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Centre de Mise en Forme des Matériaux, UMR 7635, MINES ParisTech, CNRS, 1, rue Claude Daunesse, B.P. 207,
F-06904 Sophia Antipolis CEDEX, France (roland.loge@mines-paristech.fr)

Javier W. Signorelli
Instituto de Fı́sica de Rosario, CONICET, Universidad Nacional de Rosario, Boulevard 27 de Febrero 210bis, 2000
Rosario, Argentina (signorelli@ifir-conicet.gov.ar)

[1] The association of experimental data showing that the plastic deformation of olivine, the main
constituent of the upper mantle, is highly anisotropic and the ubiquitous seismic anisotropy in the upper
mantle, which indicates that olivine crystals show coherent orientations over scales of tens to hundreds of
kilometers, implies that the long-term deformation in the upper mantle is anisotropic. We propose a
multiscale approach, based on a combination of finite element and homogenization techniques, to model
the deformation of a lithospheric plate while fully considering the mechanical anisotropy stemming from a
strain-induced orientation of olivine crystals in the mantle. This multiscale model explicitly takes into
account the evolution of crystal preferred orientations (CPO) of olivine and of the mechanical anisotropy
during the deformation. We performed a series of numerical experiments simulating the uniaxial extension
of a homogeneous (100% olivine) but anisotropic plate to test the role of the olivine CPO on the plate
mechanical behavior and the link between CPO and mechanical anisotropy evolution. Even for this simple
solicitation, different orientations and intensity of the initial olivine CPO result in variable plate strengths
and deformation regimes. A plate with an initial CPO where the olivine [100] and [010] axes are
concentrated at 45� to the extension direction has high resolved shear stresses on the easy (010)[100] and
(001)[100] slip systems of olivine. This results in low strength and in deformation by transtension. Plates
with an initial CPO where the maximum of [100] axes is parallel or normal to the extension direction show
a high initial strength. Isotropic plates have an intermediate behavior. The progressive rotation of olivine
[100] axes toward the imposed stretching direction results in hardening in all models, except in those
characterized by an initial concentration of olivine [100] axes normal to the imposed extension, in which
softening is followed by hardening.
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1. Introduction

[2] Most natural solids are polycrystalline, which
means that they are made up of individual crystals
that are defined by a shape, a size, and the orienta-
tion of the crystalline lattice. The presence of crystal
preferred orientations (CPO) often induces a depen-
dence of the physical properties on the direction of
solicitation. This phenomenon is known as anisot-
ropy. For simple solicitations, such as uniaxial
extension or compression, this CPO-induced me-
chanical anisotropy results in a variation in the
strains in the plane normal to the direction of the
solicitation and it is usually characterized by the
ratio between the maximum and minimum strain or
r value. When the material is orthotropic (invariance
of the deformation by three orthogonal planes) or
transverse isotropic (invariance of the deformation
by rotation around an axis), the r value fully defines
its anisotropy. An anisotropic rheology may also
result in development of shear strains during uniax-
ial compression or tension experiments and may
therefore be characterized by the ratio of the shear
strain relatively to the macroscopic equivalent
strain. This parameter describes the tendency of
anisotropic materials to develop ‘‘out-of-plane’’
strain components, which result in nonparallelism
between principal stress and strain rate axes.

[3] Mechanical anisotropy has been extensively in-
vestigated in metallurgy. In metal forming or crash
simulations, dealing with mechanical anisotropy dur-
ing calculation is fundamental to predict the final
material shape, the evolution of mechanical proper-
ties during deformation, damage distribution and
failure. For instance, deep drawing of aluminum alloy
sheets results in undesirable ‘‘earing’’ due to lower
strengths and hence higher strain rates along h110i
crystallographic directions [Tucker, 1961]. Numer-
ous strategies have been developed to account for
anisotropy during simulations of forming processes.
Initial efforts focused on empirical description of

yield surfaces based on a generalization of the Von
Mises criterion [Von Mises, 1913] that was originally
designed to approximate the plastic anisotropy of
single crystals: the anisotropy coefficient [Hill,
1948]. However, this formulation is only valid for
orthotropic materials to which is imposed a stress
coaxial to a symmetry axis. Expressions for more
complex strain rate states have been developed, but
they are still limited to materials with an orthotropic
initial texture [Kim et al., 2007]. Coupling an empir-
ical description of the yield surface to a finite element
model (FEM) is straightforward, but the necessary
parameters, in particular the dependence of the shape
of the yield surface on the strain are difficult to obtain.
This strategy also does not allow a description of the
anisotropy for large deformations, because it does not
account for the evolution of the crystallographic
texture. An alternative approach consists of the
parameterization of the texture and anisotropy evo-
lution during deformation based on single crystal
plasticity models. The Ning and Aifantis [1996]
method, for instance, uses a distribution function of
the CPO to define a texture tensor, which is used to
model complex loadings on stainless steel. However,
this approach is not suitable for modeling the defor-
mation of orthorhombic or even lower symmetry
materials, because no simple parameterization of
the anisotropy evolution can be obtained.

[4] For nonorthotropic materials, the mechanical
anisotropy has to be described via an analytical
expression of the yield surface derived from a
polycrystal plasticity model. A polycrystalline ag-
gregate is associated to each integration point of the
FEM and a homogenization method is used to link
the mechanical states of the crystal to that of the
polycrystalline aggregate [Dawson et al., 2003].
The mechanical state of each grain is calculated
by a single-crystal plasticity model and, using a
given homogenization method, transmitted to the
polycrystal. The repetition of this micro-macro
calculation at all integration points of the FEM
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allows describing the mechanical behavior in the
FEM model as a function of the local CPO. This
method gives good results in terms of evolution of the
CPO and of the induced anisotropy during the
deformation process and allows the study of plastic
anisotropy independently of the symmetry of the
material, but computation times are important. Dif-
ferent methods have been proposed recently to en-
hance computation times. Zhao et al. [2001] and
Raabe et al. [2002] propose the use of texture
components, i.e., a small set of discrete and mathe-
matically compact Gaussian texture components, to
map the orientation distribution. Béringhier et al.
[2007] proposed to distribute the initial CPO over
several elements of the FEM. Finally, Gillet-Chaulet
et al. [2005] developed a micro-macro model for
describing the behavior of anisotropic ice assuming it
flows as a linearly viscous orthotropic material. The
flow law is defined by six parameters and its ortho-
tropic fabric described by an orientation distribution
function depending on two parameters, the grain
c axis colatitude and longitude. This model remains
nevertheless limited to transverse isotropic materials.

[5] Most minerals, because of their lower symmetry,
display a much higher plastic anisotropy than metals.
A few early works investigated the role of an
anisotropic viscosity on the convection geometry.
By using a simplified description of the viscosity
tensor, where the anisotropy is expressed as a
constant ratio between normal and shear viscosities,
these studies concluded that the effect of mechanical
anisotropy was minor [Christensen, 1987; Honda,
1986; Richter and Daly, 1978]. Most studies in the
last 25 years [Blackman et al., 1993; Chastel et al.,
1993; Kaminski and Ribe, 2001, 2002; Ribe, 1989;
Tommasi, 1998] focused therefore on the relation
between olivine CPO and the seismic anisotropy
in the upper mantle, neglecting the role of CPO-
induced mechanical anisotropy on the viscoplastic,
dislocation creep controlled, deformation of the
Earth’s interior. A series of recent studies suggest
nevertheless that an anisotropic viscosity in the
mantle may significantly modify its deformation.
Models that use a similar description of the viscosity
as the early ones, but consider that the anisotropy
evolves as a function of the strain, suggest that a
CPO-induced mechanical anisotropy does affect the
development of convective instabilities [Lev and
Hager, 2008; Muhlhaus et al., 2004]. Models using
an analytical description of anisotropic viscosity that
decomposes the viscosity tensor in an isotropic part
and an anisotropic part that depends of the geometry
of the crystal predict that the flow of the transition

zone in the Earth’s mantle may be strongly affected
by mechanical anisotropy [Pouilloux et al., 2007].
However, all these models either use a highly
simplified description of the anisotropy or are based
on analytical developments that limit their applica-
tion to high-symmetry materials. They cannot fully
describe the mechanical anisotropy in the upper
mantle that is mainly composed of orthorhombic
olivine.

[6] Multiscale mechanical models similar to those
developed in Material Sciences are thus necessary to
fully account for an evolving anisotropic viscosity in
the Earth’s upper mantle. In the present study, we
investigate the role of a CPO-induced mechanical
anisotropy on the deformation of lithospheric plates
by coupling a self-consistent polycrystal plasticity
model to a finite element formulation using an
updated Lagrangian framework. These models fully
account for an anisotropic viscosity that evolves as a
function of the olivine CPO and hence as a function
of the local strain history. They can therefore be used
to study the interplay between CPO evolution and
anisotropic deformation in the lithospheric mantle.
Tommasi and Vauchez [2001] already used visco-
plastic self-consistent polycrystal plasticity models
to study the reactivation of preexisting collisional
structures during the continental rifting process.
They showed that the mechanical anisotropy associ-
ated with preferred orientation of olivine crystals in
the upper mantle may result in directional softening,
leading to strain localization and shearing parallel to
the preexisting tectonic fabric when the latter is
oblique to the extensional stresses. However, these
early models did not allow for the evolution of the
CPO in response to an evolving stress field. They
indicated the initial trend of the system, but did not
predict its evolution.

[7] The physical properties of the olivine crystal
in the upper mantle are presented in section 2. The
multiscale modeling approach developed in the
present work is detailed in section 3. Its application
to the study of the extension of a homogeneous
but anisotropic continental plate are presented in
sections 4 and 5.

2. Anisotropy of Physical Properties in
the Olivine Crystal and in the Upper
Mantle

[8] Olivine is the major mineral in the upper
mantle (50–80%). Its rheology is therefore crucial
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for both the lithospheric deformation and the
mantle convection. Olivine presents an orthorhom-
bic crystallographic symmetry. Analysis of natu-
rally deformed mantle samples from a large variety
of geodynamic environments [Ben Ismail and
Mainprice, 1998; Le Roux et al., 2008; Tommasi
et al., 2000, 2004, 2008] and deformation experi-
ments under a large range of temperatures and
pressures [Bystricky et al., 2000; Couvy et al.,
2004; Raterron et al., 2007; Zhang and Karato,
1995] suggest that the upper mantle deforms
mainly by dislocation creep. This mode of defor-
mation depends strongly on the crystal structure.
Dislocations move in well-defined slip systems
characterized by a glide plane and direction – the
Burgers vector. The ease of activation of a given
slip system is given by the Critical Resolved
Shear Stress (CRSS), whose magnitude depends
on the crystal cell parameters and on the strength
of the atomic bonds. Low-symmetry crystals, like
orthorhombic olivine, are highly anisotropic be-
cause the total number of slip systems is reduced,
while CRSS values vary considerably from one
system to another. Compression experiments on
olivine single crystals under high-temperature con-
ditions show that strain rates vary by more than
2 orders of magnitude depending on the orientation
of the crystal [Bai et al., 1991; Durham et al.,
1977]. A direct consequence of this plastic anisot-
ropy is the development of strong CPO during
deformation by dislocation creep leading to an
anisotropic mechanical behavior at the polycrystal
(rock) scale.

[9] The elastic deformation and hence the propaga-
tion of seismic waves in olivine are also highly
anisotropic [Abramson et al., 1997]. Seismic anisot-
ropy measurements based on the analysis of the
splitting of core shear waves [Silver and Chan,
1986;Vinnik et al., 1994] or of the variation of surface
waves velocities as a function of the propagation
(azimuthal anisotropy) or polarization directions
[Montagner and Nataf, 1986] are the best tools
available to map the mantle deformation. These
measurements show that anisotropy is ubiquitous in
the uppermost 200 km of the mantle [Montagner,
1998] (see also the shear wave splitting database
available at http://www.gm.univ-montp2.fr/splitting).
They also imply that olivine CPO are coherent over
scales ranging from tens to hundreds of kilometers.
This, together with the strong plastic anisotropy of
olivine, suggests that the long-term mechanical be-
havior of the shallow mantle should be strongly
anisotropic.

[10] Both the mechanical anisotropy and the CPO
evolution depend strongly on the potential slip
systems and on their critical resolved shear stresses
(CRSS). However, CRSS are not absolute values;
they depend on physical parameters such as tem-
perature, pressure, or deviatoric stresses and on the
chemical environment, in particular on the water
and oxygen fugacity. Deformation experiments on
olivine single crystals and aggregates, together
with transmission electron microscopy observa-
tions on naturally and experimentally deformed
peridotites show that deformation in the dislocation
creep regime is essentially accommodated by glide
on {0kl}[100] and {hk0}[001] systems, with (010),
(001), and (100) being the most common glide
planes. Slip on [100] systems is favored under
high-temperature, low-stress, low-pressure and
dry conditions [e.g., Bai and Kohlstedt, 1992; Bai
et al., 1991; Darot and Gueguen, 1981; Doukhan
et al., 1984; Durham and Goetze, 1977; Durham et
al., 1977; Goetze and Kohlstedt, 1973;Mackwell et
al., 1985; Phakey et al., 1972; Raleigh, 1968],
whereas high stress, high pressure, and high water
contents favor [001] slip [Couvy et al., 2004; Jung
et al., 2006; Mainprice et al., 2005; Raterron et al.,
2007]. On the basis of these data, we propose that
deformation in the lithospheric mantle is essentially
accommodated by dislocation glide on {0kl}[100]
systems. Olivine CPO measured in peridotite xen-
oliths and massifs that sample the upper 200 km of
the mantle are indeed well reproduced by polycrys-
tal plasticity simulations that use CRSS derived
from high-temperature, low-stress deformation
experiments on olivine single crystals [Tommasi
et al., 2000; Wenk et al., 1991]. The same CRSS
values (Table 1) are therefore used in the present
simulations.

3. Multiscale Modeling of the
Deformation of Anisotropic Low-
Symmetry Polycrystalline Materials

[11] The deformation of an anisotropic polycrys-
talline material is modeled by a two-step scale
transfer approach. The polycrystal mechanical be-
havior, characterized by an anisotropic viscosity
tensor, is obtained from homogenization of the
individual (representative) grains behavior, de-
scribed by a standard single crystal plasticity
model, using a viscoplastic self-consistent (VPSC)
approach [Lebensohn and Tomé, 1993]. In contrast
to the classical models of Taylor [1938] and Sachs
[1928] that assume either homogeneous strain or
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stresses in the sample, the VPSC model imposes
both strain compatibility and stress continuity be-
tween grains and their environment. The latter is
represented by a Homogeneous Equivalent Medium
(HEM), which have the homogenized, calculated
properties of the polycrystal.

[12] The VPSC approach considers each crystal as
an inhomogeneity embedded in a HEM, in the
sense of the Eshelby formalism [Eshelby, 1957].
At the crystal scale, deformation is accommodated
by dislocation glide only. The shear rate induced in
a slip system (s) is related to the local deviatoric
stress s tensor by a nonlinear viscous response:

_gs ¼ _g�
tsr
tsc

tsr
tsc

����
����
ns�1

¼ _g�
ms

ijsij

tsc

ms
ijsij

tsc

����
����
ns�1

; ð1Þ

where _g�, tr
s, tc

s, ns, are a reference strain rate, the
resolved shear stress on the system s, the CRSS,
and the inverse of the rate sensitivity of the slip
system s, respectively. ms is the symmetric part of
the Schmid orientation tensor of the system (s)
defined by its normal to the glide plane n and the
Burgers vector b:

ms
ij ¼

1

2
nsi b

s
j þ nsj b

s
i

� �
ð2Þ

The plastic strain rate _eij in the crystal is the sum of
the shear rate _g in all active systems:

_eij ¼ _g�
X#sys

s¼1

ms
ij

ms
pqspq

tsc

ms
pqspq

tsc

����
����
ns�1

ð3Þ

The interaction between grains and the HEM is
defined by

_eij � _Eij ¼ �a ~Mijkl skl � Sklð Þ
Sij ¼ hijkl _Ekl

�
ð4Þ

where the microscopic strain rate tensor and the
deviatoric stress tensor for each grain ( _e, s) and the

equivalent macroscopic quantities ( _E, S) are linked

by an interaction tensor M
	

of fourth order. a is a
scalar that allows tuning the strain compatibility
and stress equilibrium constraints. Its effect on the
olivine CPO evolution is shown by Tommasi et al.
[2000]. In the present models, the standard tangent
approach is used (a = 1). The VPSC approach
allows therefore calculating, for a given olivine
CPO and an imposed velocity gradient, both the
texture evolution and the full anisotropic macro-
scopic viscosity tensor H. To maintain reasonable
computation times, recrystallization or grain
growth are not considered in the present models.

[13] The second step of the scale transfer consists
of determining the effect of the local CPO-induced
anisotropy on the large-scale stress and strain field.
The large-scale deformation is modeled using an
updated Lagrangian framework. In this incremental
approach, the time is discretized such that the body
is subjected to small strain increments during each
time step [t,t + Dt]. At time t, the configuration of
the body is known and the balance laws of the
mechanical problem are solved in that configura-
tion on the basis of stresses calculated at time
t + Dt. The new configuration is then updated
using an Euler explicit scheme as follows:

x t þDtð Þ ¼ x tð Þ þ v tð ÞDt; ð5Þ

with x the node coordinate vector and v the
velocity vector solution of the mechanical problem
on the current configuration. In this context, the
kinematics can be described using Eulerian vari-
ables, namely the velocity gradient tensor L:

L ¼ rv ¼ _EþW; ð6Þ

where _E and W correspond, respectively, to the
strain rate and the spin. The stress measure
consistent with this approach is the Cauchy stress,
in the limit of small strain increments over each
time step.

[14] The finite element approach uses a mixed
velocity/pressure formulation based on the separation
of Cauchy stress tensor into its deviatoric and volu-
metric parts [Chenot and Bay, 1998]. The field
equations governing the problem are the equilibrium
and the continuity equations (volumetric response):

div Sð Þ � rp ¼ 0

div vð Þ ¼ 0;

�
ð7Þ

with S and p the deviatoric and the pressure
(volumetric) components of the Cauchy stress tensor.

Table 1. Olivine Slip Systems and Associated Critical
Resolved Shear Stresses and Stress Exponent Used in
VPSC Calculations

Slip Systems CRSS Stress Exponent

(010)[100] 1 3
(001)[100] 1 3
(010)[001] 2 3
(100)[001] 3 3
{011}[100] 4 3
{111}[110] 50 3
{111}[011] 50 3
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[15] The coupling between the homogenization
formalism and the FEM formulation is per-
formed through a finite set of crystallographic
orientations associated with the integration point
of each mesh element. At each time increment,
the calculated displacement rate (or velocity)
gradient tensor in the FEM is used as the
boundary condition for the VPSC simulation,
allowing the calculation of the CPO evolution
and of the anisotropic rheology. The viscosity
tensor H obtained from the VPSC calculation and
the local macroscopic strain rate tensor _E are then
used to calculate the new stress S:

Sij ¼ hijkl _Ekl ð8Þ

There are two ways of coupling the FEM and the
VPSC models (Figure 1), i.e., using the VPSC
macroscopic viscosity tensor to determine the FEM
mechanical fields. The first is the strong coupling
strategy, in which the polycrystal plasticity
calculation is performed within the FEM iterative

procedure. The stress tensor obtained after con-
vergence is thus determined from an evolving
estimate of the viscosity tensor (Figure 1b). The
second strategy, known as the loose coupling
approach, runs the polycrystalline calculation only
at the end of the FEM time increment, after
convergence. In this case, the FEM iterative
procedure uses the viscosity tensor calculated at
the previous time step to estimate the stresses
(Figure 1a). The strong coupling strategy is very
stable, but significantly slower. The stability of the
loose coupling strategy is directly linked to the
variability of rheological parameters within a time
increment. In both strategies the convergence is
verified independently at the two model scales
(FEM and VPSC). Equilibrium and compatibility
are ensured with a tolerance of 1% (khsi � Sk <
0.01 and kh _ei � _Ek < 0.01) each time the VPSC
model is called by the finite element solver. If
convergence in either the VPSC calculation or the
finite element solver is not achieved the simulation
is stopped.

Figure 1. Flowchart of multiscale models with (a) a loose coupling strategy, where the VPSC model is called 1 time
per increment, and (b) a strong coupling strategy, where the VPSC model is called n times per increment, with n being
the number of iterations necessary to achieve convergence in the FEM iterative procedure.
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[16] A detailed study of the compression of tex-
tured polycrystalline Al volumes showed that loss
of accuracy due to the use of a loose coupling
strategy is negligible [Logé and Chastel, 2006].
However, most rock-forming minerals have a
lower symmetry and hence a higher anisotropy
compared to the FCC Al. To verify if the loose
coupling strategy is applicable to low-symmetry
materials, like olivine, we compare the results of
simulations of 60% axial shortening parallel to the
X direction of a cube of polycrystalline olivine
discretized by 69 FE using both strong and loose
coupling strategies (Figure 2a). To fully validate
the coupled models, we also compare the texture
evolution and mechanical behaviors predicted for
these models to those predicted by a classical
tangent VPSC model that is not coupled to a
FEM. Since the coupled models simulate the
behavior of a homogeneous material submitted to
simple boundary conditions, their predictions
should be similar to those of the classical uncoupled
VPSC model. In these tests, an olivine polycrystal
characterized by an initially random CPO defined
by a set of 1000 orientations is associated to each
Gauss point of the finite element mesh. Olivine slip
systems, their CRSS and stress exponents are de-
fined in Table 1.

[17] For similar conditions, strong coupling com-
putation times (87 h) are >100 times higher than
those for the loose coupling models (44 min). Final
textures resulting from the two coupling strategies
are very similar (Figure 2). As expected, they
reproduce well those predicted by the classical,
noncoupled VPSC approach for a single olivine
polycrystal submitted to axial shortening [Tommasi
et al., 1999]. They display an axial symmetry
relatively to the shortening direction (X direction),
characterized by a concentration of [010] axes
around it and a girdle distribution of [100] and
[001] axes at high angle to it. Averages over all
finite elements of the deviatoric strain rate tensor
components normalized by the Von Mises equiva-

lent strain rate, _Eeq =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_Eij

_Eij

� �r
obtained using

the strong and loose coupling strategies are also
compared to the macroscopic deviatoric strain rates
predicted by the classical noncoupled VPSC cal-
culation that uses both stress and strain rate bound-
aries conditions to evaluate the evolution of the
strain rate tensor during the calculation (Table 2).
For the diagonal components of the normalized
deviatoric strain rate tensor ( _Eii / _Eeq (i = 1,2,3)), the
average difference between the 3 calculations does
not exceed 0.86%. The average difference between

normalized shear strain rate components ( _Eij / _Eeq

(i, j = 1,2,3, i 6¼ j)) predicted using the strong and
loose coupling strategies does not exceed 8%
except for a few elements close to the model
boundaries. One should note however that non-
diagonal components are 3–5 orders of magnitude
smaller than the diagonal ones. The strain rate
tensor remains consistent for all elements of the
initial mesh, even when exceeding 60% deforma-
tion in compression. The loose coupling approach
is therefore used in all following simulations.

4. Modeling the Deformation of a
Homogeneous Anisotropic
Lithospheric Plate

[18] All models were run using a plate of 1 1 0.1
adimensional units submitted to either a constant
extensional stress or a constant extensional velocity
parallel to X on the left boundary (Figure 3). Free
slip conditions are applied to the opposed boundary,
except for two nodes on its meridian line that are
fixed in X and Y directions to avoid translation or
body rotation of the plate. The remaining boundaries
are free. The present study focuses on the deforma-
tion of an anisotropic viscous polycrystalline mate-
rial. Elastic or thermal effects are not considered.

[19] A polycrystal composed of 1000 initially
spherical olivine crystals is associated with each
Gauss point of the FEM mesh. Olivine slip sys-
tems, their CRSS and stress exponents are defined
in Table 1. In all models, the initial CPO is
spatially homogeneous. Two different initial CPO
were tested: a random quasi-isotropic initial olivine
CPO (labeled Iso) and an orthorhombic CPO
characterized by orthogonal maxima of [100],
[010], and [001] (Figure 4). The latter CPO corre-
spond to an olivine CPO pattern commonly ob-
served in naturally and experimentally deformed
mantle rocks [Ben Ismail and Mainprice, 1998]. Its
intensity (concentration of the crystallographic
axes), which may be quantified by the J index,
that is the volume-averaged integral of the squared
orientation densities [Bunge, 1992], is nevertheless
significantly weaker (J = 3.3) than those of natu-
rally deformed mantle rocks, whose J indexes
cluster between 6 and 12 [Tommasi et al., 2000].
Three different orientations of this initial nonran-
dom CPO relatively to the imposed extension were
tested: the [100] maximum is either parallel (mod-
els labeled 0�), normal (90� models), or at 45� to
the extension direction X. The maximum concen-
tration of [001] is always vertical (Z direction).
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[20] All models were run for an adimensional time
of 1. The effect of a CPO-induced anisotropy in
viscosity is investigated by comparing the final
macroscopic deformation (Figure 4) and the evo-
lution of the extensional and shear strain rates
normalized by the initial Von Mises equivalent
strain rate for an isotropic medium _Eeq

� and of the
macroscopic anisotropy r value r = _Ezz/ _Eyy with
increasing extensional strain in the different models
(Figure 5). The interpretation of the variations in
mechanical behavior is further constrained by the
analysis of the evolution of the CPO in each model
(Figure 4).

[21] The total macroscopic deformation, recorded
by the final mesh shapes (Figure 4), in models in
which a constant tensional stress of 1 parallel to the
X direction is applied during a total adimensional
time of 1, varies strongly as a function of the initial
olivine CPO. The final macroscopic extension
parallel to the X direction ranges from 21% in
the 0� case, to 35% in the Iso case, 36% in the 45�
case, and 48% in the 90� case. The final mesh
geometry or strain regime also depends on the
initial olivine CPO (Figure 4). While the Iso and
90� cases deform by pure extension in which

stretching in the X direction is compensated by
shortening in both Y and Z directions, the 45� case
shows a transtensional deformation regime, in
which extension parallel to X is associated with
anticlockwise (sinistral) XY shearing. Deformation
in the 0� case is also transtensional, but the
extension/shearing ratio is higher than in the 45�
case (lower vorticity).

[22] In all cases, the olivine CPO evolves with
increasing strain. [100] axes tend to align in the
extension direction, while [010] and [001] axes
form variably developed girdles normal to it. The
rate of change of the CPO depends strongly on the
orientation of the CPO relatively to the imposed
extension. Both 0� and 45� cases result in very
strong olivine CPO, but in the latter an obliquity
between the olivine CPO and the imposed exten-
sion persists even after 45% of extension. The 90�
case shows a complex CPO evolution where fast
reorientation of the main crystallographic axes is
accompanied by slow concentration of the CPO.

[23] As a consequence of the CPO evolution,
deformation regimes are not stationary, as shown
by the variations of the deviatoric strain rate tensor

Table 2. Averaged Normalized Strain Rates After 60% Axial Shortening in the X Direction for the Two Coupling
Strategies and for the Traditional, Noncoupled Tangent VPSC Approach

XX YY ZZ XY YZ ZX

Loose strategy �0.9946 0.4977 0.4969 0.0000 �0.0001 0.0011
Strong strategy �0.9948 0.4983 0.4965 0.0000 �0.0006 0.0025
Uncoupled �1.0000 0.5007 0.4993 0.0000 0.0000 0.0000

Figure 3. Initial mesh and boundary conditions for all models.
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Figure 4. Macroscopic deformation (top view, XY plane) and evolution of olivine CPO in models where a
homogeneous plate (100% olivine) with different initial CPO is submitted to a constant extensional stress parallel to
X during an adimensional time of 1.

Geochemistry
Geophysics
Geosystems G3G3

knoll et al.: multiscale model for lithospheric plate deformation 10.1029/2009GC002423

11 of 18



Figure 5. Evolution of (a) the normalized stretching rate ( _Exx), (b) the normalized shearing rate ( _Exy), and (c) the r
value, _Ezz/ _Eyy, as a function of the macroscopic finite stretching parallel to X for the Iso, 0�, 45�, and 90� models
submitted to a constant velocity in the X direction during an adimensional time of 1. Values are plotted each 10
computation steps.
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components (normalized by the initial Von Mises
equivalent strain rate in an isotropic case) as a
function of the macroscopic stretching along the X
direction (Figure 5). In all models, deformation is
essentially accommodated by stretching parallel to
the x axis, in agreement with the imposed boundary
conditions. Except for case Iso, which deforms by
normal strains only, shear components in the hor-
izontal plane ( _Exy) represent in average 1/10 of the
extensional strain rates ( _Exx); the other shear com-
ponents are one order of magnitude smaller than
_Exy. In the Iso case, CPO development results in
hardening, recorded by a progressive decrease of
the extensional strain rate with increasing strain. A
similar behavior is observed in the 0� case, but the
decrease in the extension rate is accompanied by an
increase of the normalized shear strain rate due to a
slight obliquity of the [100] maximum relative to
the stretching direction. The 45� case also presents
a monotonic evolution characterized by an increase
of the normalized extension rate and a marked
decline of the normalized shear rate. In contrast,
the 90� case displays a complex evolution of the
strain rate tensor. Up to 25% extension, the nor-
malized stretching rate increases and the shear rate
decreases. For extensions larger than 25%, the
behavior is inversed; the stretching rate decreases
and the shear rate increases, but the sense of
shearing is inversed.

[24] The evolution of the r value allows to further
characterize the effect of the CPO on the mechan-
ical behavior of the plate. The Iso case is charac-
terized by slightly faster shortening, giving an
initial r value of 0.95 (the CPO is not completely
isotropic) that slightly decreases with increasing
strain. The observed deviation from isotropy out-
lines that 1000 random orientations are not enough
to correctly describe an isotropic polycrystalline
material. In the 45� case, shortening is initially
significantly faster than thinning, but the evolution
of the CPO with increasing strain results in a
reduction of the anisotropy. In contrast, in the 0�
case, thinning rates are higher than the shortening
ones and this tendency is reinforced by the
strengthening of the CPO with increasing strain;
the r value increases by a factor of 1.3 during the
calculation. Finally, the 90� case shows the stron-
gest variation of the r value, expressing a change
from dominant thinning to dominant shortening
with increasing strain.

[25] To understand how the CPO influences the
mechanical behavior of the plate, it is necessary to
analyze the evolution of the olivine CPO with

increasing strain in each model. In all four models
(Figure 4), olivine [100] axes tend to align parallel
to the imposed extension direction (X). This evo-
lution expresses the influence of the imposed
boundary conditions on the strain field and hence
on the CPO development. However, the rate of
CPO concentration and reorientation as well as the
actual rotation path for the 3 principal crystallo-
graphic axes of olivine vary significantly from one
case to another. The Iso case shows the typical
CPO evolution for olivine polycrystals submitted
to axial extension: [100], which is the Burgers
vector for the 2 easy slip systems (Table 1), tends
to align in the direction of the imposed extension,
while [010] and [001] form a wide girdle normal to
it, with a better organization of [010]. Concentra-
tion of the CPO with no reorientation is observed
in the 0� case, because the initial orientation is
already very close to the ‘‘equilibrium’’ orientation.
In contrast, the 45� case is characterized by both a
clockwise rotation of the CPO leading to a de-
crease of the angle between the maximum concen-
tration of [100] and the extension direction (X) and
a strengthening of the CPO. Finally, the 90� case
presents a unique, two-stage CPO evolution (Fig-
ure 6). The first stage is characterized by a fast
reorientation of the CPO, which aligns the maxi-
mum concentration of [010] in the Z direction, and
by a slight decrease of the CPO strength. This
dispersion of the CPO is probably due to strongly
different behaviors of grains with initially similar
orientations. Indeed, in this case, most grains were
in hard orientations at the start of the simulation,
because [010] is not an active Burgers vector in
olivine and, hence, small variations in resolved
shear stresses have a strong effect on the crystals
mechanical behavior. This stage is then followed
by a slow rotation of the [100] axes toward the
imposed extension direction (X).

5. Discussion

[26] Analysis of the four simple models presented
in this work shows that for low-symmetry materi-
als, such as olivine and most rock-forming min-
erals, the orientation of the constituent crystals is
a first-order parameter controlling the mechanical
behavior of a polycrystal. Significantly different
mechanical responses are observed as a function
of the orientation of the initial olivine CPO
relatively to the solicitation even for a homoge-
neous, 100% olivine plate submitted to simple
boundary conditions.
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[27] In the Iso case, the CPO develops in response
to the applied extension; it is therefore symmetri-
cally arranged relatively to the extension direction
(Figure 4). In consequence, the sole expression of a
CPO-induced anisotropic viscosity is a significant
hardening, expressed by the decrease in strain rates
with increasing strain. No shearing develops and
shortening and thinning rates are similar. The
observed hardening is essentially geometrical.
The CPO evolution, characterized by a progressive
rotation of the [100] axis of olivine crystals toward
the extension direction, results in a decrease of the
resolved shear stresses on the easy (010)[100] and
(001)[100] slip systems (Table 1) and hence in a
decrease of strain rate in the model with constant
stress boundary conditions.

[28] The same mechanism results in a higher
strength (or lower strain rates) in the 0� case
relatively to the Iso model. With increasing strain,
this CPO becomes more concentrated, without
significant reorientation of the maxima, leading
to further hardening. The orthorhombic symmetry
of the initial olivine CPO induces a variation

between the horizontal shortening and vertical
thinning rates. Predominance of thinning, indicated
by the observed positive r values, is coherent with
the higher activation of the (001)[100] system
relatively to the (010)[100] one (Figure 5). Finally,
the slight asymmetry in the initial CPO (Figure 4)
explains the development of dextral shearing
(Figure 5).

[29] The effects of a CPO-induced anisotropic
viscosity are even more marked in the 45� case.
The strong obliquity of the initial CPO relatively to
the imposed extension results in high resolved
shear stresses on the easy (010)[100] and
(001)[100] slip systems (Table 1) and hence in
low strength of the plate. It also produces a strong
sinistral (counterclockwise) shearing. However, the
imposed extension leads to reorientation of the
CPO. [100] progressively rotates toward the exten-
sion direction (X) and the [010] and [001] axes
tend to form a girdle normal to it. This reorienta-
tion decreases the obliquity between the CPO and
the imposed extension, leading to lower resolved
shear stresses on the easy slip systems and hence to

Figure 6. Textural evolution for the 90� case submitted to a constant extensional stress field during an adimensional
time of 1.

Geochemistry
Geophysics
Geosystems G3G3

knoll et al.: multiscale model for lithospheric plate deformation 10.1029/2009GC002423

14 of 18



progressive hardening of the plate, expressed by
the decrease in strain rates with increasing strain
(Figure 5). The reorientation of the CPO also leads
to a decrease of the mechanical anisotropy (r value
tends toward 1).

[30] Finally, the 90� case shows a complex textural
evolution which results in a nonmonotonic evolu-
tion of the mechanical behavior of the plate. The
initial rotation of the maximum concentration of
[010] from the Y to the Z direction results in a
change of the ratio between shortening and thin-
ning rates, expressed by the variation of the r value
(Figure 5). During this stage, the CPO intensity is
slightly weakened and hence the plate strength
decreases slightly. This is followed by a progres-
sive rotation of the [100] axes toward the extension
direction that results initially in geometrical weak-
ening of the plate. This behavior will be inversed,
leading to hardening, once the angle between the
[100] concentration and the imposed stress direc-
tion becomes smaller than 45�. The observed
shearing results essentially, as in the 0� case, from
the departure from a perfect orthorhombic symme-
try of the initial CPO.

[31] Even in the simple case analyzed here, that
is, a homogeneous plate submitted to a constant
extension normal to one of its boundaries, the
variation in strength and deformation regimes for
4 different initial olivine CPO highlights the
importance of accounting for an evolving CPO-
induced anisotropy in geodynamical models. The
present results outline that lateral contrasts in
inherited olivine CPO in the lithospheric mantle
of continental plates, which form by progressive
accretion of terranes around ancient cratonic blocs
during successive collision and rifting episodes
[Tommasi and Vauchez, 2001; Vauchez et al.,
1998], should result in significant variations in
the mechanical behavior of the plate, leading to
strain localization in those domains for which the
orientation of the inherited olivine CPO allows
higher resolved shear stresses on the easy slip
systems of the olivine crystals. The evolution of
the system will depend on the imposed boundary
conditions and on the initial CPO. The former
controls, to the first order, the final, ‘‘ideal’’ CPO.
However, the finite strain necessary to approach
this ‘‘ideal’’ CPO depends on the initial texture
(Figure 4). In extension, which is the case inves-
tigated in the present article, the progressive
reorientation of the olivine [100] axes toward
the main stretching direction results in hardening

for all initial orientations. This suggests that the
strength contrast will probably decay at large
finite strains, leading to strain delocalization if
other deformation mechanisms or thermal pro-
cesses are not activated. However, as the harden-
ing rates are strongly dependent on the initial
CPO (Figure 5), strength contrasts may be main-
tained for significant times.

[32] Since the present model does not consider
dynamic recrystallization, the CPO concentrates
continuously, never reaching a stable configura-
tion. Consequently, the anisotropy increases con-
tinuously, tending toward the single crystal
mechanical behavior. In nature, however, processes
like dynamic recrystallization allow stable CPO to
be reached, buffering the mechanical anisotropy
[Tommasi et al., 2000]. Analysis of olivine poly-
crystals submitted to simple shear show that
dynamic recrystallization accelerates the develop-
ment of a stable CPO in an initially random
aggregate [Zhang and Karato, 1995; Bystricky et
al., 2000]. This suggests that it may accelerate the
decay of the strength contrasts. However, we lack
experimental data on how dynamic recrystalliza-
tion affects the CPO evolution in initially textured
aggregates.

[33] Finally, the present models show that even a
slight obliquity of the CPO relative to the solicita-
tion direction results in development of significant
shearing. Indeed, the 45� case, which has the
strongest obliquity, deforms by an association of
extension and shearing, i.e., in transtension. The
present results confirm therefore the conclusions of
previous studies that a CPO-induced mechanical
anisotropy in the lithospheric mantle may explain
the reactivation of preexisting lithospheric struc-
tures during rifting [Tommasi and Vauchez, 2001;
Vauchez et al., 1998]. They are also in agreement
with the prediction by these studies that the
reactivation of preexisting structures oblique to
the extension direction should be characterized
by a transtensional deformation, as observed, for
instance, in the initial stages of the East Gond-
wana fragmentation [Powell et al., 1988], and in
the early stages of the East African rift and
Rhine graben development [Schumacher, 2002;
Theunissen et al., 1996].

6. Conclusion

[34] Anisotropy of physical properties in poly-
crystalline materials, like rocks or, at a larger
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scale, the Earth’s mantle, is a fully multiscale
problem. The ‘‘polycrystal’’ anisotropy depends
on both the intrinsic anisotropy of the crystal and
on the orientation of the crystals that compose this
polycrystal. The present study shows that multi-
scale mechanical models, which couple a visco-
plastic self-consistent (VPSC) description of the
polycrystal plasticity to 3D finite element models
that simulate the large-scale flow, allows to per-
form an accurate calculation of the extension of a
mechanically anisotropic plate. The originality of
this method is to use the VPSC approach to fully
determine the viscosity tensor, on the basis of the
local CPO and mechanical state, and, hence, to be
able to account for its evolution during the
deformation history. A major advantage of this
method is that it is applicable to all crystalline
materials, independent of their symmetry. The
simple models presented here highlight that a
CPO-induced anisotropy in viscosity in the mantle
is a first-order parameter for the deformation of
the plate, controlling not only the strain distribu-
tion, but also the deformation regimes. It may
thus both contribute to strain localization in nat-
ural geological systems and explain the high
proportion of shearing in these systems.

Appendix A: Finite Element
Formulation

[35] The formulation of the finite element problem
is based on the weak integral form of equation (7)
with the appropriate boundary conditions:

Z
W

S vð Þ : _E v*ð ÞdW�
Z
W

p tr _E v*ð Þ
� �

dW�
Z
@W

T � v* dS ¼ 0 8v*

Z
W

p* div vð ÞdW ¼ 0 8p*
;

8>>>><
>>>>:

with v* and p* any virtual velocity and pressure
field defined over the configuration at time t. The
finite element procedure leads to a global non-
linear algebraic system of equations for the
velocity field v and the pressure field p. The
solution for a specified time interval is obtained
incrementally by discretizing the time interval as
mentioned in section 3. In each time step, the
crystal constitutive equations are integrated at the
local level and the solution of the global problem
is obtained by a Newton-Raphson scheme. The
solution procedure at a given time step t can be
summarized as follows: (1) Calculate the initial

estimate of the velocity vector (solution of the
previous increment). (2) Compute the elemental
velocity gradient used as the input to the
constitutive model. (3) Integrate the constitutive
law in order to compute state variables at time
t + Dt and the tangent modulus. (4) Solve the
global system of equations for the new velocity and
pressure fields using a Newton-Raphson algorithm
until convergence is achieved. (5) If convergence
occurs, update the velocity and pressure fields and
the configuration of the body and move on to the
next increment.

[36] The finite element spatial discretization is
based on a linear isoparametric tetrahedron
(P1 + /P1) where a bubble function is added
at its center for the velocity field interpolation
[Chenot and Bay, 1998]. The bubble function
allows to satisfy the Brezzi/Babuska condition
and enhances numerical stability [Brezzi and
Fortin, 1991]. Since a linear interpolation is used,
there is only one Gauss point per element for the
integration of the constitutive equations.
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Logé, R. E., and Y. B. Chastel (2006), Coupling the thermal
and mechanical fields to metallurgical evolutions within a
finite element description of a forming process, Comput.
Methods Appl. Mech. Eng., 195, 6843–6857, doi:10.1016/
j.cma.2004.11.034.

Mackwell, S. J., D. L. Kohlstedt, and M. S. Paterson (1985),
The role of water in the deformation of olivine single-
crystals, J. Geophys. Res., 90, 11,319–11,333, doi:10.1029/
JB090iB13p11319.

Mainprice, D., A. Tommasi, H. Couvy, P. Cordier, and D. J.
Frost (2005), Pressure sensitivity of olivine slip systems and
seismic anisotropy of Earth’s upper mantle, Nature, 433,
731–733, doi:10.1038/nature03266.

Montagner, J. P. (1998), Where can seismic anisotropy be de-
tected in the Earth’s mantle? In boundary layers. . ., Pure Appl.
Geophys., 151, 223–256, doi:10.1007/s000240050113.

Montagner, J. P., and H. C. Nataf (1986), A simple method for
inverting the azimuthal anisotropy of surface waves, J. Geo-
phys. Res., 91, 511–520, doi:10.1029/JB091iB01p00511.

Muhlhaus, H. B., L. Moresi, and M. Cada (2004), Emergent ani-
sotropy and flow alignment in viscous rock, Pure Appl. Geo-
phys., 161, 2451–2463, doi:10.1007/s00024-004-2575-5.

Ning, J., and E. C. Aifantis (1996), Anisotropic yield and
plastic flow of polycrystalline solids, Int. J. Plast., 12,
1221–1240, doi:10.1016/S0749-6419(98)80003-X.

Phakey, P., G. Dollinger, and J. Christie (1972), Transmission
electron microscopy of experimentally deformed olivine
crystals, in Flow and Fracture of Rocks, Geophys. Monogr.
Ser., vol. 17, edited by H. C. Heard et al., pp. 117–138,
AGU, Washington, D. C.

Pouilloux, L., E. Kaminski, and S. Labrosse (2007), Anisotro-
pic rheology of a cubic medium and implications for geolo-
gical materials, Geophys. J. Int., 170, 876–885, doi:10.1111/
j.1365-246X.2007.03461.x.

Powell, C. M. A., S. R. Roots, and J. J. Veewers (1988), Pre-
breakup continental extension in East Gondwanaland and the
early opening of the eastern Indian Ocean, Tectonophysics,
155, 261–283, doi:10.1016/0040-1951(88)90269-7.

Geochemistry
Geophysics
Geosystems G3G3

knoll et al.: multiscale model for lithospheric plate deformation 10.1029/2009GC002423

17 of 18



Raabe, D., P. Klose, B. Engl, K. P. Imlau, F. Friedel, and
F. Roters (2002), Concepts for integrating plastic anisotropy
into metal forming simulations, Adv. Eng. Mater., 4, 169–
180, doi:10.1002/1527-2648(200204)4:4<169::AID-
ADEM169>3.0.CO;2-G.

Raleigh, C. B. (1968), Mechanisms of plastic deformation of
olivine, J. Geophys. Res., 73, 5391–5407, doi:10.1029/
JB073i016p05391.

Raterron, P., J. Chen, L. Li, D. Weidner, and P. Cordier (2007),
Pressure-induced slip-system transition in forsterite: Single-
crystal rheological properties at mantle pressure and tempera-
ture, Am. Mineral., 92, 1436–1445, doi:10.2138/am.2007.
2474.

Ribe, N. M. (1989), Seismic anisotropy and mantle flow,
J. Geophys. Res., 94, 4213 – 4223, doi:10.1029/
JB094iB04p04213.

Richter, F. M., and S. F. Daly (1978), Convection models
having a multiplicity of large horizontal scales, J. Geophys.
Res., 83, 4951–4956, doi:10.1029/JB083iB10p04951.

Sachs, G. (1928), Zur Ableitung einer Fließbedingung, Z. Ver.
Dtsch. Ing., 72, 734–736.

Schumacher, M. E. (2002), Upper Rhine Graben: Role of
preexisting structures during rift evolution, Tectonics,
21(1), 1006, doi:10.1029/2001TC900022.

Silver, P. G., and W. W. Chan (1986), Observations of body
wave multipathing from broad-band seismograms: Evidence
for lower mantle slab penetration beneath the Sea of Okhotsk,
J. Geophys. Res., 91, 13,787 – 13,802, doi:10.1029/
JB091iB14p13787.

Taylor, G. I. (1938), Plastic strain in metals, J. Inst. Met., 62,
307–324.

Theunissen, K., J. Klerkx, A. Melnikov, and A. Mruma (1996),
Mechanisms of inheritance of rift faulting in the western
branch of the East African Rift, Tanzania, Tectonics, 15,
776–790, doi:10.1029/95TC03685.

Tommasi, A. (1998), Forward modeling of the development of
seismic anisotropy in the upper mantle, Earth Planet. Sci.
Lett., 160, 1–13, doi:10.1016/S0012-821X(98)00081-8.

Tommasi, A., and A. Vauchez (2001), Continental rifting par-
allel to ancient collisional belts: An effect of the mechanical
anisotropy of the lithospheric mantle, Earth Planet. Sci.
Lett., 185, 199–210, doi:10.1016/S0012-821X(00)00350-2.

Tommasi, A., B. Tikoff, and A. Vauchez (1999), Upper mantle
tectonics: Three-dimensional deformation, olivine crystallo-

graphic fabrics and seismic properties, Earth Planet. Sci.
Lett., 168, 173–186, doi:10.1016/S0012-821X(99)00046-1.

Tommasi, A., D. Mainprice, G. Canova, and Y. Chastel (2000),
Viscoplastic self-consistent and equilibrium-based modeling
of olivine lattice preferred orientations: Implications for the
upper mantle seismic anisotropy, J. Geophys. Res., 105,
7893–7908, doi:10.1029/1999JB900411.

Tommasi, A., M. Godard, G. Coromina, J. M. Dautria, and
H. Barsczus (2004), Seismic anisotropy and compositionally
induced velocity anomalies in the lithosphere above mantle
plumes: A petrological and microstructural study of mantle
xenoliths from French Polynesia, Earth Planet. Sci. Lett.,
227, 539–556, doi:10.1016/j.epsl.2004.09.019.

Tommasi, A., A. Vauchez, and D. A. Ionov (2008), Deforma-
tion, static recrystallization, and reactive melt transport in
shallow subcontinental mantle xenoliths (Tok Cenozoic
volcanic field, SE Siberia), Earth Planet. Sci. Lett., 272,
65–77, doi:10.1016/j.epsl.2008.04.020.

Tucker, G. E. G. (1961), Texture and earing in deep drawing of
aluminium, Acta Metall., 9, 275–286, doi:10.1016/0001-
6160(61)90220-6.

Vauchez, A., A. Tommasi, and G. Barruol (1998), Rheological
heterogeneity, mechanical anisotropy and deformation of the
continental lithosphere, Tectonophysics, 296, 61–86,
doi:10.1016/S0040-1951(98)00137-1.

Vinnik, L., B. Romanowicz, and L. Breger (1994), Anisotropy
in the center of the Inner-Core, Geophys. Res. Lett., 21,
1671–1674, doi:10.1029/94GL01600.

Von Mises, R. (1913), Mechanik der festen Korper in plastich-
deformablen Zustand, Nachr. Ges. Wiss. Goettingen, Math.
Phys. Kl., 1, 582–592.

Wenk, H. R., K. Bennett, G. R. Canova, and A. Molinari
(1991), Modeling plastic-deformation of peridotite with
self-consistent theory, J. Geophys. Res., 96, 8337–8349,
doi:10.1029/91JB00117.

Zhang, S. Q., and S. Karato (1995), Lattice preferred orienta-
tion of olivine aggregates deformed in simple shear, Nature,
375, 774–777, doi:10.1038/375774a0.

Zhao, Z., F. Roters, W. Moo, and D. Raabe (2001), Introduc-
tion of a texture component crystal plasticity finite element
method for anisotropy simulations, Adv. Eng. Mater., 3,
984–990, doi:10.1002/1527-2648(200112)3:12<984::AID-
ADEM984>3.0.CO;2-L.

Geochemistry
Geophysics
Geosystems G3G3

knoll et al.: multiscale model for lithospheric plate deformation 10.1029/2009GC002423

18 of 18


