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Discrete compactness for thep-version of discrete
differential forms

Daniele Boffi∗ Martin Costabel† Monique Dauge‡

Leszek Demkowicz§ Ralf Hiptmair¶

October 27, 2010

Abstract

In this paper we prove the discrete compactness property fora wide class ofp
finite element approximations of non-elliptic variationaleigenvalue problems in two
and three space dimensions. In a very general framework, we find sufficient condi-
tions for thep-version of a generalized discrete compactness property, which is for-
mulated in the setting of discrete differential forms of orderℓ on a polyhedral domain
in R

d (0 < ℓ < d). One of the main tools for the analysis is a recently introduced
smoothed Poincaré lifting operator [M. Costabel and A. McIntosh, On Bogovskĭı
and regularized Poincaré integral operators for de Rham complexes on Lipschitz do-
mains, Math. Z., (2009)]. In the caseℓ = 1 our analysis shows that several widely
used families of edge finite elements satisfy the discrete compactness property inp
and hence provide convergent solutions to the Maxwell eigenvalue problem. In par-
ticular, Nédélec elements on triangles and tetrahedra (first and second kind) and on
parallelograms and parallelepipeds (first kind) are covered by our theory.

1 Introduction: Maxwell eigenvalue problem

Maxwell’s eigenvalue problem in a closed cavityΩ ∈ R
3 with perfectly conducting walls

can be written as follows by means of the Maxwell-Ampère andFaraday laws: Find the
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resonance frequenciesω ∈ R and the electromagnetic fields(E,H) 6= (0, 0) such that

curlE = iωµH and curlH = −iωǫE in Ω
E× n = 0 and H · n = 0 on∂Ω,

(1.1)

whereǫ andµ denote the dielectric permittivity and magnetic permeability, respectively.
The fieldsE andH are sought inL2(Ω)3.

For simplicity, we consider the case of homogeneous isotropic material with normal-
ized material constants (ǫ, µ = 1) — we will come back to the general setting in Remark
6.3. In a classical way, the elimination of the magnetic field from equations (1.1) yields
the Maxwell eigenvalue problem with perfectly electrically conducting (PEC) walls in
variational form:

Seeku ∈
◦
H(curl,Ω) \ {0}, ω ∈ R

+
0 such that

(curlu, curlv)L2(Ω) = ω2 (u,v)L2(Ω) ∀v ∈
◦
H(curl,Ω) .

(1.2)

The elimination of the electric field would correspond to thesame problem modelled
through replacing

◦
H(curl,Ω) withH(curl,Ω)1.

One aim of this paper is to prove the convergence ofH(curl)-conforming Galerkin
discretizations of Maxwell eigenvalue problem (1.2) in the framework of thep-version of
the finite element method. The finite element approximation of Maxwell eigenvalues has
been the object of intense investigations for more than 20 years. It was soon recognized
that theH(curl)-conforming Galerkin finite element discretizations need special finite
element spaces that are generally termededgefinite elements (see [44, 45, 14]).

The first attempts to analyze the discretized eigenvalue problem have been made for
theh-version of edge finite elements. We mention [39] as a pioneering work on lowest
order edge finite elements, where thediscrete compactness property(see [2]) has been
indicated as a key ingredient for the analysis. Other relevant works are [13, 8, 19, 43, 40,
24, 9], and we refer the interested reader to [37, 42] and to the references therein for a
review on this topic.

In these references, the Maxwell eigenvalue problem is often studied using varia-
tional formulations different from (1.2), for example mixed formulations [9], regularized
formulations [23, 25] or mixed regularized formulations [5, 17]. With the exception of
the method of weighted regularization [23, 25, 17], whereH1-conforming elements can
be used, these formulations use theH(curl)-conforming edge elements. In their anal-
ysis, special conditions implying convergence of the discrete eigenvalue problems are
presented, for example the so-called Fortid property [8], or the GAP property [16]. As
explained there, these conditions are related to the discrete compactness property. Here
we choose to work with the simple variational formulation (1.2) and its generalization to

1By and large, we adopt the standard notations for Sobolev spaces, see [34, Ch. 2].
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differential forms. The role of the discrete compactness property in this context has been
discussed in detail in [19].

The analysis presented in the references above covers theh-version for basically all
known families of edge finite elements. It soon turned out, however, that the analysis of
the p- andhp-versions of edge finite elements needed tools different from those devel-
oped for theh-version. In [12] the two-dimensional triangular case has been studied for
thehp-version, but the analysis depends on a conjectured estimate which has only been
demonstrated numerically. In [11] a rigorous proof for thehp-version of 2D rectangular
edge elements has been proposed (allowing for one-irregular hanging nodes) which, in
particular, contains the first proof of eigenvalue/eigenfunction convergence for the pure
spectral method (p-version with one element) on a rectangle.

What paved the way for a successful attack on a generalp-version analysis was the
regularized Poincaré lifting recently introduced in [26]: it enjoys excellent continuity
properties and at the same time respects discrete differential forms. In this paper we are
going to show how the regularized Poincaré lifting can be combined with another recent
invention, the projection based interpolation operators,see [27, 29], to clinch the anal-
ysis of thep-version of edge elements. This allows to prove the discretecompactness
(and hence the convergence of the discrete eigensolutions)for a wide class of finite ele-
ments related to discrete differential forms: for (1.2) this includes, in particular, Nédélec
elements on triangles and tetrahedra (first and second kind)and on parallelograms and
parallelepipeds (first kind).

As already mentioned, one of the key ingredients for the convergence analysis is the
discrete compactness property. Much insight can be gained from investigating it in the
more general framework of discrete differential forms (see[4] for a lucid introduction
to this subject). In this setting, the proofs are more natural and simultaneously cover, in
particular, two- and three-dimensional Maxwell eigenvalue problems.

Plan of the paper. The structure of the paper is as follows. We start in Section2 with
a generalization of (1.2) to eigenvalue problems associated with the de Rham complex
on differential forms. Then we define the discrete compactness property and discuss
its significance in the context of Galerkin discretization:in association with two stan-
dard completeness properties, it gives a crucial sufficientcondition for the convergence
of eigenvalues and eigenvectors. Section3 is the core of our paper and contains the de-
scription of our abstract assumptions. Having in mind thep-version of finite elements, we
consider afixedmeshM of a bounded Lipschitz polyhedronΩ ⊂ R

d and a sequence of
spaces of discrete differential forms of orderℓ (with 0 < ℓ < d) together with projection
operators onto discrete spaces; we prove that our assumptions imply the validity of the
discrete compactness property for such a sequence of spaces(Theorem3.2). The abstract
theory relies on the existence of suitable Poincaré lifting operators which are presented
in Section4. The mapping properties of these lifting operators allow tospecify some
of the function spaces appearing in our abstract assumptions. In Section5 we recall the
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classical families of discrete differential forms with high degree polynomial coefficients
on simplicial or tensor product elements.

Our abstract theory applies to any dimensiond, but for want of suitable regularity
results, embeddings, and projection operators, we can giveexamples satisfying all of its
assumptions only in dimensionsd = 2 andd = 3. This is done in Section6, where we
concretize the function spaces and recall embedding results and properties of projection
based interpolation operators related to these spaces. Allabstract assumptions are then
satisfied, leading to the main convergence result stated in Theorem6.1. The analysis of a
p-version edge element discretization of the Maxwell eigenvalue problem (1.2) is covered
as cased = 3 andℓ = 1, see Corollary6.2.

2 Differential forms and generalized Maxwell eigenvalue
problem

The variational eigenvalue problem (1.2) turns out to be a member of a larger family of
eigenvalue problems, when viewed from the perspective of differential forms. This more
general perspective offers the benefit of a unified theoretical treatment of different kinds
of eigenvalue problems, e.g., the scalar Laplace eigenproblem, Maxwell cavity eigen-
problems in dimensions2 and3, the eigenproblem for thegrad div-operator in dimension
3. This policy has had remarkable success in numerical analysis recently,cf. [3]. Thus, in
this section we first recall some basic notions related to differential forms. We refer the
interested reader to [4, Sect. 2] for an introduction to this subject.

2.1 Function spaces of differential forms

Given a bounded Lipschitz domainΩ ⊂ R
d, we denote byC∞(Ω,Λℓ), 0 ≤ ℓ ≤ d,

the space of smooth differential forms of degreeℓ on Ω and bydℓ : C∞(Ω,Λℓ) →
C∞(Ω,Λℓ+1) theexterior derivative.

We rely on the Hilbert spaces

H(dℓ,Ω) := {v ∈ L2(Ω,Λℓ) : dℓ v ∈ L2(Ω,Λℓ+1)} , (2.1)

whereL2(Ω,Λℓ) is the space of differentialℓ-forms onΩ with square integrable coeffi-
cients in their canonical basis representation, see [26, Sect. 2]. Its inner product can be
expressed as

(u,v)0,Ω :=

∫

Ω

u ∧ ⋆ v , u,v ∈ L2(Ω,Λℓ) , (2.2)

with ⋆ the Hodge star operator induced by the Euclidean metric onR
d, which mapsℓ-

forms to(d − ℓ)-forms. As above, a◦ tags the subspaces of forms with vanishing trace
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tr∂Ω on∂Ω, which can also be obtained by the completion of compactly supported smooth
ℓ-forms with respect to theH(dℓ,Ω)-norm:

◦
H(dℓ,Ω) := {v ∈ H(dℓ,Ω) : tr∂Ω v = 0}. (2.3)

The subspace ofclosed formsis the kernel ofdℓ and is denoted by
◦
H(dℓ 0,Ω):

◦
H(dℓ 0,Ω) := {v ∈

◦
H(dℓ,Ω) : dℓ v = 0}. (2.4)

2.2 Variational eigenvalue problems

After choosing bases for the spaces of alternating multilinear forms onRd, vector fields

(“vector proxies”)Ω 7→ R
(dℓ) provide an isomorphic model for differentialℓ-forms on

Ω. Choosing the standard “Euclidean basis”, the operators⋆, δ, tr∂Ω are incarnated by
familiar operators of classical vector analysis, different for different dimensiond and
degreeℓ, see Table1 and [4, Table 2.1].

Table 1: Identification between (operators on) differential forms and (operators on) Eu-
clidean vector proxies inR2 andR3

Differential form Proxy representation
d = 2 d = 3

ℓ = 0
d0 grad grad

tr∂Ω φ φ|∂Ω φ|∂Ω
◦
H(d0,Ω)

◦
H1(Ω)

◦
H1(Ω)

ℓ = 1

d1 curl curl

tr∂Ω u (u× n)|∂Ω (u× n)|∂Ω
◦
H(d1,Ω)

◦
H(curl,Ω)

◦
H(curl,Ω)

ℓ = 2

d2 0 div

tr∂Ω q 0 (q · n)|∂Ω
◦
H(d2,Ω) L2(Ω)

◦
H(div,Ω)

Hence, the eigenvalue problem (1.2) with ǫ, µ ≡ 1 is the special cased = 3, ℓ = 1, of
the following variational eigenvalue problem for differential ℓ-forms,0 ≤ ℓ < d:

Seeku ∈
◦
H(dℓ,Ω) \ {0}, ω ∈ R

+
0 , such that

(dℓ u, dℓ v)0,Ω = ω2 (u,v)0,Ω ∀v ∈
◦
H(dℓ,Ω) .

(2.5)
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A key observation is that the bilinear form(u,v) 7→ (dℓ u, dℓ v)0,Ω has an infinite dimen-

sional kernel
◦
H(dℓ 0,Ω) comprising all closedℓ-forms. It provides the invariant subspace

associated with the essential spectrum{0} of (2.5). This essential spectrum can be iden-
tified as the main source of difficulties confronted in the Galerkin discretization of (2.5).

On the other hand, any solutionu of (2.5) for ω 6= 0 satisfies(u, dℓ−1ψ)0,Ω = 0 for all

ψ ∈
◦
H(dℓ−1,Ω). Thus the eigenfunctions corresponding to non-zero eigenvalues belong

to the subspace

◦
Y (dℓ,Ω) := {v ∈

◦
H(dℓ,Ω) : (v, dℓ−1ψ)0,Ω = 0 ∀ψ ∈

◦
H(dℓ−1,Ω)}, (2.6)

which means they belong to the kernel ofδℓ. This is the generalization of the divergence
free constraint found for electric fields in the Maxwell case. From [46] we learn the
following theorem.

Theorem 2.1 For any d ∈ N, 0 ≤ l ≤ d, the embedding of
◦
Y (dℓ,Ω) in L2(Ω,Λℓ) is

compact.

Thus, by restricting the eigenvalue problem to
◦
Y (dℓ,Ω), we can use Riesz-Schauder

theory. This implies that (2.5) gives rise to an unbounded sequence of positive eigenvalues
λk = (ωk)2

λ0 = 0 < λ1 ≤ λ2 ≤ . . . , λk → ∞ (k → ∞) , (2.7)

with associated finite dimensional mutuallyL2(Ω)-orthogonal eigenspaces.

Remark 2.2 Owing to the zero trace boundary conditions imposed on the functions in
(2.5), it may be called a Dirichlet eigenvalue problem. UsingH(dℓ,Ω) as variational
space would result in the corresponding Neumann eigenvalueproblem. Its analysis runs
utterly parallel to the Dirichlet case using the techniquespresented below. �

2.3 Approximation of the eigenvalue problem and the role of discrete
compactness

In the sequel we fix the degreeℓ, 0 ≤ ℓ < d, of the differential forms. Spaces ofdiscrete
differential forms

◦
Vℓ

p ⊂
◦
H(dℓ,Ω) , dim

◦
Vℓ

p < ∞ ,

lend themselves to a straightforward discretization of (2.5). In this section,p ∈ N stands
for an abstract discretization parameter, and, sloppily speaking, large values ofp hint at
trial/test spaces of high resolution.
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Consider the approximation of the eigenvalue problem (2.5) by the Galerkin method:

Findup ∈
◦
Vℓ

p \ {0}, ω ∈ R
+
0 , such that

(dℓ up, dℓ vp)0,Ω = ω2 (up,vp)0,Ω ∀v ∈
◦
Vℓ

p .
(2.8)

Now, the key issue is convergence of eigenvalues and eigenvectors asp → ∞, rigorously
cast into the concept ofspectrally correct, spurious-free approximation[19, Sect. 4]. Let
us recall these notions in a few words for the case of self-adjoint nonnegative operators
without continuous spectrum (which is the case here).

The spectral correctness of the approximation of an eigenvalue problem such as (2.5)
by a sequence of finite rank eigenvalue problems (2.8) means that all eigenvalues and
all eigenvectors of (2.5) are approached by the eigenvalues and eigenvectors of (2.8) as
p → ∞. If (2.5) has a compact resolvent (which is the caseonly whenℓ = 0), the
spectral correctness is an optimal notion: It implies that if {λk}k≥1 and{λk

p}k≥1 are the
increasing eigenvalue sequences of (2.5) and (2.8) (with eigenvalues repeated according
to their multiplicities), then

λk
p → λk as p → ∞ ∀k ≥ 1, (2.9)

and the gaps between eigenspaces (correctly assembled according to multiplicities of the
eigenvalues of (2.5)) tend to0 asp → ∞.

If we face an eigenvalue problem for a self-adjoint non-negative operator with an
infinite dimensional kernel, and otherwise discrete positive spectrum (which is the case
for (2.5) for all ℓ ≥ 1), the spectral correctness implies the same properties as above
with the following modifications of the definitions: Now{λk}k≥1 is the increasing se-
quence ofpositiveeigenvalues of (2.5) (as specified in (2.7)) and, given a positive number
ε < λ1, {λk

p}k≥1 is the increasing sequence of the eigenvalues of (2.8) larger thanε (still
with repetitions according to multiplicities). With such conventions,spectral correctness
still implies convergence of eigenvalues (2.9) and eigenspaces as above. In this context,
spurious-free approximationmeans that there existsε0 > 0 such that all eigenvalues of
(2.8) less thanε0 are zero. Therefore, spectrally correct, spurious-free approximation im-
plies the convergence property (2.9) and the corresponding convergence of eigenspaces,
if we define{λk

p}k≥1 as the increasing sequence of thepositive eigenvalues of(2.8).
There exist several different ways, all well studied and summarized in the literature of

the last decade, for proving the convergence of the discreteeigenvalue problem (2.8) to
the continuous eigenvalue problem (2.5): One can use a reformulation as an eigenvalue
problem in mixed form as analyzed in [9], or one can use a regularization which gives an
elliptic eigenvalue problem for the Hodge-Laplace operator as analyzed in [4], or one can
follow the arguments of [19] and study the non-elliptic problem (2.5) directly.

Here we outline the latter approach, which employs the analysis of [32] of the approx-
imation of eigenvalue problems of non-compact selfadjointoperators. Since [19] deals
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only with the Maxwell case, i. e.d = 3, ℓ = 1, we examine the main arguments, in order
to verify that they are also valid for the general case. The proofs we give are adaptations
of those of [19] to our more general situation.

Let us define the solution operatorA : L2(Ω,Λℓ) →
◦
H(dℓ,Ω) of the source problem

corresponding to the eigenvalue problem (2.5) and its discrete counterpartAp :
◦
Vℓ

p →
◦
Vℓ

p

by

(dℓAf , dℓ v)0,Ω + (Af ,v)0,Ω = (f ,v)0,Ω ∀v ∈
◦
H(dℓ,Ω)

(dℓ Apf , dℓ v)0,Ω + (Apf ,v)0,Ω = (f ,v)0,Ω ∀v ∈
◦
Vℓ

p .
(2.10)

Note that the operatorsA andAp have the same eigenfunctions and the same eigen-
values (after a transformation) as the eigenvalue problems(2.5) and (2.8). Namely, (2.5)
and (2.8) are equivalent to the relations

u = (ω2 + 1)Au ; up = (ω2 + 1)Apup . (2.11)

The infinite-dimensional eigenspace atω = 0 shows thatA is not a compact operator.
Following [19], three conditions are identified that together are necessary and suffi-

cient for a spectrally correct, spurious-free approximation ofA by Ap or, equivalently, of
the eigenvalue problem (2.5) by the discrete eigenvalue problem (2.8).

The first condition is rather natural. It states that the sequence of discrete spaces( ◦
Vℓ

p

)
p∈N

is asymptotically dense in
◦
H(dℓ,Ω) (compare [19, Condition (CAS) – com-

pleteness of approximating subspaces])

(CAS) lim
p→∞

inf
vp∈

◦
Vℓ

p

‖v − vp‖H(dℓ,Ω) = 0 ∀v ∈
◦
H(dℓ,Ω) . (2.12)

The second condition, only relevant forℓ > 0, states that closed forms can be well ap-
proximated by discrete closed forms (compare [19, Condition (CDK) – completeness of
discrete kernels])

(CDK) lim
p→∞

inf
zp∈

◦
Vℓ

p∩
◦
H(dℓ 0,Ω)

‖z− zp‖L2(Ω) = 0 ∀z ∈
◦
H(dℓ 0,Ω) . (2.13)

The third condition is the most intricate one and has been dubbeddiscrete compactness.
For its formulation, we introduce the orthogonal complement space of the discrete closed
forms:

◦
Zℓ

p := {up ∈
◦
Vℓ

p : (up, zp)0,Ω = 0 ∀zp ∈
◦
Vℓ

p ∩
◦
H(dℓ 0,Ω)}. (2.14)

Definition 2.3 Let us chooseℓ ∈ {1, . . . , d−1}. Thediscrete compactness propertyholds
for a family

( ◦
Vℓ

p

)
p∈N

of finite dimensional subspaces of
◦
H(dℓ,Ω), if for any subsequence

N
′ ofN, anyboundedsequence

(
up

)
p∈N′

⊂
◦
H(dℓ,Ω) with up ∈

◦
Zℓ

p

contains a subsequence thatconverges inL2(Ω,Λℓ).
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The convergence proof is based on two lemmas, the first of which corresponds to [19,
Theorem 4.12]. It implies, according to [32, Condition P1) and Theorems 2,4,5,6], the
spectral correctness of the approximation.

Lemma 2.4 If (2.12) and the discrete compactness property hold, then

lim
p→∞

sup
vp∈

◦
Vℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) = 0 . (2.15)

Proof. Note first that forvp ∈
◦
Vℓ

p ∩
◦
H(dℓ 0,Ω) there holdsAvp = vp = Apvp, so that by

orthogonal decomposition of
◦
Vℓ

p one gets

sup
vp∈

◦
Vℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) = sup
vp∈

◦
Zℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) .

Furthermore, one has by definition ofA andAp

‖Avp −Apvp‖H(dℓ,Ω) = inf
wp∈

◦
Vℓ

p

‖Avp −wp‖H(dℓ,Ω) .

Assume now that (2.15) does not hold. Then there existsε > 0, a subsequenceN′ of N
and a sequence(vp)p∈N′ with vp ∈

◦
Zℓ

p satisfying‖vp‖H(dℓ,Ω) = 1 and

‖Avp −wp‖H(dℓ,Ω) ≥ ε ∀p ∈ N
′, wp ∈

◦
Vℓ

p . (2.16)

We can apply the discrete compactness property to the sequence (vp) and obtain a sub-
sequence converging inL2(Ω,Λℓ) to somev ∈ L2(Ω,Λℓ). SinceA : L2(Ω,Λℓ) →
◦
H(dℓ,Ω) is continuous, we findAv ∈

◦
H(dℓ,Ω), and the approximation property (2.12)

provides us with a sequence(wp) with wp ∈
◦
Vℓ

p that converges in
◦
H(dℓ,Ω) toAv. Hence

for the subsequence we obtain

‖Avp −wp‖H(dℓ,Ω) ≤ ‖Avp − Av‖H(dℓ,Ω) + ‖Av −wp‖H(dℓ,Ω) → 0 ,

in contradiction with (2.16). 2

The second lemma corresponds to [19, Corollary 2.20]. It gives the discrete Friedrichs
inequality (in [9] also called “ellipticity in the discrete kernel”), and it is easy to see that
this implies thatω = 0 is not a limit point of positive discrete eigenvalues, so that the
spurious-free property of the approximation follows.

Lemma 2.5 If (2.13) and the discrete compactness property hold, then there existsα > 0
such that for allp ∈ N

‖dℓ v‖L2(Ω) ≥ α ‖v‖L2(Ω) ∀v ∈
◦
Zℓ

p (2.17)
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Proof. Assume that (2.17) does not hold. Then there exists a subsequenceN
′ of N and a

sequence(vp)p∈N′ with vp ∈
◦
Zℓ

p satisfying

‖vp‖L2(Ω) = 1 and lim
p→∞

‖dℓ vp‖L2(Ω) = 0 . (2.18)

The discrete compactness property can be applied to this sequence and gives a subse-
quence converging inL2(Ω,Λℓ) to somez ∈ L2(Ω,Λℓ). From (2.18) follows that the
convergence actually takes place in

◦
H(dℓ,Ω) and thatz ∈

◦
H(dℓ 0,Ω). Therefore the ap-

proximation property (2.13) provides us with a sequence(zp) with zp ∈
◦
Vℓ

p ∩
◦
H(dℓ 0,Ω)

that converges inL2(Ω,Λℓ) to z. Hence for the subsequence we find

‖vp − zp‖L2(Ω) ≤ ‖vp − z‖L2(Ω) + ‖z− zp‖L2(Ω) → 0 .

But vp ∈
◦
Zℓ

p andzp ∈
◦
Vℓ

p ∩
◦
H(dℓ 0,Ω) areL2(Ω)-orthogonal, hence for allp

‖vp − zp‖
2
L2(Ω) = ‖vp‖

2
L2(Ω) + ‖zp‖

2
L2(Ω) ≥ 1 ,

which leads to a contradiction. 2

To summarize, Lemmas2.4and2.5together prove the following result.

Theorem 2.6 If the completeness of approximating subspaces(2.12), the completeness
of discrete kernels(2.13) and the discrete compactness property hold, then(2.8) provides
a spectrally correct, spurious-free approximation of the eigenvalue problem(2.5).

Remark 2.7 The main focus of this section is on theconvergenceof the eigenvalues and
the eigenfunctions of problem (2.8) to those of (2.5). On the other hand, when considering
concrete applications it is crucial to investigate theorder of convergence. In order to do
so, several strategies are available. A straightforward approach which well fits the theory
summarized in this section makes use of the results from [33]. Theorem 1 of [33] states
in this particular situation that the error in the eigenfunctions (measured as usual by the
gap of Hilbert spaces) is bounded by the best approximation,and Theorem 3(c) of [33]
states that the eigenvalues achieve double order of convergence since our problem is sym-
metric. An alternative approach makes use of the equivalence of problems (2.5) and (2.8)
with suitable mixed formulations [10, Part 4]; in this case an estimate of the order of
convergence can be achieved by the standard Babuška–Osborn theory for the spectral ap-
proximation of compact operators applied to the mixed formulations [10, Theorems 13.8,
13.10, 14.9, 14.11]. �

3 Abstract framework implying discrete compactness

In this section we fix a degree of differential forms

ℓ ∈ {1, . . . , d− 1},
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and we formulate a set of hypotheses which allow us to prove the discrete compactness
property. These hypotheses are organized in three groups:

1. standard assumptions related to the finite element spaces
◦
Vℓ

p (Sect.3.1),

2. assumptions on the existence and key properties of “lifting operators” (Sect.3.3),

3. hypotheses on projections onto
◦
Vℓ

p complying with the commuting diagram prop-
erty and satisfying an approximation property (Sect.3.4).

To state these assumptions we have to introduce intermediate spacesX andS of more
regular forms

◦
Vℓ

p ⊂ X(M,Λℓ) ⊂
◦
H(dℓ,Ω) and

◦
Vℓ−1

p ⊂ S(M,Λℓ−1) ⊂
◦
H(dℓ−1,Ω) ,

allowing compact embedding arguments and precise notions of continuity of lifting and
projection operators.

3.1 Discrete spaces

Our focus is on finite element spaces. For the sake of simplicity, we restrict ourselves
to polyhedral Lipschitz domainsΩ. We assume that the finite dimensional trial and test
spaces

◦
Vℓ

p, p ∈ N, are based on afixedfinite partitionM of Ω, composed of elements
(cells)K:

Ω =
⋃

K∈M

K , K ∩K ′ = ∅ , if K 6= K ′, K,K ′ ∈ M .

For a cellK ∈ M, let Fm(K) designate the set ofm-dimensional facets ofK: for
m = 0 these are the vertices, form = 1 the edges, form = d − 1 the faces, and
Fd(K) = {K}.

We take for granted that the discrete spaces
◦
Vℓ

p can be assembled from local contribu-
tions in the sense that for each mesh cellK ∈ M there is a spaceVℓ

p(K) ⊂ C∞(K,Λℓ)
of smoothℓ-forms onK, such that

◦
Vℓ

p =
◦
Vℓ

p(M) :=
{
v ∈

◦
H(dℓ,Ω) : v

∣∣
K
∈ Vℓ

p(K) ∀K ∈ M
}
. (3.1)

In other words,
◦
Vℓ

p can be defined by specifying the local spacesVℓ
p(K) and requiring the

continuity of traces across inter-element boundaries as well as boundary conditions on
∂Ω.

In the same fashion, we introduce a corresponding family
◦
Vℓ−1

p ⊂
◦
H(dℓ−1,Ω) of

spaces of discrete(ℓ − 1)-forms. We will see later on that as a consequence of further
hypotheses, the local spacesVℓ−1

p (K) andVℓ
p(K) satisfy an exact sequence property.

11



3.2 Spaces of more regular forms

We introduce a Hilbert spaceX(M,Λℓ) ⊂
◦
H(dℓ,Ω) that captures the extra regularity

that distinguishesℓ-forms in the space
◦
Y (dℓ,Ω). We can think of this space as a space of

“more regular”ℓ-forms onΩ.

Assumption 1
The space

◦
Y (dℓ,Ω) defined in (2.6) is continuously embedded inX(M,Λℓ).

This means that withC > 0 depending only onΩ

‖u‖X(M,Λℓ) ≤ C ‖u‖H(dℓ,Ω) ∀u ∈
◦
Y (dℓ,Ω) . (3.2)

On the other hand,X(M,Λℓ) has to be small enough to maintain the compact embedding
satisfied by

◦
Y (dℓ,Ω), cf. Thm.2.1.

Assumption 2 The spaceX(M,Λℓ) is compactly embedded inL2(Ω,Λℓ).

As with the discrete spaces, the spacesX(M,Λℓ) are built from local contributions
and will therefore depend on the meshM. We assume that for each mesh cellK ∈ M

there are Hilbert spacesX(K,Λℓ) so that:

X(M,Λℓ) =
{
v ∈

◦
H(dℓ,Ω) : v

∣∣
K
∈ X(K,Λℓ) ∀K ∈ M

}
, (3.3)

and, in addition, the norm ofX(M,Λℓ) is defined through local contributions:

‖u‖2X(M,Λℓ) = ‖u‖2H(dℓ,Ω) +
∑

K∈M

∥∥u
∣∣
K

∥∥2

X(K,Λℓ)
. (3.4)

Finally, the local spaces have to be large enough to contain the discrete forms for any
value ofp:

Vℓ
p(K) ⊂ X(K,Λℓ) . (3.5)

Correspondingly, we introduce a spaceS(M,Λℓ−1) ⊂
◦
H(dℓ−1,Ω) of “more regular

potentials”. Similar toX(M,Λℓ), the spacesS(M,Λℓ−1) are mesh-dependent and allow
for a characterization through local Hilbert spacesS(K,Λℓ−1), K ∈ M,

S(M,Λℓ−1) =
{
ψ ∈

◦
H(dℓ−1,Ω) : ψ

∣∣
K
∈ S(K,Λℓ−1) ∀K ∈ M

}
. (3.6)

They are endowed with the norm

‖φ‖2S(M,Λℓ−1) = ‖φ‖2H(dℓ−1,Ω) +
∑

K∈M

∥∥φ
∣∣
K

∥∥2

S(K,Λℓ−1)
. (3.7)
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The local spaces are large enough to contain the local discrete potential spaces:

Vℓ−1
p (K) ⊂ S(K,Λℓ−1) . (3.8)

The following assumption establishes the connection betweenX(M,Λℓ) andS(M,Λℓ−1).

Assumption 3 The exterior derivative mapsS(M,Λℓ−1) continuously intoX(M,Λℓ):

S(M,Λℓ−1) ⊂ {φ ∈
◦
H(dℓ−1,Ω) : dℓ−1φ ∈ X(M,Λℓ)},

and the image is maximal:

dℓ−1 S(M,Λℓ−1) = dℓ−1

◦
H(dℓ−1,Ω) ∩X(M,Λℓ).

To conclude this subsection, note that in the case of an elementK touching the bound-
ary ∂Ω, like for the discrete spacesVℓ

p(K) andVℓ−1
p (K), the local spacesX(K,Λℓ) and

S(K,Λℓ−1) are not obliged to comply with any boundary conditions.

3.3 Local liftings

A pair of linear mappingsRk,K : C∞(K,Λk) 7→ C∞(K,Λk−1), k = ℓ, ℓ + 1, is called a
lifting operatorof degreeℓ if it fulfills

dℓ−1 ◦Rℓ,K + Rℓ+1,K ◦ dℓ = Idℓ . (3.9)

This relation characterizes a “contracting homotopy” of the de Rham complex [5, Section
5.1.2].

Besides this algebraic relationship, our approach hinges on smoothing properties of
the lifting operators, expressed by means of the local spacesS(K,Λℓ−1) of more regular
potentials andX(K,Λℓ) of more regular forms. The next assumption summarizes the
continuity expected from the lifting operator.

Assumption 4 For everyK ∈ M there is a lifting operator(Rℓ,K ,Rℓ+1,K) whose com-
ponents can be extended to continuous mappings

Rℓ+1,K : L2(K,Λℓ+1) 7→ X(K,Λℓ) and Rℓ,K : X(K,Λℓ) 7→ S(K,Λℓ−1) ,

and thus identity (3.9) holds onX(K,Λℓ).

As a consequence, for each cellK ∈ M, we have the exact sequence

S(K,Λℓ−1)
dℓ−1

−−−→ X(K,Λℓ)
dℓ−−−→ L2(K,Λℓ+1). (3.10)

Finally, the local liftings have to be compatible with the local spaces of discrete dif-
ferential forms:
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Assumption 5 The local operatorsRℓ+1,K , when applied to exact local discrete(ℓ+1)-
forms, yield local discreteℓ-forms,i.e.,

Rℓ+1,K ◦ dℓ : Vℓ
p(K) → Vℓ

p(K) .

3.4 Local projectors

As usual in methods based on discrete commuting diagrams we need projection operators
πk
p,K onto discrete spaces for(ℓ−1)-forms andℓ-forms. For degreeℓ−1, our local spaces

S(K,Λℓ−1) of more regular potentials can play the role of domains for the projectorsπℓ−1
p,K .

For the degreeℓ, by generalization of what we actually need in the case of dimension
d = 2 andd = 3 for Maxwell, we define our projectorsπℓ

p,K on smaller spaces than
X(K,Λℓ). We denote these new spaces byS(K,Λℓ) and require that they contain for all
p thep-dependent subspaces

X̃p(K,Λℓ) = {u ∈ X(K,Λℓ) : dℓ u ∈ dℓ V
ℓ
p(K)} . (3.11)

On the same model as (3.6)-(3.7), we define the corresponding global spacesS(M,Λℓ)
and

X̃p(M,Λℓ) = {u ∈ X(M,Λℓ) : dℓ u ∈ dℓ V
ℓ
p} (3.12)

and we have the continuous embeddings

X̃p(M,Λℓ) →֒ S(M,Λℓ) →֒ X(M,Λℓ) . (3.13)

Assumption 6 There arelocal continuous linear projections

πℓ−1
p,K : S(K,Λℓ−1) 7→ Vℓ−1

p (K) and πℓ
p,K : S(K,Λℓ) 7→ Vℓ

p(K)

for all mesh cellsK ∈ M.

The standard commuting diagram property is as follows.

Assumption 7 The projectorsπℓ−1
p,K andπℓ

p,K are compatible with the exterior derivative
in the sense that the diagram

S(K,Λℓ−1)
dℓ−1

−−−→ S(K,Λℓ)

πℓ−1
p,K

y
yπℓ

p,K

Vℓ−1
p (K)

dℓ−1
−−−→ Vℓ

p(K) ,

commutes for everyK ∈ M.
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Let us note that, as a consequence of Assumptions4 and7, we find that the sequence

Vℓ−1
p (K)

dℓ−1
−−−→ Vℓ

p(K)
dℓ−−−→ dℓ

(
Vℓ
p(K)

)

is exact.
Besides, the local projections acting on(ℓ− 1)-forms are supposed to enjoy a crucial

approximation property using the Hilbert space norms‖·‖S(K,Λℓ−1).

Assumption 8 There is a functionεℓ−1 : N 7→ R
+ with lim

p→∞
εℓ−1(p) = 0 so that

∥∥dℓ−1(φ− πℓ−1
p,Kφ)

∥∥
L2(K,Λℓ)

≤ εℓ−1(p) ‖φ‖S(K,Λℓ−1) ∀φ ∈ S(K,Λℓ−1) .

Finally we assume for the projectionsπℓ
p,K a natural condition of conformity: For all

u ∈ X̃p(K,Λℓ)

trF u = 0 ⇒ trF πℓ
p,Ku = 0 ∀F ∈ Fm(K) , ℓ ≤ m ≤ d , (3.14)

and the corresponding condition for the projectionsπℓ−1
p,K . This makes it possible to define

global linear projections

πℓ
p : S(M,Λℓ) 7→

◦
Vℓ

p and πℓ−1
p : S(M,Λℓ) 7→

◦
Vℓ−1

p

by patching together the local operators

(πℓ
pu)

∣∣
K
:= πℓ

p,K(u
∣∣
K
) and (πℓ−1

p φ)
∣∣
K
:= πℓ−1

p,K (φ
∣∣
K
) ∀K ∈ M . (3.15)

As a consequence of Assumption7 and (3.15), the global projectorsπℓ−1
p andπℓ

p inherit
the globalcommuting diagram property

S(M,Λℓ−1)
dℓ−1

−−−→ S(M,Λℓ)

πℓ−1
p

y
yπℓ

p

◦
Vℓ−1

p

dℓ−1
−−−→

◦
Vℓ

p.

(3.16)

3.5 Proof of the discrete compactness property

The estimate of Assumption8 on “potentials” carries over toℓ-forms with a discrete
exterior derivative, that is, the elements of the spaceX̃p(M,Λℓ), see (3.12).

Lemma 3.1 (Global projection error estimate)Making Assumptions4 through8, the es-
timate ∥∥u− πℓ

pu
∥∥
L2(Ω,Λℓ)

≤ Cεℓ−1(p) ‖u‖X(M,Λℓ) ∀u ∈ X̃p(M,Λℓ)

holds true, with a constantC > 0 independent ofp.
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Proof. Pick anyu ∈ X̃p(M,Λℓ). The locality of the projectorπℓ
p, cf. (3.15), and (3.4)

allow purely local considerations. Single out one cellK ∈ M, still write u = u
∣∣
K

∈

X̃p(K,Λℓ), and splitu onK using (3.9) from Assumption4:

u = dℓ−1 Rℓ,Ku+ Rℓ+1,K dℓ u = dℓ−1φ+ Rℓ+1,K dℓ u . (3.17)

with φ := Rℓ,Ku. The continuity ofRℓ,K from Assumption4 reveals that

‖φ‖S(K,Λℓ−1) ≤ C ‖u‖X(K,Λℓ) , (3.18)

where here and belowC will denote constants (possibly different at different occurrences)
which depend neither onu nor onp.

Thanks to identity (3.17) and the commuting diagram property from Assumption7,
we have

πℓ
p,Ku = dℓ−1 π

ℓ−1
p,Kφ+ πℓ

p,KRℓ+1,K dℓ u . (3.19)

Recall thatu ∈ X̃p(K,Λℓ) belongs to the domain ofπℓ
p,K by Assumption6. Further, as

u ∈ X̃p(K,Λℓ), from Assumption5 we infer that

Rℓ+1,K dℓ u ∈ Vℓ
p(K) . (3.20)

Thus, owing to the identities (3.17), (3.19) and the projector property ofπℓ
p,K , the task is

reduced to an interpolation estimate forπℓ−1
p,K :

(Id− πℓ
p,K)u = dℓ−1(Id− πℓ−1

p,K )φ+ (Id− πℓ
p,K)Rℓ+1,K dℓ u︸ ︷︷ ︸
=0 by (3.20)

. (3.21)

As a consequence, invoking Assumption8,

∥∥(Id− πℓ
p,K)u

∥∥
L2(K,Λℓ)

(3.21)
=

∥∥dℓ−1(Id− πℓ−1
p,K )φ

∥∥
L2(K,Λℓ)

≤ εℓ−1(p) ‖φ‖S(K,Λℓ−1)

(3.18)
≤ Cεℓ−1(p) ‖u‖X(K,Λℓ) , (3.22)

which furnishes a local version of the estimate. This estimate is uniform inK ∈ M

becauseM is finite. Due to (3.4), squaring (3.22) and summing over all cells finishes the
proof. 2

We are now in the position to prove the main result of this section.

Theorem 3.2 (Discrete compactness)Under Assumptions1 through8, the discrete com-
pactness property of Definition2.3holds for the family

( ◦
Vℓ

p

)
p∈N

of subspaces of
◦
H(dℓ,Ω).
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Proof. The proof resorts to the “standard policy” for tackling the problem of discrete
compactness, introduced by Kikuchi [39, 40] for analyzing theh-version of Whitney-1-
forms. It forms the core of most papers considering the issueof discrete compactness, see
[12, Thm. 2], [11, Thm. 11], [37, Thm. 4.9], [31, Thm. 2], etc.

Let us introduce the discrete analogue of the space
◦
Y (dℓ,Ω):

◦
Yℓ

p := {vp ∈
◦
Vℓ

p :
(
vp, dℓ−1ψp

)
0,Ω

= 0 ∀ψp ∈
◦
Vℓ−1

p }. (3.23)

The space
◦
Yℓ

p contains
◦
Zℓ

p as a subspace.
We consider a subsequenceN′ of N and aH(dℓ,Ω)-bounded sequence(up)p∈N′ with

members in
◦
Zℓ

p. Thusup belongs in particular to
◦
Yℓ

p and the sequence(up)p∈N′ satisfies

(i) up ∈
◦
Vℓ

p , (3.24)

(ii)
(
up, dℓ−1ψp

)
0,Ω

= 0 ∀ψp ∈
◦
Vℓ−1

p , (3.25)

(iii) ‖up‖H(dℓ,Ω) ≤ 1 ∀p ∈ N
′ . (3.26)

We have to confirm that it possesses a subsequence that converges inL2(Ω,Λℓ).
We start with theL2(Ω,Λℓ)-orthogonal projection ofup into

◦
Y (dℓ,Ω) and parallel to

dℓ−1

◦
H(dℓ−1,Ω): let ũp be the unique vector field in

◦
H(dℓ,Ω) with

ũp = up + dℓ−1 φ̃p, φ̃p ∈
◦
H(dℓ−1,Ω) , (3.27)

(ũp, dℓ−1ψ)0,Ω = 0 ∀ψ ∈
◦
H(dℓ−1,Ω) . (3.28)

Obviously, the latter condition implies

ũp ∈
◦
Y (dℓ,Ω) . (3.29)

Hence, by virtue of Assumption1, the fact thatdℓ ũp = dℓ up, and (3.12), ũp satisfies

ũp ∈ X̃p(M,Λℓ), ‖ũp‖X(M,Λℓ) ≤ C ‖up‖H(dℓ,Ω) , (3.30)

whereC > 0 does not depend onp.
Sincedℓ−1 φ̃p = ũp − up ∈ X(M,Λℓ), Assumption3 implies that we may assume

thatφ̃p ∈ S(M,Λℓ−1).
Thus we can use Nédélec’s trick [44] to obtain

‖ũp − up‖
2
L2(Ω,Λℓ) =

(
ũp − up, ũp − πℓ

pũp + πℓ
pũp − up

)
0,Ω

=
(
ũp − up, ũp − πℓ

pũp

)
0,Ω

.
(3.31)
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This holds because from (3.27) and the projector property ofπℓ
p we know

πℓ
pũp − up = πℓ

pup + πℓ
p dℓ−1 φ̃p − up = πℓ

p dℓ−1 φ̃p ,

and thanks to the commuting diagram property (3.16) (deduced from Assumption7) com-
bined with the orthogonality conditions (3.25) and (3.28), we find

(
ũp − up, π

ℓ
pũp − up

)
0,Ω

=
(
ũp − up, dℓ−1 π

ℓ−1
p φ̃p

)
0,Ω

= 0 . (3.32)

Hence, appealing to Lemma3.1, with C > 0 independent ofp, we get

‖ũp − up‖L2(Ω,Λℓ) ≤
∥∥ũp − πℓ

pũp

∥∥
L2(Ω,Λℓ)

≤ Cεℓ−1(p) ‖ũp‖X(M,Λℓ)

(3.30)
≤ Cεℓ−1(p) ‖up‖X(M,Λℓ) → 0 for p → ∞ .

(3.33)

From (3.30) we conclude that the sequence(ũp)p∈N′ is uniformly bounded inX(M,Λℓ).
By Assumption2 it has a convergent subsequence inL2(Ω,Λℓ). Owing to (3.33), the
same subsequence of(up)p∈N′ will converge inL2(Ω,Λℓ). 2

3.6 Approximation of the eigenvalue problem

As discussed in Section2.3, the discrete compactness property is the cornerstone of the
proof of the convergence of the discrete generalized Maxwell eigenvalue problem (2.8).

Corollary 3.3 In addition to the hypotheses of Theorem3.2, namely Assumptions1 to 8,
assume that property(CAS) (2.12) holds and that the spaceX(M,Λℓ) ∩

◦
H(dℓ 0,Ω) is

dense in
◦
H(dℓ 0,Ω). Then(2.8) provides a spectrally correct, spurious-free approxima-

tion of the eigenvalue problem(2.5).

Proof. We use Theorem2.6 from Section2.3. Considering that the discrete com-
pactness property is provided by Theorem3.2, and that we assume the approximation
property (CAS) (2.12), we only need to show the approximation property (CDK) (2.13),
which concerns the approximation of closed forms by closed discrete forms.

Since we assumed the density ofX(M,Λℓ)∩
◦
H(dℓ 0,Ω) in

◦
H(dℓ 0,Ω), it is sufficient

to prove (CDK) forz ∈ X(M,Λℓ) ∩
◦
H(dℓ 0,Ω). Suchz belongs toX̃p(M,Λℓ), and

we can therefore apply Lemma3.1, which shows thatπℓ
pz → z in L2(Ω,Λℓ). We will

have accomplished to show (CDK) withzp = πℓ
pz, as soon as we show thatdℓ zp = 0.

Keeping in mind thatzp ∈
◦
Vℓ

p ⊂ H(dℓ,Ω), we see that it is sufficient to show the local
relationdℓ zp = 0 in K for everyK ∈ M. This follows finally as in (3.19) in the proof of
Lemma3.1, becausedℓ z = 0 implies

πℓ
p,Kz = dℓ−1 π

ℓ−1
p,KRℓ,Kz .

Hencedℓ zp = dℓ π
ℓ
p,Kz = dℓ dℓ−1 π

ℓ−1
p,KRℓ,Kz = 0, which ends the proof. 2
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Remark 3.4 The abstract theory developed in this section can be appliedto theh-version
of discrete differential forms, if the dependence of the constants on the size of the cellK
is made explicit by means of scaling arguments. Here, we forgo this extra technicality
and refer the reader to [37, Sect. 4.4]. �

4 Regularized Poincaŕe lifting

In this section we describe the construction of a local lifting operatorRℓ that will satisfy
Assumptions4 and5 in Section3.3 for suitable spacesX(K,Λℓ), S(K,Λℓ) andVℓ

p(K).
We follow the presentation in [26], where these operators are analyzed and where it is
shown in particular that they are pseudodifferential operators of order−1.

4.1 Definition

We consider a bounded domainD ⊂ R
d that isstar-shapedwith respect to some subdo-

mainB ⊂ D, that is,

∀a ∈ B, x ∈ D : {(1− t)a + tx, 0 < t < 1} ⊂ D . (4.1)

Fora ∈ B and1 ≤ ℓ ≤ d, we define thePoincaŕe operatorRℓ,a, acting on a differen-
tial form u ∈ C∞(D,Λℓ), by the path integral

Rℓ,au(x) = (x− a) y

∫ 1

0

tℓ−1 u
(
a+ t(x− a)

)
dt , x ∈ D . (4.2)

Here the symboly denotes the contraction (also called “interior product”) of the vector
fieldx 7→ (x−a) with theℓ-formu. It is clear thatRℓ,a mapsC∞(D,Λℓ) toC∞(D,Λℓ−1)
and it has been shown (see [35] for proofs in the cased = 3) that it can be extended to
a bounded operator fromL2(D,Λℓ) to L2(D,Λℓ−1). In order to define theregularized
Poincaŕe operatorRℓ, we choose a function

θ ∈ C∞
0 (Rd) , supp θ ⊂ B ,

∫

B

θ(a) da = 1 ,

and set

Rℓu(x) =

∫

B

θ(a)Rℓ,au(x) da . (4.3)
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4.2 Regularity

The substitutiony = a+ t(x− a), τ = 1/(1− t) transforms the double integral in (4.2),
(4.3) into

Rℓu(x) =

∫

Rd

∞∫

1

(τ − 1)ℓ−1τd−ℓθ
(
x+ τ(y − x)

)
(x− y) y u(y) dτ dy

=

∫

Rd

k(y, y − x) y u(y) dy ,

(4.4)

where the kernelk(y, z) has an expansion into quasi-homogeneous terms:

k(y, z) = −z

∫ ∞

0

sℓ−1(s+ 1)d−ℓθ
(
y + sz

)
ds

= −
d−ℓ∑

j=0

(
d−ℓ
j

) z

|z|d−j

∫ ∞

0

rd−j−1θ
(
y + r

z

|z|

)
dr .

(4.5)

The operatorRℓ is therefore a weakly singular integral operator. In [26, Section 3.3], the
following result is shown.

Proposition 4.1 For 1 ≤ ℓ ≤ d, the operatorRℓ is a pseudodifferential operator of
order −1 onR

d. It is well defined onC∞(D,Λℓ), it mapsC∞(D,Λℓ) to C∞(D,Λℓ−1)
andC∞(D,Λℓ) to C∞(D,Λℓ−1), and for anys ∈ R it has an extension as a bounded
operator

Rℓ : Hs(D,Λℓ) → Hs+1(D,Λℓ−1)) .

Here,Hs(D,Λℓ) is the Sobolev space ofℓ-forms onD of orders.

4.3 Lifting property

The lifting property (3.9) is a consequence of the following identity, which is a special
case of “Cartan’s magic formula” for Lie derivatives and fora flow field generated by the
dilations with centera.

d

dt
(tℓu

(
a + t(x− a)

)
=

dℓ−1

(
tℓ−1(x− a) y u

(
a+ t(x− a)

))
+ tℓ(x− a) y dℓ u

(
a + t(x− a)

)
(4.6)

Hereu is anℓ-form. The result is

dℓ−1 Rℓu+ Rℓ+1 dℓ u = u (1 ≤ ℓ ≤ d− 1) ;

R1 d0 u = u−
(
θ,u

)
0,D

(ℓ = 0) ;

dd−1 Rdu = u (ℓ = d) .

(4.7)
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These relations are valid for allu ∈ C∞
0 (Rd,Λℓ) and by extension for allu ∈ Hs(D,Λℓ),

s ∈ R.
The perfect match of (4.7) with (3.9) from Assumption4 suggests that the regularized

Poincaré liftingRℓ provides suitable local liftings as stipulated in Assumption 4. To this
end, we can choose as local spaces of “more regular forms”

X(K,Λℓ) := H(dℓ, K) ∩Hr(K,Λℓ) ,

S(K,Λℓ−1) := Hr(dℓ−1, K) and S(K,Λℓ) := Hr(dℓ, K) ,
(4.8)

for some0 < r ≤ 1, where we denote byHr(dk, K) the space

Hr(dk, K) := {v ∈ Hr(K,Λk) : dk v ∈ Hr(K,Λk+1)} .

All these spaces are equipped with the natural Hilbert spacenorms. Also keep in mind
that the global spacesX(M,Λℓ), S(M,Λℓ−1) andS(M,Λℓ) are determined by their local
definition on the mesh cellsK, cf. (3.3) and (3.6). For the particular choice (4.8) an
assumption of Corollary3.3can be verified.

Lemma 4.2 For X(M,Λℓ) arising from(4.8) the spaceX(M,Λℓ)∩
◦
H(dℓ 0,Ω) is dense

in
◦
H(dℓ 0,Ω).

Proof. By [26, Thm. 4.9(c)] we have a direct decomposition

◦
H(dℓ 0,Ω) = dℓ−1

◦
H1(Ω,Λℓ−1) ⊕ Cℓ , Cℓ ⊂ C∞

Ω
(Rn,Λℓ) , (4.9)

whereC∞
Ω
(Rd,Λℓ) is the space of compactly supported, smoothℓ-forms onRd with sup-

port contained inΩ or, equivalently, the space of all smoothℓ-forms onΩ that vanish on
∂Ω together with all their derivatives. SinceC∞

Ω
(Rd,Λℓ−1) is dense in

◦
H1(Ω,Λℓ−1), we

deduce:

C∞
Ω
(Rd,Λℓ) ∩ dℓ−1

◦
H1(Ω,Λℓ−1) is dense in dℓ−1

◦
H1(Ω,Λℓ−1)

As everyu ∈ C∞
Ω
(Rd,Λℓ) belongs toX(M,Λℓ), the assertion follows. 2

We point out that the choice ofr in (4.8) is determined by Assumption1. Also note
that whenever we opt for (4.8), Rellich’s theorem ensures Assumption2, because the
mesh is kept fixed.

The construction ofRℓ entails a constraint on the cell shapes. This is satisfied for
standard finite element meshes, where the cells usually are convex polyhedra.

Assumption 9 Every cellK ∈ M is a star-shaped polyhedron.

Lemma 4.3 Assumption9, the choice(4.8) for spacesX(K,Λℓ) andS(K,Λℓ−1) imply
Assumptions2, 3 and4.
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Proof. The only fact remaining to be proved is the maximality relation in Assumption
3

dℓ−1 S(M,Λℓ−1) = dℓ−1

◦
H(dℓ−1,Ω) ∩X(M,Λℓ).

The inclusion⊂ holds by definition. Let us prove the converse inclusion.
Let u ∈ dℓ−1

◦
H(dℓ−1,Ω) ∩ X(M,Λℓ). Thusu = dℓ−1φ with φ ∈

◦
H(dℓ−1,Ω). Since

u ∈ L2(Ω,Λℓ), using [26, Cor. 4.7] we obtain that there existsψ ∈
◦
H1(Ω,Λℓ−1) such

thatu = dℓ−1ψ. In particular,ψ
∣∣
K

belongs toHr(K,Λℓ−1) for all K and, sinceu
∣∣
K

belongs toHr(K,Λℓ), we finally find thatψ
∣∣
K
∈ Hr(dℓ−1, K). 2

4.4 Preservation of polynomial forms

Fundamental in finite element methods is the notion of polynomial differential forms. For
an orderedℓ-tupleI = (i1, . . . , iℓ), i1 < i2 < . . . < iℓ, {i1, . . . , iℓ} ⊂ {1, . . . , d}, let

dxI := dxi1 ∧ · · · ∧ dxiℓ ,

wheredxj , j = 1, . . . , d, are the co-ordinate 1-forms in Euclidean spaceR
d. The space

Pp(Λ
ℓ) of polynomialℓ-forms onRd is defined as

Pp(Λ
ℓ) :=

{
u =

∑
I
uI dxI : uI ∈ Pp(R

d)
}
,

where
∑

I indicates summation over all orderedℓ-tuples, andPp(R
d) is the space ofd-

variate polynomials of total degree≤ p. We remark that ford ∈ {2, 3} polynomial forms
possess polynomial vector proxies.

From the definition (4.2) it is clear that the Poincaré operatorRℓ,a maps differential
forms with polynomial coefficients to differential forms with polynomial coefficients. The
same holds for the regularized Poincaré operatorRℓ by (4.3). If we wantRℓ to map a
spaceP (Λℓ) of differential forms of orderℓ (e.g., with polynomial coefficients) into a
spaceP (Λℓ−1) of differential forms of orderℓ− 1, it is sufficient to require the following
two properties, see [26, Proposition 4.2].

Proposition 4.4 Assume thatP (Λℓ) andP (Λℓ−1) are finite-dimensional spaces of differ-
ential forms satisfying
(i) The spaceP (Λℓ) is invariant with respect to dilations and translations, that is

For anyt ∈ R, a ∈ R
n : if u ∈ P (Λℓ), then

(
x 7→ u(tx+ a)

)
∈ P (Λℓ) .

(ii) The interior productxy : u 7→ x y u mapsP (Λℓ) toP (Λℓ−1).
ThenRℓ mapsP (Λℓ) intoP (Λℓ−1).
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For the compatibility Assumption5 to hold, it is therefore sufficient to make the fol-
lowing assumption about the local polynomial spaceVℓ

p(K).

Assumption 10

(i) The spaceVℓ
p(K) is invariant with respect to dilations and translations.

(ii) The differential operatorx y dℓ : u 7→ x y dℓ u mapsVℓ
p(K) into Vℓ

p(K).

To summarize:

Assumptions9, 10, and (4.8) =⇒ Assumptions2, 3, 4, and5.

5 Discrete differential forms

Now we introduce concrete spaces of discrete differential forms. We merely summarize
the constructions that have emerged from research in differential geometry (the “Whitney-
forms” introduced in [48]) and finite element theory (“Raviart-Thomas elements” of [47]
and “Nédélec finite elements” of [44, 45]). These schemes were later combined into the
concept of discrete differential forms [14, 36]. Surveys and many more details can be
found in [37, 4, 5, 15].

5.1 Simplicial meshes

LetM be a conforming simplicial finite element mesh covering the Lipschitz polyhedron
Ω ⊂ R

d. As elaborated in [4, Sect. 3 & 4] forp ∈ N the following choices

Vℓ
p(K) := Pp−1(Λ

ℓ)
∣∣
K
+ x y Pp−1(Λ

ℓ+1)
∣∣
K

(5.1)

and

Vℓ
p(K) := Pp(Λ

ℓ)
∣∣
K

(5.2)

of local spaces, through (3.1), gives rise to meaningful global finite elment spaces
◦
Vp

ℓ(M)
of discrete differential forms.

By construction both Assumption9 and Assumption10are satisfied for these spaces.
The asymptotic density property also holds.

Lemma 5.1 The spaces
◦
Vp

ℓ(M) of discrete differential forms built from(5.1) or (5.2)
meet the requirement(2.12).
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Proof. It is a classical result of finite element theory that the spaces of degreep
Lagrangian finite element functions

◦
V0

p(M) are asymptotically dense in
◦
H1(Ω). Thus the

space of polynomialsℓ-forms with coefficients in
◦
V0

p(M), which is a subspace of
◦
Vℓ

p(M),

is asymptotically dense in
◦
H1(Ω,Λℓ). The latter space is obviously dense in

◦
H(dℓ,Ω),

since this is already true forC∞
0 (Ω,Γl). 2

5.2 Tensor product meshes

Let M be a conforming finite element mesh of the Lipschitz polyhedronΩ whose cells
are affine images of the unit hypercubeK̂ in R

d: for K ∈ M the we writeΦK : K̂ 7→ K
for the associated unique affine mapping. We generalize the construction of [44]: on the
cube we define (with notations introduced in Section4.4)

Vℓ
p(K̂) :=

{
v̂ =

∑

I

uIdxI , uI(x) =

d∏

j=1

uI,j(xj), uI,j ∈

{
Pp−1 if j ∈ I

Pp if j 6∈ I

}
.

The local spaces are obtained by affine pullback

Vℓ
p(K) :=

(
Φ−1

K

)∗
Vℓ
p(K̂) . (5.3)

This affine tensor product construction also complies with Assumption9 and Assumption
10. Completely parallel to Lemma5.1, one proves the following result.

Lemma 5.2 The requirement(2.12) is satisfied for the spaces
◦
Vp

ℓ(M) spawned by(5.3).

Remark 5.3 For all the above meshes the cells are affine images of a singlereference cell,
the “unit simplex” or “unit hypercube”. We could allow some non-affine cells: Under the
assumption that the transformations are “nearly affine”, see [22, §4.3], and the projection
operatorsπℓ

p,K are defined correspondingly, all crucial estimates like Lemma3.1 can be
transferred to the reference cell using the pullback of differential forms. �

6 Application in dimensions two and three

We adopt the discrete spaces from Sect.5 along with the regularized Poincaré lifting from
Sect.4. We rely on the choice (4.8) for spacesX andS, with a regularity exponent
r ∈ (0, 1] which has to be chosen suitably.

In order to establish the discrete compactness property from Definition2.3, it remains
to verify the regularity Assumption1 and Assumptions6, 7, and8 for convenient local
projectorsπℓ

p,K.
Local projectors which make the discrete diagram of Assumption 7 commute do exist

in the general framework of differential forms of any degree. They generalize Nédélec
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edge element projections and can be referred to asmoment basedprojection operators.
They are suitable for theh-version of finite elements in dimensions 2 and 3. In higher
dimensions some of them (for low degree forms) require a higher regularity thanH2 to be
defined. In [4, 5], they are modified by an extension-regularization procedure in order to
be defined and bounded onL2. However, such operators cannot be used for thep version
of finite elements, because no estimates (stability or errorbounds) are known with respect
to the polynomial degreep.

The proper projection operators forp-version approximation are so-calledprojection
based interpolation operators, see [28, 29, 18, 27, 30]. Variants for anyℓ and d are
available and they are designed to commute in the sense of Assumption7 [37, Sect. 3.5].

At this point we have to abandon the framework of generalℓ andd, because both
regularity results (Assumption1) and the analysis of projection operators (Assumption
8) are not presently available for generalℓ andd. We have to discuss them for special
choices ofℓ andd separately, relying on a wide array of sophisticated results from the
literature.

Theorem 6.1 (Convergence of Galerkin approximations)For d = 2, 3, and0 ≤ ℓ < d,
the Galerkin discretization of(2.5) on a Lipschitz polyhedron based on any of the families
of discrete differential forms introduced in Sect.5 offers a spectrally correct, spurious-free
approximation.

Proof. We skip the caseℓ = 0, for which the standard Galerkin approximation theory
for operators with compact resolvent can be applied, see [41].

To begin with, we focus on the discrete compactness propertyand verify the assump-
tions1, 6, 7, and8 for d = 2 andd = 3 separately.

• d = 2, ℓ = 1: in terms of vector proxies we find the correspondence

◦
Y (d1,Ω) ∼

◦
H(curl,Ω) ∩H(div 0,Ω) . (6.1)

Regularity theorems for boundary value problems for−∆ on the polygon confirm the
existence ofδ = δ(Ω) > 0 such that

◦
H(curl,Ω) ∩H(div 0,Ω) ⊂Hδ+1/2(Ω) , (6.2)

in the sense of continuous embedding, see [34, Sect. 3.2]. This suggests to chooser =
δ+1/2 in (4.8) and Assumption1 will hold true. Hence, we deal with the concrete spaces

X(M,Λ1) =
◦
H(curl,Ω) ∩

∏

K∈M

(Hδ+1/2(K))2 , (6.3)

S(M,Λ0) =
◦
H1(Ω) ∩

∏

K∈M

Hδ+3/2(K) . (6.4)
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Commuting local projection based interpolation operatorsπ1
p,K andπ0

p,K have been pro-
posed for triangles and for quadrilaterals in [28]. With the choice (6.3) and (6.4) they
live up to Assumptions6 and7. Assumption8 holds withε0(p) = Cp−1/2 andC > 0
depending only on the shape-regularity of the cells,cf. [27, Thm. 4.3] and [6, Thm. 4.1].
Finally, these interpolation operators satisfy the natural condition of conformity (3.14) by
construction, which makes they meet all our requirements,cf. Sect.3.4.

• d = 3, ℓ = 1, 2: we have the vector proxy incarnation

◦
Y (dℓ,Ω) ∼

{ ◦
H(curl,Ω) ∩H(div 0,Ω) for ℓ = 1 ,
◦
H(div,Ω) ∩H(curl 0,Ω) for ℓ = 2 .

(6.5)

Citing results from [1] and [37, Sect. 4.1], we findδ = δ(Ω) ∈]0, 1
2
] and continuous

embeddings
◦
H(curl,Ω) ∩H(div,Ω),

◦
H(div,Ω) ∩H(curl,Ω) ⊂Hδ+1/2(Ω) . (6.6)

Therefore, using the construction (4.8) with r = δ + 1/2, Assumption1 is satisfied for
ℓ ∈ {1, 2}. The relevant spaces of more regular forms now read

X(M,Λ1) =
◦
H(curl,Ω) ∩

∏

K∈M

(Hδ+1/2(K))3 , (6.7)

X(M,Λ2) =
◦
H(div,Ω) ∩

∏

K∈M

(Hδ+1/2(K))3 , (6.8)

S(M,Λ0) =
◦
H1(Ω) ∩

∏

K∈M

Hδ+3/2(K) , (6.9)

S(M,Λ1) =
◦
H(curl,Ω) ∩

∏

K∈M

Hδ+1/2(curl, K) . (6.10)

The essential commuting local projection based interpolation operatorsπm
p,K, m =

0, 1, 2, have been introduced in [29] for tetrahedral meshes and in [28] for meshes com-
prising parallelepipeds. By construction they comply withAssumption7. Assump-
tion 6 for the spacesS(M,Λ0) andS(M,Λ1) from (6.9) and (6.10), respectively, and
r = δ + 1/2 is a consequence of Sobolev embedding theorems. Relying on [27, Th.5.3]
we obtain like in the 2D case that in Lemma3.1we can takeεm(p) = Cp−1/2 for m = 0
andm = 1.

• Finally, we appeal to Lemmas5.1, 5.2together with Lemma4.2and apply the abstract
theory of Sect.3 in the form of Corollary3.3 to conclude the proof of the theorem. 2

Corollary 6.2 (Approximation of the Maxwell eigenvalue problem)The p version fi-
nite element discretization of the Maxwell eigenvalue problem (1.2) based on edge ele-
ments from the first or second Néd́elec family on triangles or on tetrahedra, or from the
first Néd́elec family on parallelograms or on parallelepipeds offersa spectrally correct,
spurious-free approximation.
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Remark 6.3 Instead of (1.2) we may consider the variational formulation of the more
general Maxwell eigenvalue problem (1.1), corresponding to the case of anisotropic inho-
mogeneous material:

Seeku ∈
◦
H(curl,Ω) \ {0}, ω ∈ R

+
0 such that

(
µ−1 curlu, curlv

)
L2(Ω)

= ω2 (ǫu,v)L2(Ω) ∀v ∈
◦
H(curl,Ω) ,

(6.11)

with uniformly positive material tensorsµ = µ(x), ǫ = ǫ(x). The same edge element
discretizations listed in Corollary6.2provide spectrally correct, spurious-free approxima-
tions of this problem. This generalization of Corollary6.2can be achieved with standard
tools (see, in particular, Propositions 2.25, 2.26, and 2.27 of [19], and [38, Sect. 6], [37,
Thm. 4.9]). �

Remark 6.4 The restriction on the families of elements mentioned in theCorollary is es-
sentially due to the availability of published results about suitable interpolation operators.
Thus, for example, as soon as a generalization of thep version error estimates of [29, 27]
for projection-based interpolants to meshes containing prismatic or more general poly-
hedral elements becomes available, our result about the approximation of the Maxwell
eigenvalue problem will apply to such meshes, too.�

Remark 6.5 Several obstacles prevent us from establishing the assumptions of the ab-
stract theory ford > 3. On the one hand, continuity properties of projection basedinter-
polation operators have not been investigated ford > 3. Also, regularity results along the
lines of (6.6) are have not been published for polyhedra in higher dimensions.
On the other hand, the innocuously looking requirement (3.14) for the projection oper-
ators — corresponding to the requirement that the global projection operators are con-
structed elementwise from local degrees of freedom — entails that the trace of forms in
S(K,Λℓ−1) ontoℓ−1-dimensional facets inFℓ−1(K) must make sense. However, we can-
not expect more thanH2 regularity for the spaceS(K,Λℓ−1). Hence, by trace theorems
for Sobolev spaces, the spacesS(K,Λℓ−1) allow for traces onm-facets form > d

2
− 2

at best, which means thatℓ > d
2
− 1 is required to allow for the construction of a local

projection based interpolation complying with Assumptions6 and8.
Perhaps, an analysis inLp-spaces as in [1, Lemma 4.7] can make possible an extension of
the theory to higher dimensions, but this is beyond the scopeof the present article. �

Remark 6.6 Our approach does not coverhp-refinement, for various reasons. One reason
is that there exist many variants ofhp refinements in 3D, and covering them would in any
case require a much longer paper than the present one.
Another reason is technical: The existing convergence proof of thehp approximation of
the Maxwell eigenvalue problem in [11] — while also based on the proof of the discrete
compactness property — uses a different technical tool, namely an estimate of theL2
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stability of a certain projection operator. This kind of estimate is currently only available
for intervals in 1D and for rectangles in 2D.
The technique used in the present paper is based on the regularized Poincaré lifting, and
adjusting this to variable polynomial degree poses formidable technical challenges. Only
in 2D these could be mastered so far, as was demonstrated in [7] in the context of boundary
element analysis. �

7 Conclusion

In this paper we have proved that thep-version of finite elements based on generalized
Nédélec edge elements provides a spurious-free spectrally correct approximation of the
Maxwell eigenvalue problem. The essential point was the proof of the discrete com-
pactness property. We showed that this property follows from a set of rather natural
assumptions about the family of finite element spaces and interpolation operators, and in
addition we showed that these assumptions are implied by recently found results on lifting
operators and on projection-based interpolants.

In the approach pursued in [4, 5] the discrete compactness property is not addressed
directly: in the framework of theh-version for differential forms, modified moment-
based projection operators are used. These new operators satisfy the strong property
of being uniformly bounded inL2 and are constructed by means of a delicate extension-
regularization procedure, see also [21, 20].

On the one hand this uniform boundedness property is stronger than our assumption
6 and replaces in a certain way the discrete compactness property. But on the other hand,
it is currently not known whether a construction of projection operators by extension-
regularization could also be employed in the case of thep-version of finite elements, or
whether the construction of ap-uniformly L2-bounded family of cochain projections is
even possible.
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