Davide Di Ruscio
email: davide.diruscio@univaq.it

Patrizio Pelliccione
email: patrizio.pelliccione@univaq.it

Alfonso Pierantonio
email: alfonso.pierantonio@univaq.it

Stefano Zacchiroli

Towards Maintainer Script Modernization in FOSS Distributions *

Keywords: D.2.10 [Software Engineering]: Design, I.6.5 [Model Development]: Modeling Methodologies, D.2.13 [Software Engineering]: Reusable Software-Domain engineering Languages, management, reliability FOSS, model-driven engineering software modernization

INTRODUCTION

Free and Open Source Software (FOSS) distributions, as well as other complex systems, provide their software components in "packaged"form. Packages, available from remote * Partially supported by they European Community's 7th Framework Programme (FP7/2007-2013), Mancoosi project, grant agreement n. 214898. repositories, are installed and removed on local machines by means of package manager applications, such as APT [START_REF] Noronha | APT howto[END_REF] or Apache Maven [START_REF]Maven project[END_REF]. Package managers are responsible of both finding suitable upgrade strategies by solving dependencies and conflicts among packages, and of actually deploying the involved packages on the filesystem, possibly aborting the operation if problems are encountered.

During the installation and removal of a package, additional actions are required in order to finalize the component within the overall system configuration. Such actions are usually delegated to executable maintainer scripts, contained in the packages. Maintainer scripts are written in fully general POSIX shell script that makes very hard, impossible in the general case, to predict a priori their sideeffects which can affect the entire system. As a consequence, a satisfactory solution able to deal with automatic recovery of faults caused by misbehaving maintainer scripts is still missing [START_REF] Di | Package upgrades in FOSS distributions: details and challenges[END_REF].

Model Driven Engineering (MDE) [START_REF] Bézivin | On the Unification Power of Models[END_REF] can be crucial to improve the management of system configurations since models can make explicit dependencies and effects that are naturally implicit. Representing a FOSS installation with models paves the way to two different kinds of support to upgrade management:

1. dry run simulation of upgrades, looking for inconsistent configurations induced by misbehaving maintainer scripts or otherwise buggy packages;

2. fine-grained logging of actions executed on the real installation during package deployment; the obtained log can then be used to better drive downstream rollback mechanisms.

A model is obviously an abstraction of the reality. In modeling it is of crucial importance the level of abstraction taken into account. On one side we have to abstract away many details in order to have tractable models, on the other side the models must be able to effectively present relevant maintainer scripts. This paper faces with the precise problem of modernize maintainer scripts focusing on software modernization of FOSS installations and in particular of maintainer scripts. The idea of renewing legacy systems by means of model driven approaches has been pursued by the Object Management Group (OMG) since 2003. In particular, OMG defined the Architecture-Driven Modernization (ADM) task force [START_REF]Architecture-Driven Modernization (ADM)[END_REF] to support software modernization of existing assets which are imported into MDE enabled development environments.

Figure 1: Model-driven approach to manage system configuration proposed

In this paper, we analyze the domain of package-based FOSS distributions and formalize as meta-models installations, for the purpose of upgrade simulation and logging. In particular we highlight the analysis of maintainer scripts that has been conducted for the Debian GNU/Linux and for some RPM-based distributions. The resulting metamodels underpin the extraction process (also called injection) of models from existing FOSS distributions enabling the application of model-driven techniques and tools.

Paper structure.

We begin by providing necessary details about FOSS distributions in Section 2. Section 3 outlines the model-driven approach to deal with upgrade simulation and logging. Section 4 describes the analysis of maintainer scripts on real-life distributions, while Section 5 describes the specification of sample real maintainer scripts by using the defined modeling constructs. Section 6 presents related works and Section 7 concludes the paper by describing perspective work.

FOSS DISTRIBUTIONS

Overall, the architectures of all FOSS distributions are quite similar. Each user machine, i.e., a distribution installation, has a local package status recording which packages are locally installed and which are available from remote distribution repositories. In an upgrade scenario the system administrator requests a change of the package status (e.g., install, remove, upgrade to a newer version) by the mean of a package manager, which is in charge of finding a suitable upgrade plan. More precisely, the package manager solves dependencies and conflicts, retrieves packages from remote repositories as needed, and deploys individual packages on the filesystem, possibly aborting the operation if problems are encountered along the way.

A package is usually a bundle of three main parts: Files the set of files and directories shipped within the package for installation: executable binaries, data, documentation, etc. Configuration files is the subset of files affecting the runtime behavior of the package and meant to be locally customized by the system administrator. Proper internalization of configuration file details is relevant for our purposes, as specific configurations can (implicitly) entail dependencies not otherwise declared by the involved packages (see Section 5 for an example). Meta-information contains package-related information such as: a unique identifier, software version, maintainer and package description, and most notably inter-package re-lationships. The kinds of relationships vary with the distribution, but a common core subset includes: dependencies (the need of other packages to work properly), conflicts (the inability of being co-installed with other packages), feature provisions (the ability to declare named features as provided by a given package, so that other packages can depend on them), and restricted boolean combinations of them [START_REF]Report on formal management of software dependencies[END_REF].

Maintainer scripts are a set of programs, usually written in shell script, that are used to enable maintainers to attach actions to hooks that are fired by the installer. Which hooks are available depends on the installer; dpkg offers one of the most comprehensive set of hooks: pre/post-unpacking, pre/post-removal, and upgrade/downgrade to specific versions [START_REF] Jackson | Debian policy manual[END_REF].

Maintainer scripts are challenging objects to model, both for its semantics (shell script is a full-fledged, Turing-complete programming language) and for its syntax which enjoys a plethora of meta-syntactic facilities (here-doc syntax, interpolation, etc.).

During package deployment, various kinds of failures can be induced by maintainer scripts. The "simplest" example is a runtime failure of a script (usually detected by a nonzero exit code), against which system administrator are left helpless beside their shell script debugging abilities. A more subtle, though possibly easier to deal with, kind of failure are inconsistent configurations left over by upgrade scenario not predicted by maintainers. For instance: a maintainer script can "forget" to un-register a plugin from its main application while removing the package shipping the plugin, hence living around an inconsistent configuration (which might, or might not, cause execution failures in the main application).

Our aim is to develop meta-models able to grasp the details of FOSS installations for the purpose of preemptive discovery of both kind of upgrade failures. Also, in those cases where simulation is not enough to detect failures, we want our meta-models to be able to equip runtime execution of scripts with detailed execution logs. Those execution logs can then be offered to state of the art roll-back mechanisms (see Section 6 and [8]).

MODEL-BASED UPGRADE

The problem of maintaining FOSS installations is far from trivial and has not yet been addressed properly [START_REF] Di | Package upgrades in FOSS distributions: details and challenges[END_REF]. One of the main reason is that package managers are aware only of package meta-information (and in particular on interpackage relationships), which are not expressive enough. As a consequence, package managers are not enough to detect Recently, in the context of the Mancoosi1 project, a model-driven approach has been proposed [START_REF] Cicchetti | Towards a model driven approach to upgrade complex software systems[END_REF] to improve upon that, by equipping package managers with model of the hosting FOSS installation. Equipped with that, package managers can both simulate upgrades (trying to detect configuration inconsistencies) and, during deployment on the real system, create a more detailed log of script executions that can be used later on to pinpoint upgrade roll-back mechanism to the precise point where the failure occurred during deployment.

The proposed approach is then firstly based on upgrade run simulation; the simulation takes into account two models (see Figure 1): the System Configuration Model and the Package Model (see the arrow a). The former describes the state of a given system in terms of installed packages, running services, configuration files, etc. The latter provides information about the packages involved in the upgrade in terms of inter-package relationships. Since a trustworthy simulation has to consider the behavior of the maintainer scripts which are executed during the package upgrades, the package model also specifies an abstraction of them and of their behavior.

There are two possible simulation outcomes: not valid and valid (see the arrows c and d , respectively). In the former case it is expected that the upgrade on the real system will fail. Thus, before proceeding with it the problem spotted by the simulation should be fixed. In the latter case-validthe upgrade on the real system can be operated (see the arrow i). However, since the models are an abstraction of the reality, upgrade failures might occur due to reasons like I/O errors or by maintainer scripts features unaccounted for in the modeling. During package upgrades Log Models are produced to store all the transitions between configurations (see arrow b). The information contained in the system, package, and log models (arrows e and f) can then be used in case of failures (arrow l) when the performed changes have to be undone to bring the system back to the previous valid configuration (arrow g).

In order to apply on real scenario the approach depicted in Figure 1, existing systems have to be represented in terms of models. In this respect, the availability of injectors is crucial since they are tools that transform software artifacts into corresponding models in an automatic way. In par-ticular, as shown in Figure 2, given a real software system and a set of packages a corresponding representation in the modeling world has to be obtained. Since it is not possible to specify in detail every single part of systems and packages, trade-offs between model completeness and usefulness have been evaluated. In this respect, models are specified by using modeling constructs which are formalized in specific metamodels (see Section 3.1) that have been conceived during a domain analysis phase (see Section 4).

Over the last years, several approaches for extracting models from software artifacts have been proposed even though the optimal solution which can be used for any situation does not exist yet [START_REF] Izquierdo | Gra2MoL: A domain specific transformation language for bridging grammarware to modelware in software modernization[END_REF]. The complexity of the problem relies on the limitation of current lexical tools which do not provide the proper abstractions and constructs to query code and generate models with respect to given metamodels. Some approaches like [START_REF] Wimmer | Bridging grammarware and modelware[END_REF][START_REF] Efftinge | openarchitectureware 4.1 xtext language reference[END_REF] focus on generating metamodels from grammars but they have some drawbacks that may restrict its usefulness, such as the poor quality of the automatically generated metamodel [START_REF] Izquierdo | Gra2MoL: A domain specific transformation language for bridging grammarware to modelware in software modernization[END_REF]. Approaches like [START_REF] Jouault | TCS: a DSL for the specification of textual concrete syntaxes in model engineering[END_REF] enable the automatic generation of injectors starting from annotated metamodels with syntactic properties. However, they do not permit reuse of existing grammars written for well-known parser generators. Techniques like [START_REF] Izquierdo | Gra2MoL: A domain specific transformation language for bridging grammarware to modelware in software modernization[END_REF] propose specific languages to query software artifacts and generate models according to specified source-to-model transformation rules.

Several projects are under development to provide tools and methodologies for model-driven modernization and model injection. For instance, MoDisco [START_REF]Modisco project[END_REF] defines an infrastructure for supporting model-driven reverse engineering by relying on the concept of discoverer which is a piece of software in charge of analyzing part of an existing system and extracting a model using the MoDisco's infrastructure.

FOSS distributions metamodels

The metamodels which underpin the model based approach depicted in Figure 1 have been defined according to an iterative process consisting of two main steps: a) elicitation of new concepts from the domain to the metamodel; and b) validation of the formalization of the concepts by describing part of real systems. The metamodels which have been defined are as follows:

-the System Configuration metamodel, which contains all the modeling constructs necessary to make the FOSS system able to perform its intended functions. In particular it specifies installed packages, configuration files, services, filesystem state, loaded modules, shared libraries, running processes, etc. The system configuration metamodel takes into account the possible dependency between the configuration of an installed package and other package configurations. The ability to express such fine-grained and installation-specific dependencies is a significant advantage offered by the proposed metamodels which embody domain concepts which are not taken into account by current package manager tools;

-the Package metamodel, which describes the relevant elements making up a software package. The metamodel also gives the possibility to specify the maintainer script behaviors which are currently ignoredbeside mere execution-by existing package managers;

-the Log metamodel, which is based on the concept of transactions that represent a set of statements that change the system configurations. Transitions can be considered as model transformations [START_REF] Bézivin | On the Unification Power of Models[END_REF] which let a configuration C1 evolve into a configuration C2.

Log models play a key role for both preference roll-back and "live" failures. The former takes place when a user wants to recover a previous configuration, for whatever (even nonfunctional) reason. Note that the log models provide information useful to roll-back to any previous valid configuration, not necessary a contiguous one. The latter happens when undetected failures are encountered while deploying upgrades on the real system. In such a case, the information stored in the log model are exploited to retrieve the fallacious statements and provide hints on how to roll-back to the configuration from which the broken transaction has started. As shown in Figure 3, System Configuration and Package metamodels have mutual dependencies, whereas the Log metamodel has only direct relations with both System Configuration and Package metamodels. For a detailed description of the metamodels, please refer to [START_REF] Cicchetti | Towards a model driven approach to upgrade complex software systems[END_REF][START_REF] Di Ruscio | Metamodel for describing system structure and state[END_REF].

The first step that needs to be performed when defining a metamodel is to accurately study the domain in order to understand the elements and the artifacts that need to be modeled as presented in the next section.

MAINTAINER SCRIPTS ANALYSIS

The metamodels outlined in Section 3.1 have been obtained though a suitable domain analysis study. The most difficult part of this analysis process is the study of the maintainer scripts. The adopted scripting languages are mainly POSIX shell but they are written also in Perl [START_REF]The perl directory[END_REF], Bash [START_REF]The Free Software Foundation[END_REF], etc. Scripting languages have rarely been formally investigated and with no exciting results [START_REF] Xie | Static detection of security vulnerabilities in scripting languages[END_REF][START_REF] Mazurak | Abash: finding bugs in bash scripts[END_REF], thus posing additional difficulties in understanding their side-effects which can spread throughout the whole (file)system. Our aim is to describe the most common macro-actions of maintainer scripts in terms of models which abstract from the real system, but are expressive enough to grasp several of their effects on package upgrades. The analysis phase is then extremely important in order to find the right trade-off between expressiveness and abstraction.

Due to the large amount of scripts to consider (e.g., about 25 . 000 on Debian Lenny, see Section 4.1), we tried to collect them in clusters to be able to concentrate the analysis on representatives of the equivalence classes identified. The adopted procedure for clustering has been as follows:

1. Collect all maintainer scripts of a given distribution.

By not choosing a random subset we are sure to have collected the most representative set of scripts;

2. Identify scripts generated from helper tools. A large number of scripts or part of them is generated by means of "helper" tools that provide a collection of small, simple and easily understood tools that are used to automate various common aspects of building a package. Since (part of) maintainer scripts are automatically generated using these helpers and their boiler plates, we can concentrate the analysis on the helpers themselves, rather than on the result of their usage;

3. Ignore inert script parts. As all scripting languages, shell scripts contain parts which do not affect their computational state such as blank lines or comments.

Intertwined with the removal of generated parts (to be analyzed later on) we have systematically ignored inert script parts, possibly leading upon removal to empty scripts that have been therefore ignored as a whole;

4. Study of scripts written "by hand". The remaining scripts need to be more carefully studied, as they have been written from scratch by package maintainers to address a specific need, most likely not covered by any helper tool. Actually we worked on identifying further recurrent templates that maintainers use when writing the scripts.

In the remainder of this section we present the result of the analysis performed on two representative FOSS distributions: Debian GNU/Linux and an RPM-based distribution. Note that due to space restrictions we cannot report all the details, but the interested reader can refer to [START_REF] Di Ruscio | Metamodel for describing system structure and state[END_REF].

Debian GNU/Linux

The analysis has been performed considering a "snapshot" of Debian Lenny, the just released "stable" brand of Debian. The snapshot has been taken on December 4th, 2008, considering only the amd64 architecture (soon to become the most widespread architecture on end-user machines), and all the packages shipped by the Debian archive and targeted at the end user (i.e., sections main, contrib, and non-free). Each (binary) package 2 in Debian can come with 5 different 2 From now on, unless otherwise stated, we will use the term "package" to refer to binary packages. 1. preinst (mnemonic for "pre-installation") scripts that are run before the files shipped by a package being installed have been unpacked on the filesystem of the target machine;

2. postinst (mnemonic for "post-installation") scripts that are run after the files shipped by a package have been unpacked on the target filesystem;

3. prerm (mnemonic for "pre-removal script") scripts that are executed just before removing from the target filesystem those files which belong to the package which is being removed;

4. postrm (mnemonic for "post-removal") scripts that are executed just after removing the files belonging to the package being removed from the filesystem;

5. config (mnemonic for "configuration") scripts that are used to configure a software which requires specific user input to be configured.

Considering 5 maintainer scripts per package we obtain a potential universe of scripts to be considered of 114 . 115 scripts (i.e., 22 . 823 × 5). Luckily, 88 . 675 (77.7%) of those are actually missing from the corresponding packages. This means that the remaining actual script universe which need to be analyzed consists of "just" 25 . 440 scripts (22.3% of 114 . 115).

Scripts generated from helpers

Package maintainers use complex toolchains to facilitate their maintenance work which is otherwise prone to repetition of self-similar tasks. In Debian, the legacy helpers used to generate maintainer script snippets is the debhelper collection [7]. For the most part, it consists of tools which are invoked at package build time to automate packageconstruction tasks such as installing specific file categories (e.g., manual pages, documentation, etc.) in the location prescribed by the Debian policy [START_REF] Jackson | Debian policy manual[END_REF]. Instead of requiring each maintainer to write exactly the same shell script snippets by hand, debhelper also offers a template mechanism called "autoscripts" which writes down the needed snippets when needed. To our ends, this means that we can restrict our analysis to the templates themselves, because they are either verbatim copied in the resulting scripts or, in the worst case scenario, filled using simple textual "holes" such as the current package names.

We extracted from debhelper autoscripts templates, which amount to 52 templates in total [START_REF] Di Ruscio | Metamodel for describing system structure and state[END_REF]. Each of those templates contains statements that are executed as a whole. For instance, in Listing 1 a sample template is reported. It consists of statements which are executed after the removal of the GNOME configuration tool 3 .

Listing 1: Sample tamplate

1 i f [" $ 1 " = p u r g e] ; then 2 O L D _ D I R=/ e t c / g c o n f / s c h e m a s 3 S C H E M A _ F I L E S=" # S C H E M A S # " 4 i f [-d $ O L D _ D I R] ; then 5 f o r S C H E M A i n $ S C H E M A _ F I L E S ; do 6 r m -f $ O L D _ D I R / $ S C H E M A 7 done 8 r m d i r -p --i g n o r e-f a i l-on-non-e m p t y ֒→ $ O L D _ D I R 9 f i 10 f i
All the recurrent templates like the one in Listing 1 are formalized in the metamodel [START_REF] Di Ruscio | Metamodel for describing system structure and state[END_REF]. In this way maintainers, which are used to write scripts by means of debhelper and the previously identified templates, will find familiar and meaningful statements in the metamodel.

When the maintainer needs to add specific code to maintainer scripts, code which is not provided by autoscript templates, debhelper enables mixing generated lines with lines written by hand. All generated lines are tagged with speciallycrafted comments, so that they are recognizable mechanically.

Starting from the non-empty maintainer scripts extracted from Lenny (summing up to 25 . 440 scripts), we analyzed how many of them are entirely composed by lines generated using the autoscript mechanism. Also, we produced a "filtered" version of all the remaining maintainer scripts (i.e., those that contain at least some line written by hand by the package maintainer) which has been analyzed later on in more details. The summary of generated (part of) maintainer scripts is as follows: About 2/3 of all the maintainer scripts are composed only of lines generated using the autoscript mechanism.

n. of

Analysis of scripts "by hand"

The scripts that survived to the previous phases are 9 . 061. These scripts have been analyzed "by hand". The idea of that final analysis is to find additional templates or additional statements that should be considered when defining the metamodel. The analysis "by hand" has been performed as follows: 2. The next step consists in identifying the occurrence of the identified templates in the collection of 9 . 061 scripts. For instance the occurrence of Template1 is 97 and refers to group G1 of Table 1. Table 2 shows an excerpt of the template occurrences. More precisely, the first column contains the elicited templates and the second one their occurrences. Last column refers to the groups which originated the considered templates;

Template Occurrences Origin Group Template1 97 G1 Template2 69 G14 • • • • • • • • •
3. Once templates have been identified (we identified 116 templates) together with their occurrences, the next step consists of identifying similarities among templates in order to collect them in classes. In fact, we recall that the occurrences are calculated with exact matching and that a white space can also compromise the matching. We found 10 classes that collect 1 . 340 scripts;

4. The next step consists in analyzing each class in order to understand how to deal with this kind of scripts.

In other words, we have to understand whether the already identified statements are sufficient or whether new statements are required;

5. The last step has been the analysis of scripts "by hand" with occurrence 1 in order to understand whether they are already covered or whether they contain statements that we are not able to deal with. In this last step we analyzed other 43 scripts.

Summarizing the entire process, the total amount of considered packages is 22 . 823. Considering 5 maintainer scripts per package we obtain a (potential) universe of 114 . 115 scripts (i.e., 22 . 823 × 5). Luckily, 88 . 675 (77.7%) of those are actually missing from the corresponding packages. The universe of the remaining scripts consists of 25 . 440 scripts (22.3%).

The analysis covered approximatively the 66% of the existing 25 . 440 scripts and the 93% of the universe of 114 . 115 potential scripts.

RPM-based distributions

RPM (RPM Package Manager) is one of the most common software package manager used within FOSS distributions. Although RPM was originally designed to work with Red Hat Linux, it is nowadays used in several other distributions, such as Mandriva, Fedora, and Suse.

The spec [START_REF] Bailey | Maximum RPM: Taking the Red Hat Package Manager to the Limit[END_REF] file plays the main role in the RPM package build process. In fact, such file contains all the information required to (i) compile the program and build source and binary packages, and (ii) install and uninstall the program on the target machine. The spec file is divided in several sections and each section is denoted by a corresponding keyword like %pre.

Since we are interested in installation and removal aspects, we focus only on the RPM sections that are involved: Install and Uninstall scripts section. Similarly to Debian, in the RPM format there are four kind of scripts (%pre, %post, %preun, and %postun) each of them meant to be executed at different stages of the package upgrade process.

It is not very common having RPM packages that require actions to be performed prior to installation. In fact none of the 350 packages that comprise Red Hat Linux 4.0 makes use of %pre scripts. A typical example of %post script (which is executed after installation) consists of the ldconfig command which updates the list of available shared libraries after a new one has been installed. If a package uses a %post script to perform some function, quite often it will include a %postun script that performs the inverse of the %post script, after the package has been removed.

The scripts which are executed before removing packages (%preun) are used to prepare the system immediately prior the package deletion. Specularly, %postun is executed after package deletions. Quite often, %postun scripts are used to run ldconfig to remove newly erased shared libraries from ld.so.cache. As highlighted before, these scripts typically do the inverse of %post ones (which might happen to be the same action, as with ldconfig, when it simply consists in updating some sort of cache/registry).

Similarly to Debian, Fedora,4 an RPM-based Linux distribution, also makes use of templates for the maintainer scripts 5 . Such templates, called autoscripts, are reported in [START_REF] Di Ruscio | Metamodel for describing system structure and state[END_REF]. The spec files of the Fedora distribution we have considered can be downloaded at http://svn.rpmforge.net/ svn/trunk/rpms/. The available spec files are 4 . 704, and considering that each of them can contain four kinds of scripts, the potential universe that has to be analyzed consists of 4 . 704*4=18 . 816 scripts. Actually, the scripts that are present in this set are 2 . 038, that is approximately 10.8% of 18 . 816. These scripts are divided as follows: 81 %pre, 911 %post, 234 %preun, and 812 %postun. We extracted the four kinds of scripts from each spec file and, in order to make the analysis, we created four new files containing the scripts.

Unfortunately, in this case we are not able to identify scripts that are generated from helpers, since there is no marking that helps in identifying the generated parts. For this reason, we performed analysis "by hand", similarly to what is described for Debian. Then, all the scripts are clustered in groups, where a group collects scripts that contain exactly the same statements. For each group we then selected one representative.

From this first analysis we can say that more than 50% of the scripts can be generated by templates. Once the scripts previously identified have been deleted, we continued the analysis, the next step being to use the identified templates in order to check their matches as part of the code of a script. Since the matches are always exact, we performed another step of analysis. We then manually inspected the scripts and manually identified the match. Thus, we defined other templates that complement the already defined templates.

To summarize, this analysis demonstrates that, by means of templates, 1 . 962 scripts among the 2 . 038 that constitute our universe of scripts can be automatically generated for sure (∼93,6%). Please also remember that the "potential" amount of scripts, as described at the beginning of this section, is the number of spec files multiplied by 4 (that is the number of different kinds of scripts). Then the total amount of potential scripts is 18 . 816, and the remaining scripts, which are 76, represent the 0,4% of the total potential. Furthermore, a large part of the remaining 76 scripts is simply a combination of some customized templates or parts of templates that could be modeled by means of more simple statements.

MODELING MAINTAINER SCRIPTS

The outcome of the analysis has been concretized in the metamodels summarized in Sect. 3.1. They have been validated with real systems and in the following we report an example which relies on the Package metamodel depicted in In particular, the installation of PHP5-a web scripting language integrated with the Apache web server-executes the postinst script above which will be executed once the package has been unpacked on the target system. Essentially, the installed Apache module php5 gets enabled by the above snippet invoking the a2enmod command in line 3. The Apache service is then reloaded (line 4) to make the change effective. Upon PHP5 removal, the reverse will happen, as implemented by the following prerm script pertaining to the PHP5 package: The model-based specification of such scripts encompasses the metaclass Statement in Figure 4.a which represents an abstraction of the commands that can be executed by a given script to affect the environment, the file system or the package settings of a given configuration (EnvironmentStatement, FileSystemStatement, and PackageSettingStatement, respectively). For instance, the sample model in Figure 4.b reports the scripts contained in the package libapache-mod-php5 which contains the scripts reported at the beginning of the present section. For clarity of presentation, Figure 4.b contains only the relevant elements of the postinst and prerm scripts which are represented by the elements pis1 and prs1, respectively.

The most significant metaclasses of the Package metamodel which underpin the script behavior specification are The statements which modify the Environment of a given configuration are given in terms of instances of Environ-mentStatement specializations. Shell commands like installmenu, rmmod, ldconfig of Linux distributions, can be respectively modeled as AdditionEnvironmentStatement, Deletion-EnvironmentStatement and UpdateEnvironmentStatement instances.

As pointed out in Section 2, an installed package might depend on settings properly stored in dedicated configuration files (i.e., the service apache2 depends on the configurations specified in the file httpd.conf usually stored in the /etc/apache2 directory). The statements which modify such settings are modeled by means of instances of the PackageSettingStatement extensions. Finally, maintainer scripts might contain statements which do not change the system configuration but are comments, emit messages, etc. Such cases can be specified by means of instances of the NeutralStatement metaclass.

A summarizing example is depicted in Figure 5 which reports a fragment of the postinst script of the Debian Lenny libapache2-mod-php5_5.2.6-5_amd64.deb package. The code is injected with respect to the Package metamodel summarized above by giving place to the model on the righthand side of Figure 5. In particular, the copy operation of the file php.ini-dist represents a modification of the file system and is hence modeled as an UpdateFileSystem-Statement element (see the arrow a). Once the php5 module has been installed, the configuration of the apache2 package has to be modified by enabling the new module. This operation is performed by executing the command a2enmod which is modeled as an AdditionPackageSettingStatement element (see the arrow b). Finally, the UpdateEnviron-mentStatement element in the model (see the arrow c) represents the command which reloads the Apache Web server to update the environment with the previous modification.

RELATED WORKS

The main difficulties related to the management of upgrades in FOSS distributions depend on the existence of maintainer scripts which can have system-wide side-effects, and hence can not be narrowed to the involved packages only. An interesting proposal to support the upgrade of a system, called NixOS, is presented in [START_REF] Dolstra | NixOS: A purely functional linux distribution[END_REF]. NixOS is a purely functional distribution meaning that all static parts of a system (such as software packages, configuration files and system boot scripts) are expressed as pure functions. Among the main limitations of NixOS there is the fact that some actions related to upgrade deployment can not be made purely functional (e.g., user database management). [START_REF] Mcqueen | Creating, reverting & manipulating filesystem changesets on Linux[END_REF] proposes an attempt to monitor the upgrade process with the aim to discover what is actually being touched by an upgrade. Unfortunately, it is not sufficient to know which files have been involved in the maintainer scripts execution but we have also to consider system configuration, running services etc., as taken into account by our metamodels.

Concerning software modernization, OMG defined the Architecture Driven Modernization (ADM) task force [START_REF]Architecture-Driven Modernization (ADM)[END_REF] that aims at building standard metamodels and tools for supporting software renewal. Reus et al. in [START_REF] Reus | Harvesting software systems for mda-based reengineering[END_REF] and [START_REF] Fleurey | Model-driven engineering for software migration in a large industrial context[END_REF] propose similar MDA processes for software migration. They parse the text of the original system and build a model of the abstract syntax tree. This model is then transformed into a pivot language that can be translated into UML. The context of such works is different from that considered in this paper which deals with FOSS distributions and especially with maintainer scripts.

CONCLUSION AND FUTURE WORK

Dealing with upgrade failures in FOSS systems is a challenging task, mainly due to the complexity of maintainer scripts which are executed during upgrade deployment on the real system. Such scripts are written in languages that have rarely been formally investigated, thus posing additional difficulties in understanding their system-wide sideeffects.

In this paper we have analyzed two FOSS distributions and outlined the corresponding metamodels which have been conceived to support a model-driven approach for simulating upgrades and equipping roll-back mechanisms with detailed deployment logs, including maintainer script actions. The benefits of such an approach are manifold:

1. consistency checking possibilities are increased and trustworthy simulations of package upgrades become easier with respect to current package managers which only take into account inter-package relationships;

2. models can drive roll-back operations to recover previous configurations according to user decisions or forced by upgrade failures;

3. the evolution and the modifications the system underwent during its life cycle can consistently be recorded and used at run-time for roll-back operations.

This way installation and removal simulations can take into account both package dependencies and the behavior of maintainer scripts (which currently, on real systems, are used at deployment-time but ignored for planning) leading to more realistic simulations and enabling checking for more complex model inconsistencies. Even tough in this paper only two Linux distributions have been taken into account, the proposed approach is meant to be general. In this respect, the proposed metamodels will be refined by means of an iterative approach in order to capture unforeseen elements which are required to specify FOSS systems in general. The evolution of metamodels gives place to a number of problems related to the management of existing models which have to be adapted once the corresponding metamodels change. In order to deal with such problems, the approach in [START_REF] Cicchetti | Automating co-evolution in model-driven engineering[END_REF][START_REF] Cicchetti | Managing model conflicts in distributed development[END_REF] will be taken into account and used in the domain of FOSS systems.

As claimed in different parts of this work, the extraction of models from legacy software artifacts is a challenging task and existing lexical tools can not be directly used because of their limited capabilities to "query" textual artifacts and generate corresponding models. This represents the most important future work which has to be carried on to fully support maintainer script modernization. Existing approaches (like [START_REF]Modisco project[END_REF] and [START_REF] Jouault | TCS: a DSL for the specification of textual concrete syntaxes in model engineering[END_REF]) will be considered and applied to the metamodels which have been conceived according to the analysis presented in this work. Once the injection phase has been sufficiently automatized, we will instantiate the metamodels on a widely used FOSS distribution, and develop a supporting tool for integrating the presented model-driven approach with the existing system configuration/management tools. Moreover, we will define a model-based language, to be substituted to existing ones, for specifying the system configurations and packages at a higher level of abstraction. This new language will enable simulation and verification of maintainer scripts and will drive the roll-back of system upgrades.

On the practical side, we currently have the metamodels, and in particular the log metamodel, but we still lack the communication infrastructure with a package manager on one side and a log-equipped roll-back mechanism. We are closing this gap together with other partners of the Mancoosi project. The aim is to shortly have a prototype of a next-generation package manager which couples detailed knowledge of the installation via models with roll-back capabilities driven by upgrade deployment logs.

Figure 2 :

 2 Figure 2: Model injection

Figure 3 :

 3 Figure 3: Dependencies among metamodels

 a) Fragment of the Package metamodel b) Sample Package model

Figure 4 :

 4 Figure 4: Package specification

 Figure 4.a. It contains metaclasses that are required to model maintainer scripts like the following: 1 # ! / b i n / s h 2 i f [-e / e t c / a p a c h e 2 / a p a c h e 2 . c o n f] ; then 3 a 2 e n m o d p h p 5 >/d e v / n u l l | | true 4 r e l o a d _ a p a c h e 5 f i

 1 # ! / b i n / s h 2 i f [-e / e t c / a p a c h e 2 / a p a c h e 2 . c o n f] ; then 3 a 2 d i s m o d p h p 5 | | true 4 f i

Figure 5 :

 5 Figure 5: Fragment of the libapache2-mod-php5_5.2.6-5_amd64.deb.postinst script

Table 1 :

 1 Excerpt of the obtained groups kinds of maintainer scripts:

	Group Occurrences Representative script name
	G1	93	libk/libkpathsea4 2007.dfsg.2-4 amd64.deb.preinst
	G2	54	d/dict-freedict-swe-eng 1.3-4 all.deb.postinst
	G3	54	d/dict-freedict-fra-deu 1.3-4 all.deb.postrm
	G4	35	j/jabber-jud 0.5-3+b1 amd64.deb.preinst
	G5	35	g/gauche-c-wrapper 0.5.4-2 amd64.deb.postinst
	G6	33	w/wogerman 2-25 all.deb.config
	G7	31	m/mii-diag 2.11-2 amd64.deb.prerm
	G8	30	libs/libsocket6-perl 0.20-1 amd64.deb.postrm
	• • •	• • •	• • •

Table 2 :

 2 Excerpt of the occurrences of the Templates 1. All the scripts that survived to the previous pruning phases are clustered in groups, where a group collects scripts that contain exactly the same statements. For each group we then selected one representative. Table 1 shows an excerpt of the groups that we identified, ordered by occurrence. The second column shows the occurrences while the third column contains the name of the script representative of the group. By referring to Table 1, group G1 consists of 92 scripts which are identical to the script libk/libkpathsea4_2007.dfsg.2-4_amd64.deb.preinst and then this script identifies a potential template;

http://www.mancoosi.org

GNOME: The Free Software Desktop Projecthttp://http:www.gnome.org

Fedora Project Web site: http://fedoraproject.org

Fedora scriptlet snippets: http://fedoraproject.org/ wiki/Packaging/ScriptletSnippets