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Abstract. The underlying property, its definition and representation
play a major role when monitoring a system. Having a suitable and con-
venient framework to express properties is thus a concern for runtime
analysis. It is desirable to delineate in this framework the spaces of pro-
perties for which runtime verification approaches can be applied to.
This paper presents a unified view of runtime verification and enforce-
ment of properties in the safety-progress classification. Firstly, we char-
acterize the set of properties which can be verified (monitorable proper-
ties) and enforced (enforceable properties) at runtime. We propose in
particular an alternative definition of “property monitoring” to the one
classically used in this context. Secondly, for the delineated spaces of
properties, we obtain specialized verification and enforcement monitors.

1 Introduction

Runtime-verification [1–5] is an effective technique to ensure at execution time
that a system meets a desirable behavior. It can be used in numerous application
domains, and more particularly when integrating together untrusted software
components. In runtime verification, a run of the system under scrutiny is ana-
lyzed incrementally using a decision procedure: a monitor. This monitor may be
generated from a user-provided high level specification (e.g. a temporal property,
an automaton). The primary goal of this monitor is to detect violation or valida-
tion wrt. the given specification. It is a state machine (with an output function)
processing an execution sequence (step by step) of the monitored program, and
producing a sequence of verdicts (truth values taken from a truth-domain) indi-
cating specification fulfilment or violation. The major part of research endeavor
was done on the monitoring of safety properties, as seen for example in [6, 7].
However, the authors of [8] show that safety properties are not the only mo-
nitorable properties. Recently, a new definition of monitorability was given by
Pnueli in [2] and it has been proven in [4] that safety and co-safety properties
represent only a proper subset of the space of the monitorable properties.

Runtime enforcement is an extension of runtime verification aiming to circum-
vent property violations. It was initiated by the work of Schneider [9] on what
has been called security automata. In this work the monitors watch the cur-
rent execution sequence and halt the underlying program whenever it deviates



from the desired property. Such security automata are able to enforce the class
of safety properties [10] stating that something bad can never happen. Later,
Viswanathan [11] noticed that the class of enforceable properties is impacted
by the computational power of the enforcement monitor. As the enforcement
mechanism can implement no more than computable functions, the enforceable
properties are included in the decidable ones.

More recently, Ligatti and al. [12] showed that it is possible to enforce at run-
time more than safety properties. Using a more powerful enforcement mechanism
called edit-automata, it is possible to enforce the larger class of infinite renewal
properties. Within the classical safety-liveness dichotomy, the renewal class is a
super set of the safety class which contains some liveness properties (but not
all). More than simply halting an underlying program, edit-automata can also
“suppress” (i.e. freeze) and “insert” (frozen) actions in the current execution
sequence.

Several tools have been proposed in this context, and in practice there is not
always a clear distinction between runtime-verification and runtime-enforcement
(for instance a verification monitor may execute an exception handler when de-
tecting an error, hence modifying the initial program execution). The question
we consider in this work is then the following: what are the classes of proper-
ties that can be handled at runtime, and is there a distinction between these
two techniques ? This question is not original in itself, but we propose here to
address it within a unified framework: the safety-progress (SP) classification of
properties [13, 14]. The paper contributions are then the following:

– to improve some recent results related to property enforcement [15, 16], giv-
ing a more accurate classification of enforceable properties;

– to integrate in the same framework some existing results related to pro-
perty monitoring [2–4], and to propose an alternative definition of property
monitoring, leveraging the semantics of finite execution sequences;

– to get a generic monitor synthesis technique, allowing to produce either a
verification or an enforcement monitor from a same property description.

Paper Organization. The remainder of this article is organized as follows. Sect. 2
introduces some preliminary notations used throughout this paper. Sect. 3
overviews related work on the issues addressed in this paper. In Sect. 4, we
provide minimal background on the safety-progress classification of properties
in a runtime verification context. Sect. 5 is dedicated to the study of the space
of monitorable properties, while Sect. 6 studies the space of enforceable proper-
ties. In Sect. 7, we present the synthesis of runtime verification and enforcement
monitors. We give some concluding remarks and future works in Sect. 8.

Complete proofs and more details are given in [17].

2 Preliminaries and notations

This section introduces some background, namely the notions of program execu-
tion sequences and program properties.



2.1 Sequences, and execution sequences

Sequences and execution sequences. Considering a finite set of elements E, we
define notations about sequences of elements belonging to E. A sequence σ
containing elements of E is formally defined by a total function σ : I → E where
I is either the integer interval [0, n] for some n ∈ N, or N itself (the set of natural
numbers). We denote by E∗ the set of finite sequences over E (partial function
from N), by E+ the set of non-empty finite sequences over E, and by Eω the set
of infinite sequences over E. The set E∞ = E∗ ∪ Eω is the set of all sequences
over E. The empty sequence of E is denoted by ǫE or ǫ when clear from context.
The length (number of elements) of a finite sequence σ is noted |σ| and the
(i+1)-th element of σ is denoted by σi. For two sequences σ ∈ E∗, σ′ ∈ E∞, we
denote by σ · σ′ the concatenation of σ and σ′, and by σ ≺ σ′ the fact that σ
is a strict prefix of σ′ (resp. σ′ is a strict suffix of σ). The sequence σ is said to
be a strict prefix of σ′ ∈ Σ∞ when ∀i ∈ {0, . . . , |σ| − 1} · σi = σ′

i and |σ| < |σ′|.

When σ′ ∈ E∗, we note σ � σ′ def

= σ ≺ σ′ ∨ σ = σ′. For σ ∈ E∞ and n ∈ N, σ···n
is the sub-sequence containing the n+ 1 first elements of σ. Also, when |σ| > n,
the subsequence σn··· is the sequence containing all elements of σ but the n first
ones.

A program P is considered as a generator of execution sequences. We are
interested in a restricted set of operations the program can perform. These op-
erations influence the truth value of properties the program is supposed to fulfill.
Such execution sequences can be made of access events on a secure system to its
ressources, or kernel operations on an operating system. In a software context,
these events may be abstractions of relevant instructions such as variable modifi-
cations or procedure calls. We abstract these operations by a finite set of events,
namely a vocabulary Σ. We denote by PΣ a program for which the vocabulary
is Σ. The set of execution sequences of PΣ is denoted by Exec(PΣ) ⊆ Σ∞. This
set is prefix-closed, that is ∀σ ∈ Exec(PΣ), σ′ ∈ Σ∗ · σ′ � σ ⇒ σ′ ∈ Exec(PΣ).
In the remainder of this article, we consider a vocabulary Σ.

2.2 Properties

Properties as sets of execution sequences. A finitary property (resp. an infinitary
property, a property) is a subset of execution sequences of Σ∗ (resp. Σω, Σ∞).
Considering a given finite (resp. infinite, finite or infinite) execution sequence
σ and a property φ (resp. ϕ, θ), when σ ∈ φ, noted φ(σ) (resp. σ ∈ ϕ, noted
ϕ(σ), σ ∈ θ, noted θ(σ)), we say that σ satisfies φ (resp. ϕ, θ). A consequence of
this definition is that properties we will consider are restricted to single execu-
tion sequences1, excluding specific properties defined on powersets of execution
sequences (like fairness, for instance).

1 This is the distinction, made by Schneider [9], between properties and (general)
policies. The set of properties (defined over single execution sequences) is a subset
of the set of policies (defined over sets of execution sequences).



Runtime properties. In this paper we are interested in runtime properties. As
stated in the introduction, we consider finite and infinite execution sequences
(that a program may produce). Runtime verification properties should charac-
terize satisfaction for both kinds of sequences in a uniform way. As so, we intro-
duce r -properties (runtime properties) as pairs (φ, ϕ) ⊆ Σ∗ × Σω. Intuitively,
the finitary property φ represents the desirable property that finite execution
sequences should fulfill, whereas the infinitary property ϕ is the expected pro-
perty for infinite execution sequences. The definition of negation of a r -property
follows from definition of negation for finitary and infinitary properties. For a r -
property (φ, ϕ), we define (φ, ϕ) as (φ, ϕ). Boolean combinations of r -properties
are defined in a natural way. For ∗ ∈ {∪,∩}, (φ1, ϕ1)∗(φ2, ϕ2) = (φ1∗φ2, ϕ1∗ϕ2).
Considering an execution sequence σ ∈ Exec(PΣ), we say that σ satisfies (φ, ϕ)
when σ ∈ Σ∗ ∧ φ(σ) ∨ σ ∈ Σω ∧ ϕ(σ). For a r -property Π = (φ, ϕ), we note
Π(σ) (resp. ¬Π(σ)) when σ satisfies (resp. does not satisfy) (φ, ϕ).

Evaluation of r-properties. Monitorability, enforceability, and monitor synthesis
are based on the evaluation of r -properties. Evaluating an execution sequence σ
wrt. a r -property consists in producing a verdict regarding the current property-
satisfaction of σ or future satisfactions of the possible σ-continuations. The ver-
dicts considered here are not usual boolean values: they are truth-values taken
from a truth-domain. A truth-domain is a lattice, i.e. a partially ordered set
with an upper-bound and a lower-bound. Considering a truth-domain B, a r -
property Π and an execution sequence σ, the evaluation of σ ∈ Σ∗ wrt. Π in
B, noted [[Π]]B(σ), is an element of B depending on Π(σ) and satisfaction of
σ-continuations (i.e. {σ′ ∈ Σ∞ | σ ≺ σ′}) wrt. Π.

The sets of monitorable and enforceable properties (Sect. 5 and 6) relies upon
the considered truth-domain and the chosen evaluation function.

3 Related Work

This section overviews related work in the topics addressed in this paper. First
we recall previous characterizations on the properties that can be verified at
runtime (monitorable properties). Then, we recall previous characterization for
runtime enforcement (enforceable properties). Next, we overview previous work
on the synthesis of monitors for runtime verification and enforcement.

3.1 Runtime verification (monitorable) properties

Monitorability in the sense of [2]: Pnueli and al. give a notion of monitorable
properties relying on the notion of verdict determinacy for an infinite sequence.
More precisely, considering a finite sequence σ ∈ Σ∗, a property θ ⊆ Σ∞ is
negatively determined (resp. positively determined) by an execution sequence σ if
σ and all its extension do not satisfy (resp. satisfy) θ. Then, θ is σ-monitorable if
σ has an extension s.t. θ is negatively or positively determined by this extension.
Finally, θ is monitorable, if it is σ-monitorable for every σ. In Sect. 5, we give
the formal definition in the context of r -properties.



The idea is that it becomes unnecessary to continue the execution of a θ-
monitor after reading σ if θ is not σ-monitorable. The intent of [2] was to char-
acterize when it is worth monitoring a property.

Monitorability in the sense of [4]: Bauer and al. inspired from Pnueli’s definition
of monitorable properties to propose a slightly different one based on the notion
of good and bad prefix introduced in model-checking [18]. The intuitive idea is
that with monitorable properties it is possible to “detect” a violation or vali-
dation of infinitary properties with finite sequences. Considering an infinitary
property ϕ ⊆ Σω, a prefix σ is said to be a bad prefix, noted bad prefix (σ, ϕ)
(resp. good prefix, noted good prefix (σ, ϕ)) of ϕ if ∀w ∈ Σω · ¬ϕ(σ · w) (resp.
∀w ∈ Σω ·ϕ(σ ·w)). Then, a prefix σ is said to be ugly if it has no good nor bad
continuation, i.e. 6 ∃v ∈ Σω · bad prefix (σ · v, ϕ) ∨ good prefix (σ · v, ϕ). Finally,
a property is said to be monitorable if it does not have ugly prefix, formally:
∀σ ∈ Σ∗,∃v ∈ Σω · bad prefix (σ · v, ϕ) ∨ good prefix (σ · v, ϕ).

Previous characterization of monitorable properties: Bauer and al. have shown
that, according to this definition, the set of monitorable properties is a strict
super set of safety and co-safety properties. These classes of properties are taken
from the classical safety-liveness classification of properties [19, 20]. They also
gave an example of request/acknowledge property which is not monitorable. Such
a property can be framed in the set of response properties (see Sect. 4) wrt. the
SP classification (see Ex. 1 in Sect. 5).

3.2 Runtime enforcement (enforceable) properties

In [10], the authors proposed a classification of enforceable properties with the
regard of a program as a Turing machine. Their purpose was to delineate the set
of enforceable properties according to the mechanism used for the enforcement
purpose. Properties are classified according to the modification the enforcement
mechanism can perform on the underlying program. The mechanisms can be
characterized as static analysis, runtime execution monitor and program rewrit-
ing. Other works [9, 11, 12, 21, 16] focused on particular runtime enforcement
monitors and proposed a characterization of enforceable properties with those
mechanisms.

Property enforcement by an enforcement monitor (EM) is usually defined as
the conjunction of the two following constraints:

soundness: the output sequence should satisfy the underlying property
transparency: the input sequence should be modified in a minimal way,

namely if it already verifies the property it should remain unchanged (up
to a given equivalence relation), otherwise its longest prefix satisfying the
property should be issued.

Security automata and decidable safety properties: Schneider introduced secu-
rity automata (a variant of Büchi automata) as the first runtime mechanism for
enforcing properties in [9]. The set of enforceable properties with this kind of
security automata is the set of safety properties. Then [10] Schneider, Hamlen,



and Morisett refined the set of enforceable properties and show that these se-
curity automata were in fact restrained by some computational limits. Indeed,
Viswanathan [11] noticed that the class of enforceable properties is impacted
by the computational power of the enforcement monitor. As the enforcement
mechanism can implement no more than computable functions, the enforceable
properties are included in the decidable ones. Hence, they showed in [10] that
the set of safety properties is a strict superior limit to the power of (execution)
enforcement monitors defined as security automata.

Edit-automata and infinite renewal properties: Ligatti and al. [12, 21] introduced
edit-automata as runtime monitors. Depending on the current input and its
control state, an edit-automata can either insert a new action by replacing the
current input, or suppress it. The properties enforced by edit-automata are called
infinite renewal properties: it is a superset of safety properties and contains
some liveness properties (but not all). Then a property θ is said to be an infinite
renewal property iff ∀σ ∈ Σ∞, θ(σ) ⇒ ∀σ′ ∈ Σ∗, σ′ ≺ σ ⇒ ∃σ′′, σ′ � σ′′ ≺
σ ∧ θ(σ′′).

Generic runtime enforcers and response properties: In [16] we introduced a
generic notion of EM encompassing previous mechanisms and gave a lower-bound
on the space of properties they can enforce in the SP classification (see Sect. 4).

3.3 Synthesis of monitors

For runtime verification: Generally, runtime verification monitors are generated
from LTL-based specifications, as seen recently in [4, 22]. Alternatively, ω-regular
expressions have been used as a basis for generating monitors, as for example
in [8]. An exhaustive list of works on monitor synthesis is far beyond the scope
of this paper. We refer to [1, 23, 5] for a more exhaustive list.

For runtime enforcement: In [24] Martinelli and Matteucci tackle the synthe-
sis of enforcement mechanism as defined by Ligatti. More generally the authors
consider security automata and edit-automata. The monitor is modelled by an
algebraic operator expressed in CCS. The program under scrutiny is then a term
Y ⊲K X where X is the target program, Y the controller program and ⊲K the
operator modeling the monitor where K is the kind of monitor (truncation, in-
sertion, suppression or edit). The desired property for the underlying system is
formalized using µ-calculus. In [25] Matteucci extends the approach in the con-
text of realtime systems. In [15] we defined transformations for some classes of
the safety-progress classification of properties. Those class-specific transforma-
tions take as input a Streett automaton recognizing a property and produce an
enforcement monitor for this property.

4 The SP classification in a runtime context

This section presents minimal theoritical background on the safety-progress clas-
sification of properties, introduced by Manna and Pnueli in [13, 14], in a runtime



verification context. This classification introduced a hierarchy between proper-
ties defined as infinite execution sequences. We extend the classification to deal
with finite-length execution sequences. As so, we consider r -properties which
are suitable to express runtime properties. This hierarchy presents properties
in a uniform way according to 4 views: a language (seeing properties as sets of
sequences), a logical (seeing properties as LTL formulas), a topological (seeing
properties as open or closed sets), and an automata view (seeing properties as
Streett automata [26]).

Persistence

Reactivity

Response

GuaranteeSafety

Progress

Safety

Obligation

MP(B3)

MP
∗(B4)

EP

MP∗(B
⊤

2
)MP∗(B
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)
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∗(B3)

Fig. 1. The SP classifica-
tion

We only present the results about the automata
view as needed for ongoing discussions in this paper.
A graphical representation of the safety-progress
classification of properties is depicted in Fig. 1. Fur-
ther details and results can be found in [27]. For each
class of the SP classification it is possible to syntac-
tically characterize a recognizing automaton. We de-
fine a variant of deterministic and complete Streett
automata (introduced in [26]) for property recogni-
tion by adding to original Streett automata a finite-
sequence recognizing criterion in such a way that
these automata uniformly recognize r -properties.

Definition 1 (Streett m-automaton). A deterministic Streett m-automaton
is a tuple A = (Q, qinit, Σ,−→, {(R1, P1), . . . , (Rm, Pm)}) defined relatively to
a set of events Σ. The set Q is the set of automaton states, qinit ∈ Q is the
initial state. The function −→: Q × Σ → Q is the transition function. In the
following, for q, q′ ∈ Q, e ∈ Σ we abbreviate −→ (q, e) = q′ by q

e
−→ q′. The set

{(R1, P1), . . . , (Rm, Pm)} is the set of accepting pairs, for all i ≤ m, Ri ⊆ Q are
the sets of recurrent states, and Pi ⊆ Q are the sets of persistent states.

We refer to an automaton with m accepting pairs as an m-automaton. When
m = 1, a 1-automaton is also called a plain-automaton, and we refer to R1 and
P1 as R and P .

For σ ∈ Σ∞, the run of σ on A is the sequence of states involved by the
execution of σ on A. It is formally defined as run(σ,A) = q0 · q1 · · · where

∀i · (qi ∈ QA∧ qi
σi−→A qi+1)∧ q0 = qinit

A. The trace resulting in the execution of
σ on A is the unique sequence (finite or not) of tuples (q0, σ0, q1) · (q1, σ1, q2) · · ·
where run(σ,A) = q0 · q1 · · · . The uniqueness of the trace is due to the fact that
we consider only deterministic Streett automata.

Also we consider the notion of infinite visitation of an execution sequence σ ∈
Σω on a Streett automaton A, denoted vinf (σ,A), as the set of states appearing
infinitely often in run(σ,A). It is formally defined as follows: vinf (σ,A) = {q ∈
QA | ∀n ∈ N,∃m ∈ N ·m > n ∧ q = qm} with run(σ,A) = q0 · q1 · · · .

Acceptance conditions (finite and infinite sequences) are defined using the
accepting pairs.

Definition 2 (Acceptance condition (finite sequences)). For σ ∈ Σ∗

s.t. |σ| = n, we say that the m-automaton A accepts σ if (∃q0, . . . , qn ∈
QA · run(σ,A) = q0 · · · qn ∧ q0 = qinit

A and ∀i ∈ [1,m] · qn ∈ Pi ∪Ri).



Definition 3 (Acceptance condition (infinite sequences)). For σ ∈ Σω,
we say that A accepts σ if ∀i ∈ [1,m] · vinf (σ,A) ∩Ri 6= ∅ ∨ vinf (σ,A) ⊆ Pi.

Note that this notion of acceptance for finite sequences exactly coincides with
the one proposed by [4] for the RV-LTL temporal logic.

The hierarchy of automata. By setting syntactic restrictions on a Streett au-
tomaton, we modify the kind of properties recognized by such an automaton.
Each class is characterized by some conditions on the transition function and
the accepting pairs.

A safety automaton is a plain automaton such that R = ∅ and there is no
transition from a state q ∈ P to a state q′ ∈ P . A guarantee automaton is a plain
automaton such that P = ∅ and there is no transition from a state q ∈ R to a
state q′ ∈ R. An m-obligation automaton is an m-automaton such that for each
i in [1,m]: there is no transition from q ∈ Pi to q′ ∈ Pi and there is no transition
from q ∈ Ri to q′ ∈ Ri. A response automaton is a plain automaton such that
P = ∅, a persistence automaton is a plain automaton such that R = ∅. And a
reactivity automaton is any unrestricted automaton.

It is possible to link the syntactic characterizations on automata to the se-
mantic characterization of the properties they specify. As stated by the following
definition (transposed from an initial theorem [13, 14]).

Definition 4. A r-property (φ, ϕ) is a κ-r-property
iff it is specifiable by a κ-automaton, where κ ∈
{safety, guarantee, obligation, response,persistence, reactivity}

We note Safety(Σ) (resp. Guarantee(Σ), Obligation(Σ), Response(Σ),
Persistence(Σ), Reactivity(Σ)) the set of safety (resp. guarantee, obligation,
response, persistence, reactivity) r -properties over Σ. Moreover, a r -property of
a given class is pure when it is a property of none of others sub-classes.

5 Monitorability wrt. the SP classification

In this section we first revisit existing monitorability results in the safety-progress
classification of properties. Second, we propose an alternative definition of moni-
torability. In fact, characterizing the space of “monitorable” properties depends
on several parameters: the property semantics for finite sequence, the set of
monitor verdicts we consider, and the exact definition of monitoring.

5.1 Classical definition of monitoring

The main objective of monitoring, in its classical definition, is to evaluate an
(infinitary) property ϕ on a possibly infinite execution sequence from one of its
finite prefix. This definition is formalized below.

Definition 5 (Positive/Negative determinacy [2]). A r-property Π ⊆ Σ∗×
Σω is said to be:

– negatively determined by σ ∈ Σ∗ if ¬Π(σ) ∧ ∀µ ∈ Σ∞ · ¬Π(σ · µ);
– positively determined by σ ∈ Σ∗ if Π(σ) ∧ ∀µ ∈ Σ∞ ·Π(σ · µ).



Definition 6 (Monitorable [2] r-properties). A r-property Π is:

– σ-monitorable, if there exists a (finite) µ ∈ Σ∗ s.t. Π is positively or nega-
tively determined by σ · µ;

– monitorable, if it is monitorable for every σ ∈ Σ∗.

The underlying assumed truth-domain is B3 = {⊤, ?,⊥}. Value ⊤ is used to
express property satisfaction when the property is positively determined. Value
⊥ is used to express property violation when the property is negatively deter-
mined. Whereas value ? is used to express that no verdict can be produced. (See
Def. 7). Within the B3 lattice, boolean operators ∨ and ∧ are defined respec-
tively as upper and lower bounds. In this context it can be shown that the set of
monitorable properties with B3 strictly contains the set of obligation properties.
In the following, for a truth-domain B, we note MP(B) the space of monitorable
properties according to this definition.

Theorem 1 (Obligation(Σ) ⊂ MP(B3)). The obligation properties are strictly
contained in the set of monitorable properties with B3.

Proof. Obligation r -properties are obtained by boolean combinations of safety
and guarantee r -properties. For k ∈ N, a k-obligation r -property is a r -property⋂k

i=1
(Safetyi ∪ Guaranteei), where Safetyi and Guaranteei are safety and gua-

rantee r -properties. The set of all k-obligation r -properties for k ∈ N is the set
of obligation r -properties.

Let Π ∈ Obligation(Σ), there exists k ∈ N s.t. Π ∈ k−Obligation(Σ). The
proof relies on an easy induction on k and uses the following facts:

– Safety and guarantee properties are monitorable. By examining the syntactic
restrictions of an automaton recognizing a safety or a guarantee property,
we have: for all σ ∈ Σ∗ there exists a continuation µ s.t. this property is
positively or negatively determined by σ · µ.

– Union and intersection of two monitorable properties is monitorable.
– Ex. 1 show that the inclusion is strict.

Thus, we have extended the previous bound established by Bauer and al.
in [4] stating that Safety(Σ) ∪ Guarantee(Σ) ⊂ MP(B3)

2. Indeed, the set of
obligation properties is a strict super set of the union of safety and guarantee
properties.

Beyond Obligation properties. Following the classical definition of monitorabi-
lity, it is possible to show that there exist non-monitorable and monitorable
properties for super-classes of the Obligation class. The above two properties
are pure response properties, one is not monitorable, the other one is.

Example 1 (Non-monitorable response property [4]). The (response) property
“Every request should be acknowledged” is not monitorable.

2 In [4], guarantee properties are named co-safety properties.



1 2
req

ack

ack req This property is represented by the Streett (response) au-
tomaton on the left with R = {1}. For this property, there are
two limitations for monitoring with the considered truth-domain

and definition of monitorability. First, it is impossible to distinguish correct (end-
ing in state 1) and incorrect finite sequences (ending in state 2): both evaluate
to “?”. Second, for all finite sequences, it is never possible to decide ⊤ or ⊥ since
every finite sequence can be extended to correct or incorrect infinite continua-
tions.

Example 2 (Monitorable response property). The (response) property
“Every request should be acknowledged and two successive requests (without
acknowledgement) is forbidden” is monitorable.

1 2 3
req

ack

req
ack Σ This property is represented by the Streett (response)

automaton on the left with R = {1}. Intuitively, given
an execution sequence, this r -property can always be

negatively determined by one of its extension.

Monitorability with B2. Restraining B3 to a truth-domain of cardinality 2 al-
lows only either positive or negative determinacy, and hence reduces the set of
monitorable properties. However, there is no simple characterization of these
properties in the safety-progress hierarchy. Intuitively one may think that with
B
⊥
2 = {?,⊥}, the set of monitorable properties would be the set of safety pro-

perties. But in fact, there are numerous safety properties which can never be
negatively determined. For example, the r -property true = (Σ∗, Σω) cannot be
negatively determined nor falsified. Moreover all safety properties which are valid
forever for execution sequences longer than a given k are not σ−B

⊥
2 -monitorable

when |σ| > k. For those kind of properties a monitor would produce only se-
quences of “?” when evaluating an execution sequence. Similarly, there exist
many guarantee properties that cannot be positively determined, and therefore
not monitorable with B

⊤
2 = {?,⊤}.

However, in Sect. 7, we give a syntactic criterion on Streett automata to
determine whether a r -property (recognized by a Streett automaton) is monito-
rable or not under these conditions.

5.2 An alternative definition of monitoring

The interest of previous definitions of monitorability is due to two facts: the
underlying truth-domain is 2-valued or 3-valued and the aim is the detection of
verdict of infinitary properties. Although it is possible to give a semantics to all
reactive properties with either a 2-valued or 3-valued truth-domain, the question
is whether those values make sense for some properties in a monitoring context.

As noticed in [4, 23], it seems interesting to investigate further the space
of monitorable properties, and to answer more precisely questions like “what
verdict to issue if the program execution stops here”. This means a better dis-
tinction between finite sequences which evaluate to ? in a 2-valued or 3-valued
truth-domain.



Hence, the authors proposed to consider a 4-valued truth-domain B4 =
{⊤,⊤p,⊥p,⊥}. The truth-value ⊤p (resp. ⊥p) denotes “presumably true” (resp.
“presumably false”) and it express “Π-satisfaction (resp. Π-violation) if the pro-
gram execution stops here”. Boolean operators ∨ and ∧ are defined in [4]. Using
B4 leads to an alternative definition of monitoring. This new definition leverages
the evaluation of finite sequences in the Safety-Progress classification framework.

Property evaluation in a truth-domain. We first introduce how, given a r -property,
we evaluate an execution sequence in the truth-domains we considered so far.

Definition 7 (Property evaluation wrt. a truth-domain). For each of the
possible truth-domain B, we define the evaluation functions [[·]]B(·) : (Σ∗×Σω)×
Σ∗ → B as follows:

For B
⊥
2 :

[[Π]]
B
⊥

2

(σ) =⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞ · ¬Π(σ · µ),

[[Π]]
B
⊥

2

(σ) =? otherwise.

For B
⊤
2 :

[[Π]]
B
⊤

2

(σ) = ⊤ if Π(σ) ∧ ∀µ ∈ Σ∞ ·Π(σ · µ),

[[Π]]
B
⊤

2

(σ) =? otherwise.

For B3:

[[Π]]B3
(σ) =⊥ if ¬Π(σ) ∧ ∀µ ∈ Σ∞ · ¬Π(σ · µ),

[[Π]]B3
(σ) = ⊤ if Π(σ) ∧ ∀µ ∈ Σ∞ ·Π(σ · µ),

[[Π]]B3
(σ) =? otherwise.

For B4:

[[Π]]B4
(σ) = [[Π]]B3

(σ) if [[Π]]B3
(σ) =⊥ or [[Π]]B3

(σ) = ⊤,
[[Π]]B4

(σ) = ⊤p if [[Π]]B3
(σ) =? and Π(σ)

[[Π]]B4
(σ) = ⊥p if [[Π]]B3

(σ) =? and ¬Π(σ)

An alternative definition of monitorability. Intuitively, the monitorability notion
we propose relies on the ability of a given monitor to distinguish between good
and bad finite execution sequences with respect to a property Π.

Definition 8 (Monitorability). A r-property Π = (φ, ϕ) is said to be moni-
torable with the truth-domain B, or B-monitorable iff

∀σgood ∈ φ,∀σbad ∈ φ, [[Π]]B(σgood) 6= [[Π]]B(σbad)

We note MP∗(B), the set of monitorable properties with truth domain B accord-
ing to this definition.

Theorem 2 (Multi-valued characterization of monitorability). The sets
of monitorable properties according to the truth domains considered so far are
the following:

MP∗(B⊥
2 ) = Safety(Σ)



MP∗(B⊤
2 ) = Guarantee(Σ)

MP∗(B3) ⊂ Obligation(Σ) and Safety(Σ) ∪ Guarantee(Σ) ⊂ MP∗(B3)
MP∗(B4) = Reactivity(Σ)

Example 3 (Monitoring of an obligation property). Let consider the LTL pro-
perty Π = �p ∨ ♦q, stating that the state-predicate p should always hold or q
should eventually hold. This is an obligation property. Let consider the follow-
ing execution sequences: σgood = {p} · {p} and σbad = ∅ · {p}. In B3, we have
[[Π]]B3

(σgood) = [[Π]]B3
(σbad) =?. Thus, Π is not B3-monitorable. However, Π is

B4-monitorable and [[Π]]B4
(σgood) = ⊤p and [[Π]]B4

(σbad) =⊥p.

We will show in Sect. 7 that, for a given finite sequence σ, [[Π]]B4
(σ) is easy

to compute from a Streett automaton recognizing Π.

Remark 1. It is worth noticing that property interpretation of finite sequences
with “weak verdicts” (⊥p, ⊤p) extends to infinite sequences in a consistent way,
depending on the class of properties under consideration:

– for a safety property Π, (∀i ∈ N, [[Π]](σ···i) = ⊤p) ⇒ Π(σ)
– for a guarantee property Π, (∀i ∈ N, [[Π]](σ···i) = ⊥p) ⇒ ¬Π(σ)

– for a response property Π, (
∞

∃ i ∈ N, [[Π]](σ···i) = ⊤p) ⇒ Π(σ)

– for a persistence property Π, (
∞

∃ i ∈ N, [[Π]](σ···i) = ⊥p) ⇒ ¬Π(σ)

6 Enforceability wrt. the SP classification

In Sect. 3, we have seen that the previous proposed spaces of enforceable proper-
ties were delineated according to the mechanism used to enforce the properties.
Such mechanisms should obey the soundness and transparency constraints. We
choose here to take an alternative approach. Indeed we believe that the set of
enforceable properties can be characterized independently from any enforcement
mechanism complying to these constraints. This will give us an upper-bound of
the set of enforceable properties.

6.1 Enforcement criteria

A consequence of transparency is that a r -property (φ, ϕ) will be considered as
enforceable only if each incorrect infinite sequence has a longest correct prefix.
This means that any infinite incorrect sequence should have only a finite number
of correct prefixes. This transparency demand can be seen from the language and
automata views of r -properties. Thus we give two equivalent enforcement criteria
for r -properties for each view of r -properties3.

Definition 9 (Enforcement criterion (language view)). A r-property (φ, ϕ)
is said to be enforceable iff

∀σ ∈ Σ
ω
,¬ϕ(σ) ⇒ (∃σ

′ ∈ Σ
∗
, σ

′ ≺ σ, ∀σ
′′ ∈ Σ

∗ · σ′ ≺ σ
′′ ⇒ ¬φ(σ′′)) (1)

3 Note that those (equivalent) criteria differ from the existence of bad prefixes. Bad
prefixes are sequences which cannot be extended to correct (finite or infinite) ones



A r -property Π recognized by a Streett automaton AΠ is said to be enforce-
able iff every maximal strongly-connected component (SCC) of R-states contain
(only) either P -states or P -states.

Definition 10 (Enforcement criterion (automata view)). Denoting S(AΠ)
the set of SCC of AΠ , an m-automaton, recognizing Π, Π is said to be enforce-
able iff

∀i ∈ [1,m],∀s ∈ S(AΠ), s ⊆ Ri ⇒ (s ⊆ Pi ∨ s ⊆ Pi) (2)

Enforcement criteria of Def. 9 and 10 are equivalent for basic classes of pro-
perties, as stated below.

Property 1 (Equivalence between enforcement criteria (basic classes)). Consid-
ering a r -property Π = (φ, ϕ) of a basic class, recognized by a Streett automaton
(QAΠ , qinit

AΠ , Σ,→AΠ , {(R,P )}, we have that:

(1) ⇔ ∀s ∈ S(AΠ), s ⊆ R⇒ (s ⊆ P ∨ s ⊆ P ).

Proof. This proof relies on the computation of maximal strongly connected com-
ponents [28] of a Streett automaton (SCC). The proof is in two stages by proving
implications in both ways.

(1) ⇒ (2) Let consider a SCC of AΠ containing only R-states. Suppose that there
exists two states q, q′ in this SCC s.t. q ∈ P and q′ /∈ P . As q and q′ are
in a SCC, there exists a path from q to q′ and from q′ to q in AΠ . Then
there would exist an infinite execution sequence σ s.t. the run of σ on AΠ

contains infinite occurrences of q and q′. As this SCC is made of R-states,
σ is not accepted by AΠ (since vinf (σ,AΠ) 6⊆ P ), i.e. ¬ϕ(σ). However σ
has an infinite number of “good” prefixes: all prefixes s.t. the run ends in a
R-state. This is contradictory with our initial assumption.

(2) ⇒ (1) Let consider σ ∈ Σω s.t. ¬ϕ(σ). As AΠ recognizes Π, σ is not accepted by
AΠ . As AΠ is a finite state automaton, the run of σ on AΠ visits a SCC
infinitely often and can be expressed:
run(σ,AΠ) = q0 · · · qk−1 · (qi · · · qi+l)

n

with k ≤ i ∧ l ≤ |Q| ∧ i = l ∗ n+ k, n ∈ N.
Moreover, we know that ∀i ≤ j ≤ i+ l · qj ∈ P ∨ ∀i ≤ j ≤ i+ l · qj ∈ P .
• In the first case, the sequence σ is accepted by AΠ (Def. 3):

vinf (σ,AΠ) ⊆ {qi, . . . , qi+l} ⊆ P . This is contradictory with ¬ϕ(σ).
• In the second case, the sequence σ is not accepted by AΠ :

vinf (σ,AΠ) ⊆ {qi, . . . , qi+l} 6⊆ P . According to the finite-sequence ac-
ceptance criterion (Def. 2) and since ∀c ∈ N, c ≥ k ⇒ qc /∈ P , we obtain
∀c ∈ N, c ≥ k ⇒ ¬Π(σ···c).

⊓⊔

Property 2 (Comparing enforcement criteria for compound classes). Considering
a r -propertyΠ = (φ, ϕ), recognized by a Streett automaton (QAΠ , qinit

AΠ , Σ,→AΠ

, {(R,P )}, we have that:

(1) ⇔ (2), for Obligation properties
(1) ⇐ (2), for Reactivity properties



Proof. We sketch the proof for those classes of properties.
For Obligation properties. Similarly to the proof of Prop. 1, the proof relies

on the fact that in a m-obligation automaton, for i ∈ [1,m], there is no transition
from Ri-states to Ri-states, and no transition from Pi-states to Pi-states.

For Reactivity properties. Let consider σ ∈ Σω s.t. ¬ϕ(σ). Similarly to the
proof of Prop. 1 (⇐ direction), the run of σ on AΠ visits a SCC infinitely often
and can be expressed:

run(σ,AΠ) = q0 · · · qk−1 ·(qi · · · qi+l)
n with k ≤ i∧l ≤ |Q|∧i = l∗n+k, n ∈ N.

Moreover, we know that ∀i ≤ j ≤ i + l · qj ∈ P ∨ ∀i ≤ j ≤ i + l · qj ∈ P . We
have that ∀σ′ ∈ Σ∗, σ···k � σ′,¬Π(σ′). Indeed, otherwise it would have mean
that ∀i ∈ [1,m],∀j ≥ k, qj ∈ Pi. Which would have lead to ϕ(σ) using the
infinite-sequence acceptance condition of Streett automata.

The set of enforceable r -properties is denoted EP . We will now characterize
this set wrt. the SP classification. Though, we will prove that the class of en-
forceable properties is exactly the class of response properties. The enforcement
criterion in the automata view is still usefull as it provides a sufficient condi-
tion on automata. Thus, given any automaton, this gives syntactic procedure to
determine whether the recognized property is enforceable.

6.2 Enforceable properties

We start first by proving that response properties (defined in Sect. 4) are en-
forceable and give an example of persistence properties not enforceable. Then
we find that the set of response properties is exactly the set of enforceable ones.

Theorem 3 (Response are enforceable). Response(Σ) ⊆ EP.

Proof. Indeed consider a response r -property Π = (φ, ϕ) and an execution se-
quence σ ∈ Σω. Π can be expressed (Rf (ψ), R(ψ)) (Π ∈ Response(Σ)). Let
suppose that ¬ϕ(σ). It means that σ 6∈ R(ψ), i.e. σ has finitely many prefixes be-
longing to ψ. Consider the set S = {σ′ ∈ Σ∗ | ∀σ′′ ∈ Σ∗, σ′ ≺ σ′′ ≺ σ ∧¬ψ(σ′′)}
of finite sequences from which all finite continuations do not satisfy ψ. As ¬R(ψ),
this set is not empty. Let note σ0 the smallest element of S regarding ≺. We
have ∀σ′ ∈ Σ∗, σ0 ≺ σ′ ⇒ ¬ψ(σ′). Since ∀ψ ⊆ Σ∗, Rf (ψ) ⊆ ψ, it implies that
∀σ′ ∈ Σ∗, σ0 ≺ σ′ ⇒ ¬φ(σ′). ⊓⊔

A straightforward consequence is that safety, guarantee and obligation r -
properties are enforceable. We prove that, in fact, pure persistence properties
are not enforceable.

An example of pure persistence r -property is Π = (Σ∗ · a+, Σ∗ · aω) stating
that “it will be eventually true that a always occurs”. One can notice that this
property is neither a safety, guarantee nor obligation property.

1 2

Σ \ {a}

a

Σ \ {a}
a

Π is recognized by the Streett automaton AΠ depicted
on the left (with acceptance criterion vinf (σ,AΠ) ⊆ P and
P = {1}). One can understand the enforcement limitation
intuitively with the following argument: if this property was



enforceable it would imply that an EM can decide from a certain point that the
underlying program will always produce the event a. However such a decision can
never be taken by a monitor without memorizing the entire execution sequence
beforehand. This is unrealistic for an infinite sequence. More formally, as stated
in the previous section, a r -property (φ, ϕ) is enforceable if for all infinite execu-
tion sequences σ when ¬ϕ(σ), the longest prefix of σ satisfying φ always exists.
For the above automaton, the execution sequence σ′

bad = (a · b)ω exhibits the
same issue. Indeed, the infinite sequence does not satisfy the property whereas
an infinite number of its prefixes do (prefixes ending with a).
Applying enforcement criteria (Def. 9 and 10) on persistence properties, it turns
out that the enforceable persistence properties are in fact response properties.

Theorem 4 (Enforceable persistence properties are response proper-
ties). Persistence(Σ) ∩ EP ⊆ Response(Σ).

Proof. A r -property becomes non-enforceable as soon as there exists a SCC of
R-states containing a P -state and a P -state on its recognizing automaton (see
Def. 10). Indeed, on a Streett automaton it allows infinite invalid execution se-
quences with an infinite number of valid prefixes. When removing this possibility
on a Streett automaton, the constrained automaton can be easily translated to
a response automaton. Indeed, on this constrained automaton, the states visited
infinitely often are either all in P or P , that is: ∀σ ∈ Σω · vinf (σ) ∩ P 6= ∅ ⇔
vinf (σ) ⊆ P . On such automaton there is no difference between R-states and
P -states. Consequently by retagging P -states to R, this automaton recognizes
the same property. The retagged automaton is a response automaton. ⊓⊔

Corollary 1. Pure persistence are not enforceable:
(Persistence(Σ) \ Response(Σ)) ∩ EP = ∅.

Proof. This is a direct consequence of Theorem 4. ⊓⊔

Corollary 2. Pure reactivity are not enforceable:
Reactivity(Σ) 6⊆ EP ∧ Reactivity(Σ) \ (Persistence(Σ) ∪ Response(Σ)) ∩ EP = ∅.

Proof. This is a direct consequence of Corollary 1. A general reactivity property
can be expressed as the composition of response and persistence properties. As
a consequence, pure persistence properties are included in the set of reactivity
properties. And consequently, the persistence part of a reactivity property is not
enforceable. ⊓⊔

Corollary 3. Enforceable properties are exactly response properties:
EP = Response(Σ).

Proof. It remains to be proven that the set of enforceable properties is included in
the set of response one. Suppose that there exists an enforceable property which
is not a response one. Then, according to the definition of the safety-progress
hierarchy, this property would be a pure persistence or reactivity property. Con-
sequently this property would not be enforceable. ⊓⊔



7 Monitor synthesis

Now we show how it is possible to obtain a monitor either for verifying or
enforcing a property. Generally speaking, a monitor is a device processing an
input sequence of events or states in an incremental fashion. It is purposed
to yield a property-specific decision according to its goal. In (classic) runtime
verification such a decision is a truth-value taken from a truth-domain. This
truth-value states an appraisal of property satisfaction or violation by the in-
put sequence. For runtime enforcement, the monitor produces a sequence of
enforcement operations. The monitor uses an internal memory and applies
enforcement operations to the input event and its current memory so as to
modify input sequence and produce an output sequence. The relation be-
tween input and output sequence should follow enforcement monitoring con-
straints: soundness and transparency (Sect. 3.2). In the following we consider
two Streett m-automata A = (QA, qinit

A,−→A, {(R1, P1), . . . , (Rm, Pm)}) and
AΠ = (QAΠ , qinit

AΠ ,→AΠ
, {(R1, P1), . . . , (Rm, Pm)}, Π the r -property recog-

nized by AΠ . Also we evaluate properties only in B4, and consequently we ab-
breviate [[Π]]B4

(·) by [[Π]](·).

7.1 Characterizing states of Streett automata

We will define monitors (for verification and enforcement) from Streett au-
tomata. To do so, we will define a set of subsets of Streett automaton states. The
set P

A = {GoodA,GoodA
p ,BadA

p ,BadA} is a set of subsets of QA, s.t. GoodA,

GoodA
p , BadA

p , BadA designate respectively the good (resp. presumably good,

presumably bad, bad) states. The set P
A is defined as follows:

– Good
A = {q ∈ QA ∩

T

m

i=1(Ri ∪ Pi) | ReachA(q) ⊆
T

m

i=1(Ri ∪ Pi)}
– Good

A
p = {q ∈ QA ∩

T

m

i=1(Ri ∪ Pi) | ReachA(q) 6⊆
T

m

i=1(Ri ∪ Pi)}
– Bad

A
p = {q ∈ QA ∩

S

m

i=1(Ri ∩ Pi) | ReachA(q) 6⊆
S

m

i=1(Ri ∩ Pi)}
– Bad

A = {q ∈ QA ∩
S

m

i=1(Ri ∩ Pi) | ReachA(q) ⊆
S

m

i=1(Ri ∩ Pi)}

Note that QA = GoodA ∪ GoodA
p ∪ BadA

p ∪ BadA.

Property 3 (Correspondence between P and B4). Given an m-automaton AΠ , Π,
and an execution sequence σ ∈ Σ∗ of length n s.t. run(σ,AΠ) = q0 · · · qn−1, we
have that:
qn−1 ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤,
qn−1 ∈ GoodAΠ

p ⇔ [[Π]](σ) = ⊤p,
qn−1 ∈ BadAΠ

p ⇔ [[Π]](σ) = ⊥p,

qn−1 ∈ BadAΠ ⇔ [[Π]](σ) = ⊥.

Proof. This proof is naturally done in four steps. Let consider an execution
sequence σ ∈ Σ∗ of length n.

– Proof of qn−1 ∈ GoodAΠ ⇔ [[Π]](σ) = ⊤.
• Suppose that qn−1 ∈ GoodAΠ . Using the acceptance criterion on finite

sequences, we have that σ is accepted by AΠ . Moreover, as AΠ recognizes
Π, we have that Π(σ). Now, let consider µ ∈ Σ+ s.t. |σ| + |µ| = n′ > n
and run(σ ·µ,AΠ) = q0 · · · qn′−1. We have that ∀k ∈ N, n ≤ k ≤ n′−1 ⇒



qk ∈
⋂m

i=0
Ri∪Pi and consequently Π(σ ·µ). Moreover, consider µ ∈ Σω,

we remark that vinf (σ · µ,AΠ) ⊆
⋂m

i=0
Ri ∪ Pi. Then, we obtain that

∀i ∈ [1,m], vinf (σ ·µ,AΠ)∩Ri 6= ∅∨ vinf (σ ·µ,AΠ) ⊆ Pi implying that
Π(σ · µ). We have Π(σ) ∧ ∀µ ∈ Σ∞,Π(σ · µ), i.e. [[Π]](σ) = ⊤.

• Conversely, suppose that [[Π]](σ) = ⊤. By definition, it means that
∀µ ∈ Σ∞,Π(σ · µ). According to the acceptance criterion of a Streett
automaton, we deduce that ∀k ≥ n, ∀µ ∈ Σ∗, run(σ · µ,AΠ) =
q0 · · · qn−1 · · · qk ⇒ qk ∈

⋂m

i=0
Ri ∪ Pi. That is ReachAΠ

(qn−1) ⊆⋂m

i=1
(Ri ∪ Pi), i.e. qn−1 ∈ GoodAΠ .

– Proof of qn−1 ∈ GoodAΠ
p ⇔ [[Π]](σ) = ⊤p. Proving that qn−1 ∈ GoodAΠ

p ⇔
[[Π]](σ) = ⊤p is straightforward by examining the finite-sequence acceptance
criterion of Streett automata.

• Suppose that qn−1 ∈ GoodAΠ
p . Using the acceptance criterion on finite

sequences, we have that σ is accepted by AΠ . Moreover, as AΠ recognizes
Π, we have that Π(σ). Now, as ReachA(q) 6⊆

⋃m

i=1
(Ri ∩Pi), there exists

a state q′ of AΠ reachable from q and belonging to
⋃m

i=1
(Ri ∩ Pi). As a

consequence, there exists µ ∈ Σ∗ s.t. run(σ ·µ) = q0 · · · qn−1 · · · q
′. With

the acceptance criterion of finite sequences, we deduce that ¬Π(σ · µ),
i.e. [[Π]](σ) = ⊤p.

• Conversely, the same reasoning using the finite sequence acceptance cri-
terion can be used to prove the desired result.

– Proof of qn−1 ∈ BadAΠ
p ⇔ [[Π]](σ) = ⊥p. Similarly, proving that qn−1 ∈

BadAΠ
p ⇔ [[Π]](σ) = ⊥p is straightforward by examining the finite accep-

tance criterion of Streett automata.
– Proof of qn−1 ∈ BadAΠ ⇔ [[Π]](σ) = ⊥. Proving that qn−1 ∈ BadAΠ ⇔

[[Π]](σ) = ⊥ can be done following the same proof as for qn−1 ∈ GoodAΠ ⇔
[[Π]](σ) = ⊤.

7.2 Back to the notion of monitorability

We have seen in Sect. 5.1 that there is no exact characterization (in terms of a
specific class of the SP classification) of monitorable properties in this its classical
definition. It is possible to determine whether the property is monitorable by a
syntactic analysis of the automaton states.

Definition 11 (Monitorability (automata view)). The r-property
Π recognized by the Streett m-automaton AΠ = (QAΠ , qinit

AΠ ,→AΠ

, {(R1, P1), . . . , (Rm, Pm)}) is

• MP(B⊥
2 )-monitorable iff

∀q ∈ QAΠ , qinit →
∗
AΠ

q ⇒ ∃q′ ∈ BadAΠ , q →∗
AΠ

q′

• MP(B⊤
2 )-monitorable iff

∀q ∈ QAΠ , qinit →
∗
AΠ

q ⇒ ∃q′ ∈ GoodAΠ , q →∗
AΠ

q′

• MP(B3)-monitorable iff
∀q ∈ QAΠ , qinit →

∗
AΠ

q ⇒ ∃q′ ∈ BadAΠ ∪ GoodAΠ , q →∗
AΠ

q′



7.3 Verification and enforcement monitor synthesis

A monitor is a procedure consuming events fed by an underlying program and
producing an appraisal in the current state depending on the sequence read so
far. Considered monitors are deterministic finite-state machines producing an
output in a relevant domain. This domain will be refined for special-purpose
monitors (verification and enforcement). For verification monitors, this output
function gives a truth-value (a verdict) in B4 regarding the evaluation of the
current sequence relatively to the desired property. For enforcement monitors
(EMs), this output function gives an enforcement operation inducing a modifi-
cation on the input sequence so as to enforce the desired property.

Definition 12 (Monitor). A monitor A is a 5-tuple (QA, qinit

A,−→A

, XA, ΓA) defined relatively to a set of events Σ. The finite set QA denotes
the control states and qinit

A ∈ QA is the initial state. The complete function
−→A: QA × Σ → QA is the transition function. In the following we abbreviate
−→A (q, a) = q′ by q

a
−→A q′. The set of values XA depends on the purpose of

the monitor (verification or enforcement). The function ΓA : QA → XA is an
output function, producing values in XA from states.

Starting from this general definition of monitor, it is possible to synthesize
dedicated monitors for runtime verification and enforcement. The synthesis are
based on the definition of P. For example, a verification monitor outputs a ⊤p

when the current sequence presumably satisfies the property, i.e. when the run of
the monitor reaches a state in GoodA

p in the corresponding Streett automaton A.
An enforcement monitor produces a store operation, when the current sequence
does not satisfy the property and this execution sequence still has some “good”
continuations (at least one). It switches off (off operation), when the run reaches
a Good state. More details are given in [17]

Furthermore, in [17], we explain in details the synthesis procedure. Also, we
formally define the notion of property verification and enforcement. For run-
time verification, we show how an execution sequence is processed and verified
by a verification monitor. For runtime enforcement, we describe how a given
input sequence is transformed using the enforcement operations produced by
the monitor. Besides, we prove that our synthesis procedures of verification and
enforcement monitors are correct.

8 Conclusion and future works

Conclusion. We addressed the problem of monitorability and enforceability of
properties at runtime using a general framework. In this framework, we char-
acterized the sets of monitorable and enforceable properties in a unified way.
We introduced a new definition of monitorability based on distinguishability of
good and bad execution sequences. This definition is weaker than the classical
one (based on positive and negative determinacy) and we believe that it bet-
ter corresponds to practical needs and tool implementations. Fig. 1 summarizes



the results of this paper, depicting the set of monitorable and enforceable pro-
perties wrt. the SP classification. Furthermore, we have given general synthesis
procedures to generate runtime and enforcement monitors in this framework.

Future works. The proposed approach raises new research perspectives and open
questions. First, it seems interesting to consider this approach in the testing per-
spective. A monitor (passively) observes the execution of the program. Notably
it has no control on the produced events and their sequencing. In a testing con-
text, the notion of controllable event is introduced. An interesting issue would be
to characterize the set of testable properties in the SP framework. Note that the
classical definition of monitoring could be rather appropriate in this context. An
additional issue to take into consideration is to deal with a reduced observability
on the system under scrutiny. In practical situations, the desired property may
refer to events out of the observation scope of a monitor. Similarly, it seems
interesting to see how it is possible to characterize the space of properties for
which others runtime-verification derived techniques can be applied (e.g. runtime
reflection [23]). Another research perspective is to add expressiveness to EMs.
Such augmented enforcers may enjoy more handling abilities on the sequences
produced by the program. It seems interesting to see the impact on the set of
enforceable properties. Also it seems relevant to study and compare complexity
of the proposed monitors, notably with monitors defined in [3] for RV-LTL. To
the authors’ knowledge these are the only (runtime) monitors endowed with a
4-valued truth-domain.

Acknowledgement. The authors would like to thank Susanne Graf, Yassine
Lakhnech, and the referees for their helpful remarks.
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