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Abstract

In this paper we prove the discrete compactness property fora wide
class ofp finite element approximations of non-elliptic variationaleigen-
value problems in two and three space dimensions. In a very general frame-
work, we find sufficient conditions for thep-version of a generalized discrete
compactness property, which is formulated in the setting ofdiscrete differ-
ential forms of orderℓ on a polyhedral domain inRd (0 < ℓ < d). One of the
main tools for the analysis is a recently introduced smoothed Poincaré lift-
ing operator [M. Costabel and A. McIntosh, On Bogovskĭı andregularized
Poincaré integral operators for de Rham complexes on Lipschitz domains,
Math. Z., (2009)]. In the caseℓ = 1 our analysis shows that several widely
used families of edge finite elements satisfy the discrete compactness prop-
erty inp and hence provide convergent solutions to the Maxwell eigenvalue
problem. In particular, Nédélec elements on triangles and tetrahedra (first
and second kind) and on parallelograms and parallelepipeds(first kind) are
covered by our theory.
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daniele.boffi@unipv.it
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1 Introduction: Maxwell eigenvalue problem

Maxwell’s eigenvalue problem in a closed cavityΩ ∈ R
3 with perfectly con-

ducting walls can be written as follows by means of the Maxwell-Ampère and
Faraday laws: Find the resonance frequenciesω ∈ R and the electromagnetic
fields(E,H) 6= (0, 0) such that

curlE = iωµH in Ω

curlH = −iωǫE in Ω

E × n = 0 on∂Ω

H · n = 0 on∂Ω,

(1.1)

whereǫ andµ denote the dielectric permittivity and magnetic permeability, re-
spectively. The fieldsE andH are sought inL2(Ω)3.

For simplicity, we consider now the case of homogeneous isotropic material
with normalized material constants (ǫ, µ = 1) — we will come back to the gen-
eral setting in Remark6.3. In a classical way, the elimination of the magnetic
field from equations (1.1) yields the Maxwell eigenvalue problem with perfectly
electrically conducting (PEC) walls in variational form:

Seeku ∈
◦
H(curl, Ω) \ {0}, ω ∈ R

+
0 such that

(curlu, curlv)L2(Ω) = ω2 (u,v)L2(Ω) ∀v ∈
◦
H(curl, Ω) .

(1.2)

The elimination of the electric field would correspond to thesame problem mod-
elled through replacing

◦
H(curl, Ω) withH(curl, Ω)1.

One aim of this paper is to prove the convergence ofH(curl)-conforming
Galerkin discretizations of Maxwell eigenvalue problem (1.2) in the framework
of thep-version of the finite element method. The finite element approximation of
Maxwell eigenvalues has been the object of intense investigations for more than
20 years. It was soon recognized that theH(curl)-conforming Galerkin finite el-
ement discretizations need special finite element spaces that are generally termed
edgefinite elements (see [38, 39, 12]).

The first attempts to analyze the discretized eigenvalue problem have been
made for theh-version of edge finite elements. We mention [33] as a pioneer-
ing work on lowest degree edge finite elements, where thediscrete compactness
property(see [2]) has been indicated as a key ingredient for the analysis. Other
relevant works on the subject are [11, 7, 17, 37, 34, 19, 8], and we refer the inter-
ested reader to [31, 36] and to the references therein for a review on this topic.

In these references, the Maxwell eigenvalue problem is often studied using
variational formulations different from (1.2), for example mixed formulations [8],

1By and large, we adopt the standard notations for Sobolev spaces, see [28, Ch. 2].
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regularized formulations [18, 20] or mixed regularized formulations [5, 15]. With
the exception of the method of weighted regularization [18, 20, 15], whereH1-
conforming elements can be used, these formulations use theH(curl)-conforming
edge elements. In their analysis, special conditions implying convergence of the
discrete eigenvalue problems are presented, for example the so-called Fortid prop-
erty [7], or the GAP property [14]. As explained there, these conditions are related
to the discrete compactness property. Here we choose to workwith the simple
variational formulation (1.2) and its generalization to differential forms. The role
of the discrete compactness property in this context has been discussed in detail
in [17].

The analysis presented in the references above covers theh-version for basi-
cally all known families of edge finite elements. It soon turned out, however, that
the analysis of thep- andhp-versions of edge finite elements needed tools differ-
ent from those developed for theh-version. In [10] the two-dimensional triangular
case has been studied for thehp-version, but the analysis depends on a conjectured
estimate which has only been demonstrated numerically. In [9] a rigorous proof
for the hp-version of 2D rectangular edge elements has been proposed (allow-
ing for one-irregular hanging nodes) which, in particular,contains the first proof
of eigenvalue/eigenfunction convergence for the pure spectral method (p-version
with one element) on a rectangle.

What paved the way for a successful attack on a generalp-version analysis
was the regularized Poincaré lifting recently introducedin [21]: it enjoys excellent
continuity properties and at the same time respects discrete differential forms. In
this paper we are going to show how the regularized Poincarélifting can be com-
bined with another recent invention, the projection based interpolation operators,
see [22, 24], to clinch the analysis of thep-version of edge elements. This al-
lows to prove the discrete compactness (and hence the convergence of the discrete
eigensolutions) for a wide class of finite elements related to discrete differential
forms: for (1.2) this includes, in particular, Nédélec elements on triangles and
tetrahedra (first and second kind) and on parallelograms andparallelepipeds (first
kind).

As already mentioned, one of the key ingredients for the convergence analysis
is the discrete compactness property. Much insight can be gained from investi-
gating it in the more general framework of discrete differential forms (see [4] for
a lucid introduction to this subject). In this setting, the proofs are more natu-
ral and simultaneously cover, in particular, two- and three-dimensional Maxwell
eigenvalue problems.

Plan of the paper. The structure of the paper is as follows. We start in Sec-
tion 2 with a generalization of (1.2) to eigenvalue problems associated with the
de Rham complex on differential forms. Then we define the discrete compactness
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property and discuss its significance in the context of Galerkin discretization: in
association with two standard completeness properties, itgives a crucial sufficient
condition for the convergence of eigenvalues and eigenvectors. Section3 is the
core of our paper and contains the description of our abstract assumptions. Having
in mind thep-version of finite elements, we consider afixedmeshM of a domain
Ω ⊂ R

d and a sequence of spaces of discrete differential forms of order ℓ (with
0 < ℓ < d) together with projection operators onto discrete spaces;we prove that
our assumptions imply the validity of the discrete compactness property for such
a sequence of spaces (Theorem3.2). The abstract theory relies on the existence of
suitable Poincaré lifting operators which are presented in Section4. The mapping
properties of these lifting operators allow to specify someof the function spaces
appearing in our abstract assumptions. In Section5 we recall the classical families
of discrete differential forms with high degree polynomialcoefficients on simpli-
cial or tensor product elements. Finally, for the cases of dimensionsd = 2 and
d = 3, we concretize in Section6 the function spaces and recall embedding results
and properties of projection based interpolation operators related to these spaces.
All abstract assumptions are then satisfied, leading to the main convergence result
stated in Theorem6.1. The analysis of ap-version edge element discretization of
the Maxwell eigenvalue problem (1.2) is covered as cased = 3 andℓ = 1.

2 Differential forms and generalized Maxwell eigen-
value problem

The variational eigenvalue problem (1.2) turns out to be a member of a larger
family of eigenvalue problems, when viewed from the perspective of differen-
tial forms. This more general perspective offers the benefitof a unified theoretical
treatment of different kinds of eigenvalue problems, e.g.,the scalar Laplace eigen-
problem, Maxwell cavity eigenproblems in dimensions2 and3, the eigenproblem
for thegrad div-operator in dimension3. This policy has had remarkable success
in numerical analysis recently,cf. [3]. Thus, in this section we first recall some
basic notions related to differential forms. We refer the interested reader to [4,
Sect. 2] for an introduction to this subject.

2.1 Function spaces of differential forms

Given a domainΩ ⊂ R
d, we denote byC∞(Ω, Λℓ), 0 ≤ ℓ ≤ d, the space of

smooth differential forms onΩ and byΛ(Ω) the corresponding anti-commutative
graded algebra

Λ(Ω) =
⊕

ℓ

C∞(Ω, Λℓ).
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Theexterior derivativeis a graded linear operator of degree one

d : Λ(Ω) → Λ(Ω),

that is, for anyℓ it is represented bydℓ : C∞(Ω, Λℓ) → C∞(Ω, Λℓ+1).
We rely on the Hilbert spaces

H(dℓ, Ω) := {v ∈ L2(Ω, Λℓ) : dℓ v ∈ L2(Ω, Λℓ+1)} , (2.1)

whereL2(Ω, Λℓ) is the space of differentialℓ-forms onΩ with square integrable
coefficients in their canonical basis representation, see [21, Sect. 2]. Its inner
product can be expressed as

(u,v)0,Ω :=

∫

Ω

u ∧ ⋆ v , u,v ∈ L2(Ω, Λℓ) , (2.2)

with ⋆ the Hodge star operator induced by the Euclidean metric onR
d, which

mapsℓ-forms to(d − ℓ)-forms. As above, a◦ tags the subspaces of forms with
vanishing tracetr∂Ω on ∂Ω, which can also be obtained by the completion of
compactly supported smoothℓ-forms with respect to theH(dℓ, Ω)-norm:

◦
H(dℓ, Ω) := {v ∈ H(dℓ, Ω) : tr∂Ω v = 0}. (2.3)

The subspace ofclosed formsis the kernel ofdℓ and is denoted by
◦

H(dℓ 0, Ω):

◦
H(dℓ 0, Ω) := {v ∈

◦
H(dℓ, Ω) : dℓ v = 0}. (2.4)

Finally, we adopt the standard notation for the exterior co-derivative operator
δℓ := ⋆ dd−ℓ ⋆; in particular, we haveδℓ : C∞(Ω, Λℓ) → C∞(Ω, Λℓ−1).

2.2 Variational eigenvalue problems

After choosing bases for the spaces of alternating multilinear forms onRd, vector

fields (“vector proxies”)Ω 7→ R
(d

ℓ) provide an isomorphic model for differentialℓ-
forms onΩ. Choosing the standard “Euclidean basis”, the operators⋆, δ, tr∂Ω are
incarnated by familiar operators of classical vector analysis, different for different
dimensiond and orderℓ, see Table1 and [4, Table 2.1].

Hence, the eigenvalue problem (1.2) with ǫ, µ ≡ 1 is the special cased = 3,
ℓ = 1, of the following variational eigenvalue problem for differential ℓ-forms,
0 ≤ ℓ < d:

Seeku ∈
◦

H(dℓ, Ω) \ {0}, ω ∈ R
+
0 , such that

(dℓ u, dℓ v)0,Ω = ω2 (u,v)0,Ω ∀v ∈
◦

H(dℓ, Ω) .
(2.5)
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Table 1: Identification between (operators on) differential forms and (operators
on) Euclidean vector proxies inR2 andR

3

Differential form Proxy representation
d = 2 d = 3

ℓ = 0
d0 grad grad

tr∂Ω φ φ|∂Ω φ|∂Ω
◦

H(d0, Ω)
◦

H1(Ω)
◦

H1(Ω)

ℓ = 1

d1 curl curl

tr∂Ω u (u × n)|∂Ω (u × n)|∂Ω
◦

H(d1, Ω)
◦
H(curl, Ω)

◦
H(curl, Ω)

δ1 div div

ℓ = 2

d2 0 div

tr∂Ω q 0 (q · n)|∂Ω
◦

H(d2, Ω) L2(Ω)
◦
H(div, Ω)

δ2

−→
curl curl

A key observation is that the bilinear form(u,v) 7→ (dℓ u, dℓ v)0,Ω has an infi-

nite dimensional kernel
◦

H(dℓ 0, Ω) comprising all closedℓ-forms. It provides the
invariant subspace associated with the essential spectrum{0} of (2.5). This es-
sential spectrum can be identified as the main source of difficulties confronted in
the Galerkin discretization of (2.5).

On the other hand, any solutionu of (2.5) for ω 6= 0 satisfies(u, dℓ−1ψ)0,Ω =

0 for all ψ ∈
◦

H(dℓ−1 0, Ω). Thus the eigenfunctions corresponding to non-zero
eigenvalues belong to the subspace

◦
Y (dℓ, Ω) := {v ∈

◦
H(dℓ, Ω) : (v, dℓ−1ψ)0,Ω = 0 ∀ψ ∈

◦
H(dℓ−1, Ω)}, (2.6)

which means they belong to the kernel ofδℓ. This is the generalization of the
divergence free constraint found for electric fields in the Maxwell case. From
[40] we learn the following theorem.

Theorem 2.1 For anyd ∈ N, 0 ≤ l ≤ d, the embedding

◦
Y (dℓ, Ω) →֒ L2(Ω, Λℓ)

is compact.
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By restricting the eigenvalue problem to
◦
Y (dℓ, Ω), we can therefore use Riesz-

Schauder theory. This implies that (2.5) gives rise to an unbounded sequence of
positive eigenvaluesλk = (ωk)2

λ0 = 0 < λ1 ≤ λ2 ≤ . . . , λk → ∞ (k → ∞) , (2.7)

with associated finite dimensional mutuallyL2(Ω)-orthogonal eigenspaces.

Remark 2.2 Owing to the zero trace boundary conditions imposed on the func-
tions in (2.5), it may be called a Dirichlet eigenvalue problem. UsingH(dℓ, Ω)
as variational space would result in the corresponding Neumann eigenvalue prob-
lem. Its analysis runs utterly parallel to the Dirichlet case using the techniques
presented below. �

2.3 Approximation of the eigenvalue problem and the role of
discrete compactness

In the sequel we fix the orderℓ, 0 ≤ ℓ < d, of the differential forms. Spaces of
discrete differential forms

◦
Vℓ

p ⊂
◦

H(dℓ, Ω) , dim
◦
Vℓ

p < ∞ ,

lend themselves to a straightforward discretization of (2.5). In this section,p ∈ N

stands for an abstract discretization parameter, and, sloppily speaking, large values
of p hint at trial/test spaces of high resolution.

We consider the approximation of the eigenvalue problem (2.5) by the Galerkin
method:

Findup ∈
◦
Vℓ

p \ {0}, ω ∈ R
+
0 , such that

(dℓ up, dℓ vp)0,Ω = ω2 (up,vp)0,Ω ∀v ∈
◦
Vℓ

p .
(2.8)

Now, the key issue is convergence of eigenvalues and eigenvectors asp → ∞,
rigorously cast into the concept ofspectrally correct, spurious-free approximation
[17, Sect. 4]. Let us recall these notions in a few words for the case of self-adjoint
nonnegative operators without continuous spectrum (whichis the case here).

The spectral correctness of the approximation of an eigenvalue problem such
as (2.5) by a sequence of finite rank eigenvalue problems (2.8) means that all
eigenvalues and all eigenvectors of (2.5) are approached by the eigenvalues and
eigenvectors of (2.8) asp → ∞. If (2.5) has a compact resolvent (which is the
caseonly whenℓ = 0), the spectral correctness is an optimal notion: It implies
that if {λk}k≥1 and{λk

p}k≥1 are the increasing eigenvalue sequences of (2.5) and
(2.8) (with eigenvalues repeated according to their multiplicities), then

λk
p → λk as p → ∞ ∀k ≥ 1, (2.9)
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and the gaps between eigenspaces (correctly assembled according to multiplicities
of the eigenvalues of (2.5)) tend to0 asp → ∞.

If we face an eigenvalue problem for a self-adjoint non-negative operator with
an infinite dimensional kernel, and otherwise discrete positive spectrum (which is
the case for (2.5) for all ℓ ≥ 1), the spectral correctness implies the same prop-
erties as above with the following modifications of the definitions: Now{λk}k≥1

is the increasing sequence ofpositiveeigenvalues of (2.5) (as specified in (2.7))
and, given a positive numberε < λ1, {λk

p}k≥1 is the increasing sequence of the
eigenvalues of (2.8) larger thanε (still with repetitions according to multiplici-
ties). With such conventions,spectral correctnessstill implies convergence of
eigenvalues (2.9) and eigenspaces as above. In this context,spurious-free approx-
imationmeans that there existsε0 > 0 such that all eigenvalues of (2.8) less than
ε0 are zero. Therefore, spectrally correct, spurious-free approximation implies the
convergence property (2.9) and the corresponding convergence of eigenspaces, if
we define{λk

p}k≥1 as the increasing sequence of thepositive eigenvalues of(2.8).
There exist several different ways, all well studied and summarized in the lit-

erature of the last decade, for proving the convergence of the discrete eigenvalue
problem (2.8) to the continuous eigenvalue problem (2.5): One can use a reformu-
lation as an eigenvalue problem in mixed form as analyzed in [8], or one can use a
regularization which gives an elliptic eigenvalue problemfor the Hodge-Laplace
operator as analyzed in [4], or one can follow the arguments of [17] and study the
non-elliptic problem (2.5) directly.

Here we outline the latter approach, which employs the analysis of [27] of
the approximation of eigenvalue problems of non-compact selfadjoint operators.
Since [17] deals only with the Maxwell case, i. e.d = 3, ℓ = 1, we examine the
main arguments, in order to verify that they are also valid for the general case.

Let us define the solution operatorA : L2(Ω, Λℓ) →
◦

H(dℓ, Ω) of the source
problem corresponding to the eigenvalue problem (2.5) and its discrete counter-
partAp :

◦
Vℓ

p →
◦
Vℓ

p by

(dℓ Af , dℓ v)0,Ω + (Af ,v)0,Ω = (f ,v)0,Ω ∀v ∈
◦

H(dℓ, Ω)

(dℓ Apf , dℓ v)0,Ω + (Apf ,v)0,Ω = (f ,v)0,Ω ∀v ∈
◦
Vℓ

p .
(2.10)

Note that the operatorsA andAp have the same eigenfunctions and the same
eigenvalues (after a transformation) as the eigenvalue problems (2.5) and (2.8).
Namely, (2.5) and (2.8) are equivalent to the relations

u = (ω2 + 1)Au ; up = (ω2 + 1)Apup . (2.11)

The infinite-dimensional eigenspace atω = 0 shows thatA is not a compact
operator.
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Following [17], three conditions are identified that together are necessary and
sufficient for a spectrally correct, spurious-free approximation of A by Ap or,
equivalently, of the eigenvalue problem (2.5) by the discrete eigenvalue problem
(2.8).

The first condition is rather natural. It states that the sequence of discrete
spaces

( ◦
Vℓ

p

)
p∈N

is asymptotically dense in
◦

H(dℓ, Ω) (compare [17, Condition
(CAS) – completeness of approximating subspaces])

(CAS) lim
p→∞

inf
vp∈

◦
Vℓ

p

‖v − vp‖H(dℓ,Ω) = 0 ∀v ∈
◦

H(dℓ, Ω) . (2.12)

The second condition, only relevant forℓ > 0, states that closed forms can be
well approximated by discrete closed forms (compare [17, Condition (CDK) –
completeness of discrete kernels])

(CDK) lim
p→∞

inf
zp∈

◦
Vℓ

p∩
◦

H(dℓ 0,Ω)

‖z− zp‖L2(Ω) = 0 ∀z ∈
◦

H(dℓ 0, Ω) . (2.13)

The third condition is the most intricate one and has been dubbeddiscrete com-
pactness. For its formulation, we introduce the orthogonal complement space of
the discrete closed forms:

◦
Zℓ

p := {up ∈
◦
Vℓ

p : (up, zp)0,Ω = 0 ∀zp ∈
◦
Vℓ

p ∩
◦

H(dℓ 0, Ω)}. (2.14)

Definition 2.3 Let us chooseℓ ∈ {1, . . . , d− 1}. Thediscrete compactness prop-
erty holds for a family

( ◦
Vℓ

p

)
p∈N

of finite dimensional subspaces of
◦

H(dℓ, Ω), if
anyboundedsequence

(
up

)
p∈N

⊂
◦

H(dℓ, Ω) with up ∈
◦
Zℓ

p

contains a subsequence thatconverges inL2(Ω, Λℓ).

The convergence proof is based on two lemmas, the first of which corresponds
to [17, Theorem 4.12]. It implies, according to [27, Condition P1) and Theorems
2,4,5,6], the spectral correctness of the approximation.

Lemma 2.4 If (2.12) and the discrete compactness property hold, then

lim
p→∞

sup
vp∈

◦
Vℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) = 0 . (2.15)

Proof. Note first that forvp ∈
◦
Vℓ

p ∩
◦

H(dℓ 0, Ω) there holdsAvp = vp = Apvp,

so that by orthogonal decomposition of
◦
Vℓ

p one gets

sup
vp∈

◦
Vℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) = sup
vp∈

◦
Zℓ

p ; ‖vp‖H(dℓ,Ω)=1

‖Avp − Apvp‖H(dℓ,Ω) .
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Furthermore, one has by definition ofA andAp

‖Avp − Apvp‖H(dℓ,Ω) = inf
wp∈

◦
Vℓ

p

‖Avp − wp‖H(dℓ,Ω) .

Assume now that (2.15) does not hold. Then there existsε > 0 and a sequence
(vp) with vp ∈

◦
Zℓ

p satisfying‖vp‖H(dℓ,Ω) = 1 and

‖Avp −wp‖H(dℓ,Ω) ≥ ε ∀p ∈ N, wp ∈
◦
Vℓ

p . (2.16)

We can apply the discrete compactness property to the sequence (vp) and ob-
tain a subsequence converging inL2(Ω, Λℓ) to somev ∈ L2(Ω, Λℓ). SinceA :

L2(Ω, Λℓ) →
◦

H(dℓ, Ω) is continuous, we findAv ∈
◦

H(dℓ, Ω), and the approx-
imation property (2.12) provides us with a sequence(wp) with wp ∈

◦
Vℓ

p that

converges in
◦

H(dℓ, Ω) to Av. Hence for the subsequence we obtain

‖Avp −wp‖H(dℓ,Ω) ≤ ‖Avp − Av‖H(dℓ,Ω) + ‖Av − wp‖H(dℓ,Ω) → 0 ,

in contradiction with (2.16). 2

The second lemma corresponds to [17, Corollary 2.20]. It gives the discrete
Friedrichs inequality (in [8] also called “ellipticity in the discrete kernel”), and it
is easy to see that this implies thatω = 0 is not a limit point of positive discrete
eigenvalues, so that the spurious-free property of the approximation follows.

Lemma 2.5 If (2.13) and the discrete compactness property hold, then there ex-
istsα > 0 such that for allp ∈ N

‖dℓ v‖L2(Ω) ≥ α ‖v‖L2(Ω) ∀v ∈
◦
Zℓ

p (2.17)

Proof. Assume that (2.17) does not hold. Then there exists a sequence(vp) with
vp ∈

◦
Zℓ

p satisfying

‖vp‖L2(Ω) = 1 and lim
p→∞

‖dℓ vp‖L2(Ω) = 0 . (2.18)

The discrete compactness property can be applied to this sequence and gives a sub-
sequence converging inL2(Ω, Λℓ) to somez ∈ L2(Ω, Λℓ). From (2.18) follows
that the convergence actually takes place in

◦
H(dℓ, Ω) and thatz ∈

◦
H(dℓ 0, Ω).

Therefore the approximation property (2.13) provides us with a sequence(zp)

with zp ∈
◦
Vℓ

p ∩
◦

H(dℓ 0, Ω) that converges inL2(Ω, Λℓ) to z. Hence for the subse-
quence we find

‖vp − zp‖L2(Ω) ≤ ‖vp − z‖L2(Ω) + ‖z − zp‖L2(Ω) → 0 .
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This leads to a contradiction, becausevp ∈
◦
Zℓ

p andzp ∈
◦
Vℓ

p ∩
◦

H(dℓ 0, Ω) are
L2(Ω)-orthogonal, hence for allp

‖vp − zp‖
2
L2(Ω) = ‖vp‖

2
L2(Ω) + ‖zp‖

2
L2(Ω) ≥ 1 .

2

To summarize, Lemmas2.4and2.5together prove the following result.

Theorem 2.6 If the completeness of approximating subspaces(2.12), the com-
pleteness of discrete kernels(2.13) and the discrete compactness property hold,
then(2.8) provides a spectrally correct, spurious-free approximation of the eigen-
value problem(2.5).

3 An abstract framework implying discrete
compactness

In this section we fix a order of differential forms

ℓ ∈ {1, . . . , d − 1},

and we formulate a set of hypotheses which allow us to prove the discrete com-
pactness property. These hypotheses are organized in threegroups:

1. standard assumptions related to the finite element spaces
◦
Vℓ

p (Sect.3.1),

2. assumptions on the existence and key properties of so-called lifting opera-
tors (Sect.3.3),

3. hypotheses on projections onto
◦
Vℓ

p complying with the commuting diagram
property and satisfying an approximation property (Sect.3.4).

To state these assumptions we have to introduce intermediate spacesX andS of
more regular forms

◦
Vℓ

p ⊂ X(M, Λℓ) ⊂
◦

H(dℓ, Ω) and
◦
Vℓ−1

p ⊂ S(M, Λℓ−1) ⊂
◦

H(dℓ−1, Ω) ,

allowing compact embedding arguments and precise notions of continuity of lift-
ing and projection operators.
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3.1 Discrete spaces

Our focus is on finite element spaces. For the sake of simplicity, we restrict our-
selves to polyhedral Lipschitz domainsΩ. We assume that the finite dimensional
trial and test spaces

◦
Vℓ

p, p ∈ N, are based on afixed finite partitionM of Ω,
composed of elements (cells)K:

Ω =
⋃

K∈M

K , K ∩ K ′ = ∅ , if K 6= K ′, K, K ′ ∈ M .

For a cellK ∈ M, letFm(K) designate the set ofm-dimensional facets ofK:
for m = 0 these are the vertices, form = 1 the edges, form = d − 1 the faces,
andFd(K) = {K}.

We take for granted that the discrete spaces
◦
Vℓ

p can be assembled from local
contributions in the sense that for each mesh cellK ∈ M there is a spaceVℓ

p(K) ⊂

C∞(K, Λℓ) of smoothℓ-forms onK, such that
◦
Vℓ

p =
◦
Vℓ

p(M) :=
{
v ∈

◦
H(dℓ, Ω) : v

∣∣
K
∈ Vℓ

p(K) ∀K ∈ M
}

. (3.1)

In other words,
◦
Vℓ

p can be defined by specifying the local spacesVℓ
p(K) and re-

quiring the continuity of traces across inter-element boundaries as well as the
boundary conditions on∂Ω.

In the same fashion, we introduce a corresponding family
◦
Vℓ−1

p ⊂
◦

H(dℓ−1, Ω)
of spaces of discrete(ℓ − 1)-forms. We will see later on that as a consequence of
further hypotheses, the local spacesVℓ−1

p (K) andVℓ
p(K) satisfy an exact sequence

property.

3.2 Spaces of more regular forms

We introduce a Hilbert spaceX(M, Λℓ) ⊂
◦

H(dℓ, Ω) that captures the extra regu-
larity that distinguishesℓ-forms in the space

◦
Y (dℓ, Ω). We can think of this space

as a space of “more regular”ℓ-forms onΩ.

Assumption 1 The space
◦
Y (dℓ, Ω) defined in (2.6) is continuously embedded in

X(M, Λℓ):
◦
Y (dℓ, Ω) →֒ X(M, Λℓ) .

This means that withC > 0 depending only onΩ

‖u‖X(M,Λℓ) ≤ C ‖u‖H(dℓ,Ω) ∀u ∈
◦
Y (dℓ, Ω) . (3.2)

On the other hand,X(M, Λℓ) has to be small enough to maintain the compact
embedding satisfied by

◦
Y (dℓ, Ω), cf. Thm.2.1.
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Assumption 2 The spaceX(M, Λℓ) is compactly embedded inL2(Ω, Λℓ):

X(M, Λℓ)
comp
→֒ L2(Ω, Λℓ).

As with the discrete spaces, the spacesX(M, Λℓ) are built from local contri-
butions and will therefore depend on the meshM. We assume that for each mesh
cell K ∈ M there are Hilbert spacesX(K, Λℓ) so that:

X(M, Λℓ) =
{
v ∈

◦
H(dℓ, Ω) : v

∣∣
K
∈ X(K, Λℓ) ∀K ∈ M

}
, (3.3)

and, in addition, the norm ofX(M, Λℓ) is defined through local contributions:

‖u‖2
X(M,Λℓ) = ‖u‖2

H(dℓ,Ω) +
∑

K∈M

∥∥u
∣∣
K

∥∥2

X(K,Λℓ)
. (3.4)

Finally, the local spaces have to be large enough to contain the discrete forms for
any value ofp:

Vℓ
p(K) ⊂ X(K, Λℓ) . (3.5)

Correspondingly, we introduce a spaceS(M, Λℓ−1) ⊂
◦

H(dℓ−1, Ω) of “more
regular potentials”. Similar toX(M, Λℓ), the spacesS(M, Λℓ−1) are mesh-depen-
dent and allow for a characterization through local HilbertspacesS(K, Λℓ−1),
K ∈ M,

S(M, Λℓ−1) =
{
ψ ∈

◦
H(dℓ−1, Ω) : ψ

∣∣
K
∈ S(K, Λℓ−1) ∀K ∈ M

}
. (3.6)

They are endowed with the norm

‖φ‖2
S(M,Λℓ−1) = ‖φ‖2

H(dℓ−1,Ω) +
∑

K∈M

∥∥φ
∣∣
K

∥∥2

S(K,Λℓ−1)
. (3.7)

The local spaces are large enough to contain the local discrete potential spaces:

Vℓ−1
p (K) ⊂ S(K, Λℓ−1) . (3.8)

The following assumption establishes the connection betweenX(M, Λℓ) and
S(M, Λℓ−1).

Assumption 3 The exterior derivative mapsS(M, Λℓ−1) continuously into
X(M, Λℓ):

S(M, Λℓ−1) ⊂ {φ ∈
◦

H(dℓ−1, Ω) : dℓ−1φ ∈ X(M, Λℓ)},

and the image is maximal:

dℓ−1 S(M, Λℓ−1) = dℓ−1

◦
H(dℓ−1, Ω) ∩ X(M, Λℓ).

13



To conclude this subsection, note that in the case of an element K touching the
boundary∂Ω, like for the discrete spacesVℓ

p(K) andVℓ−1
p (K), the local spaces

X(K, Λℓ) andS(K, Λℓ−1) are not obliged to comply with any boundary condi-
tions.

3.3 Local liftings

A pair of linear mappingsRk,K : C∞(K, Λk) 7→ C∞(K, Λk−1), k = ℓ, ℓ + 1, is
called alifting operatorof orderℓ if it fulfills

dℓ−1 ◦Rℓ,K + Rℓ+1,K ◦ dℓ = Idℓ . (3.9)

This relation characterizes a “contracting homotopy” of the de Rham complex [5,
Section 5.1.2].

Besides this algebraic relationship, our approach hinges on smoothing proper-
ties of the lifting operators, expressed by means of the local spacesS(K, Λℓ−1) of
more regular potentials andX(K, Λℓ) of more regular forms. The next assump-
tion summarizes the continuity expected from the lifting operator.

Assumption 4 For everyK ∈ M there is a lifting operator(Rℓ,K, Rℓ+1,K) whose
components can be extended to continuous mappings

Rℓ+1,K : L2(K, Λℓ+1) 7→ X(K, Λℓ) and Rℓ,K : X(K, Λℓ) 7→ S(K, Λℓ−1) ,

and thus identity (3.9) holds onX(K, Λℓ).

As a consequence, for each cellK ∈ M, we have the exact sequence

S(K, Λℓ−1)
dℓ−1

−−−→ X(K, Λℓ)
dℓ−−−→ L2(K, Λℓ+1). (3.10)

Finally, the local liftings have to be compatible with the local spaces of discrete
differential forms:

Assumption 5 The local operatorsRℓ+1,K, when applied to exact local discrete
(ℓ + 1)-forms, yield local discreteℓ-forms,i.e.,

Rℓ+1,K ◦ dℓ : Vℓ
p(K) → Vℓ

p(K) .

3.4 Local projectors

As usual in methods based on discrete commuting diagrams we need projection
operatorsπk

p,K onto discrete spaces for(ℓ − 1)-forms andℓ-forms. For order
ℓ − 1, our local spacesS(K, Λℓ−1) of more regular potentials can play the role
of domains for the projectorsπℓ−1

p,K . For the orderℓ, by generalization of what we
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actually need in the case of dimensiond = 2 andd = 3 for Maxwell, we define
our projectorsπℓ

p,K on smaller spaces thanX(K, Λℓ). We denote these new spaces
by S(K, Λℓ) and require that they contain for allp thep-dependent subspaces

X̃p(K, Λℓ) = {u ∈ X(K, Λℓ) : dℓ u ∈ dℓ V
ℓ
p(K)} . (3.11)

On the same model as (3.6)-(3.7), we define the corresponding global spaces
S(M, Λℓ) and

X̃p(M, Λℓ) = {u ∈ X(M, Λℓ) : dℓ u ∈ dℓ V
ℓ
p} (3.12)

and we have the continuous embeddings

X̃p(M, Λℓ) →֒ S(M, Λℓ) →֒ X(M, Λℓ) . (3.13)

Assumption 6 There arelocal continuous linear projections

πℓ−1
p,K : S(K, Λℓ−1) 7→ Vℓ−1

p (K) and πℓ
p,K : S(K, Λℓ) 7→ Vℓ

p(K)

for all mesh cellsK ∈ M.

The standard commuting diagram property is as follows.

Assumption 7 The projectorsπℓ−1
p,K andπℓ

p,K are compatible with the exterior
derivative in the sense that the diagram

S(K, Λℓ−1)
dℓ−1

−−−→ S(K, Λℓ)

πℓ−1
p,K

y
yπℓ

p,K

Vℓ−1
p (K)

dℓ−1
−−−→ Vℓ

p(K) ,

commutes for everyK ∈ M.

Let us note that, as a consequence of Assumptions4 and7, we find that the
sequence

Vℓ−1
p (K)

dℓ−1
−−−→ Vℓ

p(K)
dℓ−−−→ dℓ

(
Vℓ

p(K)
)

is exact.
Besides, the local projections acting on(ℓ − 1)-forms are supposed to enjoy a

crucial approximation property using the Hilbert space norms‖·‖S(K,Λℓ−1).

Assumption 8 There is a functionεℓ−1 : N 7→ R
+ with lim

p→∞
εℓ−1(p) = 0 so that

∥∥dℓ−1(φ− πℓ−1
p,Kφ)

∥∥
L2(K,Λℓ)

≤ εℓ−1(p) ‖φ‖S(K,Λℓ−1) ∀φ ∈ S(K, Λℓ−1) .
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Finally we assume for the projectionsπℓ
p,K a natural condition of conformity:

For allu ∈ X̃p(K, Λℓ)

trF u = 0 ⇒ trF πℓ
p,Ku = 0 ∀F ∈ Fm(K) , ℓ ≤ m ≤ d , (3.14)

and the corresponding condition for the projectionsπℓ−1
p,K . This makes it possible

to defineglobal linear projections

πℓ
p : S(M, Λℓ) 7→

◦
Vℓ

p and πℓ−1
p : S(M, Λℓ) 7→

◦
Vℓ−1

p

by patching together the local operators

(πℓ
pu)

∣∣
K

:= πℓ
p,K(u

∣∣
K

) and (πℓ−1
p φ)

∣∣
K

:= πℓ−1
p,K (φ

∣∣
K

) ∀K ∈ M . (3.15)

As a consequence of Assumption7 and (3.15), the global projectorsπℓ−1
p andπℓ

p

inherit the globalcommuting diagram property

S(M, Λℓ−1)
dℓ−1

−−−→ S(M, Λℓ)

πℓ−1
p

y
yπℓ

p

◦
Vℓ−1

p

dℓ−1
−−−→

◦
Vℓ

p.

(3.16)

3.5 Proof of the discrete compactness property

The estimate of Assumption8 on “potentials” carries over toℓ-forms with a dis-
crete exterior derivative, that is, the elements of the space X̃p(M, Λℓ), see (3.12).

Lemma 3.1 (Global projection error estimate) Making Assumptions4 through
8, the estimate

∥∥u− πℓ
pu

∥∥
L2(Ω,Λℓ)

≤ Cεℓ−1(p) ‖u‖X(M,Λℓ) ∀u ∈ X̃p(M, Λℓ)

holds true, with a constantC > 0 independent ofp.

Proof. Pick anyu ∈ X̃p(M, Λℓ). The locality of the projectorπℓ
p, cf. (3.15),

and (3.4) allow purely local considerations. Single out one cellK ∈ M, still write
u = u

∣∣
K
∈ X̃p(K, Λℓ), and splitu onK using (3.9) from Assumption4:

u = dℓ−1 Rℓ,Ku + Rℓ+1,K dℓ u = dℓ−1φ + Rℓ+1,K dℓ u . (3.17)

with φ := Rℓ,Ku. The continuity ofRℓ,K from Assumption4 reveals that

‖φ‖S(K,Λℓ−1) ≤ C ‖u‖X(K,Λℓ) , (3.18)
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where here and belowC will denote constants (possibly different at different oc-
currences) which depend neither onu nor onp.

Thanks to identity (3.17) and the commuting diagram property from Assump-
tion 7, we have

πℓ
p,Ku = dℓ−1 πℓ−1

p,Kφ+ πℓ
p,KRℓ+1,K dℓ u . (3.19)

Recall thatu ∈ X̃p(K, Λℓ) belongs to the domain ofπℓ
p,K by Assumption6. Fur-

ther, asu ∈ X̃p(K, Λℓ), from Assumption5 we infer that

Rℓ+1,K dℓ u ∈ Vℓ
p(K) . (3.20)

Thus, owing to the identities (3.17), (3.19) and the projector property ofπℓ
p,K , the

task is reduced to an interpolation estimate forπℓ−1
p,K :

(Id − πℓ
p,K)u = dℓ−1(Id − πℓ−1

p,K )φ+ (Id − πℓ
p,K)Rℓ+1,K dℓ u︸ ︷︷ ︸
=0 by (3.20)

. (3.21)

As a consequence, invoking Assumption8,

∥∥(Id − πℓ
p,K)u

∥∥
L2(K,Λℓ)

(3.21)
=

∥∥dℓ−1(Id − πℓ−1
p,K )φ

∥∥
L2(K,Λℓ)

≤ εℓ−1(p) ‖φ‖S(K,Λℓ−1)

(3.18)
≤ Cεℓ−1(p) ‖u‖X(K,Λℓ) , (3.22)

which furnishes a local version of the estimate. This estimate is uniform inK ∈
M becauseM is finite. Due to (3.4), squaring (3.22) and summing over all cells
finishes the proof. 2

We are now in the position to prove the main result of this section.

Theorem 3.2 (Discrete compactness)Under Assumptions1 through8, the dis-
crete compactness property of Definition2.3holds for the family

( ◦
Vℓ

p

)
p∈N

of sub-

spaces of
◦

H(dℓ, Ω).

Proof. The proof resorts to the “standard policy” for tackling the problem of
discrete compactness, introduced by Kikuchi [33, 34] for analyzing theh-version
of Whitney-1-forms. It forms the core of most papers considering the issue of
discrete compactness, see [10, Thm. 2], [9, Thm. 11], [31, Thm. 4.9], [26, Thm. 2],
etc.

Let us introduce the discrete analogue of the space
◦
Y (dℓ, Ω):

◦
Yℓ

p := {vp ∈
◦
Vℓ

p :
(
vp, dℓ−1ψp

)
0,Ω

= 0 ∀ψp ∈
◦
Vℓ−1

p }. (3.23)

The space
◦
Yℓ

p contains
◦
Zℓ

p as a subspace.
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We consider aH(dℓ, Ω)-bounded sequence(up)p∈N
with members in

◦
Zℓ

p. Thus

up belongs in particular to
◦
Yℓ

p and the sequence(up)p satisfy

(i) up ∈
◦
Vℓ

p , (3.24)

(ii)
(
up, dℓ−1ψp

)
0,Ω

= 0 ∀ψp ∈
◦
Vℓ−1

p , (3.25)

(iii) ‖up‖H(dℓ,Ω) ≤ 1 ∀p ∈ N . (3.26)

We have to confirm that it possesses a subsequence that converges inL2(Ω, Λℓ).
We start with theL2(Ω, Λℓ)-orthogonal projection ofup into

◦
Y (dℓ, Ω) parallel

to dℓ−1

◦
H(dℓ−1, Ω): let ũp be the unique vector field in

◦
H(dℓ, Ω) with

ũp = up + dℓ−1 φ̃p, φ̃p ∈
◦

H(dℓ−1, Ω) , (3.27)

(ũp, dℓ−1ψ)0,Ω = 0 ∀ψ ∈
◦

H(dℓ−1, Ω) . (3.28)

Obviously, the latter condition implies

ũp ∈
◦
Y (dℓ, Ω) . (3.29)

Hence, by virtue of Assumption1, the fact thatdℓ ũp = dℓ up, and (3.12), ũp

satisfies
ũp ∈ X̃p(M, Λℓ), ‖ũp‖X(M,Λℓ) ≤ C ‖up‖H(dℓ,Ω) , (3.30)

whereC > 0 does not depend onp.
Sincedℓ−1 φ̃p = ũp − up ∈ X(M, Λℓ), Assumption3 implies that we may

assume that̃φp ∈ S(M, Λℓ−1).
Thus we can use Nédélec’s trick [38] to obtain

‖ũp − up‖
2
L2(Ω,Λℓ) =

(
ũp − up, ũp − πℓ

pũp + πℓ
pũp − up

)
0,Ω

=
(
ũp − up, ũp − πℓ

pũp

)
0,Ω

.
(3.31)

This holds because from (3.27) and the projector property ofπℓ
p we know

πℓ
pũp − up = πℓ

pup + πℓ
p dℓ−1 φ̃p − up = πℓ

p dℓ−1 φ̃p ,

and thanks to the commuting diagram property (3.16) (deduced from Assump-
tion 7) combined with the orthogonality conditions (3.25) and (3.28), we find

(
ũp − up, π

ℓ
pũp − up

)
0,Ω

=
(
ũp − up, dℓ−1 πℓ−1

p φ̃p

)
0,Ω

= 0 . (3.32)

18



Hence, appealing to Lemma3.1, with C > 0 independent ofp, we get

‖ũp − up‖L2(Ω,Λℓ) ≤
∥∥ũp − πℓ

pũp

∥∥
L2(Ω,Λℓ)

≤ Cεℓ−1(p) ‖ũp‖X(M,Λℓ)

(3.30)
≤ Cεℓ−1(p) ‖up‖X(M,Λℓ) → 0 for p → ∞ .

(3.33)

From (3.30) we conclude that the sequence(ũp)p∈N
is uniformly bounded in

X(M, Λℓ). By Assumption2 it has a convergent subsequence inL2(Ω, Λℓ). Ow-
ing to (3.33), the same subsequence of(up)p∈N

will converge inL2(Ω, Λℓ). 2

3.6 Approximation of the eigenvalue problem

As discussed in Section2.3, the discrete compactness property is the cornerstone
of the proof of the convergence of the discrete generalized Maxwell eigenvalue
problem (2.8).

Corollary 3.3 In addition to the hypotheses of Theorem3.2, namely Assump-
tions 1 through8, assume that property(CAS) (2.12) holds and that the space
X(M, Λℓ) ∩

◦
H(dℓ 0, Ω) is dense in

◦
H(dℓ 0, Ω). Then(2.8) provides a spectrally

correct, spurious-free approximation of the eigenvalue problem(2.5).

Proof. We use Theorem2.6 from Section2.3. Considering that the dis-
crete compactness property is provided by Theorem3.2, and that we assume the
approximation property (CAS) (2.12), we only need to show the approximation
property (CDK) (2.13), which concerns the approximation of closed forms by
closed discrete forms.

Since we assumed the density ofX(M, Λℓ) ∩
◦

H(dℓ 0, Ω) in
◦

H(dℓ 0, Ω), it is
sufficient to prove (CDK) forz ∈ X(M, Λℓ) ∩

◦
H(dℓ 0, Ω). Suchz belongs to

X̃p(M, Λℓ), and we can therefore apply Lemma3.1, which shows thatπℓ
pz → z

in L2(Ω, Λℓ). We will have accomplished to show (CDK) withzp = πℓ
pz, as soon

as we show thatdℓ zp = 0. Keeping in mind thatzp ∈
◦
Vℓ

p ⊂ H(dℓ, Ω), we see that
it is sufficient to show the local relationdℓ zp = 0 in K for everyK ∈ M. This
follows finally as in (3.19) in the proof of Lemma3.1, becausedℓ z = 0 implies

πℓ
p,Kz = dℓ−1 πℓ−1

p,KRℓ,Kz .

Hencedℓ zp = dℓ πℓ
p,Kz = dℓ dℓ−1 πℓ−1

p,KRℓ,Kz = 0, which ends the proof. 2

4 Regularized Poincaŕe lifting

In this section we describe the construction of a local lifting operatorRℓ that will
satisfy Assumptions4 and5 in Section3.3for suitable spacesX(K, Λℓ), S(K, Λℓ)
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andVℓ
p(K). We follow the presentation in [21], where these operators are analyzed

and where it is shown in particular that they are pseudodifferential operators of
order−1.

4.1 Definition

We consider a bounded domainD ⊂ R
d that isstar-shapedwith respect to some

subdomainB ⊂ D, that is,

∀a ∈ B, x ∈ D : {(1 − t)a + tx, 0 < t < 1} ⊂ D . (4.1)

For a ∈ B and1 ≤ ℓ ≤ d, we define thePoincaŕe operatorRℓ,a, acting on a
differential formu ∈ C∞(D, Λℓ), by the path integral

Rℓ,au(x) = (x − a) y

∫ 1

0

tℓ−1 u
(
a + t(x − a)

)
dt , x ∈ D . (4.2)

Here the symboly denotes the contraction (also called “interior product”) of the
vector fieldx 7→ (x − a) with theℓ-form u. It is clear thatRℓ,a mapsC∞(D, Λℓ)
to C∞(D, Λℓ−1) and it has been shown (see [29] for proofs in the cased = 3) that
it can be extended to a bounded operator fromL2(D, Λℓ) to L2(D, Λℓ−1). In order
to define theregularized Poincaŕe operatorRℓ, we choose a function

θ ∈ C∞
0 (Rd) , supp θ ⊂ B ,

∫

B

θ(a) da = 1 ,

and set

Rℓu(x) =

∫

B

θ(a)Rℓ,au(x) da . (4.3)

4.2 Regularity

The substitutiony = a + t(x − a), τ = 1/(1 − t) transforms the double integral
in (4.2), (4.3) into

Rℓu(x) =

∫

Rd

∞∫

1

(τ − 1)ℓ−1τd−ℓθ
(
x + τ(y − x)

)
(x − y) y u(y) dτ dy

=

∫

Rd

k(y, y − x) y u(y) dy ,

(4.4)
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where the kernelk(y, z) has an expansion into quasi-homogeneous terms:

k(y, z) = −z

∫ ∞

0

sℓ−1(s + 1)d−ℓθ
(
y + sz

)
ds

= −
d−ℓ∑

j=0

(
d−ℓ
j

) z

|z|d−j

∫ ∞

0

rd−j−1θ
(
y + r

z

|z|

)
dr .

(4.5)

The operatorRℓ is therefore a weakly singular integral operator. In [21, Section
3.3], the following result is shown.

Proposition 4.1 For 1 ≤ ℓ ≤ d, the operatorRℓ is a pseudodifferential oper-
ator of order−1 on R

d. It is well defined onC∞(D, Λℓ), it mapsC∞(D, Λℓ)
to C∞(D, Λℓ−1) andC∞(D, Λℓ) to C∞(D, Λℓ−1), and for anys ∈ R it has an
extension as a bounded operator

Rℓ : Hs(D, Λℓ) → Hs+1(D, Λℓ−1)) .

Here,Hs(D, Λℓ) is the Sobolev space ofℓ-forms onD of orders.

4.3 Lifting property

The lifting property (3.9) is a consequence of the following identity, which is a
special case of “Cartan’s magic formula” for Lie derivatives and for a flow field
generated by the dilations with centera.

d

dt
(tℓu

(
a + t(x − a)

)
=

dℓ−1

(
tℓ−1(x − a) y u

(
a + t(x − a)

))
+ tℓ(x − a) y dℓ u

(
a + t(x − a)

)
(4.6)

Hereu is anℓ-form. The result is

dℓ−1 Rℓu + Rℓ+1 dℓ u = u (1 ≤ ℓ ≤ d − 1) ;

R1 d0 u = u −
(
θ,u

)
0,D

(ℓ = 0) ;

dd−1 Rdu = u (ℓ = d) .

(4.7)

These relations are valid for allu ∈ C∞
0 (Rd, Λℓ) and by extension for allu ∈

Hs(D, Λℓ), s ∈ R.
The perfect match of (4.7) with (3.9) from Assumption4 suggests that the

regularized Poincaré liftingRℓ provides suitable local liftings as stipulated in As-
sumption4. To this end, we can choose as local spaces of “more regular forms”

X(K, Λℓ) := H(dℓ, K) ∩ Hr(K, Λℓ) ,

S(K, Λℓ−1) := Hr(dℓ−1, K) and S(K, Λℓ) := Hr(dℓ, K) ,
(4.8)
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for some0 < r ≤ 1, where we denote byHr(dk, K) the space

Hr(dk, K) := {v ∈ Hr(K, Λk) : dk v ∈ Hr(K, Λk+1)} .

All these spaces are equipped with the natural Hilbert spacenorms. Also keep in
mind that the global spacesX(M, Λℓ), S(M, Λℓ−1) andS(M, Λℓ) are determined
by their local definition on the mesh cellsK, cf. (3.3) and (3.6). For the particular
choice (4.8) an assumption of Corollary3.3can be verified.

Lemma 4.2 For X(M, Λℓ) arising from(4.8) the spaceX(M, Λℓ) ∩
◦

H(dℓ 0, Ω)

is dense in
◦

H(dℓ 0, Ω).

Proof. By [21, Thm. 4.9(c)] we have a direct decomposition
◦

H(dℓ 0, Ω) = dℓ−1

◦
H1(Ω, Λℓ−1) ⊕ Cℓ , Cℓ ⊂ C∞

Ω
(Rn, Λℓ) , (4.9)

whereC∞
Ω

(Rd, Λℓ) is the space of compactly supported, smoothℓ-forms onR
d

with support contained inΩ or, equivalently, the space of all smoothℓ-forms onΩ
that vanish on∂Ω together with all their derivatives. SinceC∞

Ω
(Rd, Λℓ−1) is dense

in
◦

H1(Ω, Λℓ−1), we deduce:

C∞
Ω

(Rd, Λℓ) ∩ dℓ−1

◦
H1(Ω, Λℓ−1) is dense in dℓ−1

◦
H1(Ω, Λℓ−1)

As everyu ∈ C∞
Ω

(Rd, Λℓ) belongs toX(M, Λℓ), the assertion follows. 2

We point out that the choice ofr in (4.8) is determined by Assumption1.
Also note that whenever we opt for (4.8), Rellich’s theorem ensures Assumption
2, because the mesh is kept fixed.

The construction ofRℓ entails a constraint on the cell shapes. This is satisfied
for standard finite element meshes, where the cells usually are convex polyhedra.

Assumption 9 Every cellK ∈ M is a star-shaped polyhedron.

Lemma 4.3 Assumption9, the choice(4.8) for spacesX(K, Λℓ) andS(K, Λℓ−1)
imply Assumptions2, 3 and4.

Proof. The only fact which remains to be proved is the maximality relation in
Assumption3

dℓ−1 S(M, Λℓ−1) = dℓ−1

◦
H(dℓ−1, Ω) ∩ X(M, Λℓ).

The inclusion⊂ holds by definition. Let us prove the converse inclusion. Let
u ∈ dℓ−1

◦
H(dℓ−1, Ω) ∩ X(M, Λℓ). Thusu = dℓ−1φ with φ ∈

◦
H(dℓ−1, Ω). Since

u ∈ L2(Ω, Λℓ), using [21, Cor. 4.7] we obtain that there existsψ ∈
◦

H1(Ω, Λℓ−1)
such thatu = dℓ−1ψ. In particular,ψ

∣∣
K

belongs toHr(K, Λℓ−1) for all K and,
sinceu

∣∣
K

belongs toHr(K, Λℓ), we finally find thatψ
∣∣
K
∈ Hr(dℓ−1, K). 2
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4.4 Preservation of polynomial forms

Fundamental in finite element methods is the notion of polynomial differential
forms. For an orderedℓ-tupleI = (i1, . . . , iℓ), i1 < i2 < . . . < iℓ, {i1, . . . , iℓ} ⊂
{1, . . . , d}, let

dxI := dxi1 ∧ · · · ∧ dxiℓ ,

wheredxj , j = 1, . . . , d, are the co-ordinate 1-forms in Euclidean spaceR
d. The

spacePp(Λ
ℓ) of polynomialℓ-forms onR

d is defined as

Pp(Λ
ℓ) :=

{
u =

∑
I
uI dxI : uI ∈ Pp(R

d)
}

,

where
∑

I indicates summation over all orderedℓ-tuples, andPp(R
d) is the space

of d-variate polynomials of total degree≤ p. We remark that ford ∈ {2, 3}
polynomial forms possess polynomial vector proxies.

From the definition (4.2) it is clear that the Poincaré operatorRℓ,a maps dif-
ferential forms with polynomial coefficients to differential forms with polynomial
coefficients. The same holds for the regularized Poincaré operatorRℓ by (4.3).
If we want Rℓ to map a spaceP (Λℓ) of differential forms of orderℓ (e.g., with
polynomial coefficients) into a spaceP (Λℓ−1) of differential forms of orderℓ− 1,
it is sufficient to require the following two properties, see[21, Proposition 4.2].

Proposition 4.4 Assume thatP (Λℓ) and P (Λℓ−1) are finite-dimensional spaces
of differential forms satisfying
(i) The spaceP (Λℓ) is invariant with respect to dilations and translations, that is

For anyt ∈ R, a ∈ R
n : if u ∈ P (Λℓ), then

(
x 7→ u(tx + a)

)
∈ P (Λℓ) .

(ii) The interior productxy : u 7→ x y u mapsP (Λℓ) to P (Λℓ−1).
ThenRℓ mapsP (Λℓ) into P (Λℓ−1).

For the compatibility Assumption5 to hold, it is therefore sufficient to make the
following assumption about the local polynomial spaceVℓ

p(K).

Assumption 10

(i) The spaceVℓ
p(K) is invariant with respect to dilations and translations.

(ii) The differential operatorx y dℓ : u 7→ x y dℓ u mapsVℓ
p(K) into Vℓ

p(K).

To summarize:

Assumptions9, 10, and (4.8) =⇒ Assumptions2, 3, 4, and5
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5 Discrete differential forms

Now we introduce concrete spaces of discrete differential forms. We merely sum-
marize the constructions that have emerged from research indifferential geometry
(the “Whitney-forms” introduced in [42]) and finite element theory (“Raviart-
Thomas elements” of [41] and “Nédélec finite elements” of [38, 39]). These
schemes were later combined into the concept of discrete differential forms [12,
30]. Surveys and many more details can be found in [31, 4, 5, 13].

5.1 Simplicial meshes

Let M be a conforming simplicial finite element mesh coveringΩ ⊂ R
d. As

elaborated in [4, Sect. 3 & 4] forp ∈ N the following choices

Vℓ
p(K) := Pp−1(Λ

ℓ)
∣∣
K

+ x y Pp−1(Λ
ℓ+1)

∣∣
K

(5.1)
and

Vℓ
p(K) := Pp(Λ

ℓ)
∣∣
K

(5.2)

of local spaces, through (3.1), gives rise to meaningful global finite elment spaces
◦
Vp

ℓ (M) of discrete differential forms.
By construction both Assumption9 and Assumption10 are satisfied for these

spaces. The asymptotic density property also holds.

Lemma 5.1 The spaces
◦
Vp

ℓ(M) of discrete differential forms built from(5.1) or
(5.2) meet the requirement(2.12).

Proof. It is a classical result of finite element theory that the spaces of degree
p Lagrangian finite element functions

◦
V0

p(M) are asymptotically dense in
◦

H1(Ω).

Thus the space of polynomialsℓ-forms with coefficients in
◦
V0

p(M), which is a

subspace of
◦
Vℓ

p(M), is asymptotically dense in
◦

H1(Ω, Λℓ). The latter space is

obviously dense in
◦

H(dℓ, Ω), since this is already true forC∞
0 (Ω, Γl). 2

5.2 Tensor product meshes

Let M be a conforming finite element mesh ofΩ whose cells are affine images
of the unit hypercubêK in R

d: for K ∈ M the we writeΦK : K̂ 7→ K for the
associated unique affine mapping. We generalize the construction of [38]: on the
cube we define (with notations introduced in Section4.4)

Vℓ
p(K̂) :=

{
v̂ =

∑

I

uIdxI , uI(x) =

d∏

j=1

uI,j(xj), uI,j ∈

{
Pp−1 if j ∈ I

Pp if j 6∈ I

}
.
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The local spaces are obtained by affine pullback

Vℓ
p(K) :=

(
Φ−1

K

)∗
Vℓ

p(K̂) . (5.3)

This affine tensor product construction also complies with Assumption9 and As-
sumption10. Completely parallel to Lemma5.1, one proves the following result.

Lemma 5.2 The requirement(2.12) is satisfied for the spaces
◦
Vp

ℓ(M) spawned
by (5.3).

6 Application in dimensions two and three

We adopt the discrete spaces from Sect.5 along with the regularized Poincaré
lifting from Sect. 4. We rely on the choice (4.8) for spacesX and S, with a
regularity exponentr ∈ (0, 1] which has to be suitably chosen.

In order to establish the discrete compactness property from Definition2.3, it
remains to verify the regularity Assumption1 and Assumptions6, 7, and8 for
convenient local projectorsπℓ

p,K .
Local projectors which make the discrete diagram of Assumption 7 commute

do exist in the general framework of differential forms of any order. They gener-
alize Nédélec edge element projections and can be referred to asmoment based
projection operators. They are suitable for theh-version of finite elements in
dimensions 2 and 3. In higher dimensions some of them (for loworder forms)
require a higher regularity thanH2 to be defined. In [4, 5], they are modified
by an extension-regularization procedure in order to be defined and bounded on
L2. However, such operators cannot be used for thep-version of finite elements,
because no estimates (stability or error bounds) are known with respect to the
polynomial degreep.

The proper projection operators forp-version approximation are so-calledpro-
jection based interpolation operators, see [23, 24, 16, 22, 25]. Variants for anyℓ
andd are available and they are designed to commute in the sense ofAssumption
7 [31, Sect. 3.5].

At this point we have to abandon the framework of generalℓ andd, because
both regularity results (Assumption1) and the analysis of projection operators
(Assumption8) are not presently available for generalℓ andd. We have to dis-
cuss them for special choices ofℓ andd separately, relying on a wide array of
sophisticated results from the literature.

Theorem 6.1 (Convergence of Galerkin approximations)For d = 2, 3, and
0 ≤ ℓ < d, the Galerkin discretization of(2.5) based on any of the families of dis-
crete differential forms introduced in Sect.5 offers a spectrally correct, spurious-
free approximation.
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Proof. We skip the caseℓ = 0, for which the standard Galerkin approximation
theory for operators with compact resolvent can be applied,see [35].

To begin with, we focus on the discrete compactness propertyand verify the
assumptions1, 6, 7, and8 for d = 2 andd = 3 separately.

• d = 2, ℓ = 1: in terms of vector proxies we find the correspondence

◦
Y (d1, Ω) ∼

◦
H(curl, Ω) ∩H(div 0, Ω) . (6.1)

Regularity theorems for boundary value problems for−∆ on the polygon confirm
the existence ofδ = δ(Ω) > 0 such that

◦
H(curl, Ω) ∩H(div 0, Ω) ⊂Hδ+1/2(Ω) , (6.2)

in the sense of continuous embedding, see [28, Sect. 3.2]. This suggests to choose
r = δ + 1/2 in (4.8) and Assumption1 will hold true. Hence, we deal with the
concrete spaces

X(M, Λ1) =
◦
H(curl, Ω) ∩

∏

K∈M

(Hδ+1/2(K))2 , (6.3)

S(M, Λ0) =
◦

H1(Ω) ∩
∏

K∈M

Hδ+3/2(K) . (6.4)

Commuting local projection based interpolation operatorsπ1
p,K and π0

p,K have
been proposed for triangles and for quadrilaterals in [23]. With the choice (6.3)
and (6.4) they live up to Assumptions6 and7. Assumption8 holds withε0(p) =
Cp−1/2 andC > 0 depending only on the shape-regularity of the cells,cf. [22,
Thm. 4.3] and [6, Thm. 4.1]. Finally, these interpolation operators satisfy the nat-
ural condition of conformity (3.14) by construction, which makes they meet all
our requirements,cf. Sect.3.4.

• d = 3, ℓ = 1, 2: we have the vector proxy incarnation

◦
Y (dℓ, Ω) ∼

{ ◦
H(curl, Ω) ∩H(div 0, Ω) for ℓ = 1 ,
◦
H(div, Ω) ∩H(curl 0, Ω) for ℓ = 2 .

(6.5)

Citing results from [1], we findδ = δ(Ω) ∈]0, 1
2
] and continuous embeddings

◦
H(curl, Ω) ∩H(div, Ω),

◦
H(div, Ω) ∩H(curl, Ω) ⊂Hδ+1/2(Ω) . (6.6)

Therefore, using the construction (4.8) with r = δ+1/2, Assumption1 is satisfied
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for ℓ ∈ {1, 2}. The relevant spaces of more regular forms now read

X(M, Λ1) =
◦
H(curl, Ω) ∩

∏

K∈M

(Hδ+1/2(K))3 , (6.7)

X(M, Λ2) =
◦
H(div, Ω) ∩

∏

K∈M

(Hδ+1/2(K))3 , (6.8)

S(M, Λ0) =
◦

H1(Ω) ∩
∏

K∈M

Hδ+3/2(K) , (6.9)

S(M, Λ1) =
◦
H(curl, Ω) ∩

∏

K∈M

Hδ+1/2(curl, K) . (6.10)

The essential commuting local projection based interpolation operatorsπm
p,K,

m = 0, 1, 2, have been introduced in [24] for tetrahedral meshes and in [23] for
meshes comprising parallelepipeds. By construction they comply with Assump-
tion 7. Assumption6 for the spacesS(M, Λ0) and S(M, Λ1) from (6.9) and
(6.10), respectively, andr = δ +1/2 is a consequence of Sobolev embedding the-
orems. Relying on [22, Th.5.3] we obtain like in the 2D case that in Lemma3.1
we can takeεm(p) = Cp−1/2 for m = 0 andm = 1.

• Finally, we appeal to Lemmas5.1, 5.2 together with Lemma4.2and apply the
abstract theory of Sect.3 in the form of Corollary3.3to conclude the proof of the
theorem. 2

Corollary 6.2 Thep-version finite element discretization of the Maxwell eigen-
value problem(1.2) based on edge elements from the first or second Néd́elec
family on triangles or on tetrahedra, or from the first Néd́elec family on paral-
lelograms or on parallelepipeds offers a spectrally correct, spurious-free approx-
imation.

Remark 6.3 Instead of (1.2) we may consider the variational formulation of the
more general Maxwell eigenvalue problem (1.1), corresponding to the case of
anisotropic inhomogeneous material:

Seeku ∈
◦
H(curl, Ω) \ {0}, ω ∈ R

+
0 such that

(
µ−1 curlu, curlv

)
L2(Ω)

= ω2 (ǫu,v)L2(Ω) ∀v ∈
◦
H(curl, Ω) ,

(6.11)

with uniformly positive material tensorsµ = µ(x), ǫ = ǫ(x). The same edge
element discretizations listed in Corollary6.2provide spectrally correct, spurious-
free approximations of this problem. This generalization of Corollary 6.2can be
achieved with standard tools (see, in particular, Propositions 2.25, 2.26, and 2.27
of [17], and [32, Sect. 6], [31, Thm. 4.9]). �
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7 Conclusion

In this paper we have proved that thep-version of finite elements based on general-
ized Nédélec edge elements provides a spurious free spectrally correct approxima-
tion of the Maxwell eigenvalue problem. The essential pointwas the proof of the
discrete compactness property. We showed that this property follows from a set of
rather natural assumptions about the family of finite element spaces and interpo-
lation operators, and in addition we showed that these assumptions are implied by
recently found results on lifting operators and on projection-based interpolants.

In the approach pursued in [4, 5] the discrete compactness property is not
addressed directly: in the framework of theh-version for differential forms, mod-
ified moment-based projection operators are used. These newoperators satisfy the
strong property of being uniformly bounded inL2 and are constructed by means
of a delicate extension-regularization procedure.

On one hand this uniform boundedness property is stronger than our assump-
tion 6 and replaces in a certain way the discrete compactness property. But on
the other hand, it is currently not known whether a construction of projection
operators by extension-regularization could also be employed in the case of the
p-version of finite elements, or whether the construction of ap-uniformly L2-
bounded family of cochain projections is even possible.
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[34] , Theoretical analysis of Ńed́elec’s edge elements, Japan J. Ind. Appl.
Math., 18 (2001), pp. 321–333.

[35] A. KNYAZEV AND J. OSBORN, New a priori FEM error estimates for eigen-
values, SIAM J. Numer. Anal., 43 (2006), pp. 2647–2667.

[36] P. MONK, Finite Element Methods for Maxwell’s Equations, Clarendon
Press, Oxford, UK, 2003.

[37] P. MONK AND L. DEMKOWICZ, Discrete compactness and the approxima-
tion of Maxwell’s equations inR3, Math. Comp., 70 (2001), pp. 507–523.
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