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Abstract

In this paper we prove the discrete compactness properta foide
class ofp finite element approximations of non-elliptic variatior&gen-
value problems in two and three space dimensions. In a vergrgeframe-
work, we find sufficient conditions for theversion of a generalized discrete
compactness property, which is formulated in the settindisdrete differ-
ential forms of ordef on a polyhedral domain iR? (0 < ¢ < d). One of the
main tools for the analysis is a recently introduced smabfPeincaré lift-
ing operator [M. Costabel and A. Mcintosh, On Bogovskil aegularized
Poincaré integral operators for de Rham complexes on hifisdomains,
Math. Z., (2010)]. In the casé= 1 our analysis shows that several widely
used families of edge finite elements satisfy the discretepamtness prop-
erty inp and hence provide convergent solutions to the Maxwell e@jer
problem. In particular, Nédélec elements on triangled trahedra (first
and second kind) and on parallelograms and parallelepifesdiskind) are
covered by our theory.
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1 Introduction: Maxwell eigenvalue problem

Maxwell's eigenvalue problem in a closed cavity € R? with perfectly con-
ducting walls can be written as follows by means of the Makaehpere and
Faraday laws: Find the resonance frequencies R and the electromagnetic
fields(E, H) # (0,0) such that
curlE = iwuH in
curlH = —iweE  inQ
Exn=0 on o)
H-n=0 onofl,

(1.1)

wheree and i, denote the dielectric permittivity and magnetic permeghbite-
spectively. The fieldE andH are sought in.?(2)3.

For simplicity, we consider now the case of homogeneousdp material
with normalized material constants (« = 1) — we will come back to the gen-
eral setting in Remarl.3. In a classical way, the elimination of the magnetic
field from equationsi(.1) yields the Maxwell eigenvalue problem with perfectly
electrically conducting (PEC) walls in variational form:

Seeku € H(curl, Q) \ {0}, w € R} such that

o 1.2
(curlu, curlv) ) = w? (W, V)20 Vv € H(curl, Q) . (1.2)

The elimination of the electric field would correspond to saene problem mod-
elled through replacindd (curl, Q) with H (curl, )",

One aim of this paper is to prove the convergence&i@€url)-conforming
Galerkin discretizations of Maxwell eigenvalue problem?f in the framework
of thep-version of the finite element method. The finite element axipnation of
Maxwell eigenvalues has been the object of intense invasigs for more than
20 years. It was soon recognized that ffigcurl)-conforming Galerkin finite el-
ement discretizations need special finite element spaaeéarth generally termed
edgefinite elements (seelfl, 45, 14)).

The first attempts to analyze the discretized eigenvalubl@mo have been
made for theh-version of edge finite elements. We mentiG¥][as a pioneer-
ing work on lowest order edge finite elements, wherediserete compactness
property(see P]) has been indicated as a key ingredient for the analysibeiOt
relevant works on the subject are3[ 8, 19, 43, 40, 24, 9], and we refer the inter-
ested reader td3[/, 42] and to the references therein for a review on this topic.

In these references, the Maxwell eigenvalue problem isnaftedied using
variational formulations different from.(2), for example mixed formulationg],

1By and large, we adopt the standard notations for Sobolesespaeed4, Ch. 2].
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regularized formulations[3, 25] or mixed regularized formulation$[ 17]. With

the exception of the method of weighted regularizatio® p5, 17], where H!-
conforming elements can be used, these formulations ugé ierl)-conforming
edge elements. In their analysis, special conditions imglgonvergence of the
discrete eigenvalue problems are presented, for exampoticalled Fortid prop-
erty [8], or the GAP property16]. As explained there, these conditions are related
to the discrete compactness property. Here we choose to witlikhe simple
variational formulation1.2) and its generalization to differential forms. The role
of the discrete compactness property in this context has Biseussed in detail
in[19).

The analysis presented in the references above coverstkesion for ba-
sically all known families of edge finite elements. It soomed out, however,
that the analysis of the- and hp-versions of edge finite elements needed tools
different from those developed for theversion. In [LZ] the two-dimensional tri-
angular case has been studied for tpeversion, but the analysis depends on a
conjectured estimate which has only been demonstratedneaihe In [11] a
rigorous proof for thehp-version of 2D rectangular edge elements has been pro-
posed (allowing for one-irregular hanging nodes) whiclparticular, contains the
first proof of eigenvalue/eigenfunction convergence fer plare spectral method
(p-version with one element) on a rectangle.

What paved the way for a successful attack on a genevakrsion analysis
was the regularized Poincare lifting recently introduceld6]: it enjoys excellent
continuity properties and at the same time respects desdréferential forms. In
this paper we are going to show how the regularized Poirtrg can be com-
bined with another recent invention, the projection baségrpolation operators,
see P7, 29, to clinch the analysis of thg-version of edge elements. This al-
lows to prove the discrete compactness (and hence the gama of the discrete
eigensolutions) for a wide class of finite elements relatediscrete differential
forms: for (L.2) this includes, in particular, Nédélec elements on tylas and
tetrahedra (first and second kind) and on parallelogramgarallelepipeds (first
kind).

As already mentioned, one of the key ingredients for the emgence analysis
is the discrete compactness property. Much insight can reegdrom investi-
gating it in the more general framework of discrete diffet@forms (see 4] for
a lucid introduction to this subject). In this setting, th@q@fs are more natu-
ral and simultaneously cover, in particular, two- and thdeéeensional Maxwell
eigenvalue problems.

Plan of the paper. The structure of the paper is as follows. We start in Sec-
tion 2 with a generalization of1(2) to eigenvalue problems associated with the
de Rham complex on differential forms. Then we define therdieccompactness



property and discuss its significance in the context of Galetiscretization: in
association with two standard completeness propertigs/gs a crucial sufficient
condition for the convergence of eigenvalues and eigeaveciSectiors is the
core of our paper and contains the description of our alistissLmptions. Hav-
ing in mind thep-version of finite elements, we consideffiged mesh9t of a
bounded Lipschitz polyhedran c R¢ and a sequence of spaces of discrete dif-
ferential forms of orde¥ (with 0 < ¢ < d) together with projection operators
onto discrete spaces; we prove that our assumptions imelyatiidity of the dis-
crete compactness property for such a sequence of spacesrénin3.?). The
abstract theory relies on the existence of suitable Pogdéing operators which
are presented in Sectidin The mapping properties of these lifting operators allow
to specify some of the function spaces appearing in our atistissumptions. In
Section5 we recall the classical families of discrete different@ainhs with high
degree polynomial coefficients on simplicial or tensor picicelements.

Our abstract theory applies to any dimensipiut for want of suitable regu-
larity results, embeddings, and projection operators, avegive examples satis-
fying all of its assumptions only in dimensiords= 2 andd = 3. This is done in
Section6, where we concretize the function spaces and recall embgaddsults
and properties of projection based interpolation opesatelated to these spaces.
All abstract assumptions are then satisfied, leading to #ia oonvergence result
stated in Theorem.1. The analysis of a-version edge element discretization of
the Maxwell eigenvalue problem () is covered as casé = 3 and/ = 1, see
Corollary6.2.

2 Differential forms and generalized Maxwell eigen-
value problem

The variational eigenvalue probler.?) turns out to be a member of a larger
family of eigenvalue problems, when viewed from the pertipecf differen-
tial forms. This more general perspective offers the benéétunified theoretical
treatment of different kinds of eigenvalue problems, élg scalar Laplace eigen-
problem, Maxwell cavity eigenproblems in dimensi@rend3, the eigenproblem
for thegrad div-operator in dimensioB. This policy has had remarkable success
in numerical analysis recentlgf. [3]. Thus, in this section we first recall some
basic notions related to differential forms. We refer theeiaested reader tcl]
Sect. 2] for an introduction to this subject.



2.1 Function spaces of differential forms

Given a bounded Lipschitz domaihc R¢, we denote by (Q, A%),0 < ¢ < d,
the space of smooth differential forms @rand byA (2) the corresponding anti-
commutative graded algebra

AQ) =P C=(Q,A).

Theexterior derivatives a graded linear operator of degree one
d: A(Q) = A(Q),

that is, for anyl it is represented by, : C>°(Q, A*) — C>(Q, A*F1).
We rely on the Hilbert spaces

H(dg, Q) :={v e L*(Q,A") : dyv € L*(Q, A"}, (2.1)

where L%(Q, A*) is the space of differentia@-forms on( with square integrable
coefficients in their canonical basis representation, 8ée $ect. 2]. Its inner
product can be expressed as

(W, v)gq = / uAxv, uveL*(Q A, (2.2)
Q

with « the Hodge star operator induced by the Euclidean metri@grwhich
maps/-forms to(d — ¢)-forms. As above, a tags the subspaces of forms with
vanishing tracers, on 02, which can also be obtained by the completion of
compactly supported smootHforms with respect to thé/ (d,, 2)-norm:

[¢]

H(dy, Q) :={v € H(d;, Q) : trpov = 0}. (2.3)

The subspace aflosed formss the kernel otl, and is denoted bﬁ(dz 0,Q):

[¢]

H(d,0,9Q) = {v e H(d, Q) : dyv = 0}. (2.4)
Finally, we adopt the standard notation for the exteriodeavative operator

§¢ := xdy_g=; in particular, we havé, : C°(Q, AY) — C=(Q, A*1).

2.2 \Variational eigenvalue problems

After choosing bases for the spaces of alternating mutirforms orR?, vector

fields (“vector proxies”)2 R(%) provide an isomorphic model for differenti&l
forms on(2. Choosing the standard “Euclidean basis”, the operatafstryg, are
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Table 1: Identification between (operators on) differdrfbams and (operators

on) Euclidean vector proxies iR? andR?

Differential form Proxy representation
d=2 | d=3
do grad grad
=0 tron ¢ ®100 D100
H(do, Q) | HY(Q) Q)
d; curl curl
/=1 t£8Q u (L,l X n)|39 (}31 X n)‘aQ
H(dy, ) | H(curl,Q2) | H(curl, Q)
01 div div
dg 0 div
)—o|Weaa |0 (a-n)jo0
H(dy, Q) | L*(Q) H (div, Q)
_)
P curl curl

incarnated by familiar operators of classical vector asialydifferent for different
dimensiond and degreé, see Tablé and {4, Table 2.1].

Hence, the eigenvalue problem?) with ¢, u = 1 is the special casé = 3,
¢ = 1, of the following variational eigenvalue problem for diféatial /-forms,
0</l<d:

Seeku € ﬁ(dé, Q) \ {0}, w € R{, such that

o 2.5
(dg u,dy V)O,Q = w? (ll, V)O,Q Vv € H(dg, Q) . ( )

A key observation is that the bilinear form, v) — (d,u,d,v),, has an infi-

nite dimensional kerneﬁ(de 0,€2) comprising all closed-forms. It provides the
invariant subspace associated with the essential spedtyirof (2.5). This es-
sential spectrum can be identified as the main source ofuliféss confronted in
the Galerkin discretization o2(5).

On the other hand, any solutienof (2.5) for w # 0 satisfies(u, d;—1 ), o =

0 for all ¢ € ]'Of(dg_l 0,2). Thus the eigenfunctions corresponding to non-zero
eigenvalues belong to the subspace
Y (de, Q) = {v € H(de, Q) : (v,di19)g =0 Vap € H(dr—1,Q)},  (2.6)

which means they belong to the kernel®f This is the generalization of the



divergence free constraint found for electric fields in thexvell case. From
[46] we learn the following theorem.

Theorem 2.1 Foranyd € N, 0 < [ < d, the embedding
V(dp, Q) = L2(Q, A
IS compact.

By restricting the eigenvalue problemio@(dg, (), we can therefore use Riesz-
Schauder theory. This implies that f) gives rise to an unbounded sequence of
positive eigenvalues® = (w*)?2

N=0< XN <A<, ., M= 00 (k= 00), (2.7)
with associated finite dimensional mutually(£2)-orthogonal eigenspaces.

Remark 2.2 Owing to the zero trace boundary conditions imposed on the-fu
tions in 2.5), it may be called a Dirichlet eigenvalue problem. Usifgd,, 2)
as variational space would result in the corresponding Neumeigenvalue prob-
lem. Its analysis runs utterly parallel to the Dirichlet eassing the techniques
presented below. [

2.3 Approximation of the eigenvalue problem and the role of
discrete compactness

In the sequel we fix the degrée0 < ¢ < d, of the differential forms. Spaces of
discrete differential forms

VEC H(d,Q), dimV. < oo,

lend themselves to a straightforward discretizatior?af)( In this sectionp € N
stands for an abstract discretization parameter, andybygmeaking, large values
of p hint at trial/test spaces of high resolution.
We consider the approximation of the eigenvalue probleis) py the Galerkin
method: N
Findu, € V! \ {0}, w € Ry, such that

0 2.8
(deuy, dg Vp)&Q = w? (up,vp)&Q Vv € Vf; . (2:8)

Now, the key issue is convergence of eigenvalues and eigemgeasp — oo,
rigorously cast into the concept gppectrally correct, spurious-free approximation
[19, Sect. 4]. Let us recall these notions in a few words for thse cd self-adjoint
nonnegative operators without continuous spectrum (wisitihe case here).
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The spectral correctness of the approximation of an eideeyaoblem such
as .5 by a sequence of finite rank eigenvalue problems$)(means that all
eigenvalues and all eigenvectors @f) are approached by the eigenvalues and
eigenvectors of4.8) asp — oo. If (2.5 has a compact resolvent (which is the
caseonly when?/ = 0), the spectral correctness is an optimal notion: It implies
that if {\*},>, and{A’;}kZl are the increasing eigenvalue sequences§ 6§ and
(2.9) (with eigenvalues repeated according to their multipksi), then

Ar— A as p—oo VE>1, (2.9)

and the gaps between eigenspaces (correctly assemblediagdo multiplicities
of the eigenvalues oP(5)) tend to0 asp — oc.

If we face an eigenvalue problem for a self-adjoint non-tiggaperator with
an infinite dimensional kernel, and otherwise discretetp@sspectrum (which is
the case for4.5) for all ¢ > 1), the spectral correctness implies the same prop-
erties as above with the following modifications of the deifamis: Now{\*};~,
is the increasing sequence dsitiveeigenvalues of4.5) (as specified in4.7))
and, given a positive number< \!, {A’;}kzl is the increasing sequence of the
eigenvalues of4.9) larger thane (still with repetitions according to multiplici-
ties). With such conventionspectral correctnesstill implies convergence of
eigenvalues.9) and eigenspaces as above. In this conspdrious-free approx-
imationmeans that there existg > 0 such that all eigenvalues df ¢) less than
o are zero. Therefore, spectrally correct, spurious-frege@pmation implies the
convergence property (9 and the corresponding convergence of eigenspaces, if
we define{/\’;}kzl as the increasing sequence of fusitive eigenvalues qP.9).

There exist several different ways, all well studied and samzed in the lit-
erature of the last decade, for proving the convergenceeodlifcrete eigenvalue
problem ¢.8) to the continuous eigenvalue problems): One can use a reformu-
lation as an eigenvalue problem in mixed form as analyzef]jof one can use a
regularization which gives an elliptic eigenvalue problemthe Hodge-Laplace
operator as analyzed ir]| or one can follow the arguments ofg] and study the
non-elliptic problem 2.5) directly.

Here we outline the latter approach, which employs the amalgf [32] of
the approximation of eigenvalue problems of non-compdtadjeint operators.
Since [L9] deals only with the Maxwell case, i. el = 3, ¢ = 1, we examine
the main arguments, in order to verify that they are alsaivali the general case.
The proofs we give are adaptations of thosel@] fo our more general situation.

Let us define the solution operatdr: L?(Q2, AY) — ﬁ(dé, ) of the source
problem corresponding to the eigenvalue problémy)(and its discrete counter-



partA, : f}f, — f}f, by

(de AF,dev)g g + (AE,V)go = (£.V)gq ¥V € H(dy, Q)

o, (2.10)
(de Apf dev)g g+ (Apf,v)g o= (£, v)gqg VYVEV,.

Note that the operatotd and A, have the same eigenfunctions and the same
eigenvalues (after a transformation) as the eigenvaluelgms ¢.5 and ¢.9).
Namely, ¢.5) and ¢.9) are equivalent to the relations

u=(w?+1)Au; u, = (W +1)Au,. (2.11)

The infinite-dimensional eigenspacewat= 0 shows thatA is not a compact
operator.

Following [19], three conditions are identified that together are necgssal
sufficient for a spectrally correct, spurious-free appmadion of A by A, or,
equivalently, of the eigenvalue problem %) by the discrete eigenvalue problem
(2.9).

The first condition is rather natural. It states that the seqae of discrete
spaces(%)peN is asymptotically dense idif(dg,Q) (compare 19, Condition
(CAS) — completeness of approximating subspaces])

(CAS) pli)m inf ||V =vyllyq,0 =0 VveH(d,Q). (2.12)

vpeEVS

The second condition, only relevant for> 0, states that closed forms can be
well approximated by discrete closed forms (compdré [Condition (CDK) —
completeness of discrete kernels])

(CDK) lim  inf  z—zf0 =0 Vze H(d0,Q).  (2.13)

P00 2, e VENH (d; 0,02)

The third condition is the most intricate one and has beemedbiscrete com-
pactness For its formulation, we introduce the orthogonal complabspace of
the discrete closed forms:

2= {u, €V (u,,2,),0=0 Vz, € VN H(d0,Q)} (2.14)

Definition 2.3 Let us choosé € {1,...,d — 1}. Thediscrete compactness prop-
erty holds for a family(lo/f, )peN of finite dimensional subspaces]?ﬁ(dg, Q), if for
any subsequend¥ of N, anyboundedsequence

(up)peN, C I;T(dg,Q) with u, € éf)
contains a subsequence trenverges in.?(Q, A°).

9



The convergence proof is based on two lemmas, the first ofwdnoresponds
to [19, Theorem 4.12]. It implies, according t84, Condition P1) and Theorems
2,4,5,6], the spectral correctness of the approximation.

Lemma 2.4 If (2.12) and the discrete compactness property hold, then

plggo . sup 1Avy = ApVpll g, 00 = 0- (2.15)
Vp€V£§|\VpHH(dZ,Q):1

Proof. Note first that forv, % N H(d, 0,9) there holdsdv, = v, = A,v,,
so that by orthogonal decompositionﬁ)ﬁ one gets

sup [Av, — APVP||H(dZ7Q) = sup [Av, — APVP||H(dZ7Q) :

o
vpEVL; ||Vp||H(d£,Q):1 VPEZf;?”Vp”H(dK,Q):l
Furthermore, one has by definition dfand A,

|Av, — Apvp||H(dZ7Q) = infO |Av, — WpHH(dzﬂ) .
wpeVY

Assume now that4.15 does not hold. Then there exists- 0, a subsequend¥
of N and a sequenae, ) e With v, € Z! satistying||vy || 4, o) = 1 and

1AV, = Wyl g, 0 =6 PEN, w, €V, (2.16)

We can apply the discrete compactness property to the segey) and ob-
tain a subsequence converginglik(2, A?) to somev € L?(Q2, A?). SinceA :

LY, A — }OI(dZ,Q) is continuous, we findiv € ﬁ[(dz,Q), and the approx-
imation property £.12) provides us with a sequencev,) with w, € % that
converges inlol(dg, ) to Av. Hence for the subsequence we obtain

| Avy, — Wp”H(d[,Q) < [|Av, — AVHH(de) + [|Av — Wp”H(d[,Q) — 0,

in contradiction with .16). 0
The second lemma corresponds i@,[Corollary 2.20]. It gives the discrete
Friedrichs inequality (ing] also called “ellipticity in the discrete kernel”), and it
IS easy to see that this implies that= 0 is not a limit point of positive discrete
eigenvalues, so that the spurious-free property of thecqupation follows.

Lemma 2.5 If (2.13 and the discrete compactness property hold, then there ex-
iIstsa > 0 such that for allp € N

e vl 2y = @lVllpey WV € Z, (2.17)

10



Proof. Assume that4.17) does not hold. Then there exists a subsequé¥ce#
N and a sequends,) e With v, € Zf; satisfying

Vol 2y =1 and plgglo lde Vil 20y = 0 (2.18)

The discrete compactness property can be applied to thi®eeq and gives a sub-
sequence converging ib?(Q, AY) to somez € L2(Q2, A*). From .19 follows
that the convergence actually takes placd?l('dg, 2) and thatz € ]'Ol(dg 0,€).
Therefore the approximation property.{3 provides us with a sequende,)

with z,, € f}f, N ﬁ(de 0, ) that converges i (2, A*) to z. Hence for the subse-
quence we find

[vp = ZP”L2(Q) < vy — ZHL2(Q) + ||z - ZpHL2(Q) — 0.

This leads to a contradiction, becausg € Zo’f; andz, € % N H(d,0,) are
L?(Q)-orthogonal, hence for afl

2 2 2
vy — Zp||L2(Q) = ||Vp||L2(Q) + ||Zp||L2(Q) > 1.

O
To summarize, Lemmas 4 and2.5together prove the following result.

Theorem 2.6 If the completeness of approximating subspaces?), the com-
pleteness of discrete kerndis 13 and the discrete compactness property hold,
then(2.8) provides a spectrally correct, spurious-free approxiroatof the eigen-
value problen(2.5).

Remark 2.7 The main focus of this section is on teenvergencef the eigen-
values and the eigenfunctions of problemd] to those of 2.5. On the other
hand, when considering concrete applications it is cruoiatvestigate therder
of convergence. In order to do so, several strategies arkalbla A straightfor-
ward approach which well fits the theory summarized in thidise makes use
of the results from33]. Theorem 1 of B3] states in this particular situation that
the error in the eigenfunctions (measured as usual by the@fgHgbert spaces)
is bounded by the best approximation, and Theorem 3(c}dfdtates that the
eigenvalues achieve double order of convergence sinceroblgm is symmetric.
An alternative approach makes use of the equivalence ofgrab@.5) and .9)
with suitable mixed formulationslLp, Part 4]; in this case an estimate of the or-
der of convergence can be achieved by the standard BallDSkarn theory for
the spectral approximation of compact operators appliethéomixed formula-
tions [LO, Theorems 13.8, 13.10, 14.9, 14.11][]

11



3 Anabstract framework implying discrete compact-
ness

In this section we fix a degree of differential forms
ce{l,...,d—1},

and we formulate a set of hypotheses which allow us to progealtbcrete com-
pactness property. These hypotheses are organized ingitnaes:

1. standard assumptions related to the finite element spoﬁc(&ect.&l),
2. assumptions on the existence and key properties ofijtbperators” (Secg.3),

3. hypotheses on projections oncfé complying with the commuting diagram
property and satisfying an approximation property (See).

To state these assumptions we have to introduce interneespacesX andS of
more regular forms

VEC X(M,AY) C H(d,, Q) and VS SO AT C H(de, Q)

allowing compact embedding arguments and precise notiocainuity of lift-
ing and projection operators.

3.1 Discrete spaces

Our focus is on finite element spaces. For the sake of simylige restrict our-
selves to polyhedral Lipschitz domaifts We assume that the finite dimensional

trial and test spaceﬁ?’f, p € N, are based on &xed finite partition 9t of €2,
composed of elements (cell&):

Q= (JK , KnK'=0,ifK#K KK eM.

KeMm

ForacellK € 9, letF,,(K) designate the set afi-dimensional facets ok :
for m = 0 these are the vertices, for = 1 the edges, forn = d — 1 the faces,
andgq(K) = {K}.

We take for granted that the discrete spaloiés:an be assembled from local
contributions in the sense that for each meshkelt M1 there is a space’(K) C
C*>=(K, A*) of smooth/-forms onk, such that

V= Vi) = {ve HdoQ): v[ e V() VK em}.  (31)

12



In other words,Vf; can be defined by specifying the local spavé(sK) and re-
quiring the continuity of traces across inter-element loiauies as well as the
boundary conditions odf.

In the same fashion, we introduce a corresponding faf&\ﬁl‘}} C Ifl(dg,l, Q)
of spaces of discrete — 1)-forms. We will see later on that as a consequence of
further hypotheses, the local spa@és1 (K) andvz’f (K) satisfy an exact sequence

property.

3.2 Spaces of more regular forms

We introduce a Hilbert spacg (91, A*) C ]f[(dg, 2) that captures the extra regu-
larity that distinguisheg-forms in the spacé?f(dg, 2). We can think of this space
as a space of “more regulaf“forms on¢.

Assumption 1 The spacéof(dg, 2) defined in £.6) is continuously embedded |in
X (90, AY):
V(dg, Q) < X (9, AY) .

This means that witli' > 0 depending only ot
[l xonaey < Cllullge,0 Ya€Y(d, Q). (3.2)

On the other handX (9, A%) has to be small enough to maintain the compact
embedding satisfied b}?(dg, ), cf. Thm.2.1.

Assumption 2 The spaceX (91, A*) is compactly embedded ib? (2, A*):

comp

X (O, AY) = L*(Q, A5,

As with the discrete spaces, the spadg®1, A*) are built from local contri-
butions and will therefore depend on the m&8hWe assume that for each mesh
cell K € 9 there are Hilbert space$ (K, A*) so that:

XA = {ve Hd,Q): v|, € X(K,A") VK em}, (3.3)

and, in addition, the norm of (", A?) is defined through local contributions:

Il man = Il + D el - (3.4)
Kem

Finally, the local spaces have to be large enough to corftaidiscrete forms for
any value ofp:
l J4
V(K) C X(K,A) . (3.5)
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Correspondingly, we introduce a spagent, A*1) c ﬁ(dg_l, 2) of “more
regular potentials”. Similar t& (90T, A*), the spaces§ (91, A*~1) are mesh-depen-
dent and allow for a characterization through local HilbsgacesS (K, A1),
K e,

SO AY) = {4 € H(dr1,Q) : |, € S(K,AY) VK e M} . (3.6)

They are endowed with the norm

1815 emae1) = 1ll7re,0) + 2 18 ]lsmnes - (3.7)

KemMm

The local spaces are large enough to contain the local tisgotential spaces:
{— 0—
v, YK)c S(K,A" ). (3.8)

The following assumption establishes the connection batig9t, A*) and
S(O, A1),

Assumption 3 The exterior derivative maps$ (9, A“~!) continuously intg
X (9, AY):

S, A € {p e H(dp1,Q) : dpr p € X(O, AD)Y,
and the image is maximal:

et SO, A = dp_y H(dey, Q) N X (9, AD).

To conclude this subsection, note that in the case of an efeféuching the
boundaryo(?, like for the discrete spacag (K) andV!~'(K), the local spaces
X(K, A and S(K, A1) are not obliged to comply with any boundary condi-
tions.

3.3 Local liftings

A pair of linear mappingR;.  : C=(K,A*) — C®(K, A1), k=4, 0+1,is
called alifting operatorof degree if it fulfills

de1oRex + Ry xode=1dg . (3.9)

This relation characterizes a “contracting homotopy” @& tle Rham complexX|
Section 5.1.2].

Besides this algebraic relationship, our approach hingesyrmothing proper-
ties of the lifting operators, expressed by means of thd kmacesS (K, A1) of
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more regular potentials anti (K, A*) of more regular forms. The next assump-
tion summarizes the continuity expected from the liftingigior.

Assumption 4 For everyK € M there is a lifting operataR, x, Re+1.x ) whose
components can be extended to continuous mappings

Reyix s LA(K AT = X(K, A and Ryg : X(K,AY) — S(K, A",
and thus identity.9) holds onX (K, A*).

As a consequence, for each cElle 91, we have the exact sequence

X(K,AY) —2s L2(K, A, (3.10)

de—1

S(K, A1)

Finally, the local liftings have to be compatible with the#&bspaces of discrete
differential forms:

Assumption 5 The local operator,; x, when applied to exact local discrete
(¢ + 1)-forms, yield local discreté-forms,i.e.,

Resixode: Vo(K) — Vi(K) .

3.4 Local projectors

As usual in methods based on discrete commuting diagramseee jprojection
operatorsr’ . onto discrete spaces f¢f — 1)-forms and/-forms. For degree

¢ — 1, our local spaces$ (K, A“!) of more regular potentials can play the role of
domains for the projectorsﬁ}%. For the degreé, by generalization of what we
actually need in the case of dimensior- 2 andd = 3 for Maxwell, we define
our projectorSTZ‘;K on smaller spaces than( K, A*). We denote these new spaces
by S(K, A*) and require that they contain for althe p-dependent subspaces

X, (K, A ={ue X(K,A" :dyued V(K)}. (3.11)

On the same model a8.0)-(3.7), we define the corresponding global spaces
S(o, AY) and

X,(M, A% = {ue X(M,A") :dyued V) (3.12)
and we have the continuous embeddings

X, (9, AY) < SO, AY) — X (M, AY) . (3.13)
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Assumption 6 There ardocal continuous linear projections
moe s S(K,AT) = VINK) and @ S(KAY) = VI(K)

for all mesh cellgk” € M.

The standard commuting diagram property is as follows.

Assumption 7 The projectorsvrf;}g and wf;’ ; are compatible with the exteripr
derivative in the sense that the diagram

de—1

S(K,A"Y) —= S(K,A
K?J{ ”ﬁ,K
VLK)

s 4
Vp<K) )
commutes for every € .

Ky

Let us note that, as a consequence of Assumpticausd 7, we find that the
sequence

VEUER) 225 VUR) = d, (VUK))
is exact.

Besides, the local projections acting @n- 1)-forms are supposed to enjoy a
crucial approximation property using the Hilbert spacemf-|| g ye-1)-

Assumption 8 There is a functios;_;: N — R with lim ¢, ;(p) = 0 so that
pP—0o0

ldees (6 — 78| ey < Er(D) [ Bllguene sy Vb € S AT

Finally we assume for the projectionﬁK a natural condition of conformity:
Forallu € X, (K, A)

trru=0 = trpm,u=0 VFeF,(K), (<m<d, (3.14)

and the corresponding condition for the projectioﬁ@}. This makes it possible
to definegloballinear projections

‘¢, ¢ Y -1, ¢ 5l —
m o SLAY) = Vo and w7t S AY) e Vi
by patching together the local operators

(71';;11) ‘K = W£7K(u’K) and (Wﬁ_l(f)) ’K = Wﬁ}%((ﬁ‘K) VK e M. (3.15)
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As a consequence of Assumptioand (.15, the global projectorsﬁ*1 andwf;
inherit the globatommuting diagram property

SO, AL 2L s(om, A
W;;fll lw (3.16)
)

1 doe—1
—

3.5 Proof of the discrete compactness property

The estimate of Assumptichion “potentials” carries over té-forms with a dis-
crete exterior derivative, that is, the elements of the spggi, A¢), see 8.12).

Lemma 3.1 (Global projection error estimat&)aking Assumption$ throughs,
the estimate

Hu - ﬂ-ﬁuHLQ(QJ\Z) S ng_l(p) ||u||X(9ﬁ,AZ) Vu e Xp(mv AZ)
holds true, with a constarit’ > 0 independent op.

Proof. Pick anyu € X, (9, AY). The locality of the projector!, cf. (3.19),
and @.4) allow purely local considerations. Single out one ¢elk 9)? still write
u=u ]K €X »(K, A%, and splitu on K using @.9) from Assumption:

u = dg,l Rg,KU. + Rg+1,K dg u = dg,1 (}’) + RZJrl,K dg u. (317)

with ¢ := R, xu. The continuity ofR, x from Assumption reveals that

||¢||s A1) = CHUHX(KM) ’ (3.18)

where here and belo& will denote constants (possibly different at different oc-
currences) which depend neither@mor onp.
Thanks to identity §.17) and the commuting diagram property from Assump-
tion 7, we have
mogu=d 7L+ 7 Ry cdeu (3.19)
Recall thatu € X, (K, A’) belongs to the domain OifﬁK by Assumptiors. Fur-
ther, asu € )?p(K, A*), from Assumptiorb we infer that

Resixdeu € Vi(K) . (3.20)

Thus, owing to the identities3(17), (3.19 and the projector property af, ., the
task is reduced to an interpolation estimateﬁﬁ‘ﬁ:

(Id — pK)u_dg 1(|d—7r K)¢+(Id ;;K)RMKdgu . (3.21)
—0 by (3.20
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As a consequence, invoking Assumptign

1000 = 2 s g 2 e = 7506 s

(318
< &¢-1(p) HQ’)”S(K,A“—l) < Ceralp) HUHX(K,M) , (3.22)

which furnishes a local version of the estimate. This eggnsuniform inK &

M becauseéN is finite. Due to 8.4), squaring £.22 and summing over all cells

finishes the proof. O
We are now in the position to prove the main result of thisisact

Theorem 3.2 (Discrete compactnes§)nder Assumptions through 8, the dis-
crete compactness property of Definitiors holds for the famil;()o)f; )pGN of sub-

spaces Oﬁ(dg, Q).

Proof. The proof resorts to the “standard policy” for tackling thelgem of
discrete compactness, introduced by Kikucit, [40] for analyzing theh-version
of Whitney-1-forms. It forms the core of most papers considgthe issue of dis-
crete compactness, se&’] Thm. 2], [L1, Thm. 11], B7, Thm. 4.9], B1, Thm. 2],
etc.

Let us introduce the discrete analogue of the sp%a(ze, 0):

V= {vp €Vt (v diah,), =0 Vab, € Vi) (3.23)

The space)oil‘f containsZOf; as a subspace.
We consider a subsequern¥eof N and aH (d,, (2)-bounded sequence,,)

peN/
with members ian,. Thusu, belongs in particular t@/ﬁ and the sequence
(up),ep Satisfies

0 uw,eV’, (3.24)
(i) (updirth,), =0 Ve, €V, (3.25)
(i) [yl g0 <1 YPEN. (3.26)

We have to confirm that it possesses a subsequence thatgesver? (2, A*).
We start with theL?(Q, A%)-orthogonal projection of, into ?(dZ,Q) and
parallel tod,_; ﬁ(dgfl, 2): letu, be the unique vector field iﬁ{(dg, Q) with
W=, +d1 @, @, € H(de1,9), (3.27)
(W, de1 )y =0 Vap € H(dr1,9). (3.28)
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Obviously, the latter condition implies
i, € Y(dy, Q) . (3.29)

Hence, by virtue of Assumptiof, the fact thatd,u, = d,u,, and @.129), u,
satisfies B
U, € X,(M,AY), ||ﬁp||x(m/\£) <C ||up||H(dZ7Q) ’ (3.30)
whereC' > 0 does not depend gn
Sinced,_; ¢, = 1, —u, € X(M, A%), Assumption3 implies that we may
assume thaﬁp € S(Mm, AL,
Thus we can use Nédélec's trick/] to obtain

~ 2 ~ ~ ~ ~

|a, — upHL2(Q,Al) = (up — Up, Up — zl;up + Wf;up - up)oﬂ

o o (3.31)
= (up —up,u, — 7Tpup)07Q )

This holds because fron3 (27) and the projector property af, we know
Wﬁﬁp —u, = 7rf;up + 7T£ dey (Aﬁp —u, = 7rf; deq (A;,’;p,

and thanks to the commuting diagram propefiyl() (deduced from Assump-
tion 7) combined with the orthogonality conditions.25 and (.29, we find

(8 — . 7, — ) ) = (ﬁp oy, de W;;*lcpp)o _=0. (3.32)
Hence, appealing to Lemnial, with C' > 0 independent op, we get

||ﬁp - upHLQ(Q,A“) < Hﬁp - 71-zl;ﬁlDHB(Q,M) = Cgé—l(p) ||ﬁp||X(9Jt,A“)

(3.3

I (3.33)
< Cera(p) [upll x o ey = 0 fOrp — oo

From (3.30 we conclude that the sequen@)peN, is uniformly bounded in

X (9, AY). By Assumptior? it has a convergent subsequencé (2, A?). Ow-
ing to (3.39, the same subsequence(af) ., Will converge inZ?(2, AYH. O

3.6 Approximation of the eigenvalue problem

As discussed in Section 3, the discrete compactness property is the cornerstone
of the proof of the convergence of the discrete generalizedwIl eigenvalue
problem @.9).
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Corollary 3.3 In addition to the hypotheses of Theorén?, namely Assump-
tions 1 through 8, assume that propertfCAS) (2.12 holds and that the space
X (9, A9 N ﬁ(d( 0,) is dense inﬁ(dg 0,9). Then(2.8) provides a spectrally
correct, spurious-free approximation of the eigenvaluabem(2.5).

Proof. We use Theoren2.6 from Section2.3. Considering that the dis-
crete compactness property is provided by Theoefand that we assume the
approximation property (CASP(12, we only need to show the approximation
property (CDK) ¢.13, which concerns the approximation of closed forms by
closed discrete forms.

Since we assumed the density {91, AY) N ﬁ(de 0,9Q)in ﬁ(de 0,Q),itis
sufficient to prove (CDK) forz € X (91, A%) N ]f[(dg 0,9). Suchz belongs to
X, (9, AY), and we can therefore apply Lemrfial, which shows thatlz — z
in L2(2, A"). We will have accomplished to show (CDK) with) = 7'z, as soon

as we show that, z, = 0. Keeping in mind that, ¢ )O/f, C H(d,, ), we see that
it is sufficient to show the local relatiafy z, = 0 in K for every K € 9. This
follows finally as in ¢.19 in the proof of Lemma3.1, because, z = 0 implies

V4 /—1
7Tp,KZ = dg,1 vaKRZ,KZ .
Henced, z, = d; 7} ,z = d,do_y ™, Ry xz = 0, which ends the proof. O

Remark 3.4 The abstract theory developed in this section can be apfdidte
h-version of discrete differential forms, if the dependeantéhe constants on the
size of the cellK is made explicit by means of scaling arguments. Here, weforg
this extra technicality and refer the readerig,[Sect. 4.4]. [

4 Regularized Poincak lifting

In this section we describe the construction of a localhgtoperatoR, that will
satisfy Assumptiong and5 in Section3.3for suitable spaceX (K, AY), S(K, AY)
andVI‘j(K ). We follow the presentation ir2f], where these operators are analyzed
and where it is shown in particular that they are pseudawiffeéal operators of
order—1.

4.1 Definition

We consider a bounded domalihc R that isstar-shapedvith respect to some
subdomainB C D, thatis,

VaeB,zeD: {(1-tla+tx,0<t<1l}CD. 4.1)
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Fora € B andl < ¢ < d, we define théPoincar operatorR,,, acting on a
differential formu € C°°(D, A*), by the path integral

Requ(z) = (. —a) o /1 t“rua(a+t(z —a))dt, reD. (4.2)
0

Here the symbol: denotes the contraction (also called “interior producf’jhe
vector fieldz — (z — a) with the -form u. Itis clear thaiR,, mapsC>(D, A*)
to C>=(D, A*~1) and it has been shown (s&&] for proofs in the casé = 3) that
it can be extended to a bounded operator fiotD, A) to L?(D, A*~1). In order
to define theegularized Poincae operatorR,, we choose a function

0 € C°(RY), suppf C B, /H(a)dazl,
B
and set

Rgu(a:):/BH(a)RMu(x) da. (4.3)

4.2 Regularity

The substitutiony = a + t(x — a), 7 = 1/(1 — t) transforms the double integral
in (4.2), (4.9 into

Reu(z) = //(7' — 1)Z’1Td’£9(:c +7(y — SC)) (x —y) su(y)drdy
R¢ 1 (4.4)
= /k(y,y—x) su(y)dy,

R4

where the kernel(y, z) has an expansion into quasi-homogeneous terms:

k(y,z) = —z/ s Hs+ 1) 0(y + sz2) ds
0

d—t .
_ dféi d=j=19(y + K2 dr
JZ%(J)Md_j/O g dr

The operatoR; is therefore a weakly singular integral operator. 2iG,[Section
3.3], the following result is shown.

(4.5)

Proposition 4.1 For 1 < ¢ < d, the operatorR, is a pseudodifferential oper-
ator of order —1 on R%. It is well defined onC>°(D, A*), it mapsC>=(D, A?)
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to C*°(D, A1) and C>=(D, A*) to C>=(D, A*"!), and for anys € R it has an
extension as a bounded operator

Ry : H¥(D,A") — H*™(D,A")).

Here, H*(D, A*) is the Sobolev space 6fforms onD of order s.

4.3 Lifting property

The lifting property 8.9) is a consequence of the following identity, which is a
special case of “Cartan’s magic formula” for Lie derivatvend for a flow field
generated by the dilations with center

d,, B
E@ u(a+t(x—a)) =
dey (tz’l(x —a) su(a+t(z — a))) +t'(zr —a) sdju(a+t(z —a)) (4.6)

Hereu is an/-form. The result is
dg,leu—i—Rnggu:u (1§£§d—1),
Rldou:u—(ﬁ,u)OD (¢=0); 4.7)
dd_1 Rdu =u (f = d) .
These relations are valid for all € C5°(R? A*) and by extension for alh €
H*(D, A%, s € R.

The perfect match of4(7) with (3.9) from Assumption/4 suggests that the
regularized Poincareé lifting, provides suitable local liftings as stipulated in As-
sumption4. To this end, we can choose as local spaces of “more regulasfo

X(K, A" = H(dy, K) N H"(K,\") 4.8)
S(K,A“" ") := H"(d,_1,K) and S(K,A") := H"(dy, K), '
for some0 < r < 1, where we denote b¥/" (d, K) the space
H'(dy, K) == {v € H(K,A") : dy v € H"(K,A\*™)} .

All these spaces are equipped with the natural Hilbert spacms. Also keep in
mind that the global space$§(9, AY), S(9M, A*~1) andS (I, A?) are determined
by their local definition on the mesh celis, cf. (3.3) and (3.6). For the particular
choice {¢.8) an assumption of Corollary.3 can be verified.

Lemma 4.2 For X (9, AY) arising from(4.8) the spaceX (9, AY) N H(d, 0,)
is dense inf[(dg 0,9Q).
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Proof. By [26, Thm. 4.9(c)] we have a direct decomposition

[¢]

H(d,0,9) =di H( QLAY @ ¢, CCCOXRYA), (4.9

whereCZ(R?, A*) is the space of compactly supported, smo6forms onR?

with support contained i or, equivalently, the space of all smodtfiorms on$)
that vanish o2 together with all their derivatives. Sin€&°(R?, A*~') is dense

in [11(, A“1), we deduce:
C=(RY A Ndey H(Q,A™Y) isdensein d,, H'(Q,AY)

As everyu € CZ(R?, A*) belongs taX (9%, A*), the assertion follows. O

We point out that the choice of in (4.9) is determined by Assumptioh
Also note that whenever we opt fof.¢), Rellich’s theorem ensures Assumption
2, because the mesh is kept fixed.

The construction oR, entails a constraint on the cell shapes. This is satisfied
for standard finite element meshes, where the cells usualganvex polyhedra.

Assumption 9 Every cell K € 9t is a star-shaped polyhedron. ‘

Lemma 4.3 Assumptiord, the choicg4.9) for spacesX (K, AY) and S(K, A*1)
imply Assumptions, 3 and4.

Proof. The only fact which remains to be proved is the maximalitgtieh in
Assumption3

ey SO, AY) = dy_y H(dp_1, Q) N X (9N, AD).

The inclusionc holds by definition. Let us prove the converse inclusion.

Letu € dy_y H(dy_1, Q) N X (M, AY). Thusu = dy_; ¢ with ¢ € H(d, 1, Q).
Sinceu € L*(Q, A*), using P6, Cor. 4.7] we obtain that there existse H'(Q, A1)
such thatu = d,_; v. In particular,2) ]K belongs toH" (K, A*~1) for all K and,
sinceu |, belongs toH" (K, AY), we finally find that | . € H"(d,—1, K). O

4.4 Preservation of polynomial forms

Fundamental in finite element methods is the notion of patyiab differential
forms. For an orderedtuple [ = (iq,...,1), 11 < i < ... < 'ig, {i1,...,0} C
{1,...,d}, let

dry :=dx;, A---Adxy, |
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wheredz;, j = 1,...,d, are the co-ordinate 1-forms in Euclidean sp&ée The
spaceP,(A*) of polynomial/-forms onR? is defined as

Py(A) = {u =" wrdes: uy € PR}

where>"; indicates summation over all orderéduples, andP,(R?) is the space
of d-variate polynomials of total degree p. We remark that forl € {2,3}
polynomial forms possess polynomial vector proxies.

From the definition4.2) it is clear that the Poincaré operat®r, maps dif-
ferential forms with polynomial coefficients to differeaftforms with polynomial
coefficients. The same holds for the regularized PoincpegatorR, by (4.3).
If we wantR, to map a spacé#(A) of differential forms of order (e.g., with
polynomial coefficients) into a spad&A‘~!) of differential forms of orderf — 1,
it is sufficient to require the following two properties, 486, Proposition 4.2].

Proposition 4.4 Assume thaf’(A¢) and P(A*"!) are finite-dimensional spaces
of differential forms satisfying
(i) The space’(AY) is invariant with respect to dilations and translationsaths
Foranyt € R,a € R": ifu € P(AY), then(z — u(tz +a)) € P(A").
(ii) The interior productz_ : u — = 5 u mapsP(A*) to P(A*1).
ThenR, mapsP(Af) into P(A*1).
For the compatibility Assumptiof to hold, it is therefore sufficient to make
the following assumption about the local polynomial spﬁﬁ(d().

Assumption 10

() The space/;f(K) Is invariant with respect to dilations and translations

(i) The differential operator: 1 d; : u +— = d, u mapsV/(K) into V{(K).

To summarize:
Assumption®, 10, and ¢.8) — Assumptions, 3, 4, and5

5 Discrete differential forms

Now we introduce concrete spaces of discrete differerdiahf. We merely sum-
marize the constructions that have emerged from reseadifienential geometry
(the “Whitney-forms” introduced in48]) and finite element theory (“Raviart-
Thomas elements” of4[/] and “Nédélec finite elements” ofAf, 45)). These
schemes were later combined into the concept of discrereiitial forms [L4,
36]. Surveys and many more details can be foundin {, 5, 15].
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5.1 Simplicial meshes

Let 91 be a conforming simplicial finite element mesh covering thgsthitz
polyhedronQ2? C R?. As elaborated in4, Sect. 3 & 4] forp € N the following
choices

V]f(K) = P,_1(A) \K + 2 3P, (AT ]K (5.1)
and

Vi(K) :=Py(AY)] (5.2)

of local spaces, througl® (1), gives rise to meaningful global finite elment spaces
loﬂj (91) of discrete differential forms.

By construction both Assumptighand AssumptioriO are satisfied for these
spaces. The asymptotic density property also holds.

Lemma 5.1 The spaces%’(fm) of discrete differential forms built frortb.1) or
(5.2) meet the requiremer(?.12).

Proof. Itis a classical result of finite element theory that the sgaaf degree
p Lagrangian finite element functioné‘jg(im) are asymptotically dense ifi' ().

Thus the space of polynomiafsforms with coefficients inﬁg(im), which is a
subspace oﬁoif;(im), Is asymptotically dense ilﬁ?l(Q,Af). The latter space is
obviously dense ilﬁ(dé, ), since this is already true f@rge (2, T'). O

5.2 Tensor product meshes

Let 90t be a conforming finite element mesh of the Lipschitz polybedt whose
cells are affine images of the unit hyperculden R® for K € 9 the we write

¢, : K — K for the associated unique affine mapping. We generalize the
construction of {4]: on the cube we define (with notations introduced in Section
4.4)

d o
> ~ Po_1 if YRS I
¢ o _ — (s . p
V,(K) = {V = E urdxy, up(x) = IJ ur (), urj € Poifidl } )
I j=1 p
The local spaces are obtained by affine pullback
VUEK) = () VUE) . (5.3)

This affine tensor product construction also complies witis#mptior® and As-
sumption10. Completely parallel to Lemm@a 1, one proves the following result.
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Lemma 5.2 The requirement2.12) is satisfied for the space\%@?(ﬁﬁ) spawned
by (5.3).

Remark 5.3 For all the above meshes the cells are affine images of a siefgle
erence cell, the “unit simplex” or “unit hypercube”. We cdwllow non-affine
cells, because, under the assumption that the transfannsadire “nearly affine”,
see P2, §84.3], all crucial estimates like Lemnial can be transferred to the ref-
erence cell using the pullback of differential forms. Of rs®) also the projection
operators;rg  would have to be defined by transformation]

6 Application in dimensions two and three

We adopt the discrete spaces from Sécalong with the regularized Poincaré
lifting from Sect.4. We rely on the choice4(8) for spacesX and S, with a
regularity exponent € (0, 1] which has to be chosen suitably.

In order to establish the discrete compactness propenty Befinition2.3, it
remains to verify the regularity Assumptidnand Assumption$, 7, and8 for
convenient local projectonsl’; -

Local projectors which make the discrete diagram of Assummpt commute
do exist in the general framework of differential forms of/ategree. They gen-
eralize Nédélec edge element projections and can beedfty asmoment based
projection operators. They are suitable for theersion of finite elements in di-
mensions 2 and 3. In higher dimensions some of them (for logveskeforms)
require a higher regularity thaf? to be defined. In4, 5], they are modified
by an extension-regularization procedure in order to benddfand bounded on
L?. However, such operators cannot be used foptliersion of finite elements,
because no estimates (stability or error bounds) are knoitmn respect to the
polynomial degree.

The proper projection operators fetversion approximation are so-callpob-
jection based interpolation operatqgrsee P8, 29, 18, 27, 30]. Variants for any/
andd are available and they are designed to commute in the sedssomption
7[37, Sect. 3.5].

At this point we have to abandon the framework of genérahd d, because
both regularity results (Assumptial) and the analysis of projection operators
(Assumption8) are not presently available for genefaandd. We have to dis-
cuss them for special choices 6fandd separately, relying on a wide array of
sophisticated results from the literature.

Theorem 6.1 (Convergence of Galerkin approximatio®r d = 2, 3, and0 <
¢ < d, the Galerkin discretization of2.5) on a Lipschitz polyhedron based on any
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of the families of discrete differential forms introducadsect5 offers a spectrally
correct, spurious-free approximation.

Proof. We skip the casé = 0, for which the standard Galerkin approximation
theory for operators with compact resolvent can be appdieé [ 1].

To begin with, we focus on the discrete compactness propadyverify the
assumptions, 6, 7, and8 for d = 2 andd = 3 separately.

e d =2,/ =1:interms of vector proxies we find the correspondence
V(di, Q) ~ H(curl, Q) N H(div0,) . (6.1)

Regularity theorems for boundary value problems-#dx on the polygon confirm
the existence of = §(2) > 0 such that

H (curl, Q) N H(div0,Q) c H*/?(Q) (6.2)

in the sense of continuous embedding, s&g $ect. 3.2]. This suggests to choose
r =40+ 1/2in (4.8) and Assumptiori will hold true. Hence, we deal with the
concrete spaces

X, AY) = H(curl, @) T (H7V2(K))? (6.3)
Kem
S, A% = @) n I #2 (K (6.4)
Kenm

Commuting local projection based interpolation operabql@ andw x have
been proposed for triangles and for quadrilateral?i). [ With the ch0|ce 6.9
and (.4) they live up to Assumptions and7. Assumptior8 holds withey(p) =
Cp~/? andC > 0 depending only on the shape-regularity of the celfs,[27,
Thm. 4.3]and §, Thm. 4.1]. Finally, these interpolation operators sgtiee nat-
ural condition of conformity §.14) by construction, which makes they meet all
our requirementsf. Sect.3.4.

e d = 3,¢=1,2: we have the vector proxy incarnation

H(curl, Q)N H(div0,Q) for¢=1

o . (6.5)
H (div,Q) N H(curl0,Q) forl{=2.

}(}(dév Q) ~ {

Citing results from [] and [37, Sect. 4.1], we find = §(2) €]0, 1] and continu-
ous embeddings

H (curl, Q) N H(div,Q), H(div, Q)N H(curl, Q) C H"'/?(Q).  (6.6)
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Therefore, using the constructioh ) with » = 0+ 1/2, Assumptionl is satisfied
for ¢ € {1,2}. The relevant spaces of more regular forms now read

X, AY) = H(cur, Q)0 [ (H2(K)) (6.7)

X (9, A%) = H(div,Q) N ﬁ@ztmﬂ/?(f())?’ : (6.8)

SO, A%) = H'(Q) N HK;ISJ;JF?’/Q(K) , (6.9)

S(OM, AY) = ﬁ(curl,g;: I] B (curl, K) . (6.10)
KeMm

The essential commuting local projection based intermiadperatorsr,’y,
m = 0, 1,2, have been introduced i2{)] for tetrahedral meshes and iag) for
meshes comprising parallelepipeds. By construction tleeypty with Assump-
tion 7. Assumption6 for the spacesS(9t, A°) and S(9t, A') from (6.9) and
(6.10), respectively, and = 6 + 1/2 is a consequence of Sobolev embedding the-
orems. Relying on47, Th.5.3] we obtain like in the 2D case that in Lemfa
we can take,,(p) = Cp~'/% for m = 0 andm = 1.

e Finally, we appeal to Lemmés1, 5.2 together with Lemma.2 and apply the
abstract theory of Sect.in the form of Corollary3.3to conclude the proof of the
theorem. 0

Corollary 6.2 (Approximation of the Maxwell eigenvalue problerhep ver-
sion finite element discretization of the Maxwell eigenggitoblem(1.2) based
on edge elements from the first or secor@ec family on triangles or on tetra-
hedra, or from the first Bcelec family on parallelograms or on parallelepipeds
offers a spectrally correct, spurious-free approximation

Remark 6.3 Instead of {.2) we may consider the variational formulation of the
more general Maxwell eigenvalue problern1), corresponding to the case of
anisotropic inhomogeneous material:

Seeku € IO{(curI,Q) \ {0}, w € RS such that

) o (6.11)
= w” (eu, V) 2y Vv € H(curl, Q)

(1" curlu, curlv) @)
with uniformly positive material tensorg = u(x), ¢ = ¢(x). The same edge
element discretizations listed in Coroll&iy? provide spectrally correct, spurious-
free approximations of this problem. This generalizatib@orollary 6.2 can be
achieved with standard tools (see, in particular, Promrst2.25, 2.26, and 2.27
of [19], and [38, Sect. 6], B7, Thm. 4.9]). O

28



Remark 6.4 The restriction on the families of elements mentioned inGloeol-

lary is essentially due to the availability of publishedulés about suitable inter-
polation operators. Thus, for example, as soon as a geragrah of thep version
error estimates of/9, 27] for projection-based interpolants to meshes containing
prismatic or more general polyhedral elements becomekalajour result about
the approximation of the Maxwell eigenvalue problem wilpgpto such meshes,
too. [

Remark 6.5 Several obstacles prevent us from establishing the assumstf
the abstract theory faf > 3. On the one hand, continuity properties of projection
based interpolation operators have not been investigated £ 3. Also, regu-
larity results along the lines o6(6) are have not been published for polyhedra in
higher dimensions.

On the other hand, the innocuously looking requirem@arit4) for the projection
operators — corresponding to the requirement that the gpybgection operators
are constructed elementwise from local degrees of freedcentails that the trace
of formsinS (K, A*~!) onto/—1-dimensional facets iff,_; (k') must make sense.
However, we cannot expect more thakt regularity for the spacé(K, A“1).
Hence, by trace theorems for Sobolev spaces, the spidesA‘~!) allow for
traces onm-facets form > g — 2 at best, which means that- g — lisrequired

to allow for the construction of a local projection basectipblation complying
with Assumptionss and8.

Perhaps, an analysis ibP-spaces as inlf Lemma 4.7] can make possible an
extension of the theory to higher dimensions, but this iobeythe scope of the
present article. [

Remark 6.6 Our approach does not covép-refinement, for various reasons.
One reason is that there exist many variantgofefinements in 3D, and covering
them would in any case require a much longer paper than tiseprene.
Another reason is technical: The existing convergenceffmidbe hp approxima-
tion of the Maxwell eigenvalue problem ifn]] — while also based on the proof
of the discrete compactness property — uses a differennieatool, namely an
estimate of thd.? stability of a certain projection operator. This kind ofigsdte
is currently only available for intervals in 1D and for reagges in 2D.

The technique used in the present paper is based on theniegdIRoincareé lift-
ing, and adjusting this to variable polynomial degree pdsasidable technical
challenges. Only in 2D these could be mastered so far, asevasristrated inf]

in the context of boundary element analysisl]
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7 Conclusion

In this paper we have proved that theersion of finite elements based on gener-
alized Nédélec edge elements provides a spurious-fregrsly correct approx-
imation of the Maxwell eigenvalue problem. The essentiahpwas the proof
of the discrete compactness property. We showed that tbpepty follows from

a set of rather natural assumptions about the family of figléenent spaces and
interpolation operators, and in addition we showed thaseéhe@ssumptions are
implied by recently found results on lifting operators amdpwojection-based in-
terpolants.

In the approach pursued ir,[5] the discrete compactness property is not
addressed directly: in the framework of theersion for differential forms, mod-
ified moment-based projection operators are used. Thesepawators satisfy the
strong property of being uniformly bounded i} and are constructed by means
of a delicate extension-regularization procedure, sexe[als 20].

On the one hand this uniform boundedness property is strahga our as-
sumption6 and replaces in a certain way the discrete compactnessrpropet
on the other hand, it is currently not known whether a cowsiva of projec-
tion operators by extension-regularization could alsorbeleyed in the case of
the p-version of finite elements, or whether the construction pfumiformly L2-
bounded family of cochain projections is even possible.
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