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We determine the rank of a general real binary form of degree d = 4 or d = 5. In the case
d = 5, the possible values of the rank of such general forms are 3, 4, 5. This is the first reported
case, to our knowledge, where more than two typical ranks have been found. We prove that
a real binary form of degree d with d real roots has rank d.
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1. Introduction

Motivation. The decomposition of tensors into a minimal sum of rank-1 terms,
sometimes referred to as the Canonical Polyadic decomposition (CP), has raised a
great interest in several quite different branches of engineering [1–7] as well as in
mathematics [8–14]. More precisely, the symmetric case of the CP decomposition
is dealt with in [9, 12, 13], and the general case in [11, 14], while [10] is a general
thorough reference focused on complexity. If we take the example of tensors of
order 4 to fix the ideas, the CP decomposition of a tensor T is defined as:

Tijkℓ =

r
∑

p=1

αi(p)βj(p) γk(p) δℓ(p)

The minimal value of r such that the equality holds is called the rank of tensor T .
In applications, these tensors are often corrupted by measurement or estimation

noises, which can be modeled as additive random variables with continuous proba-
bility distribution. The consequence is that tensors to be decomposed are generic.
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A key question is then to know what is the rank of such tensors as a function
of order and dimensions, and when they admit a finite number of CP decompo-
sitions. For real or complex symmetric tensors decomposed in the complex field,
this question has been answered, and enters the framework of the Waring problem

[9, 15]. The Theorem of Alexander and Hirschowitz (see [16] and also [17]) answers
that the generic rank is always the expected one, with a finite list of exceptions.
However, it has not yet received any response either for non symmetric tensors, or
for decompositions in the real field. ten Berge showed that real third order generic
tensors can assume two typical ranks, r and r+1 [18]. But he could not find generic
tensors assuming more than two typical ranks. Regarding general complex tensors,
some partial results are contained in [19], while [20] provides a complete answer
for tensors of format 2× . . .× 2. We point out also the recent preprint [21], where
the related concept of signature is studied.
Contribution. In order to exhibit more than two typical ranks, it seems nec-

essary to consider tensors of order higher than 3. The simplest case we can think
of is that of real symmetric tensors of dimension 2 and order 4 or 5. Yet, such
tensors are bijectively associated with homogeneous polynomials in two variables
[22], namely binary quartics and quintics, respectively.
The previous definition translates to binary forms as follows. The rank of a

binary form f(x, y) =
∑d

i=0

(d
i

)

ai x
d−iyi of degree d defined over the field K is the

minimum integer r such that there is a decomposition f =
∑r

j=1 cj (lj)
d where lj

are linear forms and cj ∈ K. Note that the rank is called “length” in [23]. If K is the
real field, coefficients cj can be imposed to belong to {−1, 1}. If K is the complex
field, one can impose cj = 1 for all coefficients. In the complex field, the rank of a
general binary form f of odd degree d = 2n + 1 is n + 1. The Sylvester Theorem
asserts that the decomposition of such general form f as a sum of n+ 1 powers of
linear forms is unique (up to a multiplicative factor for each cj) , and gives also a
way to determine it. The rank of a general binary form f of even degree d = 2n
is n + 1, but in this case such decompositions form an infinite set, which can be
identified with the projective line.
It is interesting that no semicontinuity holds for the rank. Indeed there are forms

such that their rank is bigger than the general value and other such that the rank
is lower than the general value. Indeed it is well known (see for example Comas
and Seiguer [24]) that on the complex numbers the rank can attain all the values
between 1 and d.
Define SK

d,r = {f ∈ Symd(K2)|rank f = r}, the set of binary forms of rank

exactly r. On complex numbers, SC

d,r has a non empty interior only for the pairs

(d, r) where r = ⌊d2⌋+ 1. That is, for every d, there is a unique r such that SC

d,r is
dense. The latter values of r are called generic ranks in C. On the real numbers
we are intested in the pairs (d, r) such that SR

d,r has non empty interior. If for a
given value of d there exist several values of r, the latter are called typical ranks.
In other words, if ri are typical, none of the sets SR

d,ri
is dense, but ∪iS

R

d,ri
is. For

d = 2, 3 the situation is well known and we recall it in the next section. Our main
results are the following, for d = 4, 5.

Main Theorem

(i) SR
4,r has non empty interior only for r = 3, 4. More precisely, assume that f has

distinct roots, then

• (i1) if f has four real roots then the rank of f is 4.

• (i2) if f has zero or two real roots then the rank of f is 3.
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(ii) SR

5,r has non empty interior only for r = 3, 4, 5. More precisely, assume that f
has distinct roots, then

• (ii1) if f has five real roots then the rank of f is 5.

• (ii2) if f has one or three real roots then the rank of f is 3 or 4, according to
the sign of an invariant of degree 12 defined in section 4, where we provide an
algorithm.

Very probably, SR

d,r has a non empty interior if and only if ⌊d2⌋+ 1 ≤ r ≤ d. We

leave this as a conjecture to the readers (proved here for d ≤ 5), as the intriguing
problem of the relations between SR

d,r and the loci where the number of real roots
is fixed. We prove also in Prop. 3.1 that if a form of degree d has the maximal
number d of real roots, then its rank attains the maximum possible value which is
again d.
There is always an open subset where the general rank is the same as the complex

one. In other words, for given order and dimension, the smallest typical rank in
the real field coincides with the generic rank in the complex field (see [25], [26]).

2. Preliminaries: quadratic and cubic forms

An elementary example illustrating the difference between real and complex rank
is given by the equality

2x3 − 6xy2 = (x+
√
−1y)3 + (x−

√
−1y)3 = (22/3x)3 − (x+ y)3 − (x− y)3

In this case the complex rank is 2 and the real rank is 3.
Let’s begin with a known general statement.

Proposition 2.1 Any binary real form of degree d has real rank ≤ d.

Proof: The points of the projective space Pd = P(SdR2) correspond to forms

f =
∑d

i=0

(

d
i

)

ai x
d−iyi , which have coordinates (a0, . . . , ad) . The rational normal

curve Cd, corresponds to polynomials which are d-th powers of linear forms. From
the expansion (t0x + t1y)

d =
∑d

i=0

(

d
i

)

td−i
0 ti1 x

d−iyi we get that the curve Cd can

be parametrized by ai = td−i
0 ti1. Pick d − 1 general points on Cd corresponding

to ldi = (li,0x + li,1y)
d for i = 1, . . . , d − 1. The linear span of f and these points

is a hyperplane, whose equation
∑

(d
i

)

aici = 0 restricts to Cd to the binary form
∑

(d
i

)

cit
d−i
0 ti1 of degree d with the d − 1 real roots (t0, t1) = (li,0, li,1) (because

∑
(d
i

)

cil
d−i
i,0 lii,1 = 0) hence also the last root is real, corresponding to a last linear

form ldd. This means that f is a projective linear combination of the the powers ldi
for i = 1, . . . , d, or equivalently, f has rank ≤ d.

Because of the bijection mentioned earlier, f ∈ Sym2(K2) corresponds to a
symmetric 2 × 2 matrix, and its rank is the same as the rank of the associated
matrix. Hence f has rank 2 if and only if f has distinct roots, both for K = R or
K = C. So SR

2,r has non empty interior only if r = 2.
For any field of characteristic zero, the dual ring of differential operators D =

K[∂x, ∂y] acts on the polynomial ring R = K[x, y] = ⊕d≥0Sym
d(K2) = ⊕d≥0Rd

with the usual rules of differentiations. This action preserves the degrees, in the
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sense that we have the pairing

Rd ⊗Dk → Rd−k

which means that the homogeneous differential operators of degree k takes homo-
geneous polynomials of degree d to homogeneous polynomials of degree d− k.
If l = ax + by ∈ R1, we denote by l⊥ = b∂x − a∂y ∈ D1 its orthogonal (apolar)

operator, such that l⊥(l) = 0. The main remark, which goes back to the XIXth
century, is that the form f =

∑r
j=1 cj(lj)

d is killed by the operator
∏r

j=1 l
⊥
j .

The space of operators of degree k which kill a given form f of degree d is the
kernel of the linear map Af : Dk → Rd−k; see [22] for instance.

In the basis {∂k−i
x ∂i

y}i=0,...k and {
(

d−k
j

)

xd−k−jyj}j=0,...,d−k the matrix of Af is

(up to scalar multiples) the well known Hankel matrix (called catalecticant by
Sylvester) of size (d− k + 1)× (k + 1)











a0 a1 a2 . . . ak
a1 a2 a3 . . .
...

...
ad−k . . . ad











For general forms f , the map Af has maximal rank. We may assume 2k ≤ d, so
that its kernel has dimension d− 2k. This holds on any field K.
In particular the general form of degree d = 2n+1 is killed by a unique operator

of degree n. This gives a proof of Sylvester Theorem over C. The kernel of the
Hankel matrix of size n × (n + 1) is an operator g of degree n, and decomposing
it over C as g =

∏n
j=1 l

⊥
j gives the decomposition of f as sum of n d-th powers of

the lj. If f is real, the kernel g is real, but the decomposition is possible only if all
the roots of g (thought as a polynomial) are real.
Comon and Mourrain explored further this situation [27]. If it is not possible to

find a kernel of degree n such that all its roots are real, we consider operators of
degree (n+1) and we look for such an operator in the kernel such that all the roots
are real. If this is not possible we go further, and so on.
We use this technique by reproving the classically known criterion to determine

the rank in the case d = 3. For f ∈ Sym3(R2), consider the discriminant

∆(f) = 4

∣

∣

∣

∣

a0 a1
a1 a2

∣

∣

∣

∣

·
∣

∣

∣

∣

a1 a2
a2 a3

∣

∣

∣

∣

−
∣

∣

∣

∣

a0 a2
a1 a3

∣

∣

∣

∣

2

Proposition 2.2 SR
3,r has non empty interior only for r = 2, 3. Precisely, let f be a

polynomial of third degree without multiple roots. Then
(i) f has rank two if and only if ∆(f) < 0, or equivalently, if and only if f has

one real root
(ii) f has rank three if and only if ∆(f) > 0, or equivalently, if and only if f has

three real roots.

Proof:

The differential operators of degree two which annihilate f consist of the kernel
of the matrix
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[

a0 a1 a2
a1 a2 a3

]

The discriminant of the quadratic generator of the kernel coincides with −∆(f);
thus the operators have two real roots if ∆(f) < 0 and this means that the rank-2
complex decomposition is actually real. Note also that a cubic of real rank two can
have only one real root. Indeed the equation l31 + l32 = 0 reduces to the three linear

equations l1 − e
nπi

3 l2 = 0 for n = 0, 1, 2. This proves (i). If ∆(f) > 0, the quadratic
generator has no real root and (ii) follows from Prop. 2.1.

Remark The complete description of rank of tensors of dimension 2 and order
3 can be found in [28](ch. 14, ex. 4.5) in the complex case and in [29] in the real
case.

3. Forms with all real roots, with an application to quartics

Proposition 3.1 Let f be a real binary form of degree d with d real distinct roots.
Then the (real) rank of f is equal to d.

Proof: The proof is by induction on d. By the previous section, let d ≥ 3. Assume
the rank is ≤ d− 1. Then we get f =

∑d−1
i=1 ldi and since there are infinitely many

such decompositions we may assume that ld−1 does not divide f . Consider the
rational function

F =
f

ld−1

Under a linear (real) change of projective coordinates φ(x, y) = (x′, y′) with

y′ = ld−1 we get G(x′, y′) = F (φ−1(x′, y′)) = f(φ−1(x′,y′))
y′d

Then the polynomial G(x′, 1) =
∑d−2

i=1 ni(x
′)d+1 has d distinct real roots since f

had, (where degni = 1) and its derivative d
dx′

G(x′, 1) =
∑d−2

i=1 dni(x
′)d−1 d

dx′
(ni(x

′))

has d−1 distinct real roots. Now d
dx′

G(x′, 1) has rank ≤ d−2, indeed d
dx′

ni(x
′) are

constants. This contradicts the inductive assumption. Hence the assumption was
false and the rank of f must exceed d− 1. The rank of f must eventually be equal
to d from Proposition 2.1.

Lemma 3.2 It is easy to check that under a general Möbius transformation x 7→
ax+b
cx+d with ad− bc 6= 0 both the number of real roots and the rank of a binary form
are invariant.

Lemma 3.3 The following are canonical forms under the action of the Möbius
transformation group for general forms.
Case d = 4:

• (x2 + y2)(x2 + ay2) (a > 0 no real root, a < 0 two real roots)

• (x2 − y2)(x2 + ay2) (a < 0 four real roots)

Case d = 5:

• x(x2 + y2)(x2 + 2axy + by2) (b − a2 > 0 one real root, b − a2 < 0 three real
roots)
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• x(x2 − y2)(x2 + 2axy + by2) (b− a2 < 0 five real roots)

Proof: We prove just the first case for d = 4, the other ones being analogous.
When there are two pairs of conjugate roots, they lie in the complex plane on
a circle with real center, then a convenient circle inversion makes the four roots
on a vertical line. A translation and a homothety centered at zero conclude the
argument.
When there is one pair of conjugate roots, assume that they are ±

√
−1. Then

consider the tranformations x 7→ x+c
−cx+1 , which preserve ±

√
−1 and it is easy to

show that a convenient choice of c makes the sum of the other two roots equal to
zero.

Proposition 3.4 Let f be a real binary form of degree d with distinct roots.
(i) If f has d real roots then for every (a, b) 6= (0, 0) the binary form afx + bfy

has d− 1 real roots.
(ii) Conversely, if for every (a, b) 6= (0, 0) the binary form afx+ bfy has d−1 real

roots and 3 ≤ d ≤ 5, then f has d real roots.

Proof: (i) Consider that for any substitution x = at+c, y = bt+d with ad−bc 6= 0
we have that F (t) = f(at + c, bt + d) has d real roots, then d

dtf(at + c, bt + d) =
afx + bfy has d− 1 real roots corresponding to the d− 1 extremal points of F .
(ii) Assume that f has ≤ d− 1 (hence ≤ d− 2) real roots, and let us show that

there exist (a, b) such that afx + bfy has ≤ d− 2 (hence ≤ d− 3) real roots.
For d = 3, after a Möbius transformation, we may assume that f = x3 + 3xy2.

Then fx = 3(x2 + y2) has no real roots.
For d = 4 we may assume by the Lemma 3.3 that f = (x2 + y2)(x2 + ay2). For

a > −1 we consider fx = x · (4x2 + 2(a + 1)y2) which has only one real root. For
a < −1 we consider fy = y · (4ay2 + 2(a+ 1)x2) which has only one real root. For
a = −1 then fx − fy has only one real root.
For d = 5 we may assume by the Lemma 3.3 that f = x(x2+y2)(x2+2axy+by2).

The discriminant of fx is (up to a positive scalar multiple) D(a, b) := −540a2 −
1584a4 + 830b3 − 180b4 − 180b2 − 8192a6 + 405b5 + 405b − 7476a2b2 + 1548a2b +
14784a4b−396a2b3+576a4b2−432b4a2. It can be shown that fx has zero real roots
if D(a, b) > 0 and two real roots if D(a, b) < 0. This concludes the proof.

Corollary 3.5 Let f be a real binary form of degree d with distinct roots. If f has
rank d and 3 ≤ d ≤ 5 then it has d real roots.

Proof: The proof is by induction on d. For d = 3 it follows from the Prop. 2.2. Let
4 ≤ d ≤ 5. If f has ≤ d−2 real roots then by Prop. 3.4(ii), there exists (a, b) 6= (0, 0)
such that the binary form afx + bfy has ≤ d− 3 real roots. Otherwise, if for every
(a, b) 6= (0, 0) the form afx + bfy has d− 1 real roots, it follows from Prop. 3.4(ii)
that f has d real roots. Then by the inductive assumption afx + bfy has rank
≤ d − 2, otherwise, if the rank is d − 1, it follows that afx + bfy has d − 1 real

roots. So we get afx + bfy =
∑d−2

i=1 ld−1
i . Choose c, d such that ad − bc 6= 0. Let

F (t) = f(at + c, bt + d). We get that F ′(t) =
∑d−2

i=1 ni(t)
d−1 for some degree one

polynomials ni and by integration there is a constantK and degree one polynomials

mi such that F (t)
(bt+d)d =

∑d−2
i=1

mi(t)d

(bt+d)d + K
(bt+d)d .

With the substitution t = dx−yc
−bx+ay we get that the rank of f is ≤ d− 1, which is

against the assumption.

Remark We do not know if the part (ii) of the Prop. 3.4 holds for d ≥ 6. If this
is true, also the Cor. 3.5 can be extended.



September 7, 2011 19:51 Linear and Multilinear Algebra realrank-v23

Linear and Multilinear Algebra 663

Now we can give our promised application to quartics.
Proof of the Main Theorem in the case d = 4. Prop. 3.1 and Cor. 3.5 show that

the rank 4 is attained if and only if f has four real roots. By the results quoted
at the end of the introduction, the smallest typical rank in the real field coincides
with the generic rank in the complex field , which in this case is 3. By the Prop. 2.1
no other typical ranks are possible.

We end this section with a last general result about forms such that their complex
rank is smaller than the general one.

Proposition 3.6 Let f be a real binary form of degree d and complex rank k.
Assume that 2 ≤ k < ⌊d2⌋+ 1. Then there are only two possibilities:
(i) The real rank is equal to the complex rank
(ii) The real rank of f is ≥ d− k + 2 (when k = 2 the equality holds).

Proof:

Assume that (i) does not hold. This means that the contraction

Dk → Rd−k

has rank k and that the one dimensional kernel is generated by one operator with
at least two complex conjugate roots. It follows that also the transpose operator

Dd−k → Rk

has rank k, and the operators in the kernel are given exactly by the previous
operator times every operator of degree d − 2k. In particular no operator in the
kernel has all real roots.
This argument works also for the next contraction

Dd−k+1 → Rk−1

which has again rank k. At the next step it is possible to find an operator in the
kernel with all real roots. This concludes the proof. When k = 2 the equality holds
by Prop. 2.1.

4. Quintics

It is relatively easy to check if a real quintic form has rank three. Indeed we have
to compute the kernel [β0, β1, β2, β3] of the matrix





α0 α1 α2 α3

α1 α2 α3 α4

α2 α3 α4 α5





The coefficients βi are given by the 3 × 3 minors of the above matrix. Now in
order to check if β =

∑3
i=0 x

3−iyiβi has three real roots we consider the invariant
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of degree 12

I12(α0, . . . , α5) := ∆(β)

where ∆ is the discriminant considered before. A nickname for I12 could be the
“apple invariant”, as we will se in the next pictures. We have that the general f has
rank three if and only if β has three real roots and by Prop. 2.2 (ii) this happens
if and only if I12 > 0.
Proof of the Main Theorem in the case d = 5
By Prop. 3.1 and Cor. 3.5 we get that, for d = 5, a form f with distinct roots

has rank 5 if and only if it has 5 real roots. Hence, we have just to prove that both
rank three and four have nonempty interior in the other cases.
For quintics with less than 5 real roots, it is enough to consider the canonical

form f = x(x2 + y2)(x2 + 2axy + by2) of Lemma 3.3, and compute for this form
the sign of the invariant I12. Now f has rank three if and only if I12 > 0, and rank
four if and only if I12 < 0.
This sign can be checked explicitly from the expression (up to a positive scalar

multiple) I12(a, b) = 2b3 − 142b4 − 64a6 + 3752b5 − 83a2b2 + 144a4b+ 3960a2b3 −
11840a4b2 − 62900b4a2 − 311952b5a4 − 593208b7a2 + 375552b3a6 + 287488ba8 +
348552b5a2 + 243056a4b3 + 12096a6b − 243410b6a2 − 673952a4b4 − 392736a6b2 +
99840a8b2 + 700160a6b4 + 700160a4b6 + 92940a2b8 + 7680a8b4 + 19712a10b2 −
336640a8b3−6560a6b6−287040a6b5−115712a10b+480a4b8−44400a4b7−4680a2b9+
77a2b10−4096a8−43192b9+170652b7−43192b6+170652b8−78848a10+3752b10+
2b12 − 142b11 + 8192a12.
Yet, two regions of the affine space separated by a variety have a non empty

interior. This completes the proof.

The region where I12 > 0 intersects in a set of positive measure the two regions
where f has one or three real roots, separated by the curve b− a2 = 0. The same
holds true for the region where I12 < 0. As an illustration, these regions are depicted
in Figures 1 and 2. For real quintics in the canonical form f = x(x2 + y2)(x2 +
2axy+by2) the ones with rank four consist of the shaded area in the (a, b)-plane in
Figure 1, that is, the area where I12 < 0. I12 contains only even powers of a, hence
the pictures are symmetric with respect the b-axis. It follows that the “apple” is
all over the parabola (depicted in dashed line in the figures).
The figure 2 shows the quintics with one real root (over the parabola) which have

rank four; we get a bounded region.
We get that most of quintics with one real root have rank three, but both rank

three and four have nonempty interior, although the rank four part is bounded.
In the same way most of quintics with three real roots (under the parabola) have
rank three, but both ranks three and four have nonempty interior, and even both
regions are unbounded.
We conclude this paper with an algorithm which summarizes our results on real

quintics.



September 7, 2011 19:51 Linear and Multilinear Algebra realrank-v23

Linear and Multilinear Algebra 665

−6 −4 −2 0 2 4 6
−5

0

5

10

15

20

25

30

35

40

a

b

Figure 1. In the shaded area, I12 < 0, and the quintics considered have rank 4. In the area where I12 > 0,
they have rank 3.
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Figure 2. In the shaded area, the quintics considered have rank four and have only one real root; the
parabola b− a2 = 0 is represented in dashed line.
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Algorithm to compute the rank of a generic quintic

Let

f(x) = α0x
5 + 5α1x

4 + 10α2x
3 + 10α3x

2 + 5α4x+ α5

(1) If f has five (distinct) real roots then the real rank of f is 5.
(2) Otherwise consider the cubic

g(x) =
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a) If g has three (distinct) real roots then the real rank of f is 3.
b) If g has one real root and a pair of conjugate (distinct) roots then the

real rank of f is 4.
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