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ON THE GEOMETRY OF ALGEBRAIC GROUPS

AND HOMOGENEOUS SPACES

MICHEL BRION

Abstract. Given a connected algebraic group G over an algebraically closed field
and a G-homogeneous space X , we describe the Chow ring of G and the rational
Chow ring of X , with special attention to the Picard group. Also, we investigate
the Albanese and the “anti-affine” fibrations of G and X .

1. Introduction

Linear algebraic groups and their homogeneous spaces have been thoroughly in-
vestigated; in particular, the Chow ring of a connected linear algebraic group G over
an algebraically closed field k was determined by Grothendieck (see [Gr58, p. 21]),
and the rational Chow ring of a G-homogeneous space admits a simple description
via Edidin and Graham’s equivariant intersection theory (see [Br98, Cor. 12]). But
arbitrary algebraic groups have attracted much less attention, and very basic ques-
tions about their homogeneous spaces appear to be unanswered: for example, a full
description of their Picard group (although much information on that topic may be
found in work of Raynaud, see [Ra70]).

The present paper investigates several geometric questions about such homoge-
neous spaces. Specifically, given a connected algebraic group G over k, we determine
the Chow ring A∗(G) and obtain two descriptions of the Picard group Pic(G). For
a G-homogeneous space X , we also determine the rational Chow ring A∗(X)Q and
rational Picard group Pic(X)Q. Furthermore, we study local and global properties
of two homogeneous fibrations of X : the Albanese fibration, and the less known
“anti-affine” fibration.

Quite naturally, our starting point is the Chevalley structure theorem, which asserts
that G is an extension of an abelian variety A by a connected linear (or equivalently,
affine) group Gaff . The corresponding Gaff-torsor αG : G → A turns out to be locally
trivial for the Zariski topology (Proposition 2.2); this yields a long exact sequence
which determines Pic(G) (Proposition 2.12).

Also, given a Borel subgroup B of Gaff , the induced morphism G/B → A (a
fibration with fibre the flag variety Gaff/B) turns out to be trivial (Lemma 2.1). It
follows that A∗(G) =

(

A∗(A)⊗ A∗(Gaff/B)
)

/I, where I denotes the ideal generated
by the image of the characteristic homomorphism X(B) → Pic(A) × Pic(Gaff/B)
(Theorem 2.7). This yields in turn a presentation of Pic(G). As a consequence,
the “Néron-Severi” group NS(G), consisting of algebraic equivalence classes of line
bundles, is isomorphic to NS(A) × Pic(Gaff) (Corollary 2.13); therefore, NS(G)Q ∼=
NS(A)Q.
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Thus, αG (the Albanese morphism of G) behaves in some respects as a trivial fibra-
tion. But it should be emphasized that αG is almost never trivial, see Proposition 2.2.
Also, for a G-homogeneous space X , the Albanese morphism αX , still a homogeneous
fibration, may fail to be Zariski locally trivial (Example 3.4). So, to describe A∗(X)Q
and Pic(X)Q, we rely on other methods, namely, Gaff -equivariant intersection theory
(see [EG98]). Rather than giving the full statements of the results (Theorem 3.8
and Proposition 3.10), we point out two simple consequences: if X = G/H where
H ⊂ Gaff , then A∗(X)Q =

(

A∗(A)Q ⊗ A∗(Gaff/H)Q
)

/J , where the ideal J is gener-
ated by certain algebraically trivial divisor classes of A (Corollary 3.9). Moreover,
NS(X)Q ∼= NS(A)Q × Pic(Gaff/H)Q, as follows from Corollary 3.11.

Besides αG, we also consider the natural morphism ϕG : G → SpecO(G) that
makes G an extension of a connected affine group by an “anti-affine” group Gant (as
defined in [Br09a]). We show that the anti-affine fibration ϕG may fail to be locally
trivial, but becomes trivial after an isogeny (Propositions 2.3 and 2.4).

For any G-homogeneous space X , we define an analogue ϕX of the anti-affine
fibration as the quotient map by the action of Gant. It turns out that ϕX only depends
on the variety X (Lemma 3.1), and that αX , ϕX play complementary roles. Indeed,
the product map πX = (αX , ϕX) is the quotient by a central affine subgroup scheme
(Proposition 3.2). If the variety X is complete, πX yields an isomorphism X ∼= A×Y ,
where A is an abelian variety, and Y a complete homogeneous rational variety (a result
of Sancho de Salas, see [Sa01, Thm. 5.2]). We refine that result by determining the
structure of the subgroup schemes H ⊂ G such that the homogeneous space G/H is
complete (Theorem 3.5). Our statement can be deduced from the version of [Sa01,
Thm. 5.2] obtained in [Br09b], but we provide a simpler argument.

The methods developed in [Br09a] and the present paper also yield a classification
of those torsors over an abelian variety that are homogeneous, i.e., isomorphic to
all of their translates; the total spaces of such torsors give interesting examples of
homogeneous spaces under non-affine algebraic groups. This will be presented in
detail elsewhere.

An important question, left open by the preceding developments, asks for descrip-
tions of the (integral) Chow ring of a homogeneous space, and its higher Chow groups.
Here the approach via equivariant intersection theory raises difficulties, since the re-
lation between equivariant and usual Chow theory is only well understood for special
groups (see [EG98]). In contrast, equivariant and usual K-theory are tightly related
for the much larger class of factorial groups, by work of Merkur’ev (see [Me97]); this
suggests that the higher K-theory of homogeneous spaces might be more accessible.

Acknowledgements. I wish to thank José Bertin, Stéphane Druel, Emmanuel
Peyre, Gaël Rémond and Tonny Springer for stimulating discussions.

Notation and conventions. Throughout this article, we consider algebraic va-
rieties, schemes, and morphisms over an algebraically closed field k. We follow the
conventions of the book [Ha77]; in particular, a variety is an integral separated scheme
of finite type over k. By a point, we always mean a closed point.
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An algebraic group G is a smooth group scheme of finite type; then each connected
component of G is a nonsingular variety. We denote by eG the neutral element and
by G0 the neutral component of G, i.e., the connected component containing eG.

Recall that every connected algebraic group G has a largest connected affine al-
gebraic subgroup Gaff . Moreover, Gaff is a normal subgroup of G, and the quotient
G/Gaff =: Alb(G) is an abelian variety. In the resulting exact sequence

(1.1) 1 −−−→ Gaff −−−→ G
αG−−−→ Alb(G) −−−→ 1,

the homomorphism αG is the Albanese morphism of G, i.e., the universal morphism
to an abelian variety (see [Co02] for a modern proof of these results).

Also, recall that G admits a largest subgroup scheme Gant which is anti-affine, i.e.,
such that O(Gant) = k. Moreover, Gant is smooth, connected and central in G, and
G/Gant =: Aff(G) is the largest affine quotient group of G. In the exact sequence

(1.2) 1 −−−→ Gant −−−→ G
ϕG

−−−→ Aff(G) −−−→ 1,

the homomorphism ϕG is the affinization morphism of G, i.e., the natural morphism
G → SpecO(G) (see [DG70, Sec. III.3.8]). The structure of anti-affine algebraic
groups is described in [Sa01] (see also [Br09a, SS08] for a classification of these groups
over an arbitrary field).

Finally, recall the Rosenlicht decomposition:

(1.3) G = Gaff Gant,

and Gaff ∩Gant contains (Gant)aff as an algebraic subgroup of finite index (see [Ro56,
Cor. 5, p. 440]). As a consequence, we have

Gant/(Gant ∩Gaff) ∼= G/Gaff
∼= Alb(G)

and also

Gaff/(Gant ∩Gaff) ∼= G/Gant
∼= Aff(G).

2. Algebraic groups

2.1. Albanese and affinization morphisms. Throughout this subsection, we fix
a connected algebraic group G, and choose a Borel subgroup B of G, i.e., of Gaff . We
begin with some easy but very useful observations:

Lemma 2.1. (i) B contains Gaff ∩Gant.

(ii) The product BGant ⊂ G is a connected algebraic subgroup. Moreover, (BGant)aff =
B, and the natural map Alb(BGant) → Alb(G) is an isomorphism.

(iii) The multiplication map µ : Gant ×Gaff → G yields an isomorphism

(2.1) Alb(G)×Gaff/B = Gant/(Gant ∩Gaff)×Gaff/B
∼=

−−−→ G/B.

Proof. (i) Note that Gaff ∩ Gant is contained in the scheme-theoretic centre C(Gaff).
Next, choose a maximal torus T ⊂ B. Then C(Gaff) is contained in the centralizer
CGaff

(T ), a Cartan subgroup of Gaff , and hence of the form TU where U ⊂ Ru(Gaff).
Thus, CGaff

(T ) ⊂ TRu(Gaff) ⊂ B.
(ii) The first assertion holds since Gant centralizes B.
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Clearly, (BGant)aff contains B. Moreover, we have

BGant/B ∼= Gant/(B ∩Gant) = Gant/(Gaff ∩Gant) ∼= G/Gaff ,

which yields the second assertion.
(iii) In view of the Rosenlicht decomposition, µ is the quotient of Gant × Gaff

by the action of Gant ∩ Gaff via z · (x, y) := (zx, z−1y). We extend this action to
an action of (Gant ∩ Gaff) × B via (z, b) · (x, y) := (zx, z−1yb−1) = (zx, yz−1b−1).
By (i), the quotient of Gant × Gaff by the latter action exists and is isomorphic to
Gant/(Gant ∩Gaff)×Gaff/B; this yields the isomorphism (2.1). �

Next, we study the Albanese map αG : G → Alb(G), a Gaff -torsor (or principal
homogeneous space; see [Gr60] for this notion):

Proposition 2.2. (i) αG is locally trivial for the Zariski topology.

(ii) αG is trivial if and only if the extension (1.1) splits.

Proof. (i) The map

αBGant
: BGant −→ Alb(BGant) ∼= Alb(G)

is a torsor under the connected solvable affine algebraic group B, and hence is locally
trivial (see e.g. [Se58, Prop. 14]). By Lemma 2.1 (ii), it follows that αG has local
sections. Thus, this torsor is locally trivial.

(ii) We may identify αG with the natural map

(Gant ×Gaff)/(Gaff ∩Gant) −→ Gant/(Gaff ∩Gant),

a homogeneous bundle associated with the torsor Gant → Gant/(Gaff ∩ Gant) and
with the Gaff ∩ Gant-variety Gaff . Thus, the sections of αG are identified with the
morphisms (of varieties)

f : Gant −→ Gaff

which are Gaff ∩ Gant-equivariant. But any such morphism is constant, as Gaff is
affine and O(Gant) = k. Thus, if αG has sections, then Gaff ∩ Gant is trivial, since
this group scheme acts faithfully on Gaff . By the Rosenlicht decomposition, it follows
that G ∼= Gaff × Gant and Gant

∼= Alb(G); in particular, (1.1) splits. The converse is
obvious. �

Similarly, we consider the affinization map ϕG : G → Aff(G), a torsor under Gant.

Proposition 2.3. (i) ϕG is locally trivial (for the Zariski topology) if and only if the
group scheme Gaff∩Gant is smooth and connected. Equivalently, Gaff∩Gant = (Gant)aff .

(ii) ϕG is trivial if and only if the torsor Gaff → Gaff/(Gaff ∩Gant) is trivial. Equiva-
lently, Gaff ∩Gant = (Gant)aff and any character of Gaff ∩Gant extends to a character
of Gaff .

Proof. (i) We claim that ϕG is locally trivial if and only if it admits a rational section.
Indeed, if σ : G/Gant− → G is such a rational section, defined at some point x0 =
ϕ(g0), then the map x 7→ gσ(g−1x) is another rational section, defined at gx0, where
g is an arbitrary point of G. (Alternatively, the claim holds for any torsor over a
nonsingular variety, as follows by combining [Se58, Lem. 4] and [CO92, Thm. 2.1]).
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We now argue as in the proof of Proposition 2.2, and identify ϕG with the natural
map

(Gaff ×Gant)/(Gaff ∩Gant) −→ Gaff/(Gaff ∩Gant).

This identifies rational sections of ϕG with rational maps

f : Gaff− −→ Gant

which are Gaff ∩Gant-equivariant. Such a rational map descends to a rational map

f̄ : Gaff/(Gaff ∩Gant)− −→ Gant/(Gaff ∩Gant) = Alb(G).

But Gaff/(Gaff ∩Gant) is an affine algebraic group, and hence is rationally connected.
Since Alb(G) is an abelian variety, it follows that f̄ is constant; we may assume that
its image is the neutral element. Then f is a rational Gaff ∩ Gant-equivariant map
Gaff− → Gaff ∩ Gant, i.e., a rational section of the torsor Gaff → Gaff/(Gaff ∩ Gant).
Clearly, this is only possible if Gaff ∩Gant is smooth and connected.

Conversely, if the (affine, commutative) group scheme Gaff ∩ Gant is smooth and
connected, then the torsor Gaff → Gaff/(Gaff ∩ Gant) has rational sections. By the
preceding argument, the same holds for the torsor ϕG.

(ii) By the same argument, the triviality of ϕG is equivalent to that of the torsor
Gaff → Gaff/(Gaff ∩Gant), and this implies the equality Gaff ∩Gant = (Gant)aff . Write
(Gant)aff = TU ∼= T×U , where T is a torus and U a connected commutative unipotent
algebraic group. Then a section of the torsor Gaff → Gaff/TU , being a TU -equivariant
map Gaff → TU , yields a T -equivariant map f : Gaff → T . We may assume that
f(eGaff

) = eT . Then f is a homomorphism by rigidity, and restricts to the identity
on T . Thus, each character of T extends to a character of Gaff . Any such character
must be U -invariant, and hence each character of Gaff ∩Gant extends to a character
of Gaff .

Conversely, assume that each character of Gaff ∩ Gant extends to a character of
Gaff . Then there exists a homomorphism f : Gaff → T that restricts to the identity
of T . Let H denote the kernel of f . Then the multiplication map H × T → Gaff is
an isomorphism; in particular, the torsor Gaff → Gaff/T ∼= H is trivial. Moreover, H
contains U , and the torsor H → H/U is trivial, since U is connected and unipotent,
and H/U is affine. Thus, the torsor Gaff → Gaff/TU is trivial. �

Next, we show the existence of an isogeny π : G̃ → G such that the torsor ϕG̃ is
trivial.

Following [Me97], we say that a connected affine algebraic group H is factorial,
if Pic(H) is trivial; equivalently, the coordinate ring O(H) is factorial. By [Me97,
Prop. 1.10], this is equivalent to the derived subgroup of G/Ru(G) (a connected
semi-simple group) being simply connected.

Proposition 2.4. There exists an isogeny π : G̃ → G, where G̃ is a connected
algebraic group satisfying the following properties:

(i) π restricts to an isomorphism G̃ant
∼= Gant.

(ii) G̃aff ∩ G̃ant is smooth and connected.

(iii) Aff(G̃) is factorial.

Then G̃aff is factorial as well. Moreover, the G̃ant-torsor ϕG̃ is trivial.
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Proof. Consider the connected algebraic group

G̃ := (Gaff ×Gant)/(Gant)aff ,

where (Gant)aff is embedded in Gaff × Gant via z 7→ (z, z−1). By the Rosenlicht
decomposition, the natural map G̃ → G is an isogeny, and induces an isomorphism
G̃ant → Gant. Moreover, G̃aff ∩ G̃ant

∼= (Gant)aff is smooth and connected. Replacing

G with G̃, we may thus assume that (i) and (ii) already hold for G.
Next, since Aff(G) is a connected affine algebraic group, there exists an isogeny

p : H → Aff(G), where H is a connected factorial affine algebraic group (see [FI73,
Prop. 4.3]). The pull-back under p of the extension (1.2) yields an extension

1 −→ Gant −→ G̃ −→ H −→ 1,

where G̃ is an algebraic group equipped with an isogeny π : G̃ → G. Clearly, G̃ is
connected and satisfies (i) and (iii) (since Aff(G̃) = H). To show (ii), note that

Alb(Gant) = Gant/(Gant)aff = Gant/(Gant ∩Gaff)

and hence the natural map Alb(Gant) → Alb(G) is an isomorphism. Since that map
is the composite

Alb(Gant) −→ Alb(G̃) −→ Alb(G)

induced by the natural maps Gant → G̃ → G, and the map Alb(G̃) → Alb(G) is

an isogeny, it follows that the map Alb(Gant) → Alb(G̃) is an isomorphism; this is
equivalent to (ii).

To show that G̃aff is factorial, note that G̃aff ∩ G̃ant is a connected commutative
affine algebraic group, and hence is factorial. Moreover, the exact sequence

1 −→ G̃aff ∩ G̃ant −→ G̃aff −→ Aff(G̃) −→ 1

yields an exact sequence of Picard groups

Pic(G̃aff ∩ G̃ant) −→ Pic(G̃aff) −→ Pic(Aff(G̃))

(see e.g. [FI73, Prop. 3.1]) which implies our assertion.
Finally, to show that ϕG̃ is trivial, write G̃aff ∩ G̃ant = TU as in the proof of

Proposition 2.3. Arguing in that proof, it suffices to show that the T -torsor G̃aff/U →

Aff(G̃) is trivial. But this follows from the factoriality of Aff(G̃). �

Remarks 2.5. (i) The commutative group H1
(

Aff(G), Gant

)

, that classifies the
isotrivial Gant-torsors over Aff(G), is torsion. Indeed, there is an exact sequence

H1
(

Aff(G), (Gant)aff
)

−→ H1
(

Aff(G), Gant

)

−→ H1
(

Aff(G),Alb(Gant)
)

(see [Se58, Prop. 13]). Moreover, H1
(

Aff(G),Alb(Gant)
)

is torsion by [Se58, Lem. 7],

and H1
(

Aff(G), (Gant)aff
)

is torsion as well, since Aff(G) is an affine variety with
finite Picard group.

(ii) One may ask whether there exists an isogeny π : G̃ → G such that the torsor αG̃

is trivial. The answer is affirmative when k is the algebraic closure of a finite field:
indeed, by a theorem of Arima (see [Ar60]), there exists an isogeny Gaff × A → G
where A is an abelian variety. However, the answer is negative over any other field:
indeed, there exists an anti-affine algebraic group G, extension of an elliptic curve
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by Gm (see e.g. [Br09a, Ex. 3.11]). Then G̃ is anti-affine as well, for any isogeny

π : G̃ → G (see [Br09a, Lem. 1.4]) and hence the map αG̃ cannot be trivial.

2.2. Chow ring. The aim of this subsection is to describe the Chow ring of the
connected algebraic group G in terms of those of A := Alb(G) and of B := Gaff/B,
the flag variety of Gaff . For this, we need some preliminary results on characteristic
homomorphisms.

We denote the character group of Gaff by X(Gaff). The Gaff -torsor αG : G → A
yields a characteristic homomorphism

(2.2) γA : X(Gaff) −→ Pic(A)

which maps any character to the class of the associated line bundle over A. Likewise,
we have the characteristic homomorphism

(2.3) cA : X(B) −→ Pic(A)

associated with the B-torsor αBGant
: BGant → A.

Lemma 2.6. The image of cA is contained in Pic0(A), and contains the image of γA
as a subgroup of finite index.

Proof. The first assertion is well known in the case that B is a torus, i.e., BGant is
a semi-abelian variety; see e.g. [Se59, VII.3.16]. The general case reduces to that
one as follows: we have B = TU , where U denotes the unipotent part of B, and T
is a maximal torus. Then U is a normal subgroup of BGant and the quotient group
H := (BGant)/U is a semi-abelian variety. Moreover, αBGant

factors as the U -torsor
BGant → H followed by the T -torsor αH : H → A, and cA has the same image as the
characteristic homomorphism X(T ) → Pic(A) associated with the torsor αH , under
the identification X(B) ∼= X(T ).

To show the second assertion, consider the natural map Gant → A, a torsor under
Gant ∩Gaff , and the associated homomorphism

σA : X(Gant ∩Gaff) −→ Pic(A).

Then γA is the composite map

X(Gaff)
u

−−−→ X(Gant ∩Gaff)
σA−−−→ Pic(A)

and likewise, cA is the composite map

X(B)
v

−−−→ X(Gant ∩Gaff)
σA−−−→ Pic(A)

where u, v denote the restriction maps. Moreover, v is surjective, and u has a finite
cokernel since Gant ∩Gaff ⊂ C(Gaff). �

Similarly, the B-torsor Gaff → Gaff/B yields a homomorphism

cB : X(B) −→ Pic(B)

that fits into an exact sequence

(2.4) 0 −→ X(Gaff) −→ X(B)
cB−−−→ Pic(B) −→ Pic(Gaff) −→ 0
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(see [FI73, Prop. 3.1]). More generally, the Chow ring A∗(Gaff) is the quotient of
A∗(B) by the ideal generated by the image of cB (see [Gr58, p. 21]). We now generalize
this presentation to A∗(G):

Theorem 2.7. With the notation and assumptions of this subsection, there is an
isomorphism of graded rings

(2.5) A∗(G) ∼=
(

A∗(A)⊗ A∗(B)
)

/I,

where I denotes the ideal generated by the image of the map

(cA, cB) : X(B) −→ Pic(A)× Pic(B) ∼= A1(A)⊗ 1 + 1⊗ A1(B).

Proof. Let cG/B : X(B) → Pic(G/B) denote the characteristic homomorphism. Then,
as in [Gr58, p. 21], we obtain that A∗(G) ∼= A∗(G/B)/J , where the ideal J is gen-
erated by the image of cG/B. But G/B ∼= A × B by Lemma 2.1 (iii). Moreover, the
natural map A∗(A)⊗ A∗(B) −→ A∗(A × B) is an isomorphism, as follows e.g. from
[FMSS95, Thm. 2]). This identifies Pic(G/B) with Pic(A) × Pic(B), and cG/B with
(cA, cB). �

The rational Chow ring A∗(G)Q admits a simpler presentation, which generalizes
the isomorphism A∗(Gaff)Q ∼= Q:

Proposition 2.8. With the notation and assumptions of this subsection, the pull-back
under αG yields an isomorphism

A∗(G)Q ∼= A∗(A)Q/JQ,

where J denotes the ideal of A∗(A) generated by the image of γA, i.e., by Chern
classes of Gaff-homogeneous line bundles.

Proof. Choose again a maximal torus T ⊂ B, with Weyl group

W := NGaff
(T )/CGaff

(T ).

Let S denote the symmetric algebra of the character group X(T ) ∼= X(B). Then
Theorem 2.7 yields an isomorphism

A∗(G) ∼=
(

A∗(A)⊗ A∗(B)
)

⊗S Z,

where A∗(A) is an S-module via cA, and likewise for A∗(B); the map S → Z is of
course the quotient by the maximal graded ideal. Moreover, cB induces an isomor-
phism A∗(B)Q ∼= SQ ⊗SW

Q
Q, where SW denotes the ring of W -invariants in S. This

yields in turn an isomorphism

A∗(G)Q ∼= A∗(A)Q ⊗SW
Q

Q ∼= A∗(A)Q/K,

where K denotes the ideal of A∗(A)Q generated by the image of the maximal ho-
mogeneous ideal of SW

Q . In view of [Vi89, Lem. 1.3], K is also generated by Chern
classes of Gaff -homogeneous vector bundles on A. Any such bundle admits a filtration
with associated graded a direct sum of B-homogeneous line bundles, since any finite-
dimensional Gaff -module has a filtration by B-submodules, with associated graded a
direct sum of one-dimensional B-modules. Furthermore, by Lemma 2.6, the Chern
class of any B-homogeneous line bundle is proportional to that of a Gaff -homogeneous
line bundle; this completes the proof. �
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Remark 2.9. Assume that Gaff is special, i.e., that any Gaff-torsor is locally trivial;
equivalently, the characteristic homomorphism S → A∗(B) is surjective (see [Gr58,
Thm. 3]). Then, by the preceding argument, A∗(G) = A∗(A)/K, where K is gen-
erated by Chern classes of Gaff -homogeneous vector bundles. Clearly, K ⊃ J ; this
inclusion may be strict, as shown by the following example.

Let L be an algebraically trivial line bundle on an abelian variety A; then there is
an extension

1 −→ Gm = AutA(L) −→ GL −→ A −→ 1,

where GL is a connected algebraic group contained in Aut(L) (the automorphism
group of the variety L). Consider the vector bundle E := L⊕L over A; then we have
an exact sequence

1 −→ AutA(E) −→ G −→ A −→ 1,

where G is a connected algebraic subgroup of Aut(E). Hence Gaff = AutA(E) ∼=
GL(2). Thus, the subring of A∗(A) generated by Chern classes of Gaff -homogeneous
vector bundles is also generated by the Chern classes of E, that is, by 2c1(L) and
c1(L)

2.
If that ring is generated by 2c1(L) only, then c1(L)

2 is an integral multiple of
4c1(L)

2, and hence is torsion in A2(A). But this cannot hold for all algebraically
trivial line bundles on a given abelian surface A over the field of complex numbers.
Otherwise, the products c1(L)c1(M), where L,M ∈ Pic0(A), generate a torsion sub-
group of A2(A) = A0(A). But by [BKL76, Thm. A2], that subgroup equals the kernel
T (A) of the natural map A0(A) → Z×A given by the degree and the sum. Moreover,
T (A) is non-zero by [Mu69], and torsion-free by [Ro80].

Corollary 2.10. Let g := dim(A), then Ai(G)Q = 0 for all i > g, and Ag(G)Q 6= 0.

Proof. Proposition 2.8 yields readily the first assertion; it also implies that Ag(G)Q
is the quotient of Ag(A)Q = A0(A)Q by a subspace consisting of algebraically trivial
cycle classes. �

Remark 2.11. Likewise, Ai(G) = 0 for all i > dim(B), in view of Theorem 2.7. This
vanishing result also follows from the fact that the abelian group A∗(G) is generated
by classes of B-stable subvarieties (see [FMSS95, Thm. 1]).

2.3. Picard group. By Theorem 2.7, the Picard group of G admits a presentation

(2.6) X(B)
(cA,cB)
−−−−→ Pic(A)× Pic(B) −−−→ Pic(G) −−−→ 0.

Another description of that group follows readily from the exact sequence of [FI73,
Prop. 3.1] applied to the locally trivial fibration αG : G → A with fibre Gaff :

Proposition 2.12. There is an exact sequence

(2.7) 0 −→ X(G) −→ X(Gaff)
γA−−−→ Pic(A) −→ Pic(G) −→ Pic(Gaff) −→ 0,

where γA is the characteristic homomorphism (2.2), and where all other maps are
pull-backs.
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Next, we denote by Pic0(G) ⊂ Pic(G) the group of algebraically trivial divisors
modulo rational equivalence, and we define the “Néron-Severi” group of G by

NS(G) := Pic(G)/Pic0(G).

Corollary 2.13. The exact sequence (2.7) induces an exact sequence

(2.8) 0 −→ X(G) −→ X(Gaff)
γA

−−−→ Pic0(A) −→ Pic0(G) −→ 0

and an isomorphism

(2.9) NS(G) ∼= NS(A)× Pic(Gaff).

In particular, the abelian group NS(G) is finitely generated, and the pull-back under
αG yields an isomorphism

(2.10) NS(G)Q ∼= NS(A)Q.

Proof. The image of γA is contained in Pic0(A) by Lemma 2.6. Also, note that
the pull-back under αG maps Pic0(A) to Pic0(G); similarly, the pull-back under the
inclusion Gaff ⊂ Gmaps Pic0(G) to Pic0(Gaff) = 0. In view of this, the exact sequence
(2.8) follows from (2.7).

Together with (2.6), it follows in turn that NS(G) is the quotient of NS(A)×Pic(B)
by the image of cB; this implies (2.9). �

Also, note that a line bundle M on A is ample if and only if α∗

G(M) is ample, as
follows from [Ra70, Lem. XI 1.11.1]. In other words, the isomorphism (2.10) identifies
both ample cones.

3. Homogeneous spaces

3.1. Two fibrations. Throughout this section, we fix a homogeneous variety X ,
i.e., X has a transitive action of the connected algebraic group G. We choose a point
x ∈ X and denote by H = Gx its stabilizer, a closed subgroup scheme of G. This
identifies X with the homogeneous space G/H ; the choice of another base point x
replaces H with a conjugate.

Since G/Gaff is an abelian variety, the product GaffH ⊂ G is a closed normal
subgroup scheme, independent of the choice of x. Moreover, the homogeneous space
G/GaffH is an abelian variety as well, and the natural map

αX : X = G/H −→ G/GaffH = X/Gaff

is the Albanese morphism of X . This is a G-equivariant fibration with fibre

GaffH/H ∼= Gaff/(Gaff ∩H).

If G acts faithfully on X , then H is affine in view of [Ma63, Lemma, p. 154]. Hence
Gaff has finite index in GaffH . In other words, the natural map

G/Gaff = Alb(G) −→ Alb(X) = G/GaffH ∼= Gant/(Gant ∩GaffH)

is an isogeny.
We may also consider the natural map

ϕX : X = G/H −→ G/GantH = X/Gant
∼= Gaff/(Gaff ∩GantH).
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Note that the central subgroup Gant ⊂ G acts on X via its quotient

Gant/(Gant ∩H) ∼= GantH/H,

an anti-affine algebraic group. Moreover, ϕX is a torsor under that group. In partic-
ular, if G acts faithfully on X , then Gant∩H is trivial, and hence ϕX is a Gant-torsor.

Like the Albanese morphism αX , the map ϕX only depends on the abstract variety
X : this follows from our next result, which generalizes [BP08, Lem. 2.1] (about
actions of abelian varieties) to actions of anti-affine groups.

Lemma 3.1. Given a variety Z, there exists an anti-affine algebraic group Autant(Z)
of automorphisms of Z, such that every action of an anti-affine algebraic group Γ
on Z arises from a unique homomorphism Γ → Autant(Z). Moreover, Autant(Z)
centralizes any connected group scheme of automorphisms of Z.

For a homogeneous variety X as above, we have

Autant(X) = Gant/(Gant ∩H).

Proof. Consider an anti-affine algebraic group Γ and a connected group scheme G,
both acting faithfully on Z. Arguing as in the proof of [BP08, Lem. 2.1] and replacing
the classical rigidity lemma for complete varieties with its generalization to anti-affine
varieties (see [SS08, Thm. 1.7]), we obtain that Γ centralizes G.

Next, we claim that dim(Γ) ≤ 3 dim(Z). To see this, let Γaff = U × T where U is
a connected commutative unipotent group and T is a torus, and put A := Γ/Γaff so
that dim(Γ) = dim(T ) + dim(U) + dim(A). Then dim(T ) ≤ dim(Z) since the torus
T acts faithfully on Z. Moreover, dim(U) ≤ dim(A) by [Br09a, Thm. 2.7]. Finally,
dim(A) ≤ dim(Z) since the action of Γ on Z induces an action of A = Alb(Γ) on
the Albanese variety of the smooth locus of Z, and that action has a finite kernel
by a theorem of Nishi and Matsumura (see [Ma63], or [Br09b] for a modern proof).
Putting these facts together yields the claim.

In turn, the claim implies the first assertion, in view of the connectedness of anti-
affine groups.

For the second assertion, we may assume that G acts faithfully on X . Then
Gant ⊂ Autant(X) =: Γ, and Γ centralizes G. Thus, Γ acts on X/Gant so that ϕX is
equivariant. But X/Gant is homogeneous under Gaff , and hence has a trivial Albanese
variety. By the Nishi-Matsumura theorem again, it follows that every connected
algebraic group acting faithfully on X/Gant is affine. Since Γ is anti-affine, it must
act trivially on X/Gant. In particular, each orbit of Γ in X is an orbit of Gant. But
Γ acts freely on X (since the product ΓG ∼= (Γ × G)/Gant is a connected algebraic
group acting faithfully on X , and (ΓG)ant = Γ.) It follows that Γ = Gant. �

Proposition 3.2. Assume that G acts faithfully on X. Then the product map

(3.1) πX := (αX , ϕX) : X −→ X/Gaff ×X/Gant

is a torsor under GaffH ∩ Gant, an affine commutative group scheme which contains
(Gant)aff as an algebraic subgroup of finite index.

Proof. The map πX is identified with the natural map

G/H −→ G/GaffH ×G/GantH.
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By the Rosenlicht decomposition (1.3), the right-hand side is homogeneous under G;
it follows that we may view πX as the natural map

G/H −→ G/(GaffH ∩GantH).

But H is a normal subgroup scheme of GantH , and hence of GaffH∩GantH . Moreover,

GaffH ∩GantH = (GaffH ∩Gant)H ∼= (GaffH ∩Gant)×H,

since GaffH ∩ Gant centralizes H , and (GaffH ∩ Gant) ∩ H = Gant ∩ H is trivial by
the faithfulness assumption. It follows that πX is a torsor under GaffH ∩ Gant. The
latter group scheme contains Gaff ∩Gant as a normal subgroup scheme, and

(GaffH ∩Gant)/(Gaff ∩Gant) ∼= (GaffH ∩Gant)Gaff/Gaff = GaffH/Gaff

where the latter equality follows again from (1.3). As a consequence, the quotient
(GaffH ∩Gant)/(Gaff)ant is finite; this completes the proof. �

We now obtain a criterion for the local triviality of ϕX , which generalizes Proposi-
tion 2.3 (i) with a different argument. The map αX is not necessarily locally trivial,
as shown by Example 3.4.

Proposition 3.3. Assume that G acts faithfully on X. Then the Gant-torsor ϕX

is locally trivial if and only if Gaff ∩ Gant = (Gant)aff and H ⊂ Gaff . Under these
assumptions, πX is locally trivial as well.

Proof. If ϕX is locally trivial, then X contains an open Gant-stable subset, equiv-
ariantly isomorphic to Gant × Y , where Y is an open subset of X/Gant. It follows
that

Alb(X) ∼= Alb(Gant × Y ) ∼= Alb(Gant)× Alb(Y ) ∼= Alb(Gant)×Alb(X/Gant).

But Alb(X/Gant) is trivial, since X/Gant is homogeneous under Gaff . As a conse-
quence, the natural map

Alb(Gant) = Alb(GantH/H) −→ Alb(G/H) = Alb(X)

is an isomorphism. Now recall that

Alb(Gant) = Gant/(Gant)aff and Alb(X) = Gant/(Gant ∩GaffH).

It follows that

(3.2) (Gant)aff = Gant ∩GaffH.

In particular, (Gant)aff = Gant ∩Gaff , and

GaffH = Gaff(Gant ∩GaffH) = Gaff(Gant)aff = Gaff ,

i.e., H ⊂ Gaff .
Conversely, if (Gant)aff = Gant ∩ Gaff and H ⊂ Gaff , then (3.2) clearly holds. As a

consequence, πX is locally trivial. Moreover, X/Gant
∼= Gaff/(Gant)affH and (Gant)aff∩

H is trivial. Thus, the natural map Gaff/H −→ Gaff/(Gant)affH is a (Gant)aff -torsor,
and hence has local sections. Since Gaff/H is a closed subvariety of X , this yields
local sections of ϕX . �
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Example 3.4. Let G := A× SL(2), where A is an abelian variety. Denote by T the
diagonal torus of SL(2), and let H be the subgroup of G generated by T and (a, n),
where a ∈ A is a point of order 2, and n is any point of NSL(2)(T ) \ T . Then the
Albanese morphism of G/H is not locally trivial.

Otherwise, the pull-back

i∗ : Pic(G/H) −→ Pic(GaffH/H)

(under the inclusion i : GaffH/H → G/H) is surjective, since GaffH/H is a fibre of
αG/H . We now show that Pic(GaffH/H) ∼= Z, and

α∗

G/H : Pic
(

Alb(G/H)
)

−→ Pic(G/H)

is an isomorphism over the rationals. Since the composite map i∗α∗

G/H is zero, this
yields a contradiction.

Clearly, Gaff = SL(2) and Gaff ∩H = H0 = T , and hence

GaffH/H ∼= Gaff/(Gaff ∩H) ∼= SL(2)/T.

As a consequence, Pic(GaffH/H) ∼= X(T ) ∼= Z. Moreover, G/H0 ∼= A × SL(2)/T
equivariantly for the action of H/H0. The latter group has order 2, and its non-
trivial element acts via translation by a on A, and via right multiplication by n on
SL(2)/T . Since the natural map G/H0 → G/H is the quotient by H/H0 acting via
right multiplication, we obtain by [Fu98, Ex. 1.7.6]:

Pic(G/H)Q ∼= Pic(G/H0)
H/H0

Q
∼= Pic

(

A× SL(2)/T
)(a,n)

Moreover, the natural map Pic(A) × Pic
(

SL(2)/T
)

→ Pic
(

A × SL(2)/T
)

is an
isomorphism, since the variety SL(2)/T is rational. Also, n acts via multiplication
by −1 on Pic

(

SL(2)/T
)

∼= Z. This yields an isomorphism

(3.3) Pic(G/H)Q ∼= Pic(A)aQ
∼= Pic(A/a)Q,

where A/a = G/GaffH is the Albanese variety of G/H (this description of the rational
Picard group will be generalized to all homogeneous spaces in the final subsection).
The isomorphism (3.3) is obtained from the pull-back Pic(A) → Pic

(

A × SL(2)/T
)

under αG/H0 , and hence is the pull-back under αG/H .

3.2. Complete homogeneous spaces. In this subsection, we describe the subgroup
schemes H ⊂ G such that G/H is complete, in terms of the Rosenlicht decomposition.

Theorem 3.5. Let G be a connected algebraic group, and H a closed subgroup
scheme. Then the homogeneous space G/H is complete if and only if

(3.4) H = (H ∩Gaff)(H ∩Gant)

where both Gaff/(H ∩Gaff) and Gant/(H ∩Gant) are complete; equivalently, H ∩Gaff

contains a Borel subgroup of Gaff , and H ∩Gant contains (Gant)aff .
Under these assumptions, the map (3.1),

πG/H : G/H −→ G/GaffH ×G/GantH ∼= Gant/(H ∩Gant)×Gaff/(H ∩Gaff)

is an isomorphism, Gant/(H ∩ Gant) is an abelian variety, and Gaff/(H ∩ Gaff) is a
(complete, homogeneous) rational variety.
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Proof. If (3.4) holds, then the Rosenlicht decomposition yields a surjective morphism

Gaff/(H ∩Gaff)×Gant/(H ∩Gant) −→ G/H,

and hence G/H is complete.
To show the converse, we first argue along the lines of the proof of [Br09b, Thm. 4].

If G/H is complete, then H contains a Borel subgroup B ⊂ Gaff by Borel’s fixed
point theorem. Hence Gaff ∩ Gant fixes the base point of G/H , by Lemma 2.1. But
Gaff ∩ Gant is contained in the centre of G, and hence acts trivially on G/H . Thus,
we may replace G with G/(Gaff ∩Gant), and hence assume that

G ∼= A×Gaff ,

where A is an abelian variety. In particular, Gant = A.
Also, note that the radical R(Gaff) fixes a point of G/H , and hence is contained in

H . Thus, we may assume that Gaff is semi-simple.
We may further assume that A acts faithfully on G/H ; then the (scheme theoretic)

intersection A ∩H is just the neutral element eA. Thus, the second projection

p2 : G −→ Gaff

restricts to a closed immersion H →֒ Gaff . In particular, H is affine; therefore, the
reduced neutral component H0

red is contained in Gaff . Clearly, H0
red contains B, and

hence is a parabolic subgroup of G that we denote by P . Moreover, p2(H) contains
P as a subgroup of finite index; thus, p2(H)red = P . It follows that Hred = P .

We now diverge from the proof in [Br09b, Thm. 4], which relies on the Bialynicki-
Birula decomposition. Choose a parabolic subgroup P− ⊂ Gaff opposite to P . Then
the product

P Ru(P
−) ∼= P ×Ru(P

−)

is an open neighborhood of P in Gaff , and hence of p2(H) as well. Thus, p2(H) =
P
(

Ru(P
−) ∩H)

)

where Ru(P
−) ∩H is a finite (local) group scheme, normalized by

the Levi subgroup L = P ∩ P− of P . It follows that

H = P Γ,

where Γ :=
(

A × Ru(P
−)
)

∩ H is isomorphic to Ru(P
−) ∩ H via p2; note that L

normalizes Γ. Next, choose a maximal torus T ⊂ L. Then T acts on A×Ru(P
−) by

conjugation, and the quotient (in the sense of geometric invariant theory) is the first
projection

p1 : A×Ru(P
−) −→ A

with image the T -fixed point subscheme. Thus, for the closed T -stable subscheme
Γ ⊂ A × Ru(P

−), the quotient is the restriction of p1 with image A ∩ Γ. But
A ∩ Γ ⊂ A ∩H is trivial. Hence so is p1(Γ) = p1(H), i.e., H ⊂ Gaff . Thus,

G/H = A× (Gaff/H)

with projections αG/H and ϕG/H . This proves all our assertions. �

Remarks 3.6. (i) Theorem 3.5 gives back the isomorphism G/B ∼= A × Gaff/B,
obtained in Lemma 2.1 via a more direct argument.
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(ii) It is easy to describe the affine or quasi-affine homogeneous spaces in terms of
the Rosenlicht decomposition. Specifically, G/H is affine (resp. quasi-affine) if and
only if G contains Gant and Gaff/(H ∩Gaff) is affine (resp. quasi-affine). Indeed, Gant

acts trivially on any quasi-affine variety, as follows e.g. from [Br09a, Lem. 1.1].

3.3. Rational Chow ring. In this subsection, we describe the rational Chow ring
A∗(G/H)Q, where G/H is as in Subsection 3.1. We may assume that G acts faithfully
on G/H , and hence that H is affine; in particular, H0 ⊂ Gaff . We may assume in
addition that H is reduced. Indeed, for an arbitrary subgroup scheme H , the natural
map π : G/Hred → G/H is a torsor under the infinitesimal group scheme H/Hred;
thus, π is finite and bijective, and

π∗ : A∗(G/Hred) −→ A∗(G/H)

is an isomorphism over Q.
To state our result, we need some notation and preliminaries. Let T ⊂ Gaff be a

maximal torus, and W its Weyl group. Denote by S = ST the symmetric algebra of
the character group X(T ); thenW acts on S, and the invariant ring SW is independent
of the choice of T ; we denote that graded ring by SGaff

.

Lemma 3.7. (i) The restriction to T induces an injective homomorphism X(Gaff) →
X(T )W with finite cokernel. In particular,

(3.5) X(Gaff)Q ∼= S1
Gaff ,Q

(the subspace of homogeneous elements of degree 1).

(ii) Choose a maximal torus TH of H, and a maximal torus T of G containing TH .
Then the restriction to TH induces a homomorphism of graded rings

(3.6) rH0 : SGaff
−→ SH0 .

Moreover, the quotient H/H0 acts on SH0, and the image of rH0 is contained in the
invariant subring.

Proof. (i) The assertion is well known if Gaff is reductive. The general case reduces
to that one by considering Ḡaff := Gaff/Ru(Gaff), a connected reductive group with
character group isomorphic to X(Gaff). Indeed, the image of T in Ḡaff is a maximal
torus T̄ , isomorphic to T . Moreover, the corresponding Weyl group W̄ satisfies
X(T )W ∼= X(T̄ )W̄ : to see this, it suffices to show that the map NGaff

(T ) → NḠaff
(T̄ ) is

surjective. Let g ∈ Gaff such that its image ḡ normalizes T̄ . Then gTg−1 is a maximal
torus of Ru(Gaff)T , a connected solvable subgroup of Gaff . Thus, gTg

−1 = γ−1Tγ for
some γ ∈ Ru(Gaff). Replacing g with gγ (which leaves ḡ unchanged), we obtain that
g ∈ NGaff

(T ).
(ii) We claim that the restriction ST → STH

maps SW to the subring of invariants
of NGaff

(TH). Indeed, given g ∈ NGaff
(TH), the conjugate g−1Tg contains TH , and

hence is a maximal torus of CGaff
(TH). Thus, there exists γ ∈ CGaff

(TH) such that
g−1Tg = γTγ−1. Replacing again g with gγ, we may assume that g ∈ NGaff

(T ); this
yields our claim.

By that claim, rH0 is well defined. To prove the final assertion, we may replace
H with H ∩Gaff , since each element of the quotient H/(H ∩Gaff) ∼= GaffH/Gaff has
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a representative in the centre of G. Using the conjugacy of maximal tori in H0, we
obtain as above that H ∩Gaff = H0NH∩Gaff

(TH). In other words,

H/H0 ∼= NH∩Gaff
(TH)/NH0(TH)

which yields the desired invariance. �

We may now formulate our description of A∗(G/H)Q:

Theorem 3.8. Let G be a connected algebraic group with Albanese variety A, and let
H ⊂ G be an affine algebraic subgroup. Consider the action of the finite group H/H0

on A∗(A) via the action of its quotient H/(H ∩Gaff) on A = G/Gaff by translations,
and its action on SH0,Q as in Lemma 3.7. Then

A∗(G/H)Q =
(

A∗(A)Q ⊗ SH0,Q

)H/H0

/I,

where I denote the ideal generated by the image of

(γA, r
+
H0) : X(Gaff)Q × S+

Gaff ,Q
−→ Pic(A)Q × S+

H0,Q
∼= A1(A)Q ⊗ 1 + 1⊗ S+

H0,Q.

Here γA denotes the characteristic homomorphism (2.2), and r+H0 : S+
Gaff ,Q

→ S+
H0,Q

denotes the restriction of the map (3.6) to the maximal graded ideals.

Proof. Note first that the image of γA does consist of invariants of H/H0, since it is
contained in Pic0(A), the invariant subgroup of Pic(A) for the action of A on itself
by translations. Likewise, the image of r+H0 consists of invariants by Lemma 3.7.

We now employ arguments of equivariant intersection theory (see [EG98]); for later
use, we briefly review its construction.

Given a linear algebraic group H and an integer i ≥ 0, there exist an H-module
V and an open H-stable subset U ⊂ V such that the quotient U → U/H exists and
is an H-torsor, and codimV (V \ U) > i (this may be seen as an approximation of
the classifying bundle EH → BH). For any H-variety X , we may form the “mixed
quotient”

X ×H U := (X × U)/H,

where H acts diagonally on X × U . The Chow group Ai(X ×H U) turns out to
be independent of the choices of V and U ; this defines the equivariant Chow group
Ai

H(X). If X is smooth, then

A∗

H(X) :=
⊕

i

Ai
H(X)

is equipped with an intersection product which makes it a graded algebra. In partic-
ular, the equivariant Chow ring of the point is a graded algebra denoted by A∗(BH),
and A∗(BH)Q ∼= SH,Q if H is connected. Moreover, A∗

H(X) is a graded algebra over
A∗(BH).

We now prove four general facts of equivariant intersection theory which are vari-
ants of known results, but for which we could not find any appropriate references.

Step 1. For any smooth variety X equipped with an action of a connected linear
algebraic group Gaff , we have an isomorphism of graded rings

A∗(X)Q ∼= A∗

Gaff
(X)Q ⊗SGaff ,Q

Q,
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where the map SGaff ,Q → Q is the quotient by the maximal graded ideal.
Indeed, if Gaff is a torus, then the statement holds in fact over the integers, by

[Br97, 2.3 Cor. 1]. For an arbitrary Gaff with maximal torus T and Weyl group W ,
the definition of equivariant Chow groups combined with [Vi89, Thm. 2.3] yields a
natural isomorphism

(3.7) A∗

Gaff
(X)Q ⊗SGaff ,Q

ST,Q
∼= A∗

T (X)Q

which in turn implies our assertion.

Step 2. There is an isomorphism of graded rings

A∗

Gaff
(G/H) ∼= A∗

H(A).

Indeed, for a fixed degree i and an approximation V ⊃ U → U/Gaff as above, we
have

Ai
Gaff

(G/H) = Ai(G/H ×Gaff U) = Ai
(

(G× U)/(Gaff ×H)
)

.

This yields isomorphisms

Ai
Gaff

(G/H) ∼= Ai
Gaff×H(G× U) ∼= Ai

Gaff×H(G),

where the first one follows from [EG98, Prop. 8], and the second one holds since
G × U is open in G × V and the complement has codimension > i. By symmetry,
this implies our assertion.

Step 3. For any smooth variety X equipped with an action of the linear algebraic
group H , the finite group H/H0 acts on A∗

H0(X), and we have an isomorphism

A∗

H(X)Q ∼= A∗

H0(X)
H/H0

Q .

Indeed, by the definition of equivariant Chow groups, we may reduce to the case
where the quotient X → X/H exists and is an H-torsor. Then

A∗

H(X)Q ∼= A∗(X/H)Q ∼= A∗(X/H0)
H/H0

Q
∼= A∗

H0(X)
H/H0

Q ,

where the first and last isomorphism follow from [EG98, Prop. 8] again, and the
middle one from [Fu98, Ex. 1.7.6].

Step 4. In the situation of Step 3, assume in addition that H0 acts trivially on X .
Then there is an isomorphism

A∗

H(X)Q ∼=
(

A∗(X)Q ⊗ SH0,Q

)H/H0

.

Indeed, by Step 3, we may reduce to the case whereH is connected. ThenX×HU ∼=
X × U/H ; this defines a homomorphism of graded rings A∗(X) → A∗

H(X) and, in
turn, a homomorphism of graded A∗(BH)-algebras

f : A∗(X)⊗A∗(BH) −→ A∗

H(X).

If H is a torus, then f is an isomorphism, as follows from [Br97, Thm. 2.1]. For
an arbitrary H with maximal torus T , (3.7) implies that f is an isomorphism after
tensor product with ST,Q over SH,Q. Since ST,Q is faithfully flat over SH,Q, this yields
our assertion.
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We may now prove Theorem 3.8: by Steps 1 and 2,

A∗(G/H)Q ∼= A∗

Gaff
(G/H)Q ⊗SGaff ,Q

Q ∼= A∗

H(A)Q ⊗SGaff ,Q
Q,

where H acts on A via its quotient H/(H ∩ Gaff). Since H ∩ Gaff contains H0, we
obtain by Steps 3 and 4:

A∗(G/H)Q ∼=
(

A∗(A)Q ⊗ SH0,Q

)H/H0

⊗SGaff ,Q
Q,

where SGaff ,Q acts on A∗(A)Q via the characteristic homomorphism, and on SH0,Q via
the restriction. This yields our assertion. �

This description of A∗(G/H)Q takes a much simpler form in the case thatH ⊂ Gaff :

Corollary 3.9. Let G be a connected algebraic group with Albanese variety A, and
let H be an algebraic subgroup of Gaff . Then

(3.8) A∗(G/H)Q ∼= A∗(A)Q/J ⊗ A∗(Gaff/H)Q,

where J denotes the ideal of A∗(A)Q generated by γA
(

ker(rH)
)

.

Proof. Note that H/H0 acts trivially on A, and hence on A∗(A). Also, by Theorem

3.8 applied to Gaff/H , the ring A∗(Gaff/H)Q is the quotient of (SH0

Q
)H/H0

by the ideal

generated by the image of γA. This implies (3.8) in view of Theorem 3.8 again. �

3.4. Rational Picard group. In this subsection, we obtain an analogue of the
exact sequence (2.7) for homogeneous spaces. To formulate the result, we construct
a “restriction map”

(3.9) rH : X(Gaff)Q −→ X(H)Q

(although H is not necessarily contained in Gaff). The image of the restriction
X(Gaff) → X(H0) consists of invariants of H/H0, since any character of Gaff is in-
variant under the action of G by conjugation. Moreover,

(3.10) X(H0)
H/H0

Q
∼= X(H)Q

(this isomorphism may be obtained by viewing X(H) as the group of algebraic classes
H1

alg(H, k∗); alternatively, it follows from the isomorphism X(H) ∼= A1(BH), a con-
sequence of [EG98, Thm. 1], together with Step 3 where X is a point). This yields
the desired map, and we may now state:

Proposition 3.10. There is an exact sequence
(3.11)

0 −→ X(G/H)Q −→ X(Gaff)Q
(γA,rH)
−−−−→ Pic(A/H)Q × X(H)Q −→ Pic(G/H)Q −→ 0,

where X(G/H) denotes the group of characters of G which restrict trivially to H (so
that X(G/H) ∼= O(G/H)∗/k∗), γA is the characteristic homomorphism (2.2), and rH
is the restriction map (3.9).

If H is contained in Gaff (e.g., if H is connected), then there is an exact sequence
(3.12)

0 −→ X(G/H) −→ X(Gaff)
(γA,rH )
−−−−→ Pic(A)× X(H) −→ Pic(G/H) −→ Pic(Gaff),

where rH denotes the (usual) restriction to H.
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Proof. By Theorem 3.8, Pic(G/H)Q is the quotient of
(

Pic(A)Q×S1
H0,Q

)H/H0

by the

image of (γA, rH0). Moreover,

(

Pic(A)Q
)H/H0

∼= Pic(A/H)Q

by [Fu98, Ex. 1.7.6] again, since H acts on A via its finite quotient H/(H ∩ Gaff).
Also, S1

H0,Q
∼= X(H0)Q by (3.5), and hence

(

S1
H0,Q

)H/H0

∼= X(H)Q

in view of (3.10). This yields the exact sequence (3.11), except for the description of
the kernel of (γA, rH). But the kernel of γA is X(G)Q by Proposition 2.12, and the
kernel of the induced map X(G)Q → X(H)Q is X(G/H0)Q in view of the definition
of rH . Moreover, there is an exact sequence

0 −→ X(G/H) −→ X(G/H0) −→ X(H/H0)

and hence X(G/H0)Q = X(G/H)Q; this completes the proof of (3.11).
To show (3.12), we use the exact sequence (see [KKV89, Sec. 2])

X(Gaff) −→ PicGaff
(G/H) −→ Pic(G/H) −→ Pic(Gaff),

where PicGaff
(G/H) denotes the group of isomorphism classes of Gaff -linearized line

bundles on G/H (so that PicGaff
(G/H) = A1

Gaff
(G/H) in view of [EG98, Thm. 1]).

Also,

PicGaff
(G/H) ∼= PicGaff×H(G) ∼= PicH(G/Gaff) ∼= PicH(A) ∼= Pic(A)× X(H),

where the last isomorphism holds since H acts trivially on A. As above, this yields
(3.12) except for the description of the kernel of (γA, rH), which follows again from
Proposition 2.12. �

This yields the following descriptions of Pic0(G/H) and of the “Néron-Severi
group” NS(G/H) := Pic(G/H)/Pic0(G/H), by arguing as in the proof of Corol-
lary 2.13:

Corollary 3.11. The pull-back under the quotient map G → G/H yields an isomor-
phism

Pic0(G/H)Q ∼= Pic0(G)Q.

Moreover,

NS(G/H)Q ∼= NS(A/H)Q × X(H)Q/rH
(

X(Gaff)Q
)

.

In particular, NS(G/H)Q is a finite-dimensional vector space.
If H ⊂ Gaff , then Pic0(G/H) ∼= Pic0(G); if in addition Gaff is factorial, then

NS(G/H) ∼= NS(A)×X(H)/rH
(

X(Gaff)
)

∼= NS(A)× Pic(Gaff/H).
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