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Abstract

In this paper we prove the discrete compactness propertg Waide class op
finite element approximations of non-elliptic variatiomédgienvalue problems in two
and three space dimensions. In a very general framework,naesfifficient condi-
tions for thep-version of a generalized discrete compactness propehighws for-
mulated in the setting of discrete differential forms of@r@ion a polyhedral domain
in R? (0 < ¢ < d). One of the main tools for the analysis is a recently intozl
smoothed Poincaré lifting operator [M. Costabel and A. Mash, On Bogovskil
and regularized Poincaré integral operators for de Rhanptaxes on Lipschitz do-
mains, Math. Z., (2009)]. In the cage= 1 our analysis shows that several widely
used families of edge finite elements satisfy the discretepextness property in
and hence provide convergent solutions to the Maxwell egjere problem. In par-
ticular, Nédélec elements on triangles and tetrahedist é€ind second kind) and on
parallelograms and parallelepipeds (first kind) are cavéseour theory.

1 Introduction: Maxwell eigenvalue problem

Maxwell's eigenvalue problem in a closed cavityc R? with perfectly conducting walls
can be written as follows by means of the Maxwell-Ampeére Bachday laws: Find the
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resonance frequenciese R and the electromagnetic fieldB, H) # (0, 0) such that

curlE = wwpH and curlH = —iweE  inQ

Exn=0 and  H-n=0 on o, (1.1)

wheree and . denote the dielectric permittivity and magnetic permeghbitespectively.
The fieldsE andH are sought in.?(Q)3.

For simplicity, we consider the case of homogeneous isatmojaterial with normal-
ized material constants, (i« = 1) — we will come back to the general setting in Remark
6.3. In a classical way, the elimination of the magnetic fieldrrequations.1) yields
the Maxwell eigenvalue problem with perfectly electrigationducting (PEC) walls in
variational form:

Seeku € H(curl, Q) \ {0}, w € R} such that

1.2

(curlu, curlv) 5 o) = w? (W, V) 2y WV € H(curl, Q) . 1.2
The elimination of the electric field would correspond to #ame problem modelled
through replacing (curl, Q) with H (curl, Q).

One aim of this paper is to prove the convergencé/¢€url)-conforming Galerkin
discretizations of Maxwell eigenvalue problefnZ) in the framework of the-version of
the finite element method. The finite element approximatiddaxwell eigenvalues has
been the object of intense investigations for more than 2@sydt was soon recognized
that the H (curl)-conforming Galerkin finite element discretizations nepdcsal finite
element spaces that are generally termégefinite elements (seelfl, 45, 14]).

The first attempts to analyze the discretized eigenvaluel@nmo have been made for
the h-version of edge finite elements. We menti@d][as a pioneering work on lowest
order edge finite elements, where tiiscrete compactness propeKsee P]) has been
indicated as a key ingredient for the analysis. Other relewarks are {3, 8, 19, 43, 40,
24, 9], and we refer the interested reader £5,[42] and to the references therein for a
review on this topic.

In these references, the Maxwell eigenvalue problem isnodtedied using varia-
tional formulations different from1(2), for example mixed formulation®], regularized
formulations P3, 25] or mixed regularized formulation$] 17]. With the exception of
the method of weighted regularizationd 25, 17], where H!-conforming elements can
be used, these formulations use tHécurl)-conforming edge elements. In their anal-
ysis, special conditions implying convergence of the diserigenvalue problems are
presented, for example the so-called Fortid propestydr the GAP property16]. As
explained there, these conditions are related to the déscranpactness property. Here
we choose to work with the simple variational formulatian?j and its generalization to

1By and large, we adopt the standard notations for Sobolesespaeed4, Ch. 2].



differential forms. The role of the discrete compactnesperty in this context has been
discussed in detail inlp).

The analysis presented in the references above covers\vhesion for basically all
known families of edge finite elements. It soon turned outyder, that the analysis of
the p- and hp-versions of edge finite elements needed tools differemh fiwose devel-
oped for theh-version. In [LZ] the two-dimensional triangular case has been studied for
the hp-version, but the analysis depends on a conjectured estiwlath has only been
demonstrated numerically. 1A]] a rigorous proof for théip-version of 2D rectangular
edge elements has been proposed (allowing for one-irnepataging nodes) which, in
particular, contains the first proof of eigenvalue/eigection convergence for the pure
spectral methodifversion with one element) on a rectangle.

What paved the way for a successful attack on a genevaksion analysis was the
regularized Poincaré lifting recently introduced 6. it enjoys excellent continuity
properties and at the same time respects discrete diffakémtms. In this paper we are
going to show how the regularized Poincaré lifting can bmlsmed with another recent
invention, the projection based interpolation operateeg 7, 29, to clinch the anal-
ysis of thep-version of edge elements. This allows to prove the disaretepactness
(and hence the convergence of the discrete eigensolufimna)wide class of finite ele-
ments related to discrete differential forms: far4) this includes, in particular, Nédélec
elements on triangles and tetrahedra (first and second &imdion parallelograms and
parallelepipeds (first kind).

As already mentioned, one of the key ingredients for the emgence analysis is the
discrete compactness property. Much insight can be ganoed ihvestigating it in the
more general framework of discrete differential forms (Eéefor a lucid introduction
to this subject). In this setting, the proofs are more natamd simultaneously cover, in
particular, two- and three-dimensional Maxwell eigenegtuoblems.

Plan of the paper. The structure of the paper is as follows. We start in Sectiaith

a generalization ofl(2) to eigenvalue problems associated with the de Rham complex
on differential forms. Then we define the discrete compasn@moperty and discuss
its significance in the context of Galerkin discretization:association with two stan-
dard completeness properties, it gives a crucial suffictendition for the convergence
of eigenvalues and eigenvectors. Sectias the core of our paper and contains the de-
scription of our abstract assumptions. Having in mindithversion of finite elements, we
consider dixedmesh of a bounded Lipschitz polyhedrdd c R? and a sequence of
spaces of discrete differential forms of orddwith 0 < ¢ < d) together with projection
operators onto discrete spaces; we prove that our assuraptiply the validity of the
discrete compactness property for such a sequence of SFdwsems3.2). The abstract
theory relies on the existence of suitable Poincaré gftiperators which are presented
in Section4. The mapping properties of these lifting operators allovspecify some

of the function spaces appearing in our abstract assungptiarSectiors we recall the



classical families of discrete differential forms with higegree polynomial coefficients
on simplicial or tensor product elements.

Our abstract theory applies to any dimensifrbut for want of suitable regularity
results, embeddings, and projection operators, we caneg@amples satisfying all of its
assumptions only in dimensioas= 2 andd = 3. This is done in Sectiof, where we
concretize the function spaces and recall embedding seanlt properties of projection
based interpolation operators related to these spacesabsitact assumptions are then
satisfied, leading to the main convergence result stateti@o®mG.1. The analysis of a
p-version edge element discretization of the Maxwell eigdune problem1.2) is covered
as casel = 3 and/ = 1, see Corollary.2.

2 Differential forms and generalized Maxwell eigenvalue
problem

The variational eigenvalue problerh.?) turns out to be a member of a larger family of
eigenvalue problems, when viewed from the perspectiveftd@rdntial forms. This more
general perspective offers the benefit of a unified theaktieatment of different kinds
of eigenvalue problems, e.g., the scalar Laplace eigefgrgbMaxwell cavity eigen-
problems in dimensiorsand3, the eigenproblem for thgrad div-operator in dimension
3. This policy has had remarkable success in numerical asalysentlycf. [3]. Thus, in
this section we first recall some basic notions related temihtial forms. We refer the
interested reader ta@l| Sect. 2] for an introduction to this subject.

2.1 Function spaces of differential forms

Given a bounded Lipschitz domain c R¢, we denote byC>=(Q2, A, 0 < ¢ < d,
the space of smooth differential forms of degreen Q2 and byd, : C>®(Q,A%) —
C>(Q2, A“1) theexterior derivative
We rely on the Hilbert spaces
H(dg, Q) := {v e L*(Q,A") : dyv € L*(Q, A"}, (2.1)

where L?(Q, AY) is the space of differentigtforms on(2 with square integrable coeffi-
cients in their canonical basis representation, 8ée$ect. 2]. Its inner product can be
expressed as

(u,v)07Q = / uAxv, u,veL*(Q A, (2.2)
Q

with x the Hodge star operator induced by the Euclidean metrigrwhich maps/-
forms to(d — ¢)-forms. As above, a tags the subspaces of forms with vanishing trace
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tran 0N o2, which can also be obtained by the completion of compactpstted smooth
¢-forms with respect to thé/ (d,, 2)-norm:

o

H(dy, Q) :=={v € H(d;, Q) : trgo v = 0}. (2.3)

The subspace aflosed formss the kernel otl, and is denoted bﬁ(dz 0,Q):

O

H(d,0,Q) = {v e H(d, Q) : dy v = 0} (2.4)

2.2 Variational eigenvalue problems

After choosing bases for the spaces of alternating mutirforms orR¢, vector fields
(“vector proxies”)Q2 +— R(%) provide an isomorphic model for differenti&forms on
2. Choosing the standard “Euclidean basis”, the operato¥stry, are incarnated by
familiar operators of classical vector analysis, différéar different dimensiond and
degree/, see Table. and {4, Table 2.1].

Table 1: Identification between (operators on) differdribams and (operators on) Eu-

clidean vector proxies ift? andRR?

Differential form Proxy representation
d=2 | d=3

do grad grad

t=0|tro0¢ o0 Plon
H(do,Q) | HY(Q) H'()
d; curl curl

(=1 | Hoaut (101 X 1)jo0 (})l X )0
H(dy,Q) | H(curl,Q) | H(curl, Q)
ds 0 div

/— 9 tl;aQ q 0 (gl - 1) |90
H(dy, Q) | L*(S2) H (div, Q)

Hence, the eigenvalue problem?) with ¢, 4 = 1 is the special casé = 3, ¢ = 1, of

the following variational eigenvalue problem for diffeteh /-forms,0 < ¢ < d:

Seeku € H(dy, Q) \ {0}, w € RY, such that

(deu,dev)g g = w? (u, V)a VYVE Pol(dg,Q) .

(2.5)



A key observation is that the bilinear forfn, v) — (d, u, d, v), o has an infinite dimen-

sional kernelﬁ](dz 0,2) comprising all closed-forms. It provides the invariant subspace
associated with the essential spectr{m of (2.5). This essential spectrum can be iden-
tified as the main source of difficulties confronted in thedBlah discretization of4.5).

On the other hand, any solutianof (2.5) forw # 0 satisfiegu, d;—; ), , = 0 for all

(NS ﬁ(dg_l, ). Thus the eigenfunctions corresponding to non-zero esjaes belong
to the subspace

Y(de, Q) = {v e H(d, Q) : (v,di19)g =0 Vb € H(de-1,9Q)},  (2.6)

which means they belong to the kerneldef This is the generalization of the divergence
free constraint found for electric fields in the Maxwell cadérom [46] we learn the
following theorem.

Theorem 2.1 For anyd € N, 0 < [ < d, the embedding of (d,, ) in L2(€2, AY) is
compact.

Thus, by restricting the eigenvalue problem}of()dg, ), we can use Riesz-Schauder
theory. This implies that{ 5) gives rise to an unbounded sequence of positive eigersalue
)\k — (wk)Q

N=0< M <N<. ., N — 00 (k — 0), (2.7)
with associated finite dimensional mutually(£2)-orthogonal eigenspaces.

Remark 2.2 Owing to the zero trace boundary conditions imposed on thetions in
(2.5), it may be called a Dirichlet eigenvalue problem. UsiAdd,, 2) as variational
space would result in the corresponding Neumann eigenyaildem. Its analysis runs
utterly parallel to the Dirichlet case using the technigoesented below. [

2.3 Approximation of the eigenvalue problem and the role of tscrete
compactness

In the sequel we fix the degrée0 < ¢ < d, of the differential forms. Spaces discrete
differential forms

VEC H(d,Q), dimV! < oo,

lend themselves to a straightforward discretization?of)( In this sectionp € N stands
for an abstract discretization parameter, and, sloppigakmg, large values of hint at
trial/test spaces of high resolution.



Consider the approximation of the eigenvalue problérd) by the Galerkin method:

Findu, € V% \ {0}, w € R, such that

° (2.8)
(deuy, dy Vp)o,Q = w? (up,vp)o’Q Vv € Vf) )

Now, the key issue is convergence of eigenvalues and eigemgeasy — oo, rigorously
cast into the concept afpectrally correct, spurious-free approximatiprd, Sect. 4]. Let
us recall these notions in a few words for the case of selftatinonnegative operators
without continuous spectrum (which is the case here).

The spectral correctness of the approximation of an eigeeyaoblem such ag(5)
by a sequence of finite rank eigenvalue probleth§)(means that all eigenvalues and
all eigenvectors of4.5) are approached by the eigenvalues and eigenvectofs&fas
p — oo. If (2.5 has a compact resolvent (which is the casdy when/ = 0), the
spectral correctness is an optimal notion: It implies thgt\*} >, and{\}},>, are the
increasing eigenvalue sequences2b)and .9 (with eigenvalues repeated according
to their multiplicities), then

A=A as p—oo VE>1, (2.9)

and the gaps between eigenspaces (correctly assemblediagdo multiplicities of the
eigenvalues of4.5)) tend to0 asp — oo.

If we face an eigenvalue problem for a self-adjoint non-tiggaoperator with an
infinite dimensional kernel, and otherwise discrete pesisipectrum (which is the case
for (2.5 for all ¢ > 1), the spectral correctness implies the same propertieb@asa
with the following modifications of the definitions: Noy\*},~, is the increasing se-
guence opositiveeigenvalues of4.5) (as specified in4.7)) and, given a positive number
e < M\, {/\’;}k21 Is the increasing sequence of the eigenvalueg @) (arger thare (still
with repetitions according to multiplicities). With sucbhroventionsspectral correctness
still implies convergence of eigenvalues ) and eigenspaces as above. In this context,
spurious-free approximatiomeans that there existg > 0 such that all eigenvalues of
(2.9) less tharx, are zero. Therefore, spectrally correct, spurious-frgga@pmation im-
plies the convergence property.9) and the corresponding convergence of eigenspaces,
if we define{)\’;}kzl as the increasing sequence of fiusitive eigenvalues df.9).

There exist several different ways, all well studied and siamzed in the literature of
the last decade, for proving the convergence of the diseigenvalue problem?(8) to
the continuous eigenvalue probleth): One can use a reformulation as an eigenvalue
problem in mixed form as analyzed ][ or one can use a regularization which gives an
elliptic eigenvalue problem for the Hodge-Laplace oparatanalyzed inf], or one can
follow the arguments ofl[9] and study the non-elliptic problenz ©) directly.

Here we outline the latter approach, which employs the ambf [32] of the approx-
imation of eigenvalue problems of non-compact selfadjoperators. Sincelp] deals
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only with the Maxwell case, i. el = 3, ¢/ = 1, we examine the main arguments, in order
to verify that they are also valid for the general case. Tlo®fsrwe give are adaptations
of those of [L9] to our more general situation.
Let us define the solution operatdr: L?(2, AY) — H(d,, Q) of the source problem
corresponding to the eigenvalue probleirt) and its discrete counterpatt, : l(}f; — loif;
by
(de AF,de V) + (AF V) = (F.V)gq WV € H(ds, Q)
(de Apf, dev)g o + (A, V) = (£,v)g WV EV,.
Note that the operatord and A, have the same eigenfunctions and the same eigen-

values (after a transformation) as the eigenvalue prob{@msand ¢.8). Namely, .5
and @.9) are equivalent to the relations

u=(w?+1)Au; u, = (W +1)Au,. (2.11)
The infinite-dimensional eigenspace.at 0 shows thatd is not a compact operator.

Following [19], three conditions are identified that together are necgssad suffi-
cient for a spectrally correct, spurious-free approxiomabf A by A, or, equivalently, of
the eigenvalue problen2 (5) by the discrete eigenvalue problef).

The first condition is rather natural. It states that the sega of discrete spaces
()Oﬁf,)peN is asympto_ticall_y dense inﬁ(dg, Q) (compare 19, Condition (CAS) — com-
pleteness of approximating subspaces])

(CAS) ILm inf |V —=vpllyg,a =0 VveH(d,Q). (2.12)

vpEVS

(2.10)

The second condition, only relevant for> 0, states that closed forms can be well ap-
proximated by discrete closed forms (compal®, [Condition (CDK) — completeness of
discrete kernels])

(CDK) lim inf [z~ 20 =0 Vze H(d0,Q). (2.13)

O ]
P90 2, € VENH (d, 0,02)

The third condition is the most intricate one and has beemeéddiscrete compactness
For its formulation, we introduce the orthogonal complehsgace of the discrete closed
forms:

2= {u, eVl (u,2,),0=0 Yz, € VN H(d0,0)} (2.14)
Definition 2.3 Letus choosé € {1,...,d—1}. Thediscrete compactness propehtylds

for a family (lc}f; )pEN of finite dimensional subspaces]%(dg, ), if for any subsequence
N’ of N, anyboundedsequence

(4p) ey © H(de, ) with w, € 2]

contains a subsequence tenverges in.?(Q, A*).

8



The convergence proof is based on two lemmas, the first ofwdooresponds tolp,
Theorem 4.12]. It implies, according t63, Condition P1) and Theorems 2,4,5,6], the
spectral correctness of the approximation.

Lemma 2.4 If (2.12) and the discrete compactness property hold, then

I}E& _sup AV, — AVl g, 00 = 0- (2.15)
VPGVf);vaHH(d#mzl

Proof. Note first that forv, € ﬁf, N H(d, 0,9) there holdsAv, = v, = A,v,, so that by
orthogonal decomposition Ooff, one gets

sup [Av, — APVPHH(dbﬂ) = sup [ Av, — APVPHH(dZ,Q) :

o o
Vpevfy?”VpHH(d[,Q):l Vpezf;?HVpHH(d[,Q)zl
Furthermore, one has by definition dfand A,

|Av, — Apvp||H(de) = info |Av, — Wp||H(de) .
wpEVE
Assume now that4.15 does not hold. Then there exigts> 0, a subsequends§’ of N
and a sequende’, ), With v, € Z7 satistying||v,|| 4, o) = 1 and

1AV, =Wyl a0 =6 PEN, W€V, (2.16)

We can apply the discrete compactness property to the seg(ef) and obtain a sub-
sequence converging ih?(2, AY) to somev € L*(Q,A%). SinceA : L*(Q,A%) —
]'—OI(dZ,Q) is continuous, we findlv € ﬁ[(dz,Q), and the approximation propert$.(2)
provides us with a sequen¢e,) with w, € % that converges itﬁ(dg, ) to Av. Hence
for the subsequence we obtain

[Av, — WPHH(de) < [|Av, — AV”H(d[,Q) + [[Av — WpHH(dmm — 0,

in contradiction with .16). O

The second lemma corresponds1,[Corollary 2.20]. It gives the discrete Friedrichs
inequality (in P] also called “ellipticity in the discrete kernel”), and & easy to see that
this implies thatv = 0 is not a limit point of positive discrete eigenvalues, sa tifne
spurious-free property of the approximation follows.

Lemma 2.5 If (2.13 and the discrete compactness property hold, then theresexis 0
such that for allp € N

Ide vl o) = @Vl e WV E Z, (2.17)

9



Proof. Assume that4{.17) does not hold. Then there exists a subsequé&hcé N and a
sequencév,),cv With v, € Z¢ satisfying

Vo2 =1 and plggo [de Vil 20y = 0 (2.18)

The discrete compactness property can be applied to thiseeeq and gives a subse-
quence converging ih?(Q2, AY) to somez € L*(Q, AY). From Q.19 follows that the

convergence actually takes placefﬁ{dg, ) and thatz f](de 0,€2). Therefore the ap-
proximation property4.13) provides us with a sequence,) with z,, € f}f; N Pol(dg 0,Q)
that converges i.%(Q2, AY) to z. Hence for the subsequence we find

vy — Zp||L2(Q) < lvp — Z||L2(Q) + ||z — Zp||L2(Q) — 0.

Butv, € Zof; andz, € % N f](de 0, Q) are L*(9)-orthogonal, hence for afl

2 2 2
vy — Zp||L2(Q) = ||Vp||L2(Q) + ||Zp||L2(Q) > 1,

which leads to a contradiction. O
To summarize, Lemmas 4 and2.5together prove the following result.

Theorem 2.6 If the completeness of approximating subspg@es?), the completeness
of discrete kernel§2.13 and the discrete compactness property hold, tfxef) provides
a spectrally correct, spurious-free approximation of thgeavalue problenf2.5).

Remark 2.7 The main focus of this section is on thenvergencef the eigenvalues and
the eigenfunctions of problen ©) to those of £.5). On the other hand, when considering
concrete applications it is crucial to investigate thder of convergence. In order to do
so, several strategies are available. A straightforwapdageh which well fits the theory
summarized in this section makes use of the results ff&ih [Theorem 1 of 3] states

in this particular situation that the error in the eigenfiimes (measured as usual by the
gap of Hilbert spaces) is bounded by the best approximadiod, Theorem 3(c) of33]
states that the eigenvalues achieve double order of casveggsince our problem is sym-
metric. An alternative approach makes use of the equivalefproblemsZ.5) and ¢.9)
with suitable mixed formulationslp, Part 4]; in this case an estimate of the order of
convergence can be achieved by the standard BabuSka-+Qkkory for the spectral ap-
proximation of compact operators applied to the mixed fdatons [LO, Theorems 13.8,
13.10, 14.9,14.11]. O

3 Abstract framework implying discrete compactness

In this section we fix a degree of differential forms

te{l,...,d—1},

10



and we formulate a set of hypotheses which allow us to prozalibcrete compactness
property. These hypotheses are organized in three groups:

1. standard assumptions related to the finite element spoéc(&cts.l),
2. assumptions on the existence and key properties ofiftiperators” (Secg.3),

3. hypotheses on projections orﬁ&ﬁ complying with the commuting diagram prop-
erty and satisfying an approximation property (S&cf).

To state these assumptions we have to introduce interneesjigicesX and.S of more
regular forms

VEC X (O, AY) C H(d,, Q) and Vi SO ACY) € H(dy 1, Q)

allowing compact embedding arguments and precise notibasrainuity of lifting and
projection operators.

3.1 Discrete spaces

Our focus is on finite element spaces. For the sake of sinylivie restrict ourselves
to polyhedral Lipschitz domainQ. We assume that the finite dimensional trial and test
spacesf}f;, p € N, are based on fixedfinite partition9t of €2, composed of elements
(cells) K:
Q= |JK , KnK'=0,if K#K, K,K'e M.
Kem

For a cellK € M, let §,,(K) designate the set afi-dimensional facets of: for
m = 0 these are the vertices, for = 1 the edges, forn = d — 1 the faces, and
Sa(K) = { K7}

We take for granted that the discrete spaﬁﬁsan be assembled from local contribu-
tions in the sense that for each mesh ¢éle 911 there is a spac®’(K) c C~(K,A")
of smooth/-forms onk’, such that

Vo= Vi) = {ve Hd,Q): v e VE) VK em}. (3.

In other words,f}f; can be defined by specifying the local spa]z’ﬁ(sf() and requiring the
continuity of traces across inter-element boundaries dsaseéboundary conditions on
o0

In the same fashion, we introduce a corresponding fanngjy1 C ﬁ(dg_l, Q) of
spaces of discret¢ — 1)-forms. We will see later on that as a consequence of further
hypotheses, the local spac\eﬁl(K ) andV]f(K ) satisfy an exact sequence property.

11



3.2 Spaces of more regular forms

We introduce a Hilbert spac& (91, A*) C ﬁ(dg, 2) that captures the extra regularity

that distinguisheg-forms in the spacé?f(dg, 2). We can think of this space as a space of
“more regular’/-forms on(Q.

Assumption 1
The space’ (d,, ) defined in 2.6) is continuously embedded ik (97T, A*).

This means that witli' > 0 depending only ot
”uHX(mt,Af) <C ”u”H(dZ,Q) Vu € Y(dy, ) . (3.2)

On the other handy (9, A¢) has to be small enough to maintain the compact embedding
satisfied by’ (d,, Q), cf. Thm.2.1.

Assumption 2 The spaceX (91, A*) is compactly embedded ib? (2, A*).

As with the discrete spaces, the spagg$t, AY) are built from local contributions
and will therefore depend on the me®h We assume that for each mesh délle
there are Hilbert spaces (K, A*) so that:

X, AY) = {v e H(d,Q): v, € X(K,A) VK em}, (3.3)

and, in addition, the norm of (", AY) is defined through local contributions:

Il aman = lal@. + Do el unn - (3.4)
Kem

Finally, the local spaces have to be large enough to cont@irdiscrete forms for any
value ofp:
14 l
V(K) C X(K,\) . (3.5)

Correspondingly, we introduce a spasem, A“ 1) C ﬁ(dg_l, Q) of “more regular

potentials”. Similar taX (91, A%), the spaces(9, A*~!) are mesh-dependent and allow
for a characterization through local Hilbert spaggs’, A“ 1), K € 9,

SO ATY) = {4 € H(di1,Q) : |, € S(K,A"Y) VK eM}.  (3.6)

They are endowed with the norm

||¢||§(9ﬁ,/\£‘1) = ||¢||§‘I(dg_1,0) + Z H¢}KHQS(K7A£—1) . (37)
Kem

12



The local spaces are large enough to contain the local tisgotential spaces:
ViU K) C S(K, A7) (3.8)

The following assumption establishes the connection betig 9, A*) andS (9, A1),

Assumption 3 The exterior derivative maps(9t, A*~1) continuously intaX (90T, A*):
S, A € {pe H(d1,Q) 1 drr p € X(M,AD},

and the image is maximal:

o1 SO, A = dp_y H(dgy, Q) N X (9, AD).

To conclude this subsection, note that in the case of an elefh&uching the bound-
ary 012, like for the discrete spacag(K) andV, ' (K), the local spaceX (K, A*) and
S(K, A1) are not obliged to comply with any boundary conditions.

3.3 Local liftings

A pair of linear mapping®; x : C<(K,A*) — C(K,A* 1),k = ¢, ¢+ 1, is called a
lifting operatorof degree if it fulfills

di1oRyx +Repr g ode=1dg . (3.9)

This relation characterizes a “contracting homotopy” & de Rham complex| Section
5.1.2].

Besides this algebraic relationship, our approach hingesnwoothing properties of
the lifting operators, expressed by means of the local sp&icE, A“~!) of more regular
potentials andX (K, A?) of more regular forms. The next assumption summarizes the
continuity expected from the lifting operator.

Assumption 4 For everyK € 9 there is a lifting operatofR, x, Rs+1,x) whose comr
ponents can be extended to continuous mappings

Resii o LKA = X(K, A and Ryg @ X(K,AY) — S(K, A,
and thus identity.9) holds onX (K, A*).

As a consequence, for each cElle 9t, we have the exact sequence

d[—l d(

S(K, A1) X(K,A) —=— LXK, A", (3.10)

Finally, the local liftings have to be compatible with the#b spaces of discrete dif-
ferential forms:

13



Assumption 5 The local operatorB,. ; x, when applied to exact local discrete+ 1)-
forms, yield local discreté-forms,i.e.,

Reyiwode: Vi(K) — ViI(K) .

3.4 Local projectors

As usual in methods based on discrete commuting diagramggeprojection operators
™ . onto discrete spaces fof — 1)-forms and/-forms. For degreé— 1, our local spaces
S(K, A*~1) of more regular potentials can play the role of domains ferpn)jectorSrf;}.
For the degreé, by generalization of what we actually need in the case ofedsion
d = 2 andd = 3 for Maxwell, we define our projectorsf;K on smaller spaces than
X (K, A*). We denote these new spacesdiys, A%) and require that they contain for all
p thep-dependent subspaces

X, (K, A = {ue X(K,A% :dued V(K)}. (3.11)

On the same model a8.6)-(3.7), we define the corresponding global spaséxn, A*)
and
X, A% = {ue X(M A" : dyued V) (3.12)

and we have the continuous embeddings

X, (9, A < SO, AY) — X (9, AY) . (3.13)

Assumption 6 There ardocal continuous linear projections
o SN s VINEK) and wh g S(K, A = VI(K)

for all mesh cellsk” € 9.

The standard commuting diagram property is as follows.

Assumption 7 The projectorSrf;’}% andw;j, 5 are compatible with the exterior derivative
in the sense that the diagram

S(K, A1) 274 S(K, A
sl
de—1
V, N (K) —— V(K),

commutes for every € 9.

14



Let us note that, as a consequence of Assumptiarsl 7, we find that the sequence

VLK) 5 VUK) —2 d, (VU(K))

IS exact.
Besides, the local projections acting @h— 1)-forms are supposed to enjoy a crucial
approximation property using the Hilbert space nofiig x ye-1)-

Assumption 8 There is a functiom,_;: N — R* with lim ¢, ;(p) = 0 so that
pP—00

ldees (6~ T2 ey < Er0) [ Bllsuen sy Vb € SCE AT

Finally we assume for the projectiomﬁK a natural condition of conformity: For all
ue X, (K A

trru=0 = trFW£7Ku:O VE € §n(K), (<m<d, (3.14)

and the corresponding condition for the projectioﬁ@. This makes it possible to define
globallinear projections

o SO A = V) and 7wt S AY) s Vi
by patching together the local operators
(Wﬁu) ’K = ﬂﬁ’K(u‘K) and (Wﬁ_l(ﬁ) ‘K = Wﬁ}%((f)‘K) VK € . (3.15)

As a consequence of Assumptiérand 3.15, the global projectorsﬁ*l andw]‘j inherit
the globalcommuting diagram property

SN, AT 2 s(om, AY)

Wg_ll lﬂg (3.16)
Vi

dy_
1 e

3.5 Proof of the discrete compactness property

The estimate of Assumptio& on “potentials” carries over té-forms with a discrete
exterior derivative, that is, the elements of the spaEgen, AY), see 8.12).

Lemma 3.1 (Global projection error estimat®&)aking Assumptions$ throughs, the es-
timate B
Hu - ﬂ]ﬁu”LQ(Q’AZ) S ng_l(p) ||u||X(9ﬁ,Al) Vu € Xp(mv AZ)

holds true, with a constarit’ > 0 independent of.
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Proof. Pick anyu € X, (9, AY). The locality of the projector’, cf. (3.15), and (3.4)
allow purely local considerations. Single out one d€lle 9, still write u = u\K €

X, (K, A", and splitu on K using (.9 from Assumption:
u = dg,1 R&Ku + RZJrl,K dg u = dg,1 ¢ + RZJrl,K dg u. (317)

with ¢ := R, xu. The continuity ofR, x from Assumption reveals that

H‘f’HS(K,M—l) <C HUHX(K,M) g (3.18)

where here and belo®w will denote constants (possibly different at differentmcences)
which depend neither om nor onp.
Thanks to identity §.17) and the commuting diagram property from Assumption
we have
mou=deym e+ Rep g deu (3.19)
Recall thatu € X, (K, A’) belongs to the domain of) - by Assumptiors. Further, as
u € X, (K, A", from Assumptiorb we infer that

Reyixdeu € VI(K) . (3.20)

Thus, owing to the identities3(17), (3.19 and the projector property @n‘;K the task is
reduced to an interpolation estimate ﬁér}%

(Id =7 u=de1(Id — 7 ) + (Id — 7 )R der (3.21)

—0 by (3.20

As a consequence, invoking Assumptign

1000 = 2 e 2 e = 7506 s

(3.19
< &¢-1(p) ”d)”S(K,AZ*l) < Ceralp) HUHX(K,M) , (3.22)

which furnishes a local version of the estimate. This edtnis uniform inK € 9N

becausén is finite. Due to 8.4), squaring .22 and summing over all cells finishes the

proof. O
We are now in the position to prove the main result of thisisact

Theorem 3.2 (Discrete compactnesknder Assumptions through8, the discrete com-
pactness property of Definitich3holds for the family( V% )peN of subspaces off (d,, ©2).

16



Proof. The proof resorts to the “standard policy” for tackling threlgem of discrete
compactness, introduced by Kikuchiq, 40] for analyzing theh-version of Whitney-1-
forms. It forms the core of most papers considering the is§descrete compactness, see
[12, Thm. 2], [L1, Thm. 11], B7, Thm. 4.9], B1, Thm. 2], etc.

Let us introduce the discrete analogue of the spoét(ze, 0):

V0= {v, €V (v dii ), =0 Wb, € Vi) (3.23)

o ) Jo)
The space); containsZ] as a subspace.

We consider a subsequeriseof N and aH (dy, 2)-bounded sequence,) ., with

members inéﬁ. Thusu, belongs in particular tooil‘j and the sequenda,,) satisfies

peN/
(i) wev, (3.24)

(i) (., drit,), =0 Ve, € VI, (3.25)
(i) [l g0 <1 VPEN. (3.26)

We have to confirm that it possesses a subsequence thatgeswer. (2, A°).
We start with thel.?(€2, A%)-orthogonal projection oft, into )O/(dg, Q) and parallel to
deq ]'Ol(dg_l, 2): letu, be the unique vector field iﬁol(dg, Q) with

W=, +d1 ¢, ¢, € H(d1,9), (3.27)

[¢]

(W di1 )y =0 Vop € H(dey, Q). (3.28)
Obviously, the latter condition implies
i, € Y(d, Q). (3.29)
Hence, by virtue of Assumptioh the fact thatl, u, = d, u,, and ¢.12), u, satisfies
i, € X, A, [l a0 < C )0 - (3.30)

whereC' > 0 does not depend gn

Sinced,_; ¢, = 1, — u, € X(M, A’), Assumption3 implies that we may assume
thate, € S(M, A ).

Thus we can use Nédélec’s trick/] to obtain

~ 9 ~ ~ ~ ~
u, — up”L2(Q,AZ) = (up — Up, Up — Wf;up + Wzl;up - up)

e S
= (up — Up, Up — Uy

0.8 (3.31)
)0,9 )
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This holds because fron3(27) and the projector property @rﬁ we know

0~ ¢ 1 P L P
U, —u, =mu, +m,de 1, —u, =7,di 1 @,

and thanks to the commuting diagram prope#ty. §) (deduced from Assumptior) com-
bined with the orthogonality conditions.¢5 and (.28, we find

(B — wp 7w, — 1) ) = (ﬁp —u,,dpy w;;—lc}p)o =0, (3.32)
Hence, appealing to Lemnial, with C' > 0 independent of, we get

1 = Wl 20,00y < Ty =TTl 12 ey < Ceer(P) [Tl om aty

( (3.33)

3.30
< Cera(p) [wpll x o pey = 0 fOrp— oo

From (3.30 we conclude that the sequen@g,) ., is uniformly bounded inX (91, AY).

By Assumption2 it has a convergent subsequencel#{Q2, A). Owing to (.39, the

same subsequence (af,) ., will converge inL?(€, AY). O

3.6 Approximation of the eigenvalue problem

As discussed in Sectioh 3, the discrete compactness property is the cornerstonesof th
proof of the convergence of the discrete generalized Maxeugenvalue problem(8).

Corollary 3.3 In addition to the hypotheses of Theorér, namely Assumptioristo 8,
assume that propertfCAS) (2.12 holds and that the spac®& (91, AY) N ]'Ol(dg 0,Q) is

dense inﬁ(de 0,). Then(2.8) provides a spectrally correct, spurious-free approxima-
tion of the eigenvalue proble(d.5).

Proof. We use Theorem.6 from Section2.3. Considering that the discrete com-
pactness property is provided by Theorém, and that we assume the approximation
property (CAS) £2.12), we only need to show the approximation property (CDK)Y),
which concerns the approximation of closed forms by closecdrete forms.

Since we assumed the densityX6f91, A*) N ]?I(dg 0,9Q)in ﬁ(de 0,€), itis sufficient
to prove (CDK) forz € X (9, A%) N ﬁ(dé 0,9). Suchz belongs to)?p(im, AY), and
we can therefore apply Lemntal, which shows thatrjz — z in L*(2, A%). We will
have accomplished to show (CDK) wiy = Wﬁz, as soon as we show thétz, = 0.

Keeping in mind thak, € )(}f; C H(d,,Q?), we see that it is sufficient to show the local
relationd, z, = 0 in K for every K € 9. This follows finally as in .19 in the proof of
Lemma3.1, becauseé, z = 0 implies

Wﬁ’KZ = dg,1 Wﬁ}%R&KZ .

Henced, z, = d; 7} xz = d,d;—1 7, /R xz = 0, which ends the proof. O
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Remark 3.4 The abstract theory developed in this section can be apialige/-version
of discrete differential forms, if the dependence of thestants on the size of the cédll
is made explicit by means of scaling arguments. Here, weofthgs extra technicality
and refer the reader t@7, Sect. 4.4]. [

4 Regularized Poincag lifting

In this section we describe the construction of a localngtoperatoiR, that will satisfy
Assumptionst and5 in Section3.3for suitable spaceX (K, A‘), S(K,A*) andV{(K).

We follow the presentation in?f], where these operators are analyzed and where it is
shown in particular that they are pseudodifferential ofpesaof order—1.

4.1 Definition

We consider a bounded domainc R that isstar-shapedvith respect to some subdo-
main B C D, that s,

Vaoe BjxeD: {(l1-tla+te, 0<t<l}CD. 4.2)

Fora € B andl < ¢ < d, we define thd?oinca® operatorR, ,, acting on a differen-
tial formu € C>=(D, AY), by the path integral

1
Reou(z) = (. —a) 2 / t“tu(a+t(x —a))dt, reD. 4.2)
0
Here the symbol; denotes the contraction (also called “interior product’jhe vector
field z +— (z —a) with the/-formu. Itis clear thaR,, mapsC>=(D, A*) to C*>°(D, A* 1)
and it has been shown (se&5] for proofs in the case = 3) that it can be extended to

a bounded operator fromh?(D, A?) to L?(D,A*"'). In order to define theegularized
Poincaté operatorR,, we choose a function

0 € C(RY, suppd C B, /H(a)dazl,
B
and set

Reu(z) :/Bﬁ(a)R&au(x) da . (4.3)
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4.2 Regularity

The substitutiony = a + t(z — a), 7 = 1/(1 — t) transforms the double integral i1.¢),
(4.9 into

Reu(z) = //(7‘ — 1)Z’1Td’£9(a: +7(y — a:)) (x —y) su(y)drdy
R 1 (4.4)
= /k(y,y—x) su(y)dy,

R4

where the kernet(y, z) has an expansion into quasi-homogeneous terms:

k(y,z) = —z/ s“Hs+ )"0y + s2) ds
0

d—t o
_ d-ty_* d=j=1g (4 1 “Nar
X ) e

The operatoR, is therefore a weakly singular integral operator. 26,[Section 3.3], the
following result is shown.

(4.5)

Proposition4.1 For 1 < ¢ < d, the operatorR, is a pseudodifferential operator of
order —1 onR<. It is well defined orC>°(D, AY), it mapsC> (D, AY) to C>°(D, A*1)
and C>=(D, A*) to C=(D, A*!), and for anys € R it has an extension as a bounded
operator

R, : H*(D,A") — H*"Y(D,A" 1)) .

Here, H*(D, A*) is the Sobolev space 6fforms onD of order s.

4.3 Lifting property

The lifting property 8.9) is a consequence of the following identity, which is a spkci
case of “Cartan’s magic formula” for Lie derivatives and éditow field generated by the
dilations with center.

d
ﬁ(teu(a +t(z—a)) =

de—q (té_l(x —a)su(a+t(z — a))) +t'(z —a) sdeu(a+t(x — a)) (4.6)

Hereu is an/-form. The resultis

dg,leu—i—Rnggu:u (1§€§d—1)7
Ridpu=u-— (9,u)07D (t=0); 4.7)
dd,1 Rdu =u (6 = d) .
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These relations are valid for all € Cg°(R¢, A?) and by extension for alk € H*(D, A*),
s eR.

The perfect match of(7) with (3.9) from Assumption! suggests that the regularized
Poincare liftingR, provides suitable local liftings as stipulated in Assurapti. To this
end, we can choose as local spaces of “more regular forms”

X(K, A" = H(dy, K) N H"(K,\")

/-1 ¢ (48)
S(K,A“Y) = H'(d, 1, K) and S(K,A") = H'(d, K) |

for some0 < r < 1, where we denote b¥" (dy, K) the space
H™(dy, K) == {v € H(K,A*) : dy v € H"(K,A*1)} .

All these spaces are equipped with the natural Hilbert spacens. Also keep in mind
that the global spaces (9, A%), S(9, A“~ 1) andS (9, A?) are determined by their local
definition on the mesh cell&’, cf. (3.3 and (3.6). For the particular choice4(8) an
assumption of Corollarg.3can be verified.

Lemma 4.2 For X (91, AY) arising from(4.8) the spaceX (9, AY) N ﬁ[(dz 0,9) is dense
in £ (d, 0, ).

Proof. By [26, Thm. 4.9(c)] we have a direct decomposition

[¢]

H(d(0,Q) = dpy H(QATY) @ ¢, € CF(R,AY), (4.9)
whereC>(R?, A) is the space of compactly supported, smabfbrms onR¢ with sup-
port contained iff2 or, equivalently, the space of all smodtfiorms onQ that vanish on

90 together with all their derivatives. Sinc&®(R?, A*"") is dense inf1(©, A1), we
deduce:

C= (R A N d,y HY(Q,AY) isdensein d, ; H'(Q,AY)

As everyu € C>(R?, A’) belongs taX (9, AY), the assertion follows. O

We point out that the choice ofin (4.8) is determined by Assumptioch Also note
that whenever we opt for4(8), Rellich’s theorem ensures Assumptignbecause the
mesh is kept fixed.

The construction oR, entails a constraint on the cell shapes. This is satisfied for
standard finite element meshes, where the cells usuallyoarex polyhedra.

Assumption 9 Every cell K € 9t is a star-shaped polyhedron. ‘

Lemma 4.3 Assumptiord, the choiceg(4.8) for spacesX (K, AY) and S(K, A“"1) imply
Assumptiong, 3 and4.
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Proof. The only fact remaining to be proved is the maximality relatin Assumption
3
ey S(M, AN = dyp_y H(dg_y, Q) N X (9, AY).

The inclusionC holds by definition. Let us prove the converse inclusion.

Letu € dy_; H(de_1, Q) N X (M, AY). Thusu = d,_; ¢ with ¢ € H(d,_,Q). Since
u € L*(, AY), using P6, Cor. 4.7] we obtain that there exisgs € H'(Q, A1) such
thatu = d,_; 9. In particular,w\K belongs toH" (K, A“™1) for all K and, sinceu]K
belongs tof/" (K, A*), we finally find thaty |, € H"(d;—1, K). O

4.4 Preservation of polynomial forms

Fundamental in finite element methods is the notion of patyiabdifferential forms. For
an ordered-tuple = (i1, ...,ip), 01 <ia < ... <ig {i1,..., 50} C{1,...,d}, let

do; :==dx;, A--- Adz, ,

wheredz;, j = 1,...,d, are the co-ordinate 1-forms in Euclidean sp&¢e The space
P,(AY) of polynomial/-forms onR¢ is defined as

P, (A" = {u = ZI urdzy: ur € Pp(Rd)} ;

where", indicates summation over all orderéduples, andP,(R¢) is the space of-
variate polynomials of total degree p. We remark that forl € {2, 3} polynomial forms
possess polynomial vector proxies.

From the definition4.2) it is clear that the Poincaré operat®r, maps differential
forms with polynomial coefficients to differential formstvipolynomial coefficients. The
same holds for the regularized Poincaré oper&ioby (4.3). If we wantR, to map a
spaceP(AY) of differential forms of order (e.g., with polynomial coefficients) into a
spaceP (A‘~1) of differential forms of ordef — 1, it is sufficient to require the following
two properties, see€’p5, Proposition 4.2].

Proposition 4.4 Assume thaP(A*) and P(A“!) are finite-dimensional spaces of differ-
ential forms satisfying
(i) The space’(A?) is invariant with respect to dilations and translationsaths

Foranyt € R,a € R": if u € P(AY), then(z — u(tz +a)) € P(A").

(ii) The interior productz_ : u — = 5 u mapsP(A*) to P(A*1).
ThenR, mapsP(A*) into P(A*1).
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For the compatibility Assumptiof to hold, it is therefore sufficient to make the fol-
lowing assumption about the local polynomial sp&ﬁﬁ(a[().

Assumption 10

() The space/;f(K) Is invariant with respect to dilations and translations.

(i) The differential operator: . d, : u— 2 2 d, u mapsV;(K) into V. (K).

To summarize:

Assumption®, 10, and ¢.8) — Assumptions, 3, 4, and>5.

5 Discrete differential forms

Now we introduce concrete spaces of discrete differenpiah§. We merely summarize
the constructions that have emerged from research in difted geometry (the “Whitney-
forms” introduced in{8]) and finite element theory (“Raviart-Thomas elements/of| |
and “Nédélec finite elements” ofifl, 45]). These schemes were later combined into the
concept of discrete differential form&4, 36]. Surveys and many more details can be
found in [37, 4, 5, 19].

5.1 Simplicial meshes

Let 90t be a conforming simplicial finite element mesh covering thgsthitz polyhedron
Q) C R, As elaborated in4, Sect. 3 & 4] forp € N the following choices

VI(K) == Pp1(A) | + 2 3 Ppr (AT | (5.1)

K
and

V,(K) = Py(AT) [ ¢ (5.2)

of local spaces, through (1), gives rise to meaningful global finite elment spa&é@ﬁ)
of discrete differential forms.

By construction both Assumptichand AssumptioriO are satisfied for these spaces.
The asymptotic density property also holds.

Lemma 5.1 The spaces%?(i)ﬁ) of discrete differential forms built fror(6.1) or (5.2)
meet the requiremerf?.12).
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Proof. It is a classical result of finite element theory that the sgacf degree
Lagrangian finite element functionoéjj(im) are asymptotically dense iﬁfl(Q). Thus the

space of polynomial&forms with coefficients inig(sm), which is a subspace d)ff;(mt),

is asymptotically dense irﬁ?l(Q, A%). The latter space is obviously densefﬁ*(dg, Q),
since this is already true fa@rge (2, ). O

5.2 Tensor product meshes

Let 97t be a conforming finite element mesh of the Lipschitz polybed? whose cells
are affine images of the unit hypercuﬁeln R® for K € M the we write®y : K — K

for the associated unique affine mapping. We generalizedhstction of {14]: on the
cube we define (with notations introduced in Sectiof)

d e .
7) -1 |f ] € [
¢ — (s . p
Vo ( {V = Zuldxl, ur(z) = Hum(:c]), ur; € Poitidl } :
J=1 p
The local spaces are obtained by affine pullback

VEK) = (®4) VLK) . (5.3)

This affine tensor product construction also complies wissumnptior? and Assumption
10. Completely parallel to Lemm@a 1, one proves the following result.

Lemma 5.2 The requiremen(2.12) is satisfied for the space%;?(i)ﬁ) spawned by5.3).

Remark 5.3 For all the above meshes the cells are affine images of a safglence cell,

the “unit simplex” or “unit hypercube”. We could allow somemaffine cells: Under the
assumption that the transformations are “nearly affined,[88, §4.3], and the projection
operatorsr K are defined correspondingly, all crucial estimates like rexd.1 can be

transferred to the reference cell using the pullback okdétial forms. [

6 Application in dimensions two and three

We adopt the discrete spaces from Seetiong with the regularized Poincaré lifting from
Sect.4. We rely on the choice4(8) for spacesX and.S, with a regularity exponent
r € (0, 1] which has to be chosen suitably.

In order to establish the discrete compactness propenty Befinition2.3, it remains
to verify the regularity Assumptiofi and Assumptions, 7, and8 for convenient local
projectorsr’, .

Local projectors which make the discrete diagram of Assionptcommute do exist
in the general framework of differential forms of any degrdéey generalize Nédélec
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edge element projections and can be referred tmasient baseg@rojection operators.
They are suitable for thé-version of finite elements in dimensions 2 and 3. In higher
dimensions some of them (for low degree forms) require adrigggularity tharf7? to be
defined. In {, 5], they are modified by an extension-regularization procedu order to

be defined and bounded @3. However, such operators cannot be used fopthersion

of finite elements, because no estimates (stability or éwands) are known with respect
to the polynomial degrege.

The proper projection operators fpiversion approximation are so-callpdjection
based interpolation operatorsee P8, 29, 18, 27, 30]. Variants for any/ andd are
available and they are designed to commute in the sense affg®n7 [37, Sect. 3.5].

At this point we have to abandon the framework of genérahd d, because both
regularity results (Assumptioh) and the analysis of projection operators (Assumption
8) are not presently available for genefadndd. We have to discuss them for special
choices of¢ andd separately, relying on a wide array of sophisticated redutim the
literature.

Theorem 6.1 (Convergence of Galerkin approximatio®y d = 2, 3, and0 < ¢ < d,

the Galerkin discretization of2.5) on a Lipschitz polyhedron based on any of the families
of discrete differential forms introduced in Sectffers a spectrally correct, spurious-free
approximation.

Proof. We skip the casé = 0, for which the standard Galerkin approximation theory
for operators with compact resolvent can be applied, $&e [

To begin with, we focus on the discrete compactness propedyverify the assump-
tions1, 6, 7, and8 for d = 2 andd = 3 separately.

e d =2,¢=1:Iinterms of vector proxies we find the correspondence
Y (dy, Q) ~ H(curl, Q) N H(div0,) . (6.1)

Regularity theorems for boundary value problems-fak on the polygon confirm the
existence ob = 6(£2) > 0 such that

H (curl, Q) N H(div0,Q) Cc H*™/%(Q) | (6.2)

in the sense of continuous embedding, se& Sect. 3.2]. This suggests to choose-
d+1/2in (4.8) and Assumptiori will hold true. Hence, we deal with the concrete spaces

XM, AY) = H(curl, Q)0 JT (H7F2(K))? (6.3)
Kem
S, A%) = HY Q) n [ HA(K) . (6.4)
KeMm
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Commuting local projection based interpolation operaﬁcjr§ andw x have been pro-
posed for triangles and for quadrilaterals #&]. With the choice 6 3) and (.4) they
live up to Assumption$ and7. Assumptions8 holds withey(p) = Cp~/? andC > 0
depending only on the shape-regularity of the cells[27, Thm. 4.3] and ¢, Thm. 4.1].
Finally, these interpolation operators satisfy the ndttwadition of conformity §.14) by
construction, which makes they meet all our requiremeanfit§ect.3.4.

e d =3,/ =1,2: we have the vector proxy incarnation

H(curl, Q)N H(div0,Q) for¢=1,

o (6.5)
H (div, Q) N H(curl0,Q) forl{=2.

V(dp, Q) ~ {
Citing results from {] and [37, Sect. 4.1], we find = §(Q) €]0, %] and continuous
embeddings
H (curl, Q) N H(div,Q), H(div, Q)N H(curl, Q) C H"'?(Q).  (6.6)

Therefore, using the constructiof.§) with » = § + 1/2, Assumptionl is satisfied for
¢ € {1,2}. The relevant spaces of more regular forms now read

X (A" = H(cur, Q)0 [ (H*2(5))* (6.7)
X (9, A%) = H(div,Q) N ETH‘;“”(K))?’ : (6.8)
S, A%) = HY(Q) N HK;ISJ;JF?’/Q(K) , (6.9)
S, AY) = Iir(curl,s;e: [T 5272 (cun, K) . (6.10)

Kem

The essential commuting local projection based interlabperatorsr)’s, m =
0,1, 2, have been introduced iy] for tetrahedral meshes and iag for meshes com-
prising parallelepipeds. By construction they comply wikBsumption7. Assump-
tion 6 for the spacess (91, A°) and S(9Mm, A') from (6.9 and (.10, respectively, and
r = d + 1/2is a consequence of Sobolev embedding theorems. Relying/oiii.5.3]
we obtain like in the 2D case that in Lemrd we can take,,(p) = Cp~ /2 form =0
andm = 1.

e Finally, we appeal to Lemmas], 5.2together with Lemma .2 and apply the abstract
theory of Sect3 in the form of Corollary3.3to conclude the proof of the theorem. O

Corollary 6.2 (Approximation of the Maxwell eigenvalue problerfihe p version fi-
nite element discretization of the Maxwell eigenvalue [@oi(1.2) based on edge ele-
ments from the first or seconcebelec family on triangles or on tetrahedra, or from the
first Necélec family on parallelograms or on parallelepipeds offarspectrally correct,
spurious-free approximation.
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Remark 6.3 Instead of {.2) we may consider the variational formulation of the more
general Maxwell eigenvalue problern.{), corresponding to the case of anisotropic inho-
mogeneous material:

Seeku € H(curl, Q) \ {0}, w € R} such that

) o (6.11)
=w” (eu, V) 2 Vv € H(curl, ),

(1" curlu, curl V)L2(Q)
with uniformly positive material tensorg = u(x), € = ¢(x). The same edge element
discretizations listed in Corollary.2 provide spectrally correct, spurious-free approxima-
tions of this problem. This generalization of Corolléry can be achieved with standard
tools (see, in particular, Propositions 2.25, 2.26, and 2419, and [38, Sect. 6], B7,
Thm. 4.9]). O

Remark 6.4 The restriction on the families of elements mentioned inGbeollary is es-
sentially due to the availability of published results atsuitable interpolation operators.
Thus, for example, as soon as a generalization op Wersion error estimates of §, 27]
for projection-based interpolants to meshes containimgatic or more general poly-
hedral elements becomes available, our result about thex@ppation of the Maxwell
eigenvalue problem will apply to such meshes, tod.]

Remark 6.5 Several obstacles prevent us from establishing the assumspif the ab-
stract theory forl > 3. On the one hand, continuity properties of projection bastat-
polation operators have not been investigated/for 3. Also, regularity results along the
lines of (6.6) are have not been published for polyhedra in higher dinogssi

On the other hand, the innocuously looking requiremént4 for the projection oper-
ators — corresponding to the requirement that the globgkption operators are con-
structed elementwise from local degrees of freedom — entladt the trace of forms in
S(K,A*"1) ontol—1-dimensional facets iff,_ (K ) must make sense. However, we can-
not expect more thai/? regularity for the spacé(K, A‘~!). Hence, by trace theorems
for Sobolev spaces, the spacgigs, A*~!) allow for traces onn-facets form > ¢ — 2

at best, which means that> g — 1 is required to allow for the construction of a local
projection based interpolation complying with Assumpsiérands.

Perhaps, an analysis Iif-spaces as inlf Lemma 4.7] can make possible an extension of
the theory to higher dimensions, but this is beyond the sobg®e present article. [J

Remark 6.6 Our approach does not cover-refinement, for various reasons. One reason
is that there exist many variants fof refinements in 3D, and covering them would in any
case require a much longer paper than the present one.

Another reason is technical: The existing convergencefpbthe hp approximation of
the Maxwell eigenvalue problem iif] — while also based on the proof of the discrete
compactness property — uses a different technical tool,ehaan estimate of thé.?
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stability of a certain projection operator. This kind ofigsdte is currently only available
for intervals in 1D and for rectangles in 2D.

The technique used in the present paper is based on theniegdl®oincaré lifting, and

adjusting this to variable polynomial degree poses forflelgechnical challenges. Only
in 2D these could be mastered so far, as was demonstratddnritie context of boundary

element analysis. [J

7 Conclusion

In this paper we have proved that theersion of finite elements based on generalized
Nédélec edge elements provides a spurious-free sggatmatect approximation of the
Maxwell eigenvalue problem. The essential point was thefpod the discrete com-
pactness property. We showed that this property followmfio set of rather natural
assumptions about the family of finite element spaces aedaolation operators, and in
addition we showed that these assumptions are implied eptigdfound results on lifting
operators and on projection-based interpolants.

In the approach pursued id,[5] the discrete compactness property is not addressed
directly: in the framework of thé:i-version for differential forms, modified moment-
based projection operators are used. These new operat@fy $hae strong property
of being uniformly bounded i? and are constructed by means of a delicate extension-
regularization procedure, see algd,[20].

On the one hand this uniform boundedness property is strahga our assumption
6 and replaces in a certain way the discrete compactnessrpropat on the other hand,
it is currently not known whether a construction of projentioperators by extension-
regularization could also be employed in the case ofptiwersion of finite elements, or
whether the construction of @uniformly Z?-bounded family of cochain projections is
even possible.
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