of Newmark schemes alone.

3.3 Nonlinear multi-time-scale analysis

The aim of this paragraph is to extend the proposed cou-
pling method to the nonlinear case. Here, only a nonlin-

ear behavior in the bulk will be considered (plasticity for
instance). In [19], Gravouil proposed a domain decomposi-
tion method of the dual Schur type in order to couple arbi-
trary numerical schemes of the Newmark family in nonlin-
ear analysis. Following the general formalism (see Eq. 32)
given for domain decomposition with the Newmark, Simo
and Krenk schemes, the extension of the GC method can
be achieved in the same way. Let us assume that a nonlinear
behavior (e.g. elastic-plastic with kinematic strain hardening)
is associated with some localized zones of the structure. The
corresponding subdomains can be associated with explicit
numerical time schemes over a fine time scale required by
the critical time step. These “explicit” subdomains can be
coupled with the subdomains of the rest of the structure for
which linear behavior with a coarse time scale is assumed.
In fact, this is a generalization of the linear algorithm given
in Sect. 3.2. In other words, let us consider two subdomains
with two time scales (see Fig. 2). On the micro time scale, let
us assume a nonlinear (elasto-plastic) behavior with a time
step �t and the explicit central difference scheme (γ = 1/2
and β = 0). On the subdomain with the macro time scale �T

(�T = m�t , with m ∈ N∗) one assumes a linear constitu-
tive law. On the “implicit” subdomain (I), one of the implicit
schemes presented before is used (Newmark, Simo, Krenk).
On the “explicit” subdomain (E), the equilibrium equation
with the Newmark central difference numerical scheme can
be expressed at time t j as:

ME üE
j + FE

int j

(

puE
j−1

)

= f E
ext j +LTλλλn+1 with ME the diagonal mass matrix

(53)
{

uE
j =p uE

j−1

üE
j =p üE

j−1 + 1
γ�t

u̇E
j

(54)

This method can be summarized for a given time step �T

of the coarse time scale as follows:

a. Resolution of the unconstrained problem on the
subdomain I at time tm

M̃I u̇I
m/free = FI

m (55)

The other free kinematic quantities of the subdomain I
(displacement uI

m/free and acceleration üI
m/free) can be

obtained from the expressions given in Sects. 2.1–2.3.
b. Loop over the m time steps of the subdomain E at time

t j j ∈ ∀{1, . . . , m}.
c. Resolution of the unconstrained problem on the subdo-

main E at time t j

ME üE
j/free = f E

ext j − FE
int j

(

puE
j−1

)

(56)
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d. Interpolation of the free velocities of the subdomain I:

u̇I
j/free =

(

1 −
j

m

)

u̇I
0/free +

j

m
u̇I

m/free (57)

e. Calculation of the Lagrange multipliers λλλ j of the prob-
lem condensed at the interface

Hλλλ j = −
∑

i∈{I,E}

Li u̇
i
j/free (58)

f. Resolution of the problem with constraints on the sub-
domain E at time t j

ME u̇E
j/link = LT

Eλλλ j (59)

After calculation of the kinematic quantities uE
j/linkl and

üE
j/link , one can deduce the kinematic quantities of the

global problem on the subdomain E.

⎧

⎪

⎨

⎪

⎩

uE
j = uE

j/free + uE
j/link

u̇E
j = u̇E

j/free + u̇E
j/link

üE
j = üE

j/free + üE
j/link

(60)

g. If j = m, end of loop
h. Resolution of the problem with constraints on the sub-

domain I

M̃I u̇I
m/link = LT

I λλλm (61)

After calculation of the kinematic quantities uI
m/link and

üI
m/link , one can deduce the kinematic quantities of the

global problem on the subdomain I.

⎧

⎪

⎨

⎪

⎩

uI
m = uI

m/free + uI
m/link

u̇I
m = u̇I

m/free + u̇I
m/link

üI
m = üI

m/free + üI
m/link

(62)

The condensation operator H is given by:

H = LI M̃−1
I LT

I + LE M−1
E LT

E (63)

It can be noticed that the algorithm is very similar to the linear
case. Indead, only the lumped mass matrix ME is required in
the H interface operator for the explicit nonlinear subdomain
E.

Remark for explicit subdomains the final displacement state
is known at the beginning of the time step. All nonlinear
effects can be computed before the link force application.
These constraint loads will only change the computation of
velocities and accelerations at the end of the time step and
will hence have an effect on next time step.

3.4 Control of the interface numerical dissipation

In the previous sections, we developed a domain decomposi-
tion method of the dual Schur type in order to couple, under
the same general formalism, arbitrary numerical schemes
of the Newmark, Krenk and Simo families, with possible
nonlinearities and different time scales. In this context, we
showed that the incompatible discrete instants of the macro
and micro time scales require the definition of a kinematic
interpolation operator between the two time scales (Eq. 43).
One can also note that the “free”/“link” uncoupling (Eq. 34)
and the interpolation of the Lagrange multipliers require a
resolution on the fine time scale at the interface. Recent
works by Prakash and Hjelmstad [29] led to a method (the
PH method) which makes the interface numerical dissipation
in multi-time-scale calculations be zero with different time
schemes of the Newmark family in linear elasticity, thanks
to a slight modification of the “free”/“link” uncoupling. As
the approach proposed by Gravouil and Combescure (the
GC method), continuity of the velocities is prescribed at the
interfaces. A linear interpolation similar but slightly differ-
ent to Eq. 46 is implemented. Table 3 illustrates the details of
the “free”/“link” uncoupling for the two approaches, GC and
PH method through the interpolation relations used. In both
cases, we obtain the interpolation relation among the global
kinematic quantities defined by Eq. (43). For the PH method,
the system to be solved for the coupling of two time-incom-
patible subdomains can be expressed in the form:
[

M C

B 0

] [

U

λm

]

=

[

P

0

]

(64)

Here U represents the generalized vector: U
T =[uT , u̇T , üT ]

In the case of Newmark type schemes, the definition of the
vectors and matrices M, C, B and P are given in [29].

In order to obtain the system of Eq. (64) of the PH method,
the Lagrange multipliers λλλ j over the fine time scale are cal-
culated using the Lagrange multipliers λm of the coarse time
scale and the unbalanced interface reactions. The unbalanced
interface reactions can be viewed as the amount by which the

Table 3 Compared coupling
strategies ‘free’/‘link’

GC PH

Free u̇ j/free =

(

1 −
j

m

)

u̇0/free +
j

m
u̇m/free u̇ j/free =

(

1 −
j

m

)

u̇0 +
j

m
u̇m/free

Link u̇ j/link =

(

1 −
j

m

)

u̇0/link +
j

m
u̇m/link u̇ j/link =

j
m

u̇m/link

9
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Fig. 3 A split SDOF problem

subdomain on the coarse time scale is out of force equilib-
rium at t j under external forces only. These reactions can
also be interpreted as the unbalance of a subdomain when
this subdomain is subjected only to external forces.

In order to solve the system (64), one sets (65):

U = Ufree + Ulink

Ufree = M
−1

P (65)

Ulink = −Yλm and Y = M
−1

C

One deduces the condensed problem on the interface with:

[BY] λm = BUfree (66)

The main consequence can be summarized in two points:
first, contrary to the GC method, the condensed problem at
the interface is written on the coarse time scale. Second, by
an energy method as in [29], one can also show that the PH
method doesn’t dissipate numerical energy at the interface
when numerical time schemes of the Newmark family and/or
different time scales are coupled in linear problems.

3.5 Consistency of the presented multi-time scales
domain decomposition method

In this section, we study the consistency of the coupling
method presented in the previous section. A numerical dis-
cretization in time of the transient dynamics problem consists
in the equilibrium equation and the following relations for a
one step algorithm:

u̇n+1 = f (u̇n, ün, ün+1)

un+1 = f (un, u̇n, u̇n+1, ün, ün+1)
(67)

A time numerical scheme is consistent if:

lim
h→0

Un+1 − Un

h
= U̇n (68)

where UT
n = [un, u̇n] is the considered state vector.

The consistency can be studied by using a single degree
of freedom (SDOF) problem. This system is composed of a

mass (m) and a spring (k). For the unforced undamped SDOF
system, the equation of motion becomes,

ü + ω2u = 0

ω =
√

k/m
(69)

with the initial conditions,
{

u(t = 0) = u0

u̇(t = 0) = u̇0

(70)

In order to study the consistency of the presented domain
decomposition method, the mass is split into a system of two
masses (m A, m B where m A +m B = m) and two springs (kA,
kB where kA + kB = k) held together with an interface reac-
tion force (�) (Fig. 3 [29]). On the one hand, the two masses
can be integrated separately using different time steps and/or
time schemes and can be coupled using the Lagrange multi-
pliers. On the other hand, the obtained solution can be com-
pared to a reference solution of the SDOF problem in order
to plot the convergence rate with the following definition:

Error =

∣

∣

∣

∣

usubdomain − ureference

ureference

∣

∣

∣

∣

(71)

One recall that the Newmark (average acceleration and
central difference), Simo and Krenk time schemes are sec-
ond order accurate in the linear case for transient dynamics
problems [17]. In a first step, the consistency of the proposed
method is studied using a calculation with the same time
step for the two masses. In this respect, the convergence rate
is compared to that of a single algorithm with a very fine
time discretization. Then using different time scales for each
mass, the time step is reduced by the same amount for each
mass. In the same way, the convergence rate is also com-
pared to that of a single algorithm. Furthermore in the case of
two different time scales, a comparison between the GC and
the PH method is presented. The calculation was performed
through either the average acceleration scheme(A.A.), the
central difference scheme (C.D.), the Simo scheme (S.) and
the Krenk scheme (K.). In the proposed example, the follow-
ing values are chosen: m A = 1.0 × 10−6, m B = 1.0 × 10−6,
kA = 2.0 × 104 and kB = 3.0 × 104. The initial values are:
uA(t = 0) = uB(t = 0) = 1, u̇A(t = 0) = u̇B(t = 0) = 0.
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Fig. 4 Convergence rate of the
GC method for a single time
scale

Fig. 5 Convergence rate of the
GC method for different time
scales: m = 100

3.5.1 Consistency for a single time scale problem

The same time scale is used for the two masses. The solu-
tion obtained is compared to the exact solution. With a single
time scale for the two masses, the GC method is second order
accurate (Fig. 4a–d) for all the considered cases (A.A/C.D.;
A.A./S.; A.A./K.; S./K.). Hence, one can couple the four time
schemes presented without altering the global accuracy. This
method also enables the control of the accuracy locally for
each subdomain in transient dynamics by the use of the most
appropriate time scheme.

3.5.2 Consistency for a two time scales problem

The two masses have with their own time scale with a time
scale ratio m = 100 (�T = m�t). In this study of the con-
sistency, the time step is refined with the same ratio for each
mass. The obtained solution is compared to the reference
solution. With different time scales for the two masses, the
GC method is first order accurate (Fig. 5a–d) for all the con-
sidered cases (A.A/C.D.; A.A./S.; A.A./K.; S./K.). Hence,
we can see the limits of the GC method in such a case: one
order of convergence rate is lost when the proposed time

11
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Fig. 6 Convergence rate for
two time scales—comparison
betwen the GC and the PH
method

schemes are coupled with different time scales. Indeed, even
with the use of second order accurate time schemes in each
subdomain, the GC method is globally first order accurate.
This limitation is clearly associated to numerical dissipation
at the interface. The next proposed examples clearly illustrate
this property (see Sect. 4).

3.5.3 Comparison between GC and the PH method

Here the same study is made for the PH method. The PH
method is second order accurate (see Fig. 6a, b) and no
numerical dissipation occurs at the interface for the consid-
ered coupling: A.A./C.D.; S./C.D; S./A.A.. Hence, the PH
method is clearly an improvement of the GC method in case
of different time scales. In this case, the accuracy can be con-
trolled for each subdomain, no numerical dissipation occurs
at the interface, and the global convergence rate is not altered
(second order). In this respect, this result generalized the pre-
vious works of Prakash and Heljmstad (only Newmark time
schemes) to a large class of numerical time schemes.

4 Numerical examples

In order to validate the proposed coupling method, we pro-
pose to illustrate it through 1D, 2D (shell elments) and 3D
numerical examples. One considers the numerical time
schemes presented in Sect. 2. For the Newmark time schemes,
we use the average acceleration implicit time scheme (γ =

1/2 and β = 1/4) and the central difference explicit time
scheme (γ = 1/2 and β = 0).

Fig. 7 Time evolution of the external load

Fig. 8 Decomposition of the beam with three subdomains

4.1 1D structure with a single time scale

In this first example, we consider the case of a fixed/free beam
(see Fig. 8) subjected to a bending load at the free end with
the time evolution shown in Fig. 7. The aim of this example
is to illustrate the ability of the proposed coupling method to
mix different numerical time schemes.

A linear elastic constitutive law is assumed for the three
subdomains. The material is a linear elastic isotropic and
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Fig. 9 Result of the 1D calculation of a beam with a bending load

homogeneous steel, with Young’s modulus E = 210 ×

109 N.m−2, mass density ρ = 7,800 kg.m−3 and Poisson’s
ratio ν = 0.3. The structure is divided into three equal-length
subdomains, and different numerical time schemes are used
in each subdomain in order to calculate the global response of
the beam. The length of the beam is L = 0.9 m with a square
cross section of side a = 0.01 m. The beam is modeled
with 2-nodes beam-type elements (six degrees of freedom
per node). Thus, each of the interfaces between subdomains
is a single node with six DOFs (degrees of freedom).

Figure 8 displays the 3 subdomains where N , K and S

correspond to the implicit Newmark time scheme, the Krenk
time scheme and the Simo time scheme respectively. This
enables us to emphasize the possible numerical dissipation
by such a coupling. Each subdomain is discretized with 10
beam elements. Continuity at the interface is written in terms
of velocities, as presented above. In this example, the same
time scale is used for the three subdomains. We plot the verti-
cal displacement and velocity at the free end of the beam (see
Fig. 9). In a second step, these results are compared to a refer-
ence calculation performed with a single-domain model and
Newmark central difference time scheme. We have also per-
formed an energy balance (see Fig. 9) in order to observe the
possible numerical dissipation due to the coupling method.
Indeed, the three considered time numerical schemes are sec-
ond order accurate without any numerical dissipation. As

consequence, the possible observed numerical dissipation is
necessarily caused by the considered coupling method.

One can observe an excellent agreement of the displace-
ments and velocities at the end of the beam between the
reference calculation and the GC method (as well as for the
PH method). The numerical energy balance on this example
indicates no numerical dissipation induced by the coupling
method. The global numerical energy balance falls within
the machine tolerances, in agreement with the fact that the
considered schemes involve no numerical dissipation. This
example enables us to validate the proposed coupling method
in the 1D linear elastic case with the same time scale for all
subdomains.

4.2 2D structure with two different time scales - PH method

In this paragraph, the aim is to extend the PH method to
couple different numerical time schemes in the linear case.
In this respect, let us consider the problem of a beam with
a traction loading (see Fig. 10) and divided into two sub-
domains, each with its own time scale and numerical time
scheme. We arbitrarily chose the Simo scheme with a coarse
time scale for the left subdomain (55 QUA4 finite elements,
i.e. 66 DOFs) and the central difference scheme with a fine
time scale for the right one (215 QUA4 and TRI3 finite ele-
ments, i.e. 237 DOFs). The fine time step is �t = 1.10−7 s.
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Fig. 10 Decomposition of the
beam with two subdomains

Fig. 11 Comparison of the
energy balance given by the GC
and the PH method

Several values of the time scale ratios m (�T = m�t): 10,
50 and 100 are considered. The material characteristics are
defined as follows: Young modulus E = 210 × 109 N.m−2,
mass density ρ = 7,800 kg.m−3 and Poisson ratio ν = 0.3.
The beam is clamped on its left-hand side and submitted to
a step load on its right-hand side. This numerical example is
an extension the use of the PH method (initially developed
for Newmark schemes only) to the coupling of the average
acceleration, central difference and Simo numerical schemes
with different time scales. The time evolution of the loading
is given in Fig. 7. Here we compare the energy balance (see
Fig. 11) between the PH and the GC method for different
time scale ratio in order to assess the possible numerical dis-
sipation caused by the methods.

One can observe that the numerical dissipation of the
GC method increases according to the ratio of time step but
remains acceptable. However for the PH method, we observe
that the energy is globally preserved for different ratios of
time scale. This result is an extension of the PH method to
different numerical time schemes and confirms its ability to
not introducing numerical dissipation in the interface. This
example illustrates the ability of the GC method and the PH
method to couple different time numerical schemes with dif-
ferent time scales.

Fig. 12 Decomposition of the bar with two incompatible explicit sub-
domains

4.3 2D structure with two different explicit space time
incompatible meshes

The aim of this section is to test the quality of the proposed
method in case on explicit-explicit coupling with incompat-
ible space and time meshes. One considers a problem of
wave propagation in a homogeneous elastic bar splitted in
two square domains (see Fig. 12) whose side length L is
L = 1m. The material properties are the same as in Sect. 4.2.
The two subdomains are meshed by four-nodes isoparamet-
ric quadrilateral elements in plane strain conditions. The size
of the elements and time steps are ten times smaller in the
fine subdomain. The coarse domain are discretized with 16
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Fig. 13 Plots of time history
results

QUA4 finite elements (200 DOFs) while the fine one uses
1,600 QUA4 finite elements (13,448 DOFs). Each subdo-
main is integrated in time by an explicit central difference
scheme (γ = 1/2 and β = 0) and the time step of the finest
domain is h = 10−6 s. The left end is fixed (u(0, t) = 0)
and the other end loaded by a Heaviside horizontal force
F = 108 N applied at t = 0 and held constant. Non-match-
ing interfaces are used between the subdomains: hence one
node of the fine mesh does not always correspond to one
node of the coarse mesh. Velocities of the fine mesh nodes
are enforced at each time step to follow the ones associated
with the coarse one. This constraint is imposed by Lagrange
multipliers and the corresponding L matrix. The number of
Lagrange multipliers is hence equal to the number of DOFs
of the fine discretisation of the interface. The simulation are
uses 1,000 time steps for the coarsest time scale which is
corresponds to 10,000 time step on the fine one. This allows
more than six complete wave propagations along the beam.
The displacement and velocity of a node of the free end of the
bar are compared to a “reference” solution calculated whith-
out domain decomposition with a time step of �t = 2.10−6s
and 1,600 QUA4 finite elements (see Fig. 13). The results are
satisfactory both in amplitude and in phase. Figure 13 shows
the energy balance of the method in this case. The total dissi-
pated energy has been checked and corresponds to the work
of the interface forces (within the round off errors): this is
due to the dissipative nature of the GC coupling algorithm
in case of non matching time steps). The numerical dissipa-
tion is less than 1% of the the work of the external loads. No
numercial instability has observed on this case through the
10,000 time steps computed.

Figure 14 compares the displacements and velocities evo-
lution for two corresponding nodes on sides A and B of the

interface. The two top sub-figures compare the time histories
with the “reference” solution: the results are satisfactory both
in amplitude and in phase. The two lower sub-figures plot the
error on velocities and displacements. The error on quantity u

is defined as ufine−ucoarse

max(ufine, ucoarse)
. One may observe that the error

on the velocities is within the machine tolerance (10−14) and
less than 1% for the displacements (see Fig. 14), but remains
stable as the computation progresses.

4.4 3D structure with two time scales

The following example also deals with a fixed/free beam of
length L = 4 m with a square cross section of dimension
a = 0.4 m, meshed with hexaedron finite element. A bend-
ing load is applied at the free end. The structure is divided
into four subdomains and a linear elastic behavior is assumed.
The material consists of a steel with a Young modulus E =

210 × 109 N.m−2, a mass density ρ = 7,800 kg.m−3 and
a Poisson ratio ν = 0.3. The structure is discretized with
12,096 finite elements, i.e. 15,295 DOFs. The mesh of the
four subdomains is shown in Fig. 15.

The green and blue subdomains are calculated respec-
tively with the average acceleration and central difference
Newmark time numerical schemes, while the yellow and red
subdomains are calculated with the Krenk and Simo time
numerical schemes respectively. On this example, one can
see that some interfaces are connected to three or four subdo-
mains. The interface betwenn the four subdomains is shown
in Fig. 16.

The time evolution of the bending load is given in Fig. 7
and has a maximum value of 5.105 N . The time discret-
ization of the explicit domain is chosen as the reference,

15



Acc
ep

te
d 

M
an

us
cr

ip
t

Fig. 14 Time evolution of
displacement and velocities
difference at interface

Fig. 15 The mesh of the four subdomains

with the critical time step defined by the Courant condition:
�t = 2.11 10−6 s. Several values of the time step ratio m
(�T = m�t ) are considered: 10, 40 and 100. Figure 17
shows, for the three time step ratios mentioned above, the
vertical displacements and velocities of a point located at
the free end of the beam. Finally, the third graph presents
the numerical energy balances corresponding to the different
values of m.

The numerical energy balances presented in Fig. 17 show
the numerical dissipation which occurs when the coupling
method is performed with different time scales. This numer-
ical dissipation increases with the time step ratio. For exam-
ple, the energy dissipated at the interface for m = 100 (400J)
is 1.6% of the total energy after five periods of oscillations.
This example validates the GC method to couple different
time schemes and different time scales (see [10]).

Fig. 16 The mesh of the interfaces

4.5 3D structure with two different time scales
and material nonlinearities

In this last example, we consider a pipe of length 8 m, radius
1 m and thickness 5 mm (Fig. 18). The structure is stiffened
by axial and radial reinforcements, 5 mm thick and 0.1 m
high. The radial stiffeners are located 1 m from the edge and
2 m from one another. The axial stiffeners are located at 90◦

to one another. The finite element model is built from DKT
shell elements (8,664 DOFs). A vertical force with a maxi-
mum value of −2.105 N with the time evolution shown in
Fig. 7 is applied near the right edge. The left edge is built-in.

The mesh of the structure (see Fig. 18) is divided into 6
subdomains. An exploded view of three of these subdomains
is shown in Fig. 19. Four of the subdomains are calculated
using implicit schemes. The red and yellow subdomains are
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Fig. 17 Results of the 3D
calculation of a beam in bending

Fig. 18 The mesh of the complete structure

Fig. 19 Exploded view showing three of the six subdomains

calculated with the Newmark average acceleration scheme
(γ = 1/2 and β = 1/4). The green and blue subdomains at
the center of the structure are calculated with the midpoint
scheme and the Krenk scheme respectively. A single time
scale is used for the four implicit subdomains. Over these sub-

domains, we consider a linear elastic constitutive law with the
same characteristics as in the previous examples. The remain-
ing two subdomains, including the subdomain carrying the
load, are calculated with an explicit scheme (Newmark cen-
tral difference scheme γ = 1/2 and β = 0) and a different
time scale than that used for the implicit subdomains. For the
two “explicit” subdomains, an elastic-plastic constitutive law
with isotropic strain hardening is considered. The Young’s
modulus, mass density and Poisson’s ratio are identical to
those of the previous examples. The yield stress is 200 Mpa
and the tangent modulus is equal to 1% of the Young’s mod-
ulus. The calculations presented below are carried out under
the small displacements and small strain assumption.

We examine the displacements and velocities in the load-
ing zone. The results obtained are compared to a reference
calculation of the whole structure without subdomains, car-
ried out using the central difference scheme (γ = 1/2 and
β = 0). For this single-scale calculation, we consider an elas-
tic-plastic constitutive law with isotropic strain hardening
with the same characteristics as that used in the calculations
with domain decomposition. We study two different time
ratios between the two time scales (m = 10 and m = 100).
Figure 20 shows the comparison of the vertical displace-
ment and velocity from the reference calculation (blue line)
with those obtained with the domain decomposition method
proposed in this work using the time step ratios m = 10
(green line) and m = 100 (red line). One can observe a good
agreement of the results with subdomain decomposition and
those of the reference calculation, even in the case m = 100
with a relatively small number of steps. Furthermore, the
choice of using only two subdomains with a nonlinear law
rather than the whole structure (as in the reference calcula-
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Fig. 20 Results of the 3D analysis of a pipe with axial and radial stiffeners

tion) appears justified by the results. The energy balance pre-
sented in Fig. 20 is obtained with the time step ratio m = 100.
In this case, the numerical dissipation of the interface forces
is 2.5% of the total energy.

5 Conclusion

In this article, one proposes a general formalism which
enables the coupling of a wide range of numerical time
schemes (Newmark, Simo, Krenk). The Krenk numerical
time scheme is introduced with the Lagrange multipliers in
order to use it in a domain decomposition method within
a dual Schur type formalism. Single and multi-time-scale
numerical examples with linear elastic as well as nonlin-
ear elasto-plastic laws were presented in order to illustrate
the robustness and accuracy of the proposed GC coupling
method. Generally speaking, this approach can be imple-
mented into industrial codes without major modification of
their existing architectures. This will give the user of such
a code access to numerical methods for nonlinear transient
dynamics and offers the possibility to choose, subdomain by
subdomain, the adapted numerical time scheme and the most
suitable time scale. This methodology can also be extended to
the coupling of codes with different time integration schemes.
Furthermore, this requires carrying out a global energy bal-
ance during the resolution in order to control the possible
numerical dissipation between subdomains. One can also
extend the presented approach to the PH method in order

to achieve zero numerical dissipation at the interface. In this
paper, the PH method has been extended to the coupling of
Newmark and Simo numerical time schemes with different
time scales. In the continuation of this work, it can be inter-
esting to extend the PH approach both for other time schemes
and transient non linear dynamic problems.
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