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A Nonlinear Order-Reducing Behavioral Modeling
Approach for Microwave Oscillators

Michael Kraemer, Student Member, IEEE, Daniela Dragomirescu, Member, IEEE, and Robert Plana, Senior
Member, IEEE

Abstract—This paper describes a novel technique to model the

transient, steady state and phase noise behavior of microwave
oscillators in the hardware description language VHDL-AMS.
It can be applied to a large variety of both single-ended and
differential voltage-controlled oscillators independently of their
architecture. The model is derived from data obtained by a more
complex circuit-level model.
As opposed to input-output models of a microwave two-port,
where the output follows more or less the applied input signal,
the output of an oscillator depends mainly on its former state.
Thus, approaches developed for input-output modeling cannot be
applied. The technique proposed in this paper approximates the
dynamics of the oscillator by a system of two first-order ordinary
differential equations. The oscillator’s nonlinear characteristics
are reproduced by a multilayer perceptron neural network. In
addition to reproducing the oscillator’s large-signal waveform, its
phase noise characteristic in the 1/ f* and flat region is emulated.
Finally, a VHDL-AMS implementation of the model is proposed
and associated issues are addressed. The suitability of the model
for oscillators at millimeter waves is demonstrated by examples
working at 60 GHz.

Index Terms—nonlinear, behavioral modeling, VHDL-AMS,
VCO, multilayer perceptron

I. INTRODUCTION

N the design process of integrated microwave circuits

like oscillators, highly sophisticated transistor level models
are used. Furthermore, parasitic extraction adds additional
capacitances to the schematic that multiply the order of the
circuit model. Thus, when it comes to the simulation of more
complex circuits like phase locked loops (PLL) or even entire
mixed-signal integrated systems, these circuit models need to
be replaced by behavioral models with reduced complexity.
A hardware description language that represents a suitable
tool for this task is VHDL-AMS [1]. It incorporates both
digital and analog modeling capabilities. Using VHDL-AMS,
it becomes feasible to simulate the behavior of a whole hetero-
geneous system on chip using the same modeling language,
while taking into account interactions between the digital and
analog part.
There exist a multitude of different approaches to model
nonlinear microwave circuits at system level, introduced e.g.

Manuscript received August 1st, 2008; revised 22.12.2008. Work supported
by the French National Research Agency ANR, under project RadioSoC (No
JC05-60832)

M. Kraemer, D. Dragomirescu and R. Plana are with CNRS; LAAS;
7 avenue du colonel Roche, F-31077 Toulouse, France and Université de
Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France. e-mail:
mkraemer @laas.fr, daniela@laas.fr; plana@laas.fr

DOI: 12365467983

in [2], [3] or [4]. Depending on the approach, either time
or frequency domain descriptions are utilized. However, the
behavior of digital circuits is almost exclusively described in
the time domain in VHDL, so to well interface to the digital
circuit parts, VHDL-AMS also uses a time domain description.
The oscillator model thus needs to be a time domain model.
For this reason frequency domain models are not further taken
into consideration here.

The behavioral time-domain models of oscillators can be
divided into two principal categories: Either, the output voltage
is expressed by a known, usually sinusoidal function that is
evaluated at each time step (e.g. [5], [6]). However, in this
case neither the transients and dynamics of the oscillator nor
its nonlinear characteristic are correctly reproduced. Thus, the
use of such models is limited to very simplified considerations.
Or, secondly, the oscillator is described by an equation solved
during simulation. The prototype for a model of this cat-
egory is the Van der Pol-equation: Here, a second order
nonlinear ordinary differential equation (ODE) describes the
output voltage of a triode oscillator, using a polynomial to
approximate its nonlinear characteristic [7]. An extension of
this polynomial in order to model solid state oscillators is
not trivial, because in addition to the function describing the
device current, nonlinear capacitances need to be taken into
account. Furthermore, neither the operating point and common
mode behavior of differential oscillators nor its phase noise
characteristics are incorporated in a model based on the Van
der Pol-equation.

In the context of large signal network analysis, different non-
linear modeling techniques of the second type are investigated
in literature. They approximate the nonlinearity of the circuit
by radial basis functions, multivariate polynomials, or artificial
neural networks, the latter showing the most accurate results
[8]. The dynamics are either contained by using delays to
maintain the notion of time [9], or in form of an ODE that is
solved by the simulator [10].

However, all these methodologies yield input-output models
of microwave multiports and thus cannot be directly applied
to oscillators, which only exhibit one microwave output.
Nevertheless, some of the basic concepts used to develop these
methodologies are adopted in the presented oscillator model.
The approach proposed in the present paper describes the
oscillator’s behavior in state space, i.e. by a system of first-
order ODEs. The nonlinear relationship that is contained in
these equations is represented by an artificial neural network
(ANN), similar to [8]. It is thus a non-physical black box
model that is capable of incorporating the strong nonlinearities
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occurring in integrated microwave oscillators as well as its
dynamics.

The novel modeling technique introduced in this paper is very
general: By reducing the order of the system to the minimum
of two that is necessary to describe an oscillation, the evolution
of the system state can be described in a two-dimensional
state space. Depending on the architecture of the oscillator,
the system state is then mapped either to a single-ended or
differential output. This mapping also adds bias points and
common mode behavior, which are faithfully reproduced by
the model. The use of multilayer perceptron ANNs with two
hidden layers to reflect the nonlinear characteristic of the
oscillator allows for an accurate and easy applicable modeling
of rather complex oscillators. This provides the capability to
model oscillators where the system response is modified by
a control voltage (model of a voltage controlled oscillator,
VCO).

To include phase noise in the model and to start the oscillation
in a well defined manner, a random signal is injected to an
artificial noise port of the oscillator.

In order to describe this novel approach in sufficient detail,
the paper is structured as follows: Section II introduces the
theory of nonlinear oscillations, multilayer perceptron neural
networks and the state space representation of nonlinear sys-
tems. Section IIT details the different aspects of the novel
modeling technique, notably the structure of the model, the
way in which phase noise is injected and the generation of data
that is well suited to make the neural network represent the
nonlinear behavior of the oscillator. Furthermore, the modeling
flow is presented and some source code examples are given.
Section VI contains results that show the capabilities and
performance of the model. A conclusion is drawn in section
VIL.

II. THEORETICAL BACKGROUND
A. System Description in State Space

A nonlinear, time-invariant, deterministic system can be
mathematically described by a state equation

(t) = ¢ (z(t), u(t)) (1)

that characterizes the dynamics of the system state x(¢) and
an output equation

y(t) = (x(1),u(?)) 2)

that maps the state vector x(t) to the system’s output vector
y(t) of size N,,.. The vector u(t) contains the V,, scalar inputs
of the system. The N,-dimensional space on which x(t) is
defined is called the system’s state space. The vector function
¢() describes the nonlinear relationship between the system
state and its derivative. Because & (t) describes the dynamical
evolution of the states in direction and magnitude, it is also
called the velocity vector. The vector function () contains
the relationship between system state and system output.

If a system’s state is known at one point in time, all its future
states and outputs are defined by the state space equation
and the future inputs of the system. While in an input-output
system (like a mixer or an amplifier) the influence of the inputs

on the system state is dominant, the evolution of an oscillator’s
state depends primarily on its former states. An input is only
needed to start the oscillation by deviating the system from its
singular point at &(t) = 0.

The state space representation lends itself to the use in the
oscillator model, because its dynamics are described as a sys-
tem of mutually coupled ODEs, and thus it is straight-forward
to implement in VHDL-AMS. Furthermore, it provides an
intuitive perspective on how to correctly model an oscillation
and allows the visualization of the system behavior by plotting
its trajectories in state space. These trajectories are an ideal
aid when training the neural networks used to represent the
circuit’s nonlinearities (cf. section IV-A).

B. Nonlinear Oscillators

To describe the behavior of an electrical oscillator, nonlinear
autonomous ODEs can be employed. To illustrate the behavior
of the oscillator, it is instructive to consider its trajectory in
the phase plane, where the oscillator voltage is plotted on the
abscissa and its derivative on the ordinate. The phase plane
corresponds to the two-dimensional state space of an oscillator.
The evolution of the states is represented by the tangent vector
on the trajectory and thus equivalent to the velocity vector
Z(t). Due to the autonomous nature of the considered ODEs,
the trajectories are independent of time.

The phase space trajectories of electrical oscillations exhibit
two characteristic equilibrium states: The first one is an
unstable singular point at @s¢art = (to), where the velocity
vector &(tg) is 0. This point corresponds to the bias point
of the oscillator, with Zgtar;,1 = Ubias. Due to the instability
of this point, any small deviation will lead to the start of the
oscillation. The trajectory of the start-up has a spiral form,
where the mean distance of x(t) from the singular point is
increasing with time (cf. Fig. 1).

The second equilibrium state is an attractive limit cycle,
resulting from the limitation of the oscillation amplitude. This
is a periodic orbit which all trajectories approach for ¢ — oco.
The basin of attraction, i.e. the area in state space that leads to
oscillations ending on the limit cycle, contains the whole inside
of the limit cycle, and at least the vicinity of the outside of
the limit cycle that can be reached due to external influence,
like noise. Otherwise, small deviations from the limit cycle
that lead to an increased amplitude of oscillation would yield
the system state to leave the limit cycle and be attracted by
an other equilibrium state. While this behavior is not critical
in real systems, it can occur in improper models. Thus it is
important to pay attention to this effect (cf. section IV-D).
Note that the above explication applies only in the case of
soft startup conditions. For further details on the theory of
nonlinear microwave oscillators, refer to [11],[12].

C. The Van der Pol-Oscillator

To illustrate the theory of nonlinear electrical oscillations,
the equation proposed by Van der Pol [7] to describe triode
oscillators is used. The classical formulation is

B(t) = a (1 —v(t)?) 0(t) — w?o(t). 3)
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Fig. 1. Plot of the trajectory of a Van der Pol-oscillator, simulated in VHDL-
AMS. Singular point &(t) = 0 for &(t) = 0.

By defining the state vector of the Van der Pol-oscillator as

][9]

T2 (t)

equation (3) can be rearranged to yield the velocity vector

[ 28 ] B { a1 —ﬂfl(t)zzgzﬂgz)(t) — Wy (t) ] S

Because the system output is equivalent to the first state
variable z; (t), the output equation reduces to

[y1 (8)] = [21(2)] - (6)

From (3)-(6) it is clear that the relation between the system’s
states, inputs and outputs is completely described by the
function f(t) = a (1 —21(t)?) z2(t) — w?z, (¢) in case of
the triode oscillator.

To illustrate the two equilibrium states of the Van der Pol-
oscillator, the trajectory of one solution (calculated by a simple
VHDL-AMS model) is given in figure 1.

D. Model-Order Reduction

In the case of the Van der Pol-oscillator, the differen-
tial equation is based on a polynomial approximation of
the triode’s anode current. This association of the circuit’s
complete nonlinearity to a single component is not feasible
for an integrated microwave circuit, where the influence of
a multitude of components (i.e. nonlinear capacitances, etc.)
create the nonlinearity.

The complete state space representation of an integrated oscil-
lator can be obtained from its schematic. To represent the cir-
cuit’s behavior at microwaves correctly, this schematic has to
include the parasitic elements extracted from layout. The order
N of such a circuit is given by the number of its independent
LC energy storages. The model of a complex oscillator taking
into account all its parasitics therefore exhibits a large order

(N >> 100). When using this kind of state space model, all
currents and voltages inside the circuit are known, which is
essential during circuit design.

However, the internal states of the system are not important
for system level simulations, as long as their influence on
the output is taken into account by the simplified model.
Thus, even when maintaining the same accuracy at the system
outputs, a great order reduction is possible by removing
the relationship between system states and energy storage
elements.

The discussion of the Van der Pol-equation in section II-C
shows that the trajectory of an oscillation can be described
in a two-dimensional state space. This can be illustrated by
the fact that the oscillation physically consists of the periodic
exchange of energy between two dominant energy storages.
This reasoning leads to the conclusion that the system order
of an oscillator can in general be reduced to two. Thus, an
embedding approach to find the intrinsic system order as
described in [8] is usually not necessary.

Note, that the modeling technique described in this paper
can easily be extended to yield higher order models, if for a
particular oscillator it turns out that an order reduction to three
is more adequate. However, for a properly designed oscillator
a reduction to two should be possible.

As the second order dynamics of the oscillator are included
in the output and its derivative, it seems sensible to use
them as system states as in the case of the Van der Pol-
equation. However, when dealing with two related outputs as
for differential oscillators, the system state needs to be defined
in a way that it can be mapped to the two outputs equally well.
If each output and its first derivative were defined as individual
system states, the modeling of the interaction between the
outputs would be hardly possible.

To avoid this problem, the system states of the behavioral
model are based on the differential mode of the oscillator:
The differential mode voltage vy (t) — vx(t) and its derivative
are selected to represent the system state according to

i Rt B

The advantage of this choice is the observability of the sys-
tem’s state from the output port of the oscillator. Furthermore,
this state is related to both of the outputs in the same way.
The output voltages vy (¢) and vy (t) are illustrated in figure 2
by the VCO taken as example throughout this paper.
Mathematically, the order reduction can be seen as a projection
of the oscillator’s trajectory from the initial, N dimensional
state space to the two-dimension state space of the behavioral
model. By this projection, the relationship between system
states and circuit components is removed and information
about the initial states of the oscillator is lost. Plotting the two
newly defined states of the oscillator helps to verify that the
new state space still contains a trajectory correctly describing
the oscillation. If the trajectory is not intersecting with itself,
and still shows the typical form of figure 1, the order reduction
is valid.

The dynamics of the system state x(¢) is then given by the
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Fig. 2. Simplified schematic of a typical integrated state-of-the-art VCO

velocity vector

[ 28 ] - [ [z (t)f:zr(;()t),u(t)) } )

that contains a scalar function f(). This function describes
the nonlinearity of the oscillator and takes as arguments both
the system states and the input vector w(¢) that contains the
oscillator’s inputs like the noise current i, (¢) and the control
voltage veontrol (t) (cf. section ITI-A).

The output equation for this reduced order oscillator maps the
two states to the oscillator’s outputs, while taking into account
the parameters and inputs from w(t) according to

y(t) = 9 (a1(1), 22(1), u(t) - ©)

The system’s output vector contains the nodes of the oscillator
observable at the output of the behavioral model. In the case
of a differential VCO like the one of figure 2, the elements
of y(t) are the voltages at the x and y output of the oscillator

according to
_ | v(®)
v { vy (t) ] '
For the single ended case, this vector reduces to a scalar like
for the Van der Pol-oscillator.

An example for a trajectory obtained from simulations using
the microwave circuit simulator ADS' is given in figure 3. The
oscillator is a differential Colpitts VCO having the simplified
schematic given in figure 2. The reduced states of the oscillator
are calculated according to (7) from the ADS output voltages.
The higher complexity of this oscillator is reflected by the form
of its limit cycle: It shows a more irregular shape compared
to the limit cycle of the Van der Pol oscillator displayed

(10)

TADS 2005A, copyright 2005 by Agilent Technologies

Fig. 3. Trajectory of a 60 GHz differential Colpitts oscillator in the two-
dimensional state space as defined in (7)

in figure 1 (which is due to the fact that the drain-source
saturation voltage of the transistors cannot fall below a certain
value). Thus, the trajectory exhibits a dent at each side of the
rectangle.

Even the behavior of highly nonlinear oscillators can be
described in a two-dimensional state space, however, the form
of its trajectory becomes more difficult to approximate and
depends heavily on parameters like the control voltage. For this
task, the simple second-order polynomial of the Van der Pol-
equation is insufficient. In the proposed model it is replaced
by a function that contains the relevant nonlinearities of the
employed transistors and varactors, including effects like the
transition from one operating region to another or nonlinear
capacitances.

E. Artificial Neural Networks

Because of the ease of finding the parameters and the
resulting accuracy, the model proposed in this paper uses
artificial neural networks (ANNSs) to describe the oscillator’s
nonlinear behavior, represented by the functions f() in (8)
and ¥ () in (9). This section introduces them briefly.

1) Multilayer Perceptrons: An ANN is a structure that
resembles the human brain in containing neurons (i.e. nodes)
interconnected by synapses (i.e. connections) in order to build
a complex structure that is capable of reproducing sophisti-
cated relationships.

A class of artificial neural networks that can be employed to
perform a nonlinear input-output mapping of general nature is
a multilayer perceptron (MLP) [13]. It can thus approximate
the nonlinear vector functions ¢() (reduced to the scalar
function f() by (8)) and #() of equations (1) and (2).

The MLP’s input consists of source nodes that correspond
to the arguments of the function f() it approximates. One
or more hidden layers create the computational power of the
network. Furthermore, one or more output nodes constitute the
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Fig. 4. Schematic of a multi-layer perceptron with two hidden layers.

output layer and correspond to the function value(s) of f().
The three distinctive properties of an MLP are [13]:

« It contains a nonlinear activation function to calculate the
neuron values. This function introduces the nonlinearity
of the MLP and needs to be smooth in order to create a
network that can be trained by the error back-propagation
algorithm (cf. section II-F). A common choice is the
hyperbolic tangent tanh(). It exhibits a smooth transition
from —1 to +1. As a consequence, the outputs of the
MLP need to be normalized to this range. Furthermore,
it is convenient to also normalize the input.

o It possesses one or more hidden layers, that are not
directly accessible from the outside.

o It contains a high degree of connectivity. Each node is
connected to every node in both the preceding and the
following layer by weighted synapses.

The structure of a multilayer perceptron network with two
hidden layers is sketched in Fig. 4. The neuron values within
this structure are calculated by

M
n(k) = tanh | Y (nin(7)w(j, k)) + b(k)

Jj=1

(1D

with n;,(j) being the jth neuron of the precedent layer
containing M neurons, w(j, k) being the weight assigned to
the path from this neuron to the current one, and b(k) its
bias value. Knowing its weights and biases and as well as, if
applicable, the normalization factors completely characterizes
the MLP.

2) Neural Networks to Approximate Nonlinear Functions:
To approximate an arbitrary continuous function it is sufficient
to use a MLP with only one hidden layer, provided its
number of neurons is sufficiently large. This is the essence
of the universal approximation theorem for a nonlinear input-
output mapping [14] applied to MLPs. However, it is only

an existence theorem and does not guarantee that a solution
with one hidden layer is the most practical or even optimum
one. In fact, when using only one hidden layer the neurons
of the MLP tend to interact with each other globally. Thus,
when approximating functions like the one present in an
oscillator, the improvement of one point in the approximation
will typically lead to the worsening of another one [13].

To avoid these kind of problems, two hidden layers are
advantageous. Here, the first hidden layer typically reproduces
the local behavior, while the second hidden layer contains
global features of the function to be approximated. Thus,
curve-fitting becomes more manageable.

That is why MLPs with two hidden layers are recommended
to approximate the function ¢() and f(), respectively. Only
for the weakly nonlinear function #)() that maps the system
state to the system output, MLPs with a single hidden layer
are advantageous to avoid increased complexity.

The necessary number of neurons IV, in the first and N, in
the second hidden layer depend much on the pecularities of
the oscillator to represent and are thus determined empirically:
In the training process, these numbers are decreased iteratively
until the maximum desired mean squared error (MSE) is
exceeded. This is necessary because the complexity of the
function to approximate is not easily quantified and converted
to the number of required neurons.

FE. Training by Error Back-Propagation

The training of the neural network may be viewed as a
curve fitting problem [13]: During this process, the weights
and biases of the ANN are adjusted in order to enable the ANN
to perform a desired input-output mapping (e.g. represented
by the function f() from (8)). A training data set containing
input-output pairs is presented to the ANN for this purpose. In
addition to approximating the mapping for each input-output
pair, the ANN will also generalize the training data and thus
be able to map inputs never presented in the training process
to their appropriate outputs.

A popular method to train an MLP is error back-propagation.
The general algorithm works as follows: First, the weights
(tw(k), jw(k) and lw(k)) and biases (ib(k), jb(k) and Ib(k))
are initialized by random values. Next, the output of the MLLP
is computed based on the input part of the training data. Then,
the error between the output from the training data set and the
calculated output is determined.

Next, it needs to be determined to what degree this error can
be assigned to which weight or bias-values. To be able to do
this, local gradients are introduced that contain the influence
of each precedent node to the error at the actual node. Because
the error is known directly only at the output layer, it has to
propagate backwards into the network to determine the error
at the neurons in the hidden layers. After the influence of
each weight and bias to the error is determined, they are
adjusted accordingly. The error back-propagation process is
repeated until a given criteria (e.g. MSE below a certain bound,
gradient below a certain bound, maximum iteration count, etc.)
is reached. Further details on this method are given in [13].
Note that the design of the training data set is an essential part
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of the training process. The MLP can only approximate and
generalize a behavior it is trained to before. In section IV this
issue is discussed with respect to the oscillator model.

While the calculation of the output values of the MLP as a
function of the inputs and net parameters, sometimes referred
to as forward propagation, constitutes an integral part of
the VHDL-AMS model, the training procedure has only to
be done once to build the oscillator model. The convenient
tools of the Matlab Neural Networks Toolbox? have been
employed to train the MLP using the Levenberg-Marquardt
back-propagation algorithm,

G. Drawbacks

The neural network architecture used to represent the non-

linearities works perfectly fine with respect to accuracy of
approximation and manageability. Nevertheless, it exhibits two
weaknesses: The first one originates from the fact that the
parameters are determined by a training process: To get a good
approximation by the neural network, several training runs
starting from random initial values have to be compared. Based
on this, the network having the minimum MSE is picked. Thus,
the optimal solution is not found in a deterministic way, and
though the MSE of this solution is small, one can’t be sure
where this error will occur and how well the network will
generalize behavior it is trained on. This is not the case for a
physical model.
Second, the solution of a system of equation that contains
perceptron neural networks with hyperbolic tangent basis
functions is more computationally intensive then for example
an approximation that contains polynomials or radial basis
functions. So for less stringent accuracy requirements, an
approximation using this kind of functions may be the better
choice.

III. THE NOVEL MODELING-APPROACH

Based on the theoretical background presented in the previ-
ous section, a behavioral modeling methodology is developed.
It is applicable to a large variety of L.C-oscillators. To illustrate
it by a representative example, the circuit sketched in figure 2
is used throughout this paper. It exhibits all important charac-
teristics of a state-of-the-art VCO: It is fully differential, with
outputs vy (t) and vy (t). The tank is comprised of symmetrical
inductors L and varactors Cl,;, Whose capacitance values are
controlled by veontrol (). A cross-coupled Colpitts architecture
is used, recognizable by capacitive voltage dividers comprising
the capacitors C' and the gate source capacitances Cqg of
the MOSFETs. The VCO is designed to exhibit an oscillation
frequency around 60 GHz.

The differential current source i,(t) is not present in the
original schematic. It is added as a means to inject a small,
noise-like signal into the tank. This signal serves several
purposes: It starts the oscillation in a more controlled way then
numerical inaccuracy would, it can be used to generate more
robust training data by varying the trajectory of the oscillator
(cf. section IV), and it creates a port at which to inject noise

2Matlab R2007a, copyright 1984-2007 by The MathWorks

Neural
Network f( )

Veontrol(t) =]

inputs out

Xo(t) X,(t)

~Idt<- Idt

in1 in2
Neural Network @()  in3 [*— Vo)
out 1 out 2
i Na(t) 1 Nay(t)
| 1
e (0

Fig. 5. Block diagram of the oscillator model for the case of differential
outputs (vx(t),vy(t)) and one control input (veontrol(t)). Blocks with
dashed margin represent white Gaussian noise generators.

to the tank in order to generate phase noise in the 1/f? region
(cf. section III-B).

Note that a complete schematic of this circuit that is used for
low level simulation (e.g. in ADS or SPICE) would include
a more complete biasing network, possible output buffers,
inductors and/or transmission lines for matching and all the
parasitics being extracted from layout. The novel model is
created to exhibit the behavior of this entire circuit.

A. Model Structure

The structure of the proposed model is presented in figure 5.
The diagram given there is adapted to differential VCOs like
the one of figure 2. The state equation (i.e. (8)) is represented
by the upper part of the diagram: The output of the ANN is
fed back to its inputs using two integrator blocks that embody
the derivatives of the differential equation. The neural network
employed in this part incorporates the strong nonlinearity,
which is mathematically contained in the function f(). In
addition to the two state variables, the ANN has two other
inputs, represented by the input vector

ult) = { ’Ucoir;tz;;;(t) ] ‘

The input veontrol () is the control voltage applied to change
the capacitance of the varactors. The model will be capable
of representing the influence of this voltage not only on the
oscillation frequency, but also on any other properties of
interest (e.g. the tank amplitude or the startup time). It is
the only external input in this example, but similar inputs are
possible to represent model parameters like the bias currents of
the circuit. However, the number of inputs should be limited to
those present in the fabricated circuit. Otherwise the reduction

(12)
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of computation time with respect to a circuit level model is
low, which reduces the interest of employing the behavioral
model.

Input n4(t) corresponds to the artificial current source iy (%)
inserted into the schematic. In the VHDL-AMS model this
input of the ANN is connected to a random number generator
that creates white Gaussian noise of standard deviation o7.
The nonlinear function () used for the output mapping of (8)
is realized by the second neural network. The block diagram
for this part does not contain feedback: The states x; () and
x2(t) are simply mapped to the output voltages, which results
in less stringent accuracy constraints for the ANN employed.
The third argument of 1)() represents any influence of the
control voltage on this projection. It is equivalent to the input
of f() of the same name.

The blocks with dashed outlines in figure 5 contain the noise
signals noy(t) and noy (¢). They add white Gaussian noise of
standard deviation g2x = 02, = 09 to the differential output
voltages in order to emulate the noise floor (cf. section III-B).
The central role of the states z; (¢) and z5(¢) becomes obvious
from this diagram: They are connected to both of the neural
networks and the integrator blocks.

Note that in single ended oscillators the above discussed ar-
chitecture simplifies considerably: Only one output is present,
which usually is identical or closely related to the tank voltage.
The state variables can be directly assigned to the output and
its derivatives as in the case of the Van der Pol-oscillator
rendering the second neural network obsolete.

B. Phase Noise Emulation

Independently of the physical explanation that is employed,
most theories about phase noise in oscillators assume that the
phase noise spectrum can be divided into three regions as
introduced by Leeson [15]. More precisely, a flat, 1/f? and
1/ f3 region are distinguished, corresponding to the asymptotic
slope of their characteristic in the double logarithmic phase
noise spectrum.

The present behavioral oscillator model is designed to emulate
phase noise in the flat and 1/ f? region. At this stage, the model
does not take into account the contributions creating the 1/ f3
region, which would translate into increased complexity.

For sake of simplicity, physical processes are not considered
when building this part of the model. Rather, the original,
more complex circuit model, or measurements of a realized
oscillator (if available) are used do determine the actual phase
noise characteristics. (In the former case depending on the
phase noise model used in the circuit simulation, more or less
physical noise mechanisms are taken into account).

From the phase noise spectrum obtained this way the different
regions are identified, and the positions of the asymptotes
characterizing them are extracted. Based on this knowledge,
the phase noise part of the behavioral model is parametrized.
To inject noise that is transposed to phase noise in the 1/f2
region, a current source ¢, is inserted in parallel to the tank of
the oscillator, as illustrated in figure 2. If this source has the
mean-square spectral density E/ Af and the tank impedance
is Z(w), this current source will yield a voltage v, with mean-

square spectral density

2 2

Un ’h 2

— = -1 |Z(w
that is superimposed on the tank voltage v¢ank.
Assuming that the tank impedance consists of the total tank
inductance 2L in parallel with the capacitance Ciot/2 (Chot
contains the two varactors in series as well as all other parasitic
capacitances), and any losses are exactly compensated by the

active part of the circuit, the resulting tank impedance is given
by

(13)

Z(w) = jw2L jw2L (14)

_1—wa7:1_(£)2

wo

with wy = 1/ V/LC being the resonance frequency. When
considering phase noise, the frequencies of interest are close
to the carrier, SO0 w = wp + Aw, where Aw represents the
small deviation from the carrier frequency. Thus, Z(w) may
be approximated by
N JwiL

Z(W) ~ Aw )
neglecting all small and higher order components.
As a result, the mean-square spectral density of the tank
voltage due to the injected current is

v @ (vl

Af  Af < Aw > '
Due to the equipartition theorem of thermodynamics, half of
this power density appears as phase noise. Because E/A f
is proportional to 1/Aw?, the spectrum generated by the
considered signal can be used to emulate the 1/ f? region. The
initially flat noise current density is shaped by the filtering due
to the LC-tank [16].
To generate the current density i2/Af, a random number
generator is used. It generates a normal distributed random
variable with zero mean and standard deviation o7 = i2. To
correctly fix the position of the asymptote for the phase noise
in this region, it is thus sufficient to fix the standard deviation
o1.
A VHDL-AMS implementation of a random number generator
for normal distributions can be found e.g. in [17]. It makes
use of the UNIFORM - function provided by VHDL-AMS that
can generate only uniformly distributed random variables, and
converts them to normally distributed ones.
To add a noise floor to the oscillator output, the same type
of random number generator with standard deviations oo, and
o2y, one for each of the differential outputs, is used. Because
the shape of the noise spectrum is already correct for them,
no special injection is necessary. Thus, the noise can simply
be added to the outputs of the oscillator as indicated in figure
5. The equipartition theorem holds here as well, which means
that half of the added noise power is actually phase noise.

(15)

(16)

C. Modeling Flow

The modeling flow presented in this section assumes that
the structure of the particular model has already been estab-
lished, i.e. that the inputs, outputs and states of the reduced
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Fig. 6. Modeling flow: from circuit level simulation to behavioral model

order model are defined and the number and kinds of neural
networks are fixed. To create a model according to such a
structure, several steps are necessary, as illustrated in figure 6.
The model is based on an accurate, but rather complex circuit
level model. This model is used to generate a dataset able
to characterize the oscillator in all relevant states according to
section IV. The dataset is imported to Matlab, where it is used
to train the neural networks that constitute the nonlinearities
of the model using the backpropagation algorithm previously
described. Then the parameters of these neural networks are
written to a datafile in an appropriate format. This datafile
is then imported by a subroutine of the VHDL-AMS model,
which uses the contained data to rebuild the mathematical
representation of the neural networks according to (11).

To determine the standard deviations of the noise sources,
either a phase noise simulation or, if available, phase noise
measurements can be used. These standard deviations are
entered directly as parameters to the VHDL-AMS model and
will be used to create the random numbers according to III-B.
Before running the simulation based on this model, important
parameters of the simulation need to be set. (cf. chapter V).

IV. PARAMETRIZATION OF THE MODEL

To match the model to a given circuit, the parameters of the
neural networks representing f() and () have to be found.
This is done by fitting their response to a data set generated
by a circuit level simulation. The theoretical background of
this training process is given in chapter II-F. Another crucial
part to get a working model is to properly design the training
data. This section gives guidelines to training data design and
presents the training results for the ANNs employed in the
example of a millimeter wave oscillator.

A. State-Space as Training Aid

To approximate a function by a neural network, the ANN
must yield the function value as output for all inputs of interest.
These relevant inputs are located in a specific, limited part of
the function’s input space. The dimension of the input space
is the number of scalar inputs of the function.

In the case of the present oscillator model, the states x; (t)
and x(t) are inputs of both employed neural networks, as
displayed in figure 5. The state space of the oscillator is thus a

subspace of the neural networks’ input spaces. That is why the
state space representation of the oscillator’s behavior is very
well suited for training data design. Previous considerations
show that all practical inputs of the neural networks are located
inside or on the limit cycle of the oscillator’s trajectory.
Besides the states x1(t) and z»(t), the neural networks can
have other inputs that act as parameters. The only parameter
in the present example iS Vcontrol- Lhus, for all valid control
voltages (here from OV to 1 V) the function must yield correct
values in the above mentioned part of the oscillator’s state
space.

If several parameters are used, all valid combinations of them
have to be taken into account for training. Generating a
complete training data set thus becomes more difficult for
models with increasing number of parameter inputs.

The artificial noise input can be treated less strictly: Because
the excitations on this port are small compared to the states
but have a similar influence on the output, it is not necessary
to consider this input as a separate dimension. Additionally,
some small noise-like signals should be injected at this port
to match the responses of circuit and neural network on these
kind of excitations.

B. Interdependence of Inputs

The straight-forward way to generate the necessary training

data is to sweep the inputs to get a coverage of the whole valid
input space and calculate the outputs given by the original
circuit level model based on them. However, as obvious from
figure 5, the inputs (and in the case of function f() the output
as well) are connected outside the neural network and thus not
sweepable independently. This fundamental difference com-
pared to a neural network approximating simple input-output
relationships necessitates a different approach to training data
design. Furthermore, the inputs of the neural networks are not
identical to the inputs of the system (they are rather states,
which are chosen to be related to the output), so they are not
accessible in the circuit simulator without changing the circuit
response.
Independent input parameters like vcontrol, however, can be
swept to generate training data for the whole range of valid
values. With reasonable spacing between two discrete values,
the whole parameter range can be covered by a reasonable
number of simulation runs. In the example of v¢ongrol, gener-
ation of training data for the six values 0.0V,0.2V...1.0V
yields an accurate model for all valid control voltages as
can be confirmed by looking at the outputs of the model for
Veontrol = 0.5V in chapter VL.

C. Training by Varying Trajectories

A typical startup trajectory of an oscillator covers more or
less densely the inside and the rim of the limit cycle, as shown
in figure 7. However, due to the high gain of the transistors
used in the particular circuit producing this trajectory, large
regions of the state space remain uncovered by training data.
While for small gaps the neural network interpolates the
behavior of the oscillator correctly, based on the provided
training data, this is not true for large gaps:
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Fig. 7. Trajectory of an oscillator with fast startup: large uncovered areas
in the input space yielding neural networks poorly approximating the desired
function.

In the case of the second neural network, which is not part
of a differential equation, this inaccuracy only increases the
inaccuracy of the model output. The maximum error that can
be tolerated depends on the application.

For the neural network approximating f(), dense coverage is
crucial though: This ANN is part of a differential equation
whose solution at one time step mainly depends on the solution
of the previous time steps (and its derivatives). Although small
errors yield only a slightly inaccurate solution at one time step,
these errors sum up over time, leading to a deviation from the
valid trajectory. If the trajectory leaves the well characterized
inside of the limit cycle, this can finally result in a complete
failure of the solution.

Note that for oscillators with a slow startup this problem is
less pronounced, because one startup contains many periods
and thus densely covers the input space as shown in figure 3.
In order to generate dense training data from oscillators
with fast transients, several startups are used. To change the
conditions at and after startup in order to vary their trajectories,
a high frequency, small amplitude signal can be injected to
the artificial input port i, (cf. figure 2). This signal must be
differentiable, thus noise is not well suited. Either a sinusoid
or a pulse train with smooth slopes may be used. As a
result of this injection, a dense coverage of the input space
is achieved and the neural network’s response to excitations
at this artificial port is matched to the circuit’s response.

D. Accuracy Issues

Besides the dense coverage of the neural network’s input
space there are other important issues that have to be addressed
during training in order to get an accurate, functional model.
As indicated in section II-B, the behavior near the outside of
the limit cycle has to be characterized as well. Otherwise, the
differential equation can exhibit other, artificial attractors that
are not present in the real oscillator. These attractors can render

X0
o

Fig. 8. Dense trajectory due to the use of the artificial current source for
injection of a current that influences the trajectory

Fig. 9.

Function f() approximated by the neural network (colored plane)
versus trajectory used to train it (solid line with dots to indicate actual values),
Vcontrol = 0 V.

the limit cycle unstable, in such a way that a large noise peak
in steady state causes the oscillator to leave the limit cycle.
To avoid this, the artificial input is used to generate steady
state training data that deviates a certain amount from the
ideal, noise-free trajectory. Thus, the function approximates
the oscillator’s behavior even in areas of the state space that
are rarely encountered.

A potential source of inaccuracy is the error already present
in the data used for training the ANN. All the more, because
during the development of the oscillation an insignificantly
small error amplifies and becomes considerable. To keep the
error present in the training data set small, the circuit simulator
needs to use extremely tiny time steps and small internal
tolerances.

In this context, the accuracy of the derivatives that relate x5 (¢)
to z1(t) and @5 (¢) to x2(t) are of utmost importance. Because
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a forward difference approach needs an impractically small
time step to yield small errors, a central difference is used to
compute the derivatives. Note that numerical derivatives calcu-
lated by higher order differences are an option to minimize this
error. The advantage is that their use does not slow down the
VHDL-AMS model while improving model accuracy. Simple
forward difference calculations yield errors as large as some
ten millivolts with time steps of only some femtoseconds in
the 60 GHz oscillator example, so they must be avoided.

Overtraining of the neural network also can become an issue:
If the same set of training data is presented repeatedly during
the training process, the neural network tends to specialize on
this data, and thus looses its generalization property [13].

E. Training Results

The two networks of the model of the 60 GHz differential
VCO are trained using training data prepared according to
the guidelines provided in the previous sections. The data is
obtained from ADS simulations. The number of neurons is
determined experimentally to get a mean squared training error
(MSE) in the range of 10~°. Note that this accuracy can be
improved by increasing the number of nodes. However, the
optimum parameter set is then more difficult to find, and the
training process takes more resources. Furthermore, an even
better accuracy conflicts with the goal to achieve complexity
reduction by means of the behavioral model.

1) Neural Network to Represent f(): The neural network
to represent f() uses 15 neurons in the first and 10 neurons
in the second hidden layer. It achieves an MSE of 1.25-107°
with respect to the training data presented. The training data
consists of six startup trajectories with different control volt-
ages and modulated artificial input current, plus one frequency
sweep done by increasing veontroi continuously from OV to
V.

Figure 9 compares the response of the neural network for
Veontrol = 0V to the trajectory of a startup that ends in steady
state. They correspond very closely to each other, illustrated
by the fact that the trajectory is in some places slightly above
and in other places slightly below the plane that represents
£0).

Figure 10 shows the output of the neural network versus the
used training data over time for two different control voltages
in steady state. Excellent agreement is observed, which con-
firms successful training for different control voltages. Higher
maxima and a smaller period indicate the higher frequency of
oscillation for veoptror = 1.0V

2) Neural Network to Represent 1(): The neural network
to represent 7)(), i.e. the mapping from the system states to
the differential outputs, contains a single hidden layer of three
neurons. The training data used characterizes the same states
of the oscillator as the one for f(). An MSE of 5.54-107¢ is
achieved.

In figure 11 its steady state response is shown. (Similar accu-
racy is achieved for the startup trajectory. It is not shown here
for the sake of clarity.) The 180° phase difference between the
v, and the v, output is graphically represented by the fact that
the two quasi-planes containing the trajectories only intersect

v V 1.0V

0.0V Y
x 10 >

control control

o trained ANN
original data

0 1 2 3 4 5 0 1 2 3 4 5
tin ps tin ps

Fig. 10. Original data (blue solid line) versus output of trained neural network
(red circles) for two different control voltages (left: 0 V, right: 1 V)
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Fig. 11. Mapping from the states z; and zp of the system to its output

voltages (function ( )). dashed and solid line: original output, circles: output
of neural network.

at the bias voltage Viias = 920mV and exhibit a symmetry
to the plane z;(t) = 0.

V. IMPLEMENTATION AND SOLVER ISSUES

The model structure according to figure 5 is implemented in
VHDL-AMS. The results in section VI are obtained from this
implementation, which is detailed and illustrated by some code
examples in the appendix. The simulation environment used is
SMASH?, which is chosen due to the particular requirements
of the model (cf. section V-A). An implementation of the
model in other description languages and simulation environ-
ments is possible, as long as they provide similar directives
and solver options as VHDL-AMS and SMASH.

A. Solver Issues

The correct numerical evaluation of the system of
differential-algebraic equations described in VHDL-AMS de-

3SMASH 5.10.0, copyright 1992-2007 by Dolphin Integration
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mands several prerequisites. Otherwise, the simulation does
not yield correct results despite perfect model equations.
First of all, the numerical algorithm employed has to be chosen
wisely. While backward Euler or trapezoidal algorithms work
only when using prohibitively small time steps, Gear’s algo-
rithm is stiffly stable [18] and works fine for a reasonable range
of time steps (whose upper bound depends on the oscillation
frequency). It is furthermore supported by the major simulation
environments, among them SMASH.

Secondly, the operating point simulation needs to start from
initial system states that lie inside the limit cycle. Only then
it is assured that the correct singular point that corresponds to
the bias point of the oscillator is found. The reason is that the
neural network representing the function f() is not trained far
outside the limit cycle, and thus can exhibit artificial singular
points there. Manually setting reasonable initial values for the
state quantities remedies this problem.

The third issue concerns the tolerances maintained during the
solution process. Due to the very high frequency microwave
oscillators are working at, the states and their derivatives have
largely different orders of magnitudes. For the 60 GHz VCO
under consideration, z;(t) is on the order of 1 while @ (¢)
is on the order of 10'2. Thus, the tolerances that need to
be imposed on a quantity and its derivative are of totally
different order of magnitude. However, to the best of the
author’s knowledge, SMASH is the only simulator that allows
to set the tolerance value of the quantities and their derivatives
independently. This is an essential feature without which it
is hardly possible to solve the model equations correctly for
millimeter wave oscillators.

V1. REALIZED MODELING EXAMPLES
A. Single-Ended Free-Running Oscillator

A first validation of a model using a more basic form of
the presented modeling methodology is provided in [19]. The
oscillator is free-running and has one single-ended output. Due
to the simplicity of this architecture, no parameter inputs are
necessary. The oscillator’s output voltage and its derivatives
are used as system states. A single neural network with one
hidden layer is sufficient to create a behavioral model that
shows excellent agreement with circuit level simulations.

B. Differential Colpitts-VCO

The results presented in this section belong to the differ-
ential 60 GHz Colpitts VCO taken as example throughout
the paper. The parameters of the employed neural networks
correspond to the ones obtained by the training process
documented in chapter IV-B. If not mentioned otherwise,
Veontrol = 0.5V. This voltage has not been employed for
the startups in training. The ADS results which the VHDL-
AMS simulations are compared to are created exclusively for
model verification. Thus, the simulation results in this section
do not represent fitted curves, but rather show the excellent
generalization properties of the model. To reduce the influence
of the solver accuracy on the results, the maximum time step
is chosen to be 50fs for both VHDL-AMS and ADS.

Figure 12 compares oscillator startups generated by the
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Fig. 12.  Output of the VHDL-AMS model (dotted black line or markers)

versus ADS simulation results (solid blue line) for veontror = 0.5V

VHDL-AMS model and ADS. The excellent agreement in
steady state is demonstrated by the zoomed-in view in the
same figure. The 180° phase difference between the two out-
puts is well maintained by the behavioral model. The minimum
and maximum values are 0.147V and 1.731V (VHDL-AMS)
versus 0.137V and 1.745V (ADS). The oscillation frequency
is 61.16 GHz (VHDL-AMS) versus 61.15 GHz (ADS).

The transient envelopes as a whole correspond very well. The
amplitude difference is about 60 mV around ¢ = 1.05ns due
to the fact that the behavioral model is only of order two and
thus cannot represent all the dynamics necessary to exactly
simulate the startup process. However, the achieved accuracy
is more than sufficient for a behavioral model. This is also
confirmed by the transient simulations of a real-world VCO
discussed in section VI-C.

Figure 13 gives a plot of the even and odd mode behavior
of the oscillator. The swing of the odd mode oscillation is
1.612V,, (VHDL-AMS) versus 1.585V,, (ADS). A small
discrepancy during the transient is observed here as well.
The even mode plots show the very close agreement of the
bias voltage (919 mV VHDL-AMS versus 921 mV ADS) and
the response in steady state, even though the model is not
optimized in this regard. In the transient part of the even
mode plot the agreement is slightly degraded, for the reason
discussed above. However, considering the mV scale of the
ordinate, this error has small impact on the overall simulation.
Figure 14 shows the results of a frequency sweep when
continuously increasing Vcontrol (rom its minimum to its
maximum value. The lowest frequency is 58.79 GHz (VHDL.-
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Fig. 13.  Output of the VHDL-AMS model (dotted black line) versus ADS

simulation results (solid blue line) in even mode (veven(t) = (vx(t) +
vy)/2(t)) and odd mode (voaa(t) = (vy () — vx(t))/2).

AMS) versus 58.72GHz (ADS), the highest frequency is
63.91 GHz (VHDL-AMS) versus 63.79 GHz (ADS). The slight
phase difference between the VHDL-AMS curve and the ADS-
curve apparent from the zoomed-in view is due to this slight
difference in frequencies. Compared to the dispersion due to
process variations an error of this magnitude is negligible.
Note that during the change of v¢ontror the two curves follow
each other very closely. This reflects the fact that the behav-
ioral model correctly represents the dynamics when changing
Vcontrol- Lhe model can thus be used to simulate systems where
these dynamics are important, as for example PLLs.

Figure 15 shows the phase noise plot created by the VHDL-
AMS simulation in SMASH. The asymptotes can be placed by
setting the standard deviations oy and o5, /,, in order to closely
resemble the original phase noise plot. The greater density
at higher frequencies, accompanied by stronger deviations
from the asymptotes, are due to the fact that the simulation
is done on a linear scale, but the plot is logarithmic. The
slight decrease of the noise level in the flat region at highest
frequencies is due to the fact that the additive Gaussian noise
generated is not actually white, but its power density decreases
when approaching the sampling frequency.

C. Integrated 60 GHz VCO in 65nm CMOS including Buffers

In order to demonstrate the applicability of the proposed
modeling technique to real oscillators fabricated in a sub-
micron CMOS semiconductor process, it is applied to a
60 GHz VCO in fabrication in the 65nm CMOS technology
of ST Microelectronics. The simplified schematic (with neither
bias circuitry nor extracted parasitics) is shown in figure 16.
The Colpitts VCO uses differentially tuned accumulation-
MOS varactors, which are represented during simulation by
BSIM4 models. The BSIM4 model is also used for the
transistors. The inductors are characterized by 2 — 7= mod-
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Fig. 14.  Output of the VHDL-AMS model (dotted black line or markers)

versus ADS simulation results (solid blue line) for control voltage sweep
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Fig. 15. Phase noise characteristics shown by the VHDL-AMS model. The

height of the asymptotes is set by o1 and oax/o2y.

els extracted from electromagnetic field simulations. Source-
follower buffers are employed to minimize loading of the
oscillator core. All component values and device widths are
annotated in the corresponding schematic in figure 16. The
artificial current source iy(t) is added to the schematic after
the design phase to generate the training data as described in
section IV-C.

The design and layout of the oscillator was done using
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the Cadence IC Design Tools, Version 5.10.41%. The circuit
simulator SPECTRE, which is part of the Cadence framework,
is used to calculate the circuit behavior based on the extracted
schematic. To give an impression of the complexity of the
oscillator, table I summarizes the circuit inventory established
during SPECTRE simulation. This entire circuit is taken
into account during model generation, and the evaluation of
the behavioral VHDL-AMS model is done with respect to
SPECTRE simulations of this circuit. As before, the state

nodes 938
equations | 2560
bsim4 140
capacitor | 2166
inductor 16
resistor 2318
TABLE I

CIRCUIT INVENTORY OF THE SPECTRE MODEL

vector of the behavioral model comprises the difference of
the output voltages, vy (t) — v (t), as first state variable and
the derivative thereof as second state variable. Note that the
output buffers are included inside the VHDL-AMS model, so
vy (t) — vk (t) does not correspond to a voltage observed across
a circuit element.

The structure of the VHDL-AMS model is the one of figure
5. The ANN used to approximate f() contains 18 neurons in
the first and 13 neurons in the second hidden layer. The ANN
used to represent 1p() employs 3 neurons in a single hidden
layer. The training employs startup waveforms with veongrol
varying from —0.7V to 0.7V in steps of 0.1V and yields an
MSE of 2.30E-5 for f() and an MSE of 1.59E-4 for ().

4Copyright 1992-2005 Cadence Design Systems, Inc.
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Fig. 17. Trajectory obtained from SPECTRE-simulation (red, solid line)
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Fig. 18. Tuning-curve of the oscillator, SPECTRE (solid line) versus VHDL-
AMS (dashed line)

ANNs with fewer neurons yield only little worse MSEs. The
VHDL-AMS model based on these ANNs is used to do the
performance evaluation in the following sections.

1) Accuracy of the behavioral VHDL-AMS Model: The
behavioral model’s steady state accuracy is demonstrated by
comparisons of both the trajectories and the tuning curves
between the SPECTRE circuit model and the behavioral
VHDL-AMS model.

In figure 17 the oscillation trajectories are plotted for
Veontrol = 0.0V. They resemble each other very closely.
The form of the limit cycle attained in steady state has the
same shape for both of the models. This confirms that an
enormous order reduction is possible even in the case of a
real 60 GHz sub-micron CMOS VCO: The system order can
be successfully reduced from more than two thousand to two.
Differences between the two trajectories can be explained by
the influence of noise and the solvers’ accuracies, which is
difficult to align between the two simulation environments.
Furthermore, the accuracy in steady state can be confirmed
by the tuning curve of figure 18, where the control voltage
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Fig. 19.  Startup waveform at output x of oscillator. VHDL-AMS model
(markers) versus SPECTRE - simulation (solid line).

is swept over the whole tuning range (veontrol = —0.7V to
+0.7V). Excellent agreement is achieved, showing that the
nonlinear curvature of the tuning curve is indeed also present
in the behavioral model, even though the varactors are not
explicitly modeled.

To assess the accuracy in the transient regime, figure 19 shows
the startup for two different control voltages. Good agreement
between circuit model and behavioral model can be observed
in both cases. The fact that the amplitude differs by several mV
between both models is explained by the different tolerances
of the solver, despite using the same maximum time-step of
50 fs. Higher accuracy can be obtained by employing smaller
time steps at the expense of longer computation time, as used
for training data generation (cf. section IV-D).

The fact that startups for two different control voltages (and
thus oscillation frequencies) show different transient envelopes
(compare figure 19 (a) and (b)) is also correctly taken into
account by the behavioral VHDL-AMS model.

2) Computation Time Comparison: In order to assess the
speed-up achieved by the behavioral model with respect to the
circuit model, their simulation times are compared in table II.
The SPECTRE simulation is executed on a machine equipped
with two 3.2GHz Intel PENTIUM4 processors and 3 GB
RAM, using Cadence 5.10.41. The VHDL-AMS simulation is
executed on an Intel Core2 6700 2.66 GHz processor with

30 min 43.6 sec
23 min 43.7 sec
1 min 13.2 sec

SPECTRE simulation, with transient noise
SPECTRE simulation, without transient noise
VHDL-AMS simulation

TABLE II
SIMULATION TIME FOR START-UP AND SUBSEQUENT STEADY STATE OF IN
TOTAL 10 NS

3GB RAM, using SMASH 5.10. Both simulations are done
single-threaded.

The simulation scenario consists of the start-up and subsequent
steady state for veontror = 0V which takes in total 10ns. The
maximum time step chosen is 50fs, the relative accuracy is
le-5, and the used solver is Gear.

In the case of the SPECTRE simulation, two different setups
are evaluated: The default case is a simulation which does not
take into account transient noise. This is the only one sup-
ported in older versions of SPECTRE. However, because the
behavioral VHDL-AMS model does simulate transient noise,
this kind of simulation is more appropriate for comparison.
Thus its execution time is also given.

In both cases the comparison confirms the effect expected
from the order reduction: A tremendous speed-up by a factor
of up to 25 is achieved for the present simulation setup,
while maintaining the accuracy shown in the previous section.
This speed-up is less pronounced for circuits of lesser order,
because the achievable order reduction is smaller. On the
other hand, an even higher speedup would be possible when
optimizing the implementation of the reduced-order model.
Altogether, the strong interest of replacing the circuit level
model by the proposed behavioral VHDL-AMS model after
the design phase is confirmed. The computation time necessary
to create the training data and train the ANNs is compensated
by much faster execution of the behavioral model.

VII. CONCLUSION

This article describes a methodology to create behavioral
models of microwave oscillators that can be implemented
in a hardware description language like VHDL-AMS. The
model is based on data obtained from a transistor level
simulation using models of high order and complexity. The
novel modeling methodology uses this data to parametrize a
model structure that has only an order of two, but is capable
of approximating a high degree on nonlinearity by artificial
neural networks. The technique is applicable to state-of-the-art
voltage controlled oscillators, whose behavior concerning
transient, steady state and phase noise is faithfully reproduced
by the presented model. Comparison of the outputs of this
model and circuit level simulations show excellent agreement
in all operating regimes, while the behavioral model achieves
a reduction in computation time of up to 96%.

The field of application of such an accurate behavioral model
are simulations where the complexity of an extracted circuit
model is too high, yet an accuracy close to the one of
such a model is desired. Examples could be simulations of
phase locked loops or systems on chip, where the influence
of the oscillator’s peculiarities is decisive to assess the
system performance. While even simpler models that avoid
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actually solving differential equations by just plotting the
(pre-calculated) solution are faster, they result in a reduction
in both accuracy and flexibility.
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APPENDIX
STRUCTURE OF THE VHDL-AMS CODE

The core of the VCO model is a VHDL-AMS entity with
four ports, pl to p4. The first port is connected to a grounded
noise current source, implemented as described in [17], in
order to provide ¢,. Port two and three represent the oscillator’s
outputs v, and v, with respect to ground. Two series noise
voltage sources [17] that generate the additive noise for the flat
region of phase noise are series-connected externally to these
ports. The oscillator’s output signal including phase noise is
taken at the open pins of these noise sources. The forth port
is connected to the veontrol iNpUL.

In the architecture definition of the VCO entity, the currents
through and voltages across the terminals are defined as
quantities according to:

quantity
quantity
quantity
quantity

In through pl to ELECTRICAL_REF;
voutx across p2 to ELECTRICAL_REF;
vouty across p3 to ELECTRICAL_REF;
vcontrol across p4 to ELECTRICAL_REF;

Other quantities are associated to the normalized inputs, the
state variables and their derivatives, the nodes of the neural
networks, and other auxiliary variables:

quantity In_norm real tolerance "NORMALIZED";
quantity x1 real tolerance "NORMALIZED";
quantity x2 real tolerance "NORMALIZED";
quantity dx2_dt real tolerance "NORMALIZED";
quantity Vcontrol_ norm real

tolerance "NORMALIZED";

real_vector (1l to 15);
real vector(l to 10);

quantity nodehl
quantity nodeh?2

The TOLERANCE keyword specifies the tolerance used by
the solver to evaluate different groups of quantities.
After defining the quantities, constants are defined that contain
the parameters of the neural networks, such as weights, biases
and normalization constants. To load the actual values from
the text files exported by Matlab, functions created for this
purpose are called in the initialization process.
The body of the entity’s architecture between the begin and
end keyword consists of the definition of the state space
equations according to (8) and (9), the definition of the
equations describing the two neural networks according to
(11), and the associated normalization and denormalization.
To implement the derivatives that appear in the state equations,
the ’ dot- statement is used:

x2 == x1’'dot * norm_constl;
dx2 dt x2"dot * norm_const2;

The more complex equations describing the neural network
make use of the GENERATE statement to automate the formu-
lation of lengthy equations:

BuildInputLayer: FOR i IN 1 TO 15 GENERATE
nodehl (1) tanh( wl (i*4+1) *» x1 +

wl (1x4+2)
wl (1+4+3)
wl (ix4+4)
bl (i) );
END GENERATE;
—— build second hidden layer here:

* X2 +
* In_norm +
* Vcontrol norm +

—— output layer:
dx2_dt == tanh( w2 (1) » nodeh2 (1) +

w2 (2) * nodeh2 (2) +

wé.(iO) * nodeh2 (10) +
b2 (1) );

Note that in the code fragment above w1 (), w2 (), bl ()
and b2 ( ) are vectors containing the weights and biases of
the neural network. Due to the lack of matrix operators in the
VHDL-AMS definition [1] these equations cannot be written
more efficiently.
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