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Consistency of the monocular EKF-SLAM algorithm

for 3 different landmark parametrizations

Joan Solà

Abstract— We benchmark in this article three different
parametrizations for punctual landmarks in monocular 6DOF
EKF-SLAM. These parametrizations are homogeneous points
(HM), inverse-distance points (IDP, better known as inverse-
depth), and the new anchored homogeneous points (AHP). The
discourse used for describing them is chosen to highlight
their differences and similarities, showing that they are just
incremental variations of ones with respect to the others. We
show for the first time a complete comparison of HP against
IDP, two methods that are getting popular, and introduce also
for the first time AHP, whose description falls precisely between
the other two. The benchmarking is done by running all
algorithms on the same data and by using the well-established
NEES consistency analysis. Our conclusion is that the new
AHP parametrization is the most interesting one for monocular
EKF-SLAM (followed by IDP and then HP) because it greatly
postpones the apparition of EKF inconsistency.

I. INTRODUCTION

Monocular simultaneous localization and mapping

(SLAM) gained popularity back in 2003 thanks to a

real-time implementation due to Davison [1]. Davison’s

technique elegantly solved a great number of problems, but

one still remained that occupied researchers on visual SLAM

for some years: the problem of landmark initialization.

Monocular EKF-SLAM reached maturity with the advent

of undelayed initialization techniques, a need firstly stated

in 2005 by Solà et al. [2], with a preliminary solution

based on a previous work in 2004 by Kwok et al. [3],

and finally solved in 2006 with the inverse-depth landmark

parametrization (IDP) due to Montiel et al. [4].

The problem of undelayed landmark initialization within

monocular EKF-SLAM knows today two main solutions,

both of them relying on astute landmark parametrizations:

inverse-distance points (IDP, better known as inverse-depth,

[4], [5]), and homogeneous points (HP, [6]). These paramet-

rizations simultaneously fulfill two key objectives: the ability

to encode uncertainty up to infinity with one single Gaussian,

and the quasi-linearity of the observation functions within all

this uncertainty range. These two assets contribute to make

undelayed initialization successful with the use of a simple

EKF.

Other authors investigated the possibilities of using dif-

ferent estimation techniques. We have seen IDP used in

FastSLAM2.0 [7] and UKF [8], [9] frameworks; and methods

based on bundle adjustment [10], [11] or on graph the-

ory [12]. This works are often motivated by inconsistency
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problems and computational burden associated with EKF-

SLAM. Without discarding EKF, these two drawbacks can

be circumvented with the use of multi-map techniques. The

present paper digs deep into the consistency issues.

The aim of this paper is to compare different landmark

parametrizations for monocular EKF-SLAM: IDP, HP and a

new parametrization, anchored homogeneous points (AHP).

It also aims at highlighting the similarities between them: we

show that AHP is just an anchored version of HP, and that

IDP is just a lightened version of AHP. Once these relations

are established, the different methods are benchmarked; this

allows the reader to correlate the results with the theoretical

links presented. The benchmarking is performed with Monte-

Carlo simulations, using the well-established normalized

estimation error squared (NEES) measure [13] to evaluate

consistency. The outcome of this evaluation shows that AHP

is the best parametrization in terms of filter consistency,

clearly outperforming IDP, and that HP is the worst one.

Therefore, an important contribution of this paper is the new

AHP parametrization.

Experiments with real images are not presented: IDP and

HP have already been demonstrated with real imagery, and

our comparison aims at showing performance differences

based on the parametrization choice only.

The rest of this article is organized as follows. We

detail in Section II the three landmark parametrizations,

with their transformation, and perspective projection and

back-projection functions. We describe in Section III the

initialization and update mechanisms, valid for all paramet-

rizations. In Section IV we give the results of the Monte-

Carlo consistency analysis and conclude in Section V with

a discussion.

II. LANDMARK PARAMETRIZATIONS

A. Euclidean points (EP)

A Euclidean point p is trivially coded with three Cartesian

coordinates

PE = p =
[

X Y Z
]⊤ ∈ R

3

Transformation to camera frame and pin-hole projection

operations resume to

u = KR⊤(p− T) ∈ P
2, (1)

where K is the intrinsic matrix, underlined fonts • indicate

homogeneous coordinates, R = R(Q) and T are the rotation

matrix and the translation vector defining the camera frame

C = (T,Q), and Q is a suitable orientation representation

(we use quaternions).
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Fig. 1. Inverse-distance point (IDP) parametrization. The anchor point
p0 corresponds to the optical center at initialization time. We encode the
unmeasured distance with its inverse ρ.

Euclidean points lead to severely non-linear observation

functions in bearings-only systems and are not suited for

undelayed initialization, as it has been extensively demon-

strated [2], [3], [6], [7], [14] and most particularly [5]. The

parametrizations that follow mitigate this problem and can be

used for undelayed initialization with just a few precautions.

B. Inverse-distance points (IDP)

An “inverse-distance” point1 (IDP, Fig. 1) [5] is coded

by a 6-vector containing the Euclidean optical center at

initialization time, p0 = (x0, y0, z0), elevation and azimuth

angles defining the direction of the initial optical ray, (ε, α),
and the inverse of the Euclidean distance from p0 to the 3D

point p, denoted by ρ:

PID =
[

p⊤
0 ε α ρ

]⊤

=
[

x0 y0 z0 ε α ρ
]⊤ ∈ R

6 (2)

We will refer to the initial optical center p0 as the anchor

point of the landmark. An IDP refers to the following EP:

p = p0 + v∗(ε, α)/ρ (3)

where v∗(ε, α) is a unit vector in the direction of (ε, α),

v∗(ε, α) =
[

cos(ε) cos(α) cos(ε) sin(α) sin(ε)
]⊤

. (4)

Transformation to camera frame and pin-hole projection

operations resume to

u = KR⊤
(

v∗(ε, α)− ρ(T− p0)
)

. (5)

The back-projection and transformation composition neces-

sary for initialization is performed with

PID =





p0

(ε, α)
ρ



 =





T

υ∗(RK−1u)
ρC



 , (6)

where υ∗(v) gives elevation and azimuth angles (ε, α) of a

director vector v = (u, v, w),
[

ε
α

]

= υ∗(u, v, w) =

[

arctan(w/
√

u2 + v2)
arctan(v/u)

]

. (7)

The inverse-distance parameter ρC is defined in the camera

frame at initialization time. It must be provided as prior.

1In this article we will refer to the originally named “inverse depth” points
as inverse-distance points, and will use the invariant abbreviation IDP.
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Fig. 2. Anchored homogeneous point (AHP) parametrization. We define
the ray’s direction with a vector v that, together with the inverse distance ρ,
constitutes a homogeneous point referenced at the anchor point p0. In fact,
there is no need for v to be unitary, in which case ρ is not inverse-distance
but proportional to inverse-distance: d = ||p − p0|| = ||v||/ρ.

C. Anchored homogeneous points (AHP)

IDP points can be parametrized somewhat differently by

encoding the optical ray’s direction with a vector v =
(u, v, w), avoiding the need for the non-linear transforma-

tions (4) and (7). When this vector is unitary, appending the

inverse of the distance ρ to it results in a homogeneous point

(u, v, w, ρ) ∈ P
3. This leads to the anchored homogeneous

point (AHP, Fig. 2), parametrized with the 7-vector

PAH =
[

p⊤
0 v⊤ ρ

]⊤

=
[

x0 y0 z0 u v w ρ
]⊤ ∈ R

7 (8)

It is worth noticing that a homogeneous point (v, ρ) does not

require v to be a unit vector. If it is not, the parametrization

is absolutely valid but ρ is then not the inverse distance 1/d
but something proportional to it, i.e., ρ = ‖v‖/d.

An AHP refers to the following EP:

p = p0 + v/ρ. (9)

Transformation to camera frame and projection resume to

u = KR⊤
(

v − ρ(T− p0)
)

∈ P
2. (10)

The back-projection and transformation composition is done

with

PAH =





p0

v

ρ



 =





T

RK−1u

ρC



 , (11)

where ρC must be provided as prior; its relation to distance

d is given by ρC = ‖K−1u‖/d.

D. Homogeneous points (HP)

Homogeneous points have the interesting property of

presenting a bi-linear transformation equation:

p = HpC ,

[

R(Q) T

0 1

]

pC . (12)

When the uncertainties on the camera position C = (T,Q)
are small, we can consider the motion matrix H to be

deterministic, and therefore (12) to be exactly linear. In this

case Gaussian uncertainties are transformed exactly, so it

does not matter where our landmarks are anchored at. We

are free to re-anchor the AHP (8) at the origin with
[

v

ρ

]

←
[

I3×3 p0

01×3 1

] [

v

ρ

]

, (13)



TABLE I

SUMMARY OF LANDMARK PARAMETRIZATIONS AND THEIR MAIN MANIPULATIONS

Lmk parameters size transformation projection transformation + projection h() back-projection + transf. g()

EP PE = p 3 p = RpC + T u = KpC u = KR
⊤(p − T) p = tRK−1u + T

HP PH = p = (v, ρ) 4 p = HpC u = KvC u = KR
⊤(v − ρT) PH = p = H

»

K−1u

ρC

–

AHP PAH = (p0,v, ρ) 7 u = KR
⊤

`

v − ρ(T − p0)
´

PAH =

2

4

T

RK−1u

ρC

3

5

IDP PID = (p0, ε, α, ρ) 6 u = KR
⊤

`

v∗ − ρ(T − p0)
´

PID =

2

4

T

υ∗(RK−1u)
ρC

3

5
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Z
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Fig. 3. Homogeneous point (HP) parametrization. The homogeneous part
of AHP is anchored at the origin, and the anchor suppressed. There is no
need for v to be a unit vector.

which allows us to remove the anchor p0. This leads to a

purely homogeneous point (HP, Fig. 3), which has already

been studied in [6]:

PH =
[

v⊤ ρ
]⊤

=
[

u v w ρ
]⊤ ∈ R

4. (14)

A HP refers to the following EP:

p = v/ρ. (15)

Transformation to camera frame and projection resume to

u = KR⊤(v − ρT) ∈ P
2. (16)

The back-projection and transformation composition is done

with

PH = p =

[

v

ρ

]

= H

[

K−1u

ρC

]

, (17)

where ρC must be provided as prior; its relation to initial

distance dC is given by ρC = ‖K−1u‖/dC . Once transformed

to the global frame with H, this meaning of ρC is lost and

therefore not valid for ρ.

E. Final comment

We have presented three parametrizations and shown the

links between them. We have chosen to start by IDP purely

because of chronological reasons. The reader should be able

to construct a discourse in the inverse order: start by HP, well

known for their interesting properties in vision, then AHP as

an anchored version of HP, then IDP as a lightened version of

AHP. We summarize in Table I all parametrizations with their

main manipulation expressions. This should help building a

coherent picture of the parametrizations suited for monocular

EKF-SLAM.
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Fig. 4. Inverse-distance PDF. A Gaussian p(ρ) = N (ρ− ρ̄, σ2
ρ) is defined

in inverse-distance (vertical axes). We have ample choice: in one extreme
(dashed) we may define it so that ρ̄ − 2σρ = 0; the other extreme (solid)
takes ρ̄ = 0. In all cases, we have (ρ̄ + 2σρ) = K/dmin. They result
in PDFs in distance (bottom) that cover from a minimal distance dmin to
infinity. K is just a proportionality constant, e.g. K = 1 for IDP, and K =
‖K−1u‖ for AHP and HP. We can also normalize K−1u at initialization
time and take K = 1, in which case ρ is exactly equal to inverse-distance.

III. INITIALIZATION AND UPDATES

A. Initialization

Undelayed landmark initialization in EKF-SLAM with

partial measurements (such as monocular measurements)

mimics the algorithm for full measurements by incorporating

the non-measured magnitudes as priors:

1) Identify the known magnitudes: measurement u ∼
N{y,R} and map X ∼ N{X̄,P}, where

X =

[

C
M

]

, X̄ =

[

C̄
M̄

]

, P =

[

PCC PCM

PMC PMM

]

,

with C = (T,Q) the camera frame and M the set of

mapped landmarks.

2) Define a Gaussian prior for the non-measured inverse

distance, ρC ∼ N{ρ̄C , σ2
ρC}, see Fig. 4.

3) Back-project the Gaussian measurement; get landmark

mean and Jacobians

P̄ = g(C̄,y, ρ̄C)

GC =
dg

dC

∣

∣

∣

∣

C̄,y,ρ̄C

,Gu =
dg

du

∣

∣

∣

∣

C̄,y,ρ̄C

,Gρ =
dg

dρ

∣

∣

∣

∣

C̄,y,ρ̄C

with g(C,u, ρC) one of the back-projection functions

in Table I, C = (T,Q), R = R(Q) and u = [u⊤ 1]⊤.

4) Compute landmark co- and cross-variances

PPP = GCPCCG
⊤

C + GuRG⊤

u + Gρσ
2
ρCG

⊤

ρ

PPX = GCPCX
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Fig. 5. Simulated 3D environment for 6-DOF monocular SLAM.

with PCX = [PCC PCM].
5) Augment the SLAM map

X̄ ←
[

X̄
P̄

]

, P←
[

P P⊤
PX

PPX PPP

]

.

B. Updates

Updates follow the standard EKF-SLAM formulation. The

observation functions u = h(C,P) are the composition

of the ones in Table I with the homogeneous-to-Euclidean

transform: if u = [u, v, w]⊤ then u = [u/w, v/w]⊤.

IV. CONSISTENCY ANALYSIS

We benchmark HP, AHP and IDP for filter consistency

using the same simulated scenario, the same software and

the same seeds for the random generator. A description of

the simulation conditions and the benchmarking methods

follows, and results are given at the end of this section.

A. Simulated scenario

We simulate a robot performing a circular trajectory in an

area of 12m×12m, populated with 72 landmarks forming

a cloister (Fig. 5). The robot receives noisy control inputs

which are used for the prediction stage of the EKF, fix-

ing the scale factor. One noisy image per control step is

gathered with a single camera heading forward. Two sets of

parameters have been used for the tests (the nominal and

perturbation levels of all these magnitudes, together with the

inverse-distance priors used, are all summarized in Table II).

In the first set, the robot makes two turns to the cloister (800

frames are processed). The second set uses smaller odometry

increments and perturbations, and the trajectory is limited to

one quarter of a turn (200 frames).

B. Software and SLAM algorithm

We have made available the software used for simulations

[15]. It consists in a 6-DOF EKF-SLAM system written in

MATLAB®, with simulation and 3D graphics capabilities.

The algorithm is organized as an active-search-based

SLAM [16], which allows us to optimize information gain

with a limited number of updates per frame. At each frame,

we perform updates to the 10 most informative landmarks.

We also attempt to initialize one landmark per frame. Incon-

sistent and unstable landmarks are deleted from the map to

avoid map corruption.

TABLE II

SIMULATION PARAMETERS FOR ALL EXPERIMENTS

Concept Param. Set 1 Set 2

Pose step (∆X,∆ψ) (8cm, 0.9◦) (4cm, 0.45◦)

Lin. noise (σX , σY , σZ) 1cm 0.5cm

Ang. noise (σφ, σθ, σψ) 0.1◦ 0.05◦

Img. size 640×480 pix

Focal (αu, αv) 320 pix, FOV = 90◦

Pix. noise σu 1 pix

ρC prior (ρ̄C , σρC ) (0.01, 0.5) m−1 id. + (1, 1) m−1

29
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29

70

34

IDP

29

70

34

AHP

Fig. 6. Some landmark 3-σ estimates at the end of the first loop. Incon-
sistency comes from covariance overestimation rather than mean errors. See
the accompanying video.

C. Normalized estimation error squared (NEES)

Here we follow [13]. We analyze filter consistency using

the normalized estimation error squared (NEES). When

ground truth about a variable xk is known, the NEES of

its estimate N{x̂k,Pk} is defined at each time k by

ǫk = (xk − x̂k)⊤P−1
k (xk − x̂k). (18)

Under the hypothesis of consistent filtering of a linear-

Gaussian system, ǫk obeys a χ2 distribution with dim(xk)
degrees of freedom (DOF), noted χ2

dim(x), whose expectation

over an increasing number of runs converges to the state

dimension, E[ǫk] = dim(xk). The linear-Gaussian hypoth-

esis can then be statistically evaluated by means of a χ2

acceptance test over a set of N <∞ Monte-Carlo runs.

Given N Monte-Carlo runs,
∑N

i=1 ǫik obeys a χ2
N dim(x)

distribution. The bounds of the double-sided 95% probability

concentration region are given by the χ2
N dim(x) values

corresponding to tail probabilities of 2.5% and 97.5%.

For 6-DOF SLAM and N = 25 runs, we have the

lower and upper bounds {ν; ν} = χ2
(6×25)(0.975; 0.025) =

{117.985; 185.800}.
The average NEES is computed as

ǭk ,
1

N

N
∑

i=1

ǫik. (19)

We compare the average NEES against {ν/N ; ν/N} =
{4.719; 7.432}. If the average NEES is below the lower

bound for some significant amount of time, the filter is

conservative. If it is above the upper bound, the filter is

optimistic and therefore inconsistent.

D. Results

We provide an accompanying video showing the three

methods running in parallel. The differences in behavior are
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Fig. 7. Average NEES of the 6-DOF vehicle pose [x, y, z, φ, θ, ψ]⊤ over
25 runs for 800 frames (2 turns) and parameters of Set 1. The thin gray lines
are the 25 individual NEES. The thick line is the average NEES. Dashed
horizontal lines at abscissas 4.719 and 7.432 delimit the 95% consistency
region. The vertical line marks the loop closure at frame 308.

not easily visible in the 3D movies, and we need to zoom in

to appreciate incorrect operation (Fig. 6: IDP and HP esti-

mate too small covariances). However, their NEES behavior

is radically different (Fig. 7, please note the different vertical

scales):

HP behaves poorly. Of the 25 runs, one diverged, and 35

landmarks had to be deleted due to inconsistent observations

(22 of which during the divergent run).

IDP shows better performance but also escapes consis-

tency very quickly. No run diverged but inconsistent obser-

vations triggered landmark deletion in two occasions.

AHP behaves consistently, certainly with a slight tendency

to inconsistency, until shortly after the first loop closure.

During the second turn the filter is inconsistent but it does

not seem to degrade too quickly. No landmarks were declared
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Fig. 8. Average NEES over 25 runs for 200 frames and alternative set of
conditions (1/4 turn) and parameters of Set 2 and 10 initializations in the first
frame. Thick gray: initialization with an alternative prior (ρ̄, σρ) = (1, 1).

inconsistent.

We tuned the algorithms with the second set of parameters

in order to improve linearity: odometry steps and noise are

cut in half, and the filter is bootstrapped with 10 landmarks

being initialized at the first frame. Here, we focus on the

first quarter of the loop to see the moment when the filters

loose consistency. The results in Fig. 8 show no significant

improvement with respect to those of Set 1 (these 200 frames

correspond to the first 100 frames in Fig. 7): HP is just not

good, IDP starts fine but only keeps track until frame 50,

and AHP is again the only one to behave consistently.

A third test consisted in selecting a different prior for the

unmeasurable inverse-distance. The gray superimposed plots

in Fig. 8 show that IDP and AHP are not very sensitive

to large variations of these parameters, while the contrary

must be said for HP. It seems, even if for AHP and IDP

the difference is small, that the filter behaves better with



landmarks initialized at (or close to) infinity (ρ̄C = 0.01m−1)

than at some close distance (ρ̄C = 1m−1).

V. DISCUSSION AND CONCLUSION

We are dealing with 3 parametrizations. One is not an-

chored (HP); the other two are anchored (IDP and AHP).

Thanks to the cross-correlations stored in the EKF, the anchor

allows the filter to account for accumulated errors only from

the anchor to the current position (terms (T−p0) in Table I),

not from the origin of coordinates (term T). This is consistent

with HP performing clearly worse than IDP and AHP.

We expected AHP to be better than IDP, but we could

not tell to which extent. Our experiments showed that the

improvement is very significant. We see two reasons for this:

First, the ray direction in AHP is a 3D vector v that,

importantly, is not forced to unity. The fact that its norm

can evolve during filtering allows the filter to work more

relaxed (there is redundancy or lack of constraints). So

when an update occurs, the correction effect can be shared

between several dimensions, including of course ρ. In IDP

there is no such redundancy and the filter works more

“constrained”. When it comes to deal with non-linearity,

these constraints contribute to larger errors. It is therefore

important not to normalize the vector v at each frame. We

might, though, normalize it at initialization time to render ρ
more meaningful as true inverse-distance, thus making the

initialization algorithm more readable.

Second, the transformation equations in AHP are more

linear than those in IDP, because in IDP we have the

trigonometric functions (4) and (7). In fact, AHP only differs

from IDP in two single lines of code: those performing such

equations. This point is, we feel, not very important, because

these angles are well observed from the first observation and

therefore the trigonometric functions can be considered quite

linear inside the uncertainty region, which is small. However,

its effect can only contribute to increase linearization errors.

The differences in consistency between IDP and AHP

are indeed surprising. IDP has been extensively used with

success already for three years, and one could imagine other

reasons for our relatively poor IDP results. For example, one

could conjecture that our implementation using quaternions

for orientation could be at the base of our IDP inconsistency

(this is a hypothesis drawn only from the fact that we did

not observe this behavior with another implementation using

Euler angles – but we were not using the NEES tool either).

Should this be the case, we would have found the same

inconsistency in AHP, and we did not. Our conclusion is

again that AHP positively improves on IDP performance.

Regarding the increase in computational costs derived

from a larger parametrization (size 7 instead of 6), we point

here that the linearity measure for IDP [5] can be applied

to AHP as-is to trigger the landmark reparametrization.

Reparametrization to Euclidean has virtually no effect on

NEES results (something we did not show here for space

reasons) – though a very small degradation can be observed.

This degradation is of the order of the one observed when

changing the prior values of ρC , which we saw in Fig. 8. The

gain in computational power, however, largely compensates

for it.

Regarding the terminology of the parametrizations, IDP

could be renamed to AMPC (Anchored Modified Polar Co-

ordinates): it is anchored, and it is in polar coordinates except

for the radius which is inverse-radius (therefore the “modified

polar”). This would produce a consistent picture, where the

concept of “inverse-distance”, as we have seen, is shared

among all the parametrizations. To complete the picture, we

notice that the AMPC’s un-anchored counterpart, Modified

Polar Coordinates (MPC), not presented in this paper, had

already been treated in the 80’s in the bearing-only tracking

literature with similar problematic and justification [17].

Their use in monocular EKF-SLAM is not recommended:

they present a singularity at the origin, and if we draw

the correct conclusions from the present paper, they should

behave even worse than HP, as it happens to AMPC (i.e. IDP)

with respect to AHP.
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