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Abstract

In this paper we prove the discrete compactness properta foide
class ofp finite element approximations of non-elliptic variatior&gen-
value problems in two and three space dimensions. In a vergrgeframe-
work, we find sufficient conditions for theversion of a generalized discrete
compactness property, which is formulated in the settindisdrete differ-
ential forms of ordef on a polyhedral domain iR? (0 < ¢ < d). One of the
main tools for the analysis is a recently introduced smabfPeincaré lift-
ing operator [M. Costabel and A. Mcintosh, On Bogovskii aegularized
Poincaré integral operators for de Rham complexes on hifisdomains,
Math. Z., (2009)]. In the casé= 1 our analysis shows that several widely
used families of edge finite elements satisfy the discretepamtness prop-
erty inp and hence provide convergent solutions to the Maxwell e@jer
problem. In particular, Nédélec elements on triangles trahedra (first
and second kind) and on parallelograms and parallelepifesdiskind) are
covered by our theory.
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1 Introduction: Maxwell eigenvalue problem

Maxwell's eigenvalue problem in a closed cavity € R? with perfectly con-
ducting walls can be written as follows by means of the Makaehpere and
Faraday laws: Find the resonance frequencies R and the electromagnetic
fields(E, H) # (0,0) such that
curlE = iwuH in
curlH = —iweE  inQ
Exn=0 on o)
H-n=0 onofl,

(1.1)

wheree and i denote the dielectric permittivity and magnetic permeghbite-
spectively. The fieldE andH are sought in?(Q2)3.

For simplicity, we consider now the case of homogeneousdp material
with normalized material constants (« = 1) — we will come back to the gen-
eral setting in Remarl.3. In a classical way, the elimination of the magnetic
field from equationsi(.1) yields the Maxwell eigenvalue problem with perfectly
electrically conducting (PEC) walls in variational form:

Seeku € H(curl, Q) \ {0}, w € R} such that

o 1.2
(curlu, curlv) ;) = w? (W, V)20 Vv € H(curl, Q) . (1.2)

The elimination of the electric field would correspond to saene problem mod-
elled through replacindd (curl, Q) with H (curl, ).

One aim of this paper is to prove the convergence&i@€url)-conforming
Galerkin discretizations of Maxwell eigenvalue problem?f in the framework
of thep-version of the finite element method. The finite element axipnation of
Maxwell eigenvalues has been the object of intense invasigs for more than
20 years. It was soon recognized that ffigcurl)-conforming Galerkin finite el-
ement discretizations need special finite element spaaeéarth generally termed
edgefinite elements (see&p, 39, 17)).

The first attempts to analyze the discretized eigenvalubl@mo have been
made for theh-version of edge finite elements. We mentiéi3][as a pioneer-
ing work on lowest degree edge finite elements, wheraliberete compactness
property(see P]) has been indicated as a key ingredient for the analysibeiOt
relevant works on the subject arel] 7, 17, 37, 34, 19, 8], and we refer the inter-
ested reader tad[L, 36] and to the references therein for a review on this topic.

In these references, the Maxwell eigenvalue problem isnaftedied using
variational formulations different from.(2), for example mixed formulations],

1By and large, we adopt the standard notations for Sobolesespaees, Ch. 2].
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regularized formulationsl, 20] or mixed regularized formulation$] 15]. With

the exception of the method of weighted regularizatio® PO, 15], where H!-
conforming elements can be used, these formulations ugé ierl)-conforming
edge elements. In their analysis, special conditions imglgonvergence of the
discrete eigenvalue problems are presented, for exampoticalled Fortid prop-
erty [7], or the GAP property14]. As explained there, these conditions are related
to the discrete compactness property. Here we choose to witlikhe simple
variational formulation1.2) and its generalization to differential forms. The role
of the discrete compactness property in this context has Biseussed in detail
in[17].

The analysis presented in the references above covers\vbesion for basi-
cally all known families of edge finite elements. It soon earout, however, that
the analysis of the- andhp-versions of edge finite elements needed tools differ-
ent from those developed for theversion. In [L(] the two-dimensional triangular
case has been studied for theversion, but the analysis depends on a conjectured
estimate which has only been demonstrated numerically9]la figorous proof
for the hp-version of 2D rectangular edge elements has been propafied/{
ing for one-irregular hanging nodes) which, in particu@mtains the first proof
of eigenvalue/eigenfunction convergence for the puretsplemethod p-version
with one element) on a rectangle.

What paved the way for a successful attack on a genevarsion analysis
was the regularized Poincare lifting recently introduceld 1]: it enjoys excellent
continuity properties and at the same time respects desdréferential forms. In
this paper we are going to show how the regularized Poirtrg can be com-
bined with another recent invention, the projection baségrpolation operators,
see P2, 24], to clinch the analysis of thg-version of edge elements. This al-
lows to prove the discrete compactness (and hence the gama of the discrete
eigensolutions) for a wide class of finite elements relatediscrete differential
forms: for (L.2) this includes, in particular, Nédélec elements on tylas and
tetrahedra (first and second kind) and on parallelogramgarallelepipeds (first
kind).

As already mentioned, one of the key ingredients for the emgence analysis
is the discrete compactness property. Much insight can reegdrom investi-
gating it in the more general framework of discrete diffet@forms (see 4] for
a lucid introduction to this subject). In this setting, th@q@fs are more natu-
ral and simultaneously cover, in particular, two- and thdeéeensional Maxwell
eigenvalue problems.

Plan of the paper. The structure of the paper is as follows. We start in Sec-
tion 2 with a generalization of1(2) to eigenvalue problems associated with the
de Rham complex on differential forms. Then we define therdieccompactness



property and discuss its significance in the context of Galetiscretization: in
association with two standard completeness propertigs/gs a crucial sufficient
condition for the convergence of eigenvalues and eigeaveciSectiors is the
core of our paper and contains the description of our alisiestimptions. Having

in mind thep-version of finite elements, we considefixedmeshdt of a domain

Q c R? and a sequence of spaces of discrete differential formsdefrér(with

0 < ¢ < d) together with projection operators onto discrete spagegrove that
our assumptions imply the validity of the discrete compassproperty for such

a sequence of spaces (Theorér). The abstract theory relies on the existence of
suitable Poincaré lifting operators which are presenteskictior4. The mapping
properties of these lifting operators allow to specify savhéhe function spaces
appearing in our abstract assumptions. In Seciiae recall the classical families
of discrete differential forms with high degree polynongakfficients on simpli-
cial or tensor product elements. Finally, for the cases wofetisions! = 2 and

d = 3, we concretize in Sectiofithe function spaces and recall embedding results
and properties of projection based interpolation opesatelated to these spaces.
All abstract assumptions are then satisfied, leading to #ia oonvergence result
stated in Theorer.l. The analysis of a-version edge element discretization of
the Maxwell eigenvalue problem () is covered as casé= 3 and/ = 1.

2 Differential forms and generalized Maxwell eigen-
value problem

The variational eigenvalue probler.?) turns out to be a member of a larger
family of eigenvalue problems, when viewed from the perspef differen-
tial forms. This more general perspective offers the benéétunified theoretical
treatment of different kinds of eigenvalue problems, el scalar Laplace eigen-
problem, Maxwell cavity eigenproblems in dimensi@rend3, the eigenproblem
for thegrad div-operator in dimensioB. This policy has had remarkable success
in numerical analysis recentlgf. [3]. Thus, in this section we first recall some
basic notions related to differential forms. We refer theeiested reader tcl]
Sect. 2] for an introduction to this subject.

2.1 Function spaces of differential forms

Given a domaim) c R?, we denote byC>°(Q2, A%, 0 < ¢ < d, the space of
smooth differential forms of2 and byA(2) the corresponding anti-commutative
graded algebra

AQ) =P C=(Q.A).

4



Theexterior derivatives a graded linear operator of degree one
d: A(Q) = A(Q),

that is, for anyl it is represented by, : C>°(Q, A*) — C>(Q, A*1).
We rely on the Hilbert spaces

H(dg, Q) :={v € L*(Q,A") : dyv € L*(Q, A"}, (2.1)

where L%(Q, A*) is the space of differentig-forms on2 with square integrable
coefficients in their canonical basis representation, 8ég $ect. 2]. Its inner
product can be expressed as

(u,v)07Q = / uAxv, uveL* QA (2.2)
Q

with » the Hodge star operator induced by the Euclidean metrilRgrwhich
maps/-forms to(d — ¢)-forms. As above, a tags the subspaces of forms with
vanishing tracery, on 02, which can also be obtained by the completion of
compactly supported smootiorms with respect to thé/ (d,, 2)-norm:

[e]

H(dy, Q) :={v € H(d;, Q) : trpqov = 0}. (2.3)

The subspace aflosed formss the kernel otl, and is denoted bﬁ(de 0,Q):

[¢]

H(d,0,9Q) = {v e H(dy, Q) : dy v = 0}. (2.4)

Finally, we adopt the standard notation for the exteriordeavative operator
d¢ := xdg_g=; in particular, we havé, : C°°(Q, AY) — C°(Q, A*1).

2.2 Variational eigenvalue problems

After choosing bases for the spaces of alternating mutirforms orR?, vector

fields (“vector proxies”) — R(?) provide an isomorphic model for differentiél

forms on(2. Choosing the standard “Euclidean basis”, the operatafstryg, are

incarnated by familiar operators of classical vector asialydifferent for different
dimensiond and order, see Tablé and [, Table 2.1].

Hence, the eigenvalue problemZ) with ¢, x = 1 is the special casé = 3,
¢ = 1, of the following variational eigenvalue problem for diféatial /-forms,
0</l<d:

Seeku € ﬁ(dg, Q) \ {0}, w € R{, such that

0 2.5
(dg u,dy V)O,Q = w? (ll, V)O,Q Vv € H(dg, Q) . ( )
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Table 1: Identification between (operators on) differdrfbams and (operators

on) Euclidean vector proxies iR? andR?

Differential form Proxy representation
d=2 | d=3

do grad grad

=0 tron¢ ®100 P90
H(do, Q) | HY() Q)
d; curl curl

/=1 t£8Q u (L,l X n)|39 (}31 X n)‘aQ
H(dy, ) | H(curl,Q) | H(curl, Q)
01 div div
dg 0 div

(—o|Weaa |0 (a-n)jo0
H(dy, Q) | L*(Q) H (div, Q)
0o m curl

A key observation is that the bilinear fortm, v) — (d,u,d,v),, has an infi-

nite dimensional kerneﬁ(dz 0, ) comprising all closed-forms. It provides the
invariant subspace associated with the essential spedyrof (2.5). This es-
sential spectrum can be identified as the main source ofulifés confronted in
the Galerkin discretization o2(5).

On the other hand, any solutienof (2.5) for w # 0 satisfiegu, d¢—1 %), o =

0 forall ¢ € I?[(dg,l 0,9). Thus the eigenfunctions corresponding to non-zero
eigenvalues belong to the subspace

V(de, Q) = {ve Hd, Q) : (vide1 %)y =0 Vo € H(de—1, )}, (2.6)

which means they belong to the kerneldf This is the generalization of the
divergence free constraint found for electric fields in thexvell case. From
[40] we learn the following theorem.

Theorem 2.1 Foranyd € N, 0 < [ < d, the embedding
Y (dy, Q) — L2(Q, AY)

IS compact.



By restricting the eigenvalue problemfddg, ), we can therefore use Riesz-
Schauder theory. This implies that.f) gives rise to an unbounded sequence of
positive eigenvalues® = (w*)?

N=0< A <NV <.. N — 00 (K — 00), (2.7)
with associated finite dimensional mutually(£2)-orthogonal eigenspaces.

Remark 2.2 Owing to the zero trace boundary conditions imposed on the-fu
tions in 2.5), it may be called a Dirichlet eigenvalue problem. UsiHgd,, (2)
as variational space would result in the corresponding Neumeigenvalue prob-
lem. Its analysis runs utterly parallel to the Dirichlet €assing the techniques
presented below. [

2.3 Approximation of the eigenvalue problem and the role of
discrete compactness

In the sequel we fix the ordér 0 < ¢ < d, of the differential forms. Spaces of
discrete differential forms

VEC H(d, ), dimV! < oo,

lend themselves to a straightforward discretizatior?af)( In this sectionp € N
stands for an abstract discretization parameter, andpibyagpeaking, large values
of p hint at trial/test spaces of high resolution.
We consider the approximation of the eigenvalue probless) py the Galerkin
method:
Findu, € % \ {0}, w € R}, such that

o (2.8)
(deuy, dg Vp)07Q = w? (u,, Vp)07Q Vv € Vf; )

Now, the key issue is convergence of eigenvalues and eigemgeasp — oo,
rigorously cast into the concept sppectrally correct, spurious-free approximation
[17, Sect. 4]. Let us recall these notions in a few words for tlee @ self-adjoint
nonnegative operators without continuous spectrum (wisitihe case here).

The spectral correctness of the approximation of an eideeya&oblem such
as .5 by a sequence of finite rank eigenvalue problems)(means that all
eigenvalues and all eigenvectors @f) are approached by the eigenvalues and
eigenvectors of4.8) asp — oo. If (2.5 has a compact resolvent (which is the
caseonly when/ = 0), the spectral correctness is an optimal notion: It implies
that if {\"} >, and{\}},~, are the increasing eigenvalue sequences$ &j énd
(2.9) (with eigenvalues repeated according to their multipksi), then

A=A as p—ooo Vk>1, (2.9)
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and the gaps between eigenspaces (correctly assemblediagdo multiplicities
of the eigenvalues oP(5)) tend to0 asp — oc.

If we face an eigenvalue problem for a self-adjoint non-tiggaperator with
an infinite dimensional kernel, and otherwise discretetp@sspectrum (which is
the case for4.5) for all / > 1), the spectral correctness implies the same prop-
erties as above with the following modifications of the deifamis: Now{\*},~,
is the increasing sequence dsitiveeigenvalues of4.5) (as specified in4.7))
and, given a positive number< \!, {A’;}kzl is the increasing sequence of the
eigenvalues of4.9) larger thane (still with repetitions according to multiplici-
ties). With such conventionspectral correctnesstill implies convergence of
eigenvalues4.9) and eigenspaces as above. In this conspdrious-free approx-
imationmeans that there existg > 0 such that all eigenvalues dof ¢) less than
o are zero. Therefore, spectrally correct, spurious-free@pmation implies the
convergence property (9 and the corresponding convergence of eigenspaces, if
we define{)\’;}kzl as the increasing sequence of fusitive eigenvalues d?.9).

There exist several different ways, all well studied and samzed in the lit-
erature of the last decade, for proving the convergenceeodlifcrete eigenvalue
problem ¢.8) to the continuous eigenvalue probles): One can use a reformu-
lation as an eigenvalue problem in mixed form as analyze#]jof one can use a
regularization which gives an elliptic eigenvalue problemthe Hodge-Laplace
operator as analyzed il]| or one can follow the arguments df {] and study the
non-elliptic problem 2.5) directly.

Here we outline the latter approach, which employs the amalyf [27] of
the approximation of eigenvalue problems of non-compdtadjeint operators.
Since [L7] deals only with the Maxwell case, i. @.= 3, ¢/ = 1, we examine the
main arguments, in order to verify that they are also validiie general case.

Let us define the solution operatdr: L?(Q, A*) — ﬁ(dg, Q) of the source
problem corresponding to the eigenvalue problémy)(and its discrete counter-

partA, : l(}f; — l(}f; by
(de AF,de V) + (AE,V)go = (£.V)gq V¥V € H(dy, Q) 2.10)
(de Apf,div)g g + (A, V) g = (£,v)pq YV EV,.

Note that the operatotd and A, have the same eigenfunctions and the same
eigenvalues (after a transformation) as the eigenvaluelgmts ¢.5) and @.9).
Namely, £.5) and ¢.9) are equivalent to the relations

u=(w?+1)Au; u, = (W +1)Au,. (2.11)

The infinite-dimensional eigenspacewat= 0 shows thatA is not a compact
operator.



Following [17], three conditions are identified that together are necgssal
sufficient for a spectrally correct, spurious-free appmeadion of A by A, or,
equivalently, of the eigenvalue problem %) by the discrete eigenvalue problem
(2.9).

The first condition is rather natural. It states that the seqe of discrete
spaces(%)pGN is asymptotically dense ik (d,, 2) (compare {7, Condition
(CAS) — completeness of approximating subspaces])

(CAS) 1)1520 in‘f% IV =Vl g, 00 =0 Vv € H(d, Q) . (2.12)
vpEV,

The second condition, only relevant for> 0, states that closed forms can be
well approximated by discrete closed forms (compdré [Condition (CDK) —
completeness of discrete kernels])

(CDK) lim  inf  z—zq =0 Yz H(d0,Q).  (213)

P70 4, eVENH (dg 0,92)

The third condition is the most intricate one and has beemedbiscrete com-
pactness For its formulation, we introduce the orthogonal completrspace of
the discrete closed forms:

20i={u, € Vi (0,2,)00=0 Vz, € VN H(d0,Q)} (2.14)

Definition 2.3 Let us choosé € {1,...,d — 1}. Thediscrete compactness prop-
erty holds for a family(f)f; )pEN of finite dimensional subspaces Hf(d,, ), if
anyboundedsequence

(W) peny © H(d,, Q) with u, € Zof;
contains a subsequence trwnverges in.%(2, A*).

The convergence proof is based on two lemmas, the first ofwdnoresponds
to [17, Theorem 4.12]. It implies, according ta{, Condition P1) and Theorems
2,4,5,6], the spectral correctness of the approximation.

Lemma 2.4 If (2.12) and the discrete compactness property hold, then

lim sup 1Avy = ApVpll g, 00 = 0- (2.15)
pP—00 o
Vpevf;%HVpHH(dZ,Q):l

Proof. Note first that forv, € % N H(d, 0,Q) there holdsdv, = v, = A,v,,
so that by orthogonal decomposition%ﬁ one gets

sup [Av, — APVP”H(dbﬂ) = sup [Av, — APVPHH(dbﬂ) :

OZ OZ
VoeVE Vol gy 00 =1 Vo€ 2,3 Vol g,,0) =1

9



Furthermore, one has by definition dfand A,

|Av, — APVPHH(d[,Q) = info |Av, — WP”H(d[,Q) :
wpEVY
Assume now that4.15 does not hold. Then there exists> 0 and a sequence
(vp) with v, € 2| satisfying||v,||;4, o) = 1 and

1AV, =Wyl g, =6 VPEN, w, eV, (2.16)

We can apply the discrete compactness property to the segey) and ob-
tain a subsequence converginglif(2, A*) to somev € L?(Q, A?). SinceA :

L*(Q,AY) — H(d,, Q) is continuous, we findiv € H(d,, ), and the approx-
imation property £.12) provides us with a sequencev,) with w, € % that
converges irﬁ(dg, Q) to Av. Hence for the subsequence we obtain

| Avy, — Wp”H(d[,Q) < [|Av, — AVHH(de) + [|Av — Wp”H(d[,Q) — 0,

in contradiction with £.16). O
The second lemma corresponds 1G,[Corollary 2.20]. It gives the discrete
Friedrichs inequality (ing] also called “ellipticity in the discrete kernel”), and it
is easy to see that this implies that= 0 is not a limit point of positive discrete
eigenvalues, so that the spurious-free property of thecqpation follows.

Lemma 2.5 If (2.13 and the discrete compactness property hold, then there ex-
istsa > 0 such that for allp € N

Proof. Assume that4.17) does not hold. Then there exists a sequ&rge with
v, € Zof) satisfying

IVpllr2q) =1 and ]}LIEO lde Vpll 2y =0 (2.18)

The discrete compactness property can be applied to thieeeq and gives a sub-
sequence converging ib*(Q2, AY) to somez € L?*(Q, AY). From .19 follows

that the convergence actually takes placeﬁl(dg, Q) and thatz € ﬁ[(dg 0,€).
Therefore the approximation property.{39 provides us with a sequencge,)

with z, € l(}f; N H(d,0,) that converges ih2(£2, A*) to z. Hence for the subse-
guence we find

[vp = ZP”L2(Q) < vy — ZHL2(Q) + [z - ZpHL2(Q) — 0.

10



This leads to a contradiction, becausg € Zof; andz, € % N H(d,0,Q) are
L*(Q2)-orthogonal, hence for afi

2 2 2
Ve = Zpll 1200y = [IVpll7200) + 120l 72(0) = 1

O
To summarize, Lemmas 4 and2.5together prove the following result.

Theorem 2.6 If the completeness of approximating subspaées?), the com-
pleteness of discrete kerndls 13 and the discrete compactness property hold,
then(2.8) provides a spectrally correct, spurious-free approxiroatof the eigen-
value problen(2.5).

3 An abstract framework implying discrete
compactness

In this section we fix a order of differential forms
ce{l,...,d—1},

and we formulate a set of hypotheses which allow us to progalibcrete com-
pactness property. These hypotheses are organized ingitnaes:

1. standard assumptions related to the finite element spoéc(&cts.l),

2. assumptions on the existence and key properties of &dddting opera-
tors (Sect3.3),

3. hypotheses on projections on%@ complying with the commuting diagram
property and satisfying an approximation property (See).

To state these assumptions we have to introduce interneespacesX andS of
more regular forms

Vi C XM, AY) C H(d, Q) and Vil SO ACY) € H(d1,Q)

allowing compact embedding arguments and precise notiboeninuity of lift-
ing and projection operators.

11



3.1 Discrete spaces

Our focus is on finite element spaces. For the sake of simylige restrict our-
selves to polyhedral Lipschitz domaifts We assume that the finite dimensional

trial and test spaceﬁ?’f, p € N, are based on &xed finite partition 0t of (2,
composed of elements (cell&):

Q= |JK , KnK'=0,fK#K' KK em.
Kem

ForacellK € 9, letF,,(K) designate the set afi-dimensional facets ok :
for m = 0 these are the vertices, for = 1 the edges, forn = d — 1 the faces,
andgq(K) = {K}.

We take for granted that the discrete spaﬁés:an be assembled from local
contributions in the sense that for each meshkelt M1 there is a spacke/(K) C
C>(K, A*) of smooth/-forms onk, such that

VE=VE) = {ve H(d,Q): v| e VIK)VEem).  (3.1)

In other words,vf; can be defined by specifying the local spavﬁ(sl() and re-
quiring the continuity of traces across inter-element latauies as well as the
boundary conditions o0df).

In the same fashion, we introduce a corresponding fai&fﬁl‘v C ]'Ol(dg_l, )
of spaces of discretg — 1)-forms. We will see later on that as a consequence of
further hypotheses, the local spatgs' (K') andV!(K) satisfy an exact sequence

property.

3.2 Spaces of more regular forms

We introduce a Hilbert spack (9, A?) C ﬁ(dg, 2) that captures the extra regu-

larity that distinguisheg-forms in the spacé?f(dg, 2). We can think of this space
as a space of “more regulaf*forms on(2.

Assumption 1 The spacéof(dg, 1) defined in @.6) is continuously embedded jin
X (9, AY):
Y (dy, Q) — X (9, AY) .

This means that witli' > 0 depending only ot
Il y@nasy < Cllullge,e YueY(d,Q). (3.2)

On the other handX (9, A%) has to be small enough to maintain the compact
embedding satisfied b}?(dg, ), cf. Thm.2.1.

12



Assumption 2 The spaceX (91, A) is compactly embedded ib? (2, A*):

comp

X (9, A9 P L2(Q, AY).

As with the discrete spaces, the spa&g$t, A*) are built from local contri-
butions and will therefore depend on the m&8hWe assume that for each mesh
cell K € 9 there are Hilbert space$ (K, A*) so that:

XA = {veH(d,Q): v|. € X(K,A) VK em}, (3.3)

and, in addition, the norm of (9, A?) is defined through local contributions:
2 2 2
”u”X(sm,Af) = Hu”H(dZ,Q) + Z HU‘KHX(K,M) : (3.4)
Kem

Finally, the local spaces have to be large enough to corftaidiscrete forms for
any value ofp:
4 l
V,(K) C X(K,A) . (3.5)

Correspondingly, we introduce a spagét, A* 1) C ]f[(dg,l, Q) of “more
regular potentials”. Similar t& (901, A*), the spaces§ (91, A*~1) are mesh-depen-
dent and allow for a characterization through local HilkegacesS (K, A*1),
K em,

SO A = {4 € H(dr1,Q): |, € S(K,A"Y) VK e M} . (3.6)

They are endowed with the norm

1915 @macs) = 100+ D 16 1lsmnm - (3.7)

Kem

The local spaces are large enough to contain the local tisgotential spaces:
VIEYK) C S(K, A7) (3.8)

The following assumption establishes the connection batig9t, A*) and
SO, AL).

Assumption 3 The exterior derivative maps (9, A“"!) continuously intg
X (9, AY):

S, A C {p e H(dp1,Q) 1 dpr p € XD, A},
and the image is maximal:

ey SO, ALY = dyp_y H(dg_1, Q) N X (90, AY).
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To conclude this subsection, note that in the case of an efem&uching the
boundaryo(?, like for the discrete spacag (k) andV~'(K), the local spaces
X (K, A% and S(K, A1) are not obliged to comply with any boundary condi-
tions.

3.3 Local liftings

A pair of linear mappingR;.  : C=(K,A*) — C®(K, A1), k=4, 0+1,is
called alifting operatorof order/ if it fulfills

dr1oRyx + Ry xode=1dg . (3.9

This relation characterizes a “contracting homotopy” @& tle Rham complexX|
Section 5.1.2].

Besides this algebraic relationship, our approach hingesyrmothing proper-
ties of the lifting operators, expressed by means of thd kmacesS(K, A* ) of
more regular potentials anti (K, A*) of more regular forms. The next assump-
tion summarizes the continuity expected from the liftingaior.

Assumption 4 For everyK € Mt there is a lifting operataiR, x, Re+1.x ) whose
components can be extended to continuous mappings

Revix : LKA — X(K, A and Ryg: X(K,AY) — S(K,AY,
and thus identityd.9) holds onX (K, A?).

As a consequence, for each cElle 91, we have the exact sequence

S(K, AN 220 X (KA~ L2(K, AR, (3.10)
Finally, the local liftings have to be compatible with the&bspaces of discrete
differential forms:

Assumption 5 The local operatorB,; x, when applied to exact local discrete
(¢ + 1)-forms, yield local discreté-forms,i.e.,

Resixode: Vo(K) — Vi(K) .

3.4 Local projectors

As usual in methods based on discrete commuting diagramseee jprojection
operatorsr” - onto discrete spaces f¢f — 1)-forms and/-forms. For order
¢ — 1, our local spaces (K, A*~1) of more regular potentials can play the role
of domains for the projectom;ﬁ}%. For the orde¥, by generalization of what we
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actually need in the case of dimensior= 2 andd = 3 for Maxwell, we define
our pl’OjeCtOI’STf;’K on smaller spaces than( K, A*). We denote these new spaces
by S(K, A*) and require that they contain for althe p-dependent subspaces

X, (K, A ={ue X(K,\" :dyued V(K)}. (3.11)

On the same model a8.0)-(3.7), we define the corresponding global spaces
S(om, AY) and

X, A% = {ue X(M,A") :dyued V) (3.12)
and we have the continuous embeddings

X, (9, AY) — S(9M, AY) — X (9m, AY) . (3.13)

Assumption 6 There ardocal continuous linear projections
mo  S(K,AT) = VIEHK) and @ S(K A — VI(K)

for all mesh cellgk” € 1.

The standard commuting diagram property is as follows.

Assumption 7 The projectorsﬂf;}g and Wﬁ, . are compatible with the exteripr
derivative in the sense that the diagram

commutes for every € 9.

Let us note that, as a consequence of Assumpticausd 7, we find that the
sequence
_ do— d
V, H(E) —— Vy(K) —— di (V(K))
is exact.

Besides, the local projections acting @n- 1)-forms are supposed to enjoy a
crucial approximation property using the Hilbert spacemf-|| g ye-1)-

Assumption 8 There is a function,_;: N — R* with lim ¢, ;(p) = 0 so that
p—00

Hdé—1(¢ - ]€TI§¢)HL2(K,AZ) < gé—l(p) ||¢||S(K,AZ*1) \V/¢ S S(Kv Ae_l) :
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Finally we assume for the projectionﬁK a natural condition of conformity:
Forallu € X, (K, A)

trpu=0 = trpmu=0 VFeF,(K), (<m<d, (3.14)

and the corresponding condition for the projecti@ﬁ@%. This makes it possible
to definegloballinear projections

7l SO AY) = V. and Tt S(ON, AL - Vi
by patching together the local operators
(miu) }K = Wf;,K(U.’K) and (m, '®) ’K = Wﬁ}%((ﬁ}K) VK e 9. (3.15)

As a consequence of Assumptioand (.15, the global projectorsﬁ*1 andw]‘;
inherit the globatommuting diagram property

S, A1) 2L S(om, AY
w;;—ll Jwg (3.16)
N

3.5 Proof of the discrete compactness property

The estimate of Assumptichion “potentials” carries over té-forms with a dis-
crete exterior derivative, that is, the elements of the spgg¢in, A¢), see 8.12).

Lemma 3.1 (Global projection error estimate) Making Assumptions$ through
8, the estimate

Hu - ﬂ-f;uHLz(QAZ) < Cgé—l(p) ||u||X(£m,Al) Vu € Xp(mt7 AZ)

holds true, with a constarit’ > 0 independent of.

Proof. Pick anyu € X, (9, AY). The locality of the projector!, cf. (3.19),
and @.4) allow purely local considerations. Single out one ¢elk 9, still write
u=u ]K € X, (K, A%, and splitu on K using @.9) from Assumption:

u=d, 1 Rpgu+Rppygdpu=di1d+Rpyyrdeu. (3.17)
with ¢ := R, xu. The continuity ofR, x from Assumption reveals that
”¢HS(K,M—1) <C ”u”X(K,M) ; (3.18)
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where here and belo& will denote constants (possibly different at different oc-
currences) which depend neither@mor onp.
Thanks to identity§.17) and the commuting diagram property from Assump-
tion 7, we have
mogu=d T+ 7 R cdeu (3.19)

Recall thatu € X,(K, A’) belongs to the domain af! . by Assumptiors. Fur-
ther, asu € X, (K, AY), from Assumptiors we infer that

Resixdeu € VI(K) . (3.20)

Thus, owing to the identities3(17), (3.19 and the projector property @‘}{K the
task is reduced to an interpolation estimatafﬁ)jg:

(Id =7 o )u=de_1(Id — 7, ) + (Id — 7, 1 )Rep1 deu (3.21)

—0 by (3.20

As a consequence, invoking Assumptign

10d = 7 el o e e C2)1d, (1d - Ty )P 2 e

(319
< &¢-1(p) HQ’)”S(K,A“—l) < Ceral(p) HUHX(K,M) , (8.22)

which furnishes a local version of the estimate. This egenguniform inK €

M becauseéN is finite. Due to B8.4), squaring £.22 and summing over all cells

finishes the proof. O
We are now in the position to prove the main result of thisisact

Theorem 3.2 (Discrete compactnessiynder Assumptions through8, the dis-
crete compactness property of Definitiors holds for the family(vf) )pGN of sub-
spaces Oﬁ(dg, Q).

Proof. The proof resorts to the “standard policy” for tackling thelgem of
discrete compactness, introduced by Kikucti, [34] for analyzing theh-version
of Whitney-1-forms. It forms the core of most papers considethe issue of
discrete compactness, sé€[Thm. 2], 2, Thm. 11], B1, Thm. 4.9], 6, Thm. 2],

etc.
Let us introduce the discrete analogue of the sp%a(ze, 0):

V= {vp eV (v diatp,) =0 Vab, € V1) (3.23)
The space)c>§ containszo’f; as a subspace.
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We consider &1 (d, 2)-bounded sequence,,) ., with members inéf;. Thus
u, belongs in particular tooiﬁ and the sequenc(elp)p satisfy

i) uw, eV, (3.24)
(i) (updirth,), =0 Ve, €V, (3.25)
(i) [yl g, <1 YPEN. (3.26)

We have to confirm that it possesses a subsequence thatgeser.? (2, A°).
We start with thel.2(€2, A%)-orthogonal projection ofi, into }O/(dg, Q) parallel
tod, 4 ]'Ol(dg_l, 2): letu, be the unique vector field iﬁO{(dZ, Q) with
W=, +di @, @, € H(de1,9) (3.27)

o

(Up,de—1%)g o =0 Voo € H(dp—1,92). (3.28)
Obviously, the latter condition implies
i, € Y(d, Q). (3.29)

Hence, by virtue of Assumptioh, the fact thatd,u, = d,u,, and @¢.129), u,
satisfies B
u, € X,(M,AY), ||ﬁp||x(gm,/\f) <C ||up||H(dl,Q) ’ (3.30)
whereC' > 0 does not depend gn
Sinced, 1 ¢, = 1, —u, € X(IM, A%), Assumption3 implies that we may
assume thap, € S(M, A“1).
Thus we can use Nédélec's trickd] to obtain

~ 2 ~ ~ ~ ~
|a, — upHL2(Q,Al) = (up — Up, Up — zl;up + Wf;up - up)

= (U, —u,, 1, — ﬁﬁp)o@ :

042 (3.31)

This holds because fron® (27) and the projector property @ﬁ we know

0~ _ ¢ ¢ i ¢ i
U, — U, = mu, +m,de 1 @, —u, =7,di1 @

and thanks to the commuting diagram propefiyl () (deduced from Assump-
tion 7) combined with the orthogonality conditions.25 and (.29, we find

(B — 7, — ) ) = (ﬁp oy, de W;;*l&p)o _=0. (3.32)
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Hence, appealing to Lemnial, with C' > 0 independent of, we get

[, — up”Lz(Q,AZ) < Hﬁp - 7TJr{ﬁpHLz(Q,M) < Cera(p) ”ﬁpHX(fm,Al)

( (3.33)

3.30
< Cer(p) HupH)((gm,AL’) —0 forp—oo.

From 3.30 we conclude that the sequen(:fép)peN is uniformly bounded in

X (9, AY). By Assumptior? it has a convergent subsequencé (2, A?). Ow-
ing to (3.39, the same subsequence(ut,)peN will converge inL%(Q, A*). O

3.6 Approximation of the eigenvalue problem

As discussed in Sectioh 3, the discrete compactness property is the cornerstone
of the proof of the convergence of the discrete generalizedvixtll eigenvalue
problem ¢.8).

Corollary 3.3 In addition to the hypotheses of Theorén?, namely Assump-
tions 1 through 8, assume that propertfCAS) (2.12 holds and that the space
X (9, A9 N }_O[(dg 0,€) is dense infol(dg 0,9). Then(2.8) provides a spectrally
correct, spurious-free approximation of the eigenvalughgbem(2.5).

Proof. We use Theoren2.6 from Section2.3. Considering that the dis-
crete compactness property is provided by Theoefand that we assume the
approximation property (CASP(12, we only need to show the approximation
property (CDK) ¢.13, which concerns the approximation of closed forms by
closed discrete forms.

Since we assumed the density {91, AY) N ﬁ(de 0,9)in ﬁ(de 0,Q),itis
sufficient to prove (CDK) forz € X (91, AY) N ]f[(dg 0,9). Suchz belongs to
)~(p(im, A’), and we can therefore apply Lemrfid, which shows that'z — z
in L2(2, A"). We will have accomplished to show (CDK) with) = 7'z, as soon

as we show that, z, = 0. Keeping in mind that, ¢ )O/f, C H(d,, ), we see that

it is sufficient to show the local relatiafy z, = 0 in K for every K € 9. This

follows finally as in ¢.19 in the proof of Lemmas.1, because, z = 0 implies
7T£7KZ = dg,1 Wﬁ}%R&Kz .

Henced, z, = d; 7} ,z = d,do_y ™, Ry xz = 0, which ends the proof. O

4 Regularized Poincag lifting

In this section we describe the construction of a localhgtoperatoR, that will
satisfy Assumptions and5 in Section3.3for suitable spaceX (K, A), S(K, AY)
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andVﬁ(K ). We follow the presentation ir2[l], where these operators are analyzed
and where it is shown in particular that they are pseudaiffeal operators of
order—1.

4.1 Definition

We consider a bounded domalihC R that isstar-shapedvith respect to some
subdomainB C D, thatis,

Vae BjxreD: {(l1-tha+te, 0<t<l}CD. 4.2)

Fora € B andl < ¢ < d, we define théPoincar operatorR,,, acting on a
differential formu € C°°(D, A*), by the path integral

Requ(z) = (. —a) 4 /1 t“rua(a+t(z —a))dt, r€D. (4.2)
0

Here the symbol; denotes the contraction (also called “interior producf’jhe
vector fieldz — (z — a) with the -form u. Itis clear thaiR,, mapsC>(D, A*)
to C°°(D, A*~1) and it has been shown (se&] for proofs in the caséd = 3) that
it can be extended to a bounded operator figtD, A?) to L2(D, A*~1). In order
to define theegularized Poincag operatorR,, we choose a function

6 c C(RY), suppb C B, /H(a)dazl,
B
and set

Rgu(a:):/BH(a)RMu(x) da. (4.3)

4.2 Regularity

The substitutiony = a + t(x — a), 7 = 1/(1 — t) transforms the double integral
in (4.2), (4.3 into

Reu(z) = //(7' — )"0+ 1(y —2) (x —y) su(y) drdy
Ré 1 (4.4)

:/k(y,y—x)Ju(y)dy,

Rd
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where the kernel(y, z) has an expansion into quasi-homogeneous terms:

k(y,z) = —z/ s s+ )"0y + sz2) ds
0

_ N Ood—j—l K2
_ Z(ﬂ‘)lzld-ﬂ‘/o Iy ) dr

The operatoR, is therefore a weakly singular integral operator. 2n,[Section
3.3], the following result is shown.

(4.5)

Proposition 4.1 For 1 < ¢ < d, the operatorR, is a pseudodifferential oper-
ator of order —1 on R%. It is well defined onC>°(D, A*), it mapsC>=(D, A?)
to C°(D, A1) and C>=(D, A) to C>=(D, A*"!), and for anys € R it has an
extension as a bounded operator

R, : H*(D,A") — H*"Y(D,A")) .

Here, H*(D, A*) is the Sobolev space 6fforms onD of order s.

4.3 Lifting property

The lifting property 8.9) is a consequence of the following identity, which is a
special case of “Cartan’s magic formula” for Lie derivagvend for a flow field
generated by the dilations with center

d,, B
E(t u(a+t(z—a) =
dey (tz’l(x —a) su(a+t(z - a))) +t'(zx —a) sdju(a+t(x —a)) (4.6)

Hereu is an/-form. The result is

dg,leu—i—Rnggu:u (1§£§d—1),
Ridou=u— (6, u)O7D (¢=0); 4.7)
dd,1 Rdu =u (ﬁ = d) .

These relations are valid for all € C5°(R? A*) and by extension for alh €
H*(D,A%), s € R.

The perfect match of4(7) with (3.9) from Assumption/ suggests that the
regularized Poincare liftin§, provides suitable local liftings as stipulated in As-
sumptiond. To this end, we can choose as local spaces of “more regulasfo

X(K, A" == H(dy, K) N H"(K,\")

. . (4.8)
S(K, A" = H"(d,_y, K) and S(K,A) := H'(dy, K)
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for some0 < r < 1, where we denote b¥/" (d, K) the space

H'(dy, K) == {v € H(K,A") : dy v € H"(K,A*™)} .
All these spaces are equipped with the natural Hilbert spac@s. Also keep in
mind that the global space§(, AY), S(9M, A1) andS (9, A?) are determined

by their local definition on the mesh cells, cf. (3.3) and (3.6). For the particular
choice {.8) an assumption of Corollary.3 can be verified.

Lemma 4.2 For X (9, AY) arising from(4.8) the spaceX (9, AY) N H(d, 0,)
is dense inFOI(dg 0,Q).

Proof. By [21, Thm. 4.9(c)] we have a direct decompaosition

H(d0,Q) =dey BQUAY) @ ¢, € CCF(R™AY),  (4.9)
whereC(R?, A’) is the space of compactly supported, smottbrms onR*

with support contained if or, equivalently, the space of all smodtfiorms on{)
that vanish o together with all their derivatives. Sin¢&”(R?, A*~") is dense

in 71(Q, A1), we deduce:
CZ (R A Ndey HY(Q,A“Y) isdensein d,_, H'(Q, A1)

As everyu € CZ(R?, A*) belongs taX (92, A*), the assertion follows. O

We point out that the choice of in (4.9) is determined by Assumptioh
Also note that whenever we opt fof.€), Rellich’s theorem ensures Assumption
2, because the mesh is kept fixed.

The construction oR, entails a constraint on the cell shapes. This is satisfied
for standard finite element meshes, where the cells usuallyanvex polyhedra.

Assumption 9 Every cell K € 9t is a star-shaped polyhedron. ‘

Lemma 4.3 Assumptiord, the choicg4.8) for spacesX (K, A*) and S(K, A*~1)
imply Assumptions, 3 and4.

Proof. The only fact which remains to be proved is the maximalitatieh in
Assumption3

ey SO, AY) = dy_y H(d_1, Q) N X (9N, AD).
The inclusionC holds by definition. Let us prove the converse inclusion. Let
u€dy H(dp,Q) N X (M, AY). Thusu = d,_; ¢ with ¢ € H(d,_1, Q). Since
u € L2(Q, A*), using P1, Cor. 4.7] we obtain that there exigfse H'(€, A1)
such thatu = d,_; ¢. In particular, ]K belongs toH" (K, A1) for all K and,
sinceu |, belongs toH" (K, AY), we finally find thatyy | . € H"(d,—1, K). O
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4.4 Preservation of polynomial forms

Fundamental in finite element methods is the notion of patyiab differential
forms. For an orderedtuple [ = (iq,...,1), 11 < io < ... < 'ig, {i1,...,0} C
{1,...,d}, let

dry :=dx;, A---ANdxy, ,

wheredz;, j = 1,...,d, are the co-ordinate 1-forms in Euclidean sp&ée The
spaceP,(A*) of polynomial/-forms onR? is defined as

() = {u =" wrdas: uy € PR}

where) ", indicates summation over all orderéduples, andP,(R?) is the space
of d-variate polynomials of total degre€ p. We remark that ford € {2,3}
polynomial forms possess polynomial vector proxies.

From the definition4.2) it is clear that the Poincaré operat®r, maps dif-
ferential forms with polynomial coefficients to differeaftforms with polynomial
coefficients. The same holds for the regularized PoincpegatorR, by (4.3).
If we wantR, to map a spacé#(A*) of differential forms of order (e.g., with
polynomial coefficients) into a spad&A‘~!) of differential forms of orderf — 1,
it is sufficient to require the following two properties, §eé, Proposition 4.2].

Proposition 4.4 Assume thaf’(A*) and P(A*"!) are finite-dimensional spaces
of differential forms satisfying
(i) The space’(A’) is invariant with respect to dilations and translationsattis

Foranyt € R,a € R": if u € P(AY), then(z — u(tz +a)) € P(A").

(ii) The interior productz_ : u +— z 1 u mapsP(Af) to P(A*1).
ThenR, mapsP(A*) into P(A*1).

For the compatibility Assumptiof to hold, it is therefore sufficient to make the
following assumption about the local polynomial spa&g(aK).

Assumption 10

(i) The spac&’/(K) is invariant with respect to dilations and translations

(i) The differential operator 5 d, : u — = o d, u mapsVi(K) into V(K).

To summarize:

Assumption®, 10, and ¢.8) = Assumptions, 3, 4, and5

23



5 Discrete differential forms

Now we introduce concrete spaces of discrete differerdiahf. We merely sum-
marize the constructions that have emerged from reseadifienential geometry
(the “Whitney-forms” introduced in42]) and finite element theory (“Raviart-
Thomas elements” of4[l] and “Nédélec finite elements” of3B, 39)). These
schemes were later combined into the concept of discrereiitial forms [L.2,
30]. Surveys and many more details can be foundih {, 5, 13].

5.1 Simplicial meshes

Let 9 be a conforming simplicial finite element mesh coveringc R?. As
elaborated in4, Sect. 3 & 4] forp € N the following choices

Vi(K) =Py 1(A) | + 2 0 Ppa (AT | (5.1)

)i
and

Vi (K) :=Py(A* (5.2)

of local spaces, througl® (1), gives rise to meaningful global finite elment spaces
loﬂj (901) of discrete differential forms.

By construction both Assumptiachand Assumptiori O are satisfied for these
spaces. The asymptotic density property also holds.

P

Lemma 5.1 The spacesoif(i)ﬁ) of discrete differential forms built fror(c.1) or
(5.2) meet the requiremer(?.12).

Proof. Itis a classical result of fig\ite element theory that the epam‘odegree
p Lagrangian finite element function)(97) are asymptotically dense ifi* (€2).
Thus the space of polynomiafsforms with coefficients in)(}g(im), which is a
subspace oﬁ(}f;(im), is asymptotically dense ilﬁ?l(Q,Aé). The latter space is
obviously dense id%(dg, ), since this is already true f@rge(Q, I'). O

5.2 Tensor product meshes

Let 90t be a conforming finite element mesh @fwhose cells are affine images
of the unit hypercubeK in R%: for K € 9 the we write®, : K — K for the
associated unique affine mapping. We generalize the catisinof [38]: on the
cube we define (with notations introduced in Sectiof)

d .
~ P, ifjel
— {v = ;uldxl, ur(z) = Hul,j(a:j), uyj € {7); 1 i1 } i
J=1
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The local spaces are obtained by affine pullback
VUE) = (85) VUR) . (5.3)

This affine tensor product construction also complies wisisdmptior® and As-
sumption10. Completely parallel to Lemm@a 1, one proves the following result.

Lemma 5.2 The requiremen(2.12) is satisfied for the spacel%fj(i)ﬁ) spawned
by (5.3).

6 Application in dimensions two and three

We adopt the discrete spaces from Sécalong with the regularized Poincaré
lifting from Sect.4. We rely on the choice4(8) for spacesX and S, with a
regularity exponent € (0, 1] which has to be suitably chosen.

In order to establish the discrete compactness propeny Definition2.3, it
remains to verify the regularity Assumptidnand Assumptions, 7, and8 for
convenient local projectors; .

Local projectors which make the discrete diagram of Assionpt commute
do exist in the general framework of differential forms ofyamder. They gener-
alize Nédélec edge element projections and can be rdfesrasmoment based
projection operators. They are suitable for theersion of finite elements in
dimensions 2 and 3. In higher dimensions some of them (fordoy¥er forms)
require a higher regularity thaf? to be defined. In4, 5], they are modified
by an extension-regularization procedure in order to benddfand bounded on
L?. However, such operators cannot be used fopthersion of finite elements,
because no estimates (stability or error bounds) are knoitm respect to the
polynomial degree.

The proper projection operators fewversion approximation are so-callpob-
jection based interpolation operatqgrsee P3, 24, 16, 22, 25]. Variants for any/
andd are available and they are designed to commute in the sedsssomption
7[31, Sect. 3.5].

At this point we have to abandon the framework of genémahdd, because
both regularity results (Assumptial) and the analysis of projection operators
(Assumption8) are not presently available for genefaandd. We have to dis-
cuss them for special choices 6fandd separately, relying on a wide array of
sophisticated results from the literature.

Theorem 6.1 (Convergence of Galerkin approximations)For d = 2, 3, and

0 </ < d, the Galerkin discretization of2.5) based on any of the families of dis-
crete differential forms introduced in Sebtoffers a spectrally correct, spurious-
free approximation.
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Proof. We skip the casé = 0, for which the standard Galerkin approximation
theory for operators with compact resolvent can be appdied 55].

To begin with, we focus on the discrete compactness propedyverify the
assumptions, 6, 7, and8 for d = 2 andd = 3 separately.

e d =2,¢=1:interms of vector proxies we find the correspondence
V(dy, Q) ~ H(curl, Q) N H(div0, Q) . (6.1)

Regularity theorems for boundary value problems+ax on the polygon confirm
the existence of = §(£2) > 0 such that

H (curl, Q) N H(div0,Q) c H*V2(Q) | (6.2)

in the sense of continuous embedding, s&& $ect. 3.2]. This suggests to choose
r =49+ 1/2in (4.8) and Assumptiori will hold true. Hence, we deal with the
concrete spaces

X0, AY) = H(curl, Q)0 T (H*2(5))? (6.3)
Kem
S, A%) = HY(Q)n [ HA(K) . (6.4)
Kem

Commuting local projection based interpolation operabqﬁ and wg,K have
been proposed for triangles and for quadrilateral?i#). [ With the choice §.3)
and ©.4) they live up to Assumption§ and?7. Assumptior8 holds withey(p) =
Cp~'/?2 andC > 0 depending only on the shape-regularity of the caifs,[22,
Thm. 4.3] and §, Thm. 4.1]. Finally, these interpolation operators sgtiee nat-
ural condition of conformity §.14) by construction, which makes they meet all
our requirements;f. Sect.3.4.

e d =3,/ =1,2: we have the vector proxy incarnation

H(curl, Q)N H(div0,Q) foré=1,

o . (6.5)
H(div,Q) N H(curl0,$) forl{=2.

}(}<d57 Q) ~ {

Citing results from {], we find§ = §(<2) €]0, 5] and continuous embeddings
H (curl, Q) N H(div,Q), H(div,Q) N H(curl,Q) Cc H**'2(Q) .  (6.6)

Therefore, using the constructioh ) with » = 0+ 1/2, Assumptionl is satisfied
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for ¢ € {1,2}. The relevant spaces of more regular forms now read

X0, AY) = H(curl, Q)0 ] (HFV2(K))? (6.7)
Kemn

X (M, A?) = H(div, Q) n [T (H*2(K))? (6.8)
Kem

S(m, A% = Q) n [ 22 (K) (6.9)

Kem

S, A') = H(cur, Q)0 [ H**2(cur K) . (6.10)

KeM

The essential commuting local projection based intermiagperatorst,’y,
m = 0, 1,2, have been introduced ir2{] for tetrahedral meshes and iaJ for
meshes comprising parallelepipeds. By construction tloeypty with Assump-
tion 7. Assumption6 for the spacesS(9t, A°) and S(90, A') from (6.9) and
(6.10), respectively, and = § + 1/2 is a consequence of Sobolev embedding the-
orems. Relying on42, Th.5.3] we obtain like in the 2D case that in Lemfa
we can take,,(p) = Cp~'/% for m = 0 andm = 1.

e Finally, we appeal to Lemmas], 5.2 together with Lemma.2 and apply the
abstract theory of Sect.in the form of Corollary3.3to conclude the proof of the
theorem. O

Corollary 6.2 Thep-version finite element discretization of the Maxwell eigen
value problem(1.2) based on edge elements from the first or secoadeldc
family on triangles or on tetrahedra, or from the firsetilec family on paral-
lelograms or on parallelepipeds offers a spectrally cotyapurious-free approx-
imation.

Remark 6.3 Instead of {.2) we may consider the variational formulation of the
more general Maxwell eigenvalue problern1), corresponding to the case of
anisotropic inhomogeneous material:

Seeku € H(curl, Q) \ {0}, w € R such that
( )\ {0} 0 (6.11)

(0 teurlu,curlv) ;o = w? (€, v) ) YV € H(curl, Q)

()
with uniformly positive material tensorg = p(x), € = €(x). The same edge
element discretizations listed in Coroll&#y? provide spectrally correct, spurious-
free approximations of this problem. This generalizatiborollary 6.2 can be
achieved with standard tools (see, in particular, Projmost2.25, 2.26, and 2.27
of [17], and [32, Sect. 6], B1, Thm. 4.9]). O
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7 Conclusion

In this paper we have proved that fheersion of finite elements based on general-
ized Nédélec edge elements provides a spurious freerapfgcbrrect approxima-
tion of the Maxwell eigenvalue problem. The essential pwias the proof of the
discrete compactness property. We showed that this pyojodiaws from a set of
rather natural assumptions about the family of finite elemspaces and interpo-
lation operators, and in addition we showed that these gssons are implied by
recently found results on lifting operators and on prof@tibased interpolants.

In the approach pursued ir,[5] the discrete compactness property is not
addressed directly: in the framework of theversion for differential forms, mod-
ified moment-based projection operators are used. Thesepaators satisfy the
strong property of being uniformly bounded i} and are constructed by means
of a delicate extension-regularization procedure.

On one hand this uniform boundedness property is strongerdhr assump-
tion 6 and replaces in a certain way the discrete compactnessrproBit on
the other hand, it is currently not known whether a consimacof projection
operators by extension-regularization could also be eygplon the case of the
p-version of finite elements, or whether the construction gfuiformly L2-
bounded family of cochain projections is even possible.

References

[1] C. AMROUCHE, C. BERNARDI, M. DAUGE, AND V. GIRAULT, Vector po-
tentials in three—dimensional nonsmooth domaMath. Meth. Appl. Sci.,
21 (1998), pp. 823-864.

[2] P. ANSELONE, Collectively Compact Operator Approximation Theory and
Applications to Integral EquationsPrentice-Hall, Eaglewood Cliffs, NJ,
1971.

[3] D. ARNOLD, Differential complexes and numerical stability Proceedings
of the International Congress of Mathematicians, Vol. lifiBg, 2002), Bei-
jing, 2002, Higher Ed. Press, pp. 137-157.

[4] D. ARNOLD, R. FALK, AND R. WINTHER, Finite element exterior calculus,
homological techniques, and applicatio¥sta Numerica, 15 (2006), pp. 1-
155.

[5] ——, Finite element exterior calculus: From Hodge theory to nuoa
stability, (2009). Submitted.

28



[6] A. BEspaLoV AND N. HEUER, Optimal error estimation forH (curl)-
conforming p-interpolation in two dimensigriareprint 0903.4453v1, arXiv,
2009. http://arxiv.org/abs/0903.4453v1.

[7] D. Borri, Fortin operator and discrete compactness for edge elemBluts
mer. Math., 87 (2000), pp. 229-246.

[8] ——, Approximation of eigenvalues in mixed form, discrete cartrpess
property, and application taép mixed finite element€omput. Meth. Appl.
Mech. Engr., 196 (2007), pp. 3672—-3681.

[9] D. BoFFl, M. CoSTABEL, M. DAUGE, AND L. DEMKOwICZ, Discrete
compactness for thiep version of rectangular edge finite elemerg@sAM J.
Numer. Anal., 44 (2006), pp. 979-1004.

[10] D. BoFFl, L. DEMKowICz, AND M. COSTABEL, Discrete compactness for
p and hp 2D edge finite element®ath. Models Methods Appl. Sci., 13
(2003), pp. 1673-1687.

[11] D. BoFFI, P. FERNANDES, L. GASTALDI, AND |. PERUGIA, Computa-
tional models of electromagnetic resonators: Analysisdifeeelement ap-
proximation SIAM J. Numer. Anal., 36 (1999), pp. 1264-1290.

[12] A. BossaviT, Whitney forms: A class of finite elements for three-
dimensional computations in electromagnetisBE Proc. A, 135 (1988),
pp. 493-500.

[13] ——, Discretization of electromagnetic problems: The “generadl finite
differences’ in Numerical Methods in Electromagnetics, W. Schilderd an
W. ter Maten, eds., vol. Xlll of Handbook of numerical anaty<€lsevier,
Amsterdam, 2005, pp. 443-522.

[14] A. BUFFA, Remarks on the discretization of some non-positive operato
with application to heterogeneous Maxwell problen®AM J. Numer.
Anal., 43 (2005), pp. 1-18.

[15] A. BUFFA, P. QARLET, JR., AND E. JAMELOT, Solving electromagnetic
eigenvalue problems in polyhedral domains with nodal fieleamentsNu-
mer. Math., (2009). DOI 10.1007/s00211-009-0246-2.

[16] W. CAo AND L. DEMKoOwICZ, Optimal error estimate of a projection based
interpolation for thep-version approximation in three dimensigo@mput-
ers & Mathematics Appl., 50 (2005), pp. 359-366.

29



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

S. CAORSI, P. FERNANDES, AND M. RAFFETTO, On the convergence of
Galerkin finite element approximations of electromagnetgenproblems
SIAM J. Numer. Anal., 38 (2000), pp. 580-607.

M. COSTABEL AND M. DAUGE, Weighted regularization of Maxwell equa-
tions in polyhedral domaindNumer. Math., 93 (2002), pp. 239-277.

—, Computation of resonance frequencies for Maxwell equatiom
non-smooth domainsin Computational Methods in Wave Propagation,
M. Ainsworth, ed., Springer, New York, 2003, pp. 127-164.

M. CoSTABEL, M. DAUGE, AND C. SCHWAB, Exponential convergence of
hp-FEM for Maxwell’s equations with weighted regularizatimnpolygonal
domains Math. Models Methods Appl. Sci., 15 (2005), pp. 575-622.

M. COSTABEL AND A. McINTOSH, On BogovsKi and regularized
Poincaf integral operators for de Rham complexes on Lipschitz dosna
Math. Z., (2009), DOI 10.1007/s00209-009-0517-8
http://arxiv.org/abs/0808.2614v1.

L. DEmkowicz, Polynomial exact sequences and projection-based inter-
polation with applications to Maxwell equatioria Mixed Finite Elements,
Compatibility Conditions, and Applications, D. Boffi and Gastaldi, eds.,
vol. 1939 of Lecture Notes in Mathematics, Springer, Be2@08, pp. 101—
158.

L. DEMKOWICZ AND |. BABUSKA, p interpolation error estimates for edge
finite elements of variable order in two dimensip88AM J. Numer. Anal.,
41 (2003), pp. 1195-1208.

L. DEmMKowICZz AND A. BUFFA, H!, H(curl), and H(div)-conforming
projection-based interpolation int three dimensions. Quaptimal p-
interpolation estimatesComput. Meth. Appl. Mech. Engr., 194 (2005),
pp. 267-296.

L. DEMKowICcz AND J. KuRTz, Projection-based interpolation and au-
tomatic hp-adaptivity for finite element discretizations of elliptand
Maxwell problems.in Proceedings of Journées d’Analyse Fonctionnelle et
Numérique en I'honneur de Michel Crouzeix, vol. 21 of ESARoceed-
ings, Les Ulis, 2007, EDP Science, pp. 1-15.

L. DEmkowicz, P. MoNK, C. SCHWAB, AND L. VARDAPETYAN,
Maxwell eigenvalues and discrete compactness in two dioef£omput-
ers & Mathematics Appl., 40 (2000), pp. 589-605.

30



[27] J. DeEscLoux, N. NAssIF, AND J. RAPPAZ, On spectral approximation.
Part I. The problem of convergenc®.A.l.R.O. Numerical Analysis, 12
(1978), pp. 97-112.

[28] V. GIRAULT AND P. RAVIART, Finite element methods for Navier—Stokes
equations Springer, Berlin, 1986.

[29] J. GOPALAKRISHNAN AND L. DEMKoOwICZ, Quasioptimality of some
spectral mixed methodd. Comput. Appl. Math., 167 (2004), pp. 163-182.

[30] R. HIPTMAIR, Canonical construction of finite elementdath. Comp., 68
(1999), pp. 1325-1346.

[31] ——, Finite elements in computational electromagnetigwta Numerica,
11 (2002), pp. 237-339.

[32] ——, Discrete compactness fop-version of tetrahedral edge ele-
ments Report 2008-31, SAM, ETH Zurich, Zurich, Switzerland,030
http://arxiv.org/abs/0901.0761.

[33] F. KikucHI, On a discrete compactness property for theddlec finite ele-
mentsJ. Fac. Sci., Univ. Tokyo, Sect. | A, 36 (1989), pp. 479-490.

[34] ——, Theoretical analysis of &klec’'s edge elementdapan J. Ind. Appl.
Math., 18 (2001), pp. 321-333.

[35] A. KNYAZEV AND J. OsBORN, New a priori FEM error estimates for eigen-
values SIAM J. Numer. Anal., 43 (2006), pp. 2647-2667.

[36] P. MoNK, Finite Element Methods for Maxwell’'s EquatignSlarendon
Press, Oxford, UK, 2003.

[37] P. MONK AND L. DEMKOWICZ, Discrete compactness and the approxima-
tion of Maxwell’s equations iR, Math. Comp., 70 (2001), pp. 507-523.

[38] J.-C. NEDELEC, Mixed finite elements iiR?, Numer. Math., 35 (1980),
pp. 315-341.

[39] ——, A new family of mixed finite elementsid, Numer. Math., 50 (1986),
pp. 57-81.

[40] R. RcARD, An elementary proof for a compact imbedding result in gener-
alized electromagnetic theariath. Z., 187 (1984), pp. 151-161.

31



[41] P. A. RaVIART AND J. M. THOMAS, A Mixed Finite Element Method for
Second Order Elliptic Problemsol. 606 of Springer Lecture Notes in Math-
ematics, Springer, Ney York, 1977, pp. 292-315.

[42] H. WHITNEY, Geometric Integration TheoryPrinceton University Press,
Princeton, 1957.

32



	1 Introduction: Maxwell eigenvalue problem
	2 Differential forms and generalized Maxwell eigenvalue problem
	2.1 Function spaces of differential forms
	2.2 Variational eigenvalue problems
	2.3 Approximation of the eigenvalue problem and the role of discrete compactness

	3 An abstract framework implying discrete compactness
	3.1 Discrete spaces
	3.2 Spaces of more regular forms
	3.3 Local liftings
	3.4 Local projectors
	3.5 Proof of the discrete compactness property
	3.6 Approximation of the eigenvalue problem

	4 Regularized Poincaré lifting
	4.1 Definition
	4.2 Regularity
	4.3 Lifting property
	4.4 Preservation of polynomial forms

	5 Discrete differential forms
	5.1 Simplicial meshes
	5.2 Tensor product meshes

	6 Application in dimensions two and three
	7 Conclusion

