
HAL Id: hal-00420017
https://hal.science/hal-00420017v1

Submitted on 5 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-Based Approach to Modeling Dynamic
Architecture: Appliocation to Mobile Ad Hoc Network

J. Christian Attiogbe

To cite this version:
J. Christian Attiogbe. Event-Based Approach to Modeling Dynamic Architecture: Appliocation to
Mobile Ad Hoc Network. ISoLA 2008, Oct 2008, Porto-sani, Greece. pp.769-781, �10.1007/978-3-540-
88479-8_55�. �hal-00420017�

https://hal.science/hal-00420017v1
https://hal.archives-ouvertes.fr

Event-Based Approach to Modelling Dynamic
Architecture:

Application to Mobile Ad-Hoc Network

Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

Christian.Attiogbe@univ-nantes.fr

Abstract. We describe an event-based approach to specifiy systems
with dynamically evolving architecture; the study is illustrated with the
structuring and routing in Mobile Ad-hoc Network. The resulting spec-
ification is augmented with desired properties and then analysed using
theorem proving and model checking tools.

Keywords: Specification, Verification, Dynamic Architecture, Event B.

1 Introduction

Distributed systems modelling, design, analysis and implementation are difficult
engineering tasks. They still pose challenging specification and analysis difficul-
ties. To master them one needs specific languages, methods and tools.

The general motivation of our work is the need for practical methods, tech-
niques and tools to help the developers in specifying and analysing asynchronous
systems with dynamically evolving architecture. They are systems composed of
several processes (multi-process) but their number and their structure may be
varying in the time. In this article we focus on the systematic specification and
analysis of these multi-process systems with evolving structure. We use Mobile
Ad-hoc Networks (MANET) as application domain. The expression dynamic
architecture refers to the evolving structure of such systems.

The contribution of this work is twofold: i) an event-based method to guide
the specification and analysis of multi-process systems that have dynamic archi-
tecture; ii) a proof of concept on mobile ad-hoc network modelling and analysis.

The remainder of the article is organised as follows: in the section 2 we describe
the main features of dynamic architectures and we present our specification
method. Section 3 provides an overview of the used tools (Event B and Pro
B). Section 4 presents the modelling and analysis of MANET. Finally Section 5
concludes the article.

2 Modelling Dynamic Architecture

In many specification contexts, one has to deal with dynamic configuration of the
systemarchitecture : an example is the growing number of client processes that par-
ticipate in a resource allocation system and that interact with the resource server.

T. Margaria and B. Steffen (Eds.): ISoLA 2008, CCIS 17, pp. 769–781, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

770 C. Attiogbé

2.1 Features of Multi-process Systems

Two main features characterise systems with dynamic architecture: structuring
and interaction.

The structure of a classical centralised software system is based on the compo-
sition of several sub-systems or processes. They are often parallely composed to
enable synchronisation and communication. Unlikely, decentralised systems with
dynamically evolving architecture have unfixed but varying structure. They can-
not be structuredwith parallel operators that compose a fixed number of processes;
they have an ad-hoc structure related to the number of involved processes.

Interaction is supported by communication and synchronisation between a
group of processes currently involved in the cooperation to achieve given goals
(the ones defined at the global system level). A group communication is then
needed for systems with dynamic architecture. But the structure of the group,
hence the architecture of the system, is varying; processes may join or leave
the group at any time. The interaction among the processes that compose the
system is based on message passing. A process of a group may send/receive
messages to/from other processes of the group. Regarding approaches such as
finite state automata, multi-process systems are often dealt with by considering
the composition or reasoning on an arbitrary high number of processes. However,
it is a biased solution to the problem of dynamic architecture.

2.2 Related Specification Approaches

State Transitions or FSM Approach. Capturing a process behaviour is intuitive
but state transition systems lack high level structures for complex processes.
Handling an undefined, variable number of processes is not tractable; dealing
with several instances of the same processes is not possible; synchronisation of
processes should be made explicit.

Process algebras. (such as CCS [16], CSP[18], LOTOS[15]) generalise state tran-
sition approaches and are widely used to model interacting processes; herein the
behaviours of elementary processes are described and then the parallel compo-
sition operators are used to combine the processes. Therefore the architecture
of a system is also a static composition of a finite number of processes. The
π−calculus [17] permits the description of evolving structures of processes but
new processes are generated from existing ones with the name passing mecha-
nisms; the π−calculus is also not yet well supported by tools.

Handling dynamic behaviour of processes and their architecture is not well
treated with the above classical approaches. Event-based approaches provide so-
lutions, they do not consider a specific configuration of communicating processes.
Events may be guarded and their occurrence may impact on any process of the
current system architecture.

B System Approach. The Event B approach is an event-based one where commu-
nicating asynchronous systems are modelled with the interleaved composition of
their behaviours viewed as event occurrences. A difficult concern is that of the

Event-Based Approach to Modelling Dynamic Architecture 771

completeness with respect to event ordering (liveness concerns): did the speci-
fication cover all the possible evolution (event sequences) expressed in the re-
quirement? Indeed one can have a consistent system (with respect to the stated
invariant) which does not meet the desired behavioural requirements. This is
particularly challenging for dynamically evolving systems.

Therefore rigorous guidelines are needed to help in discovering and expressing
the desired behaviours of a system with dynamic architecture; liveness properties
help to cover the related completeness aspect. The approach [5] that is used here
combines a process-oriented view (at low level) and an event-based one (at global
level); it copes with the specification of the dynamically interacting processes and
deals with the limitations described above. As an experimental framework we
use the Event-B method.

2.3 The Specification Method: Overview

The used specification method is summarised as follows.

– Structuring aspects: each identified type of process Pi that may participate
in the global system model is specified by considering its space state Si and
the events Ei with their description Evti that leads its behaviour and the
events to join and leave the system. Note that some events are common to
several processes; they handle interaction ans sharing aspects.

Pi =̂ 〈Si ,Ei ,Evti〉

At this low level, a process-oriented view is consider to discover the needed
events for a process behaviour.

– Interaction aspects: as far as communication is concerned we use guarded
events, message passing and ordering event occurrences; the processes syn-
chronise and communicate through the enabling/disabling of the guards of
their events. An event is used to model a process which is waiting for a
data; it may be blocked until the availability of the data (enabling the event
guard), which is the effect produced by another process event. Consider for
example the case of processes exchanging messages, one process waits for
the message and the other process sends the message. An abstract channel
modelled as a set, is used to wait for a message or to deposit it. Hence the
interaction between the processes are handled using common abstract chan-
nels. By the way, the communication is achieved in a completely decoupled
way to favour dynamic structuring.

– All the described processes are combined by a fusion operation that merges
state spaces and the events of the processes into a single global system S .

S =̂
⊎

i

〈Si ,Ei ,Evti〉

In the following the method is illustrated with the MANET system using B
abstract system.

772 C. Attiogbé

3 Overview of the Used Materials

In this study we use the Event B method as the practical framework of our spec-
ification method of the MANETs. Prior to the formal specification we provide
an overview of the Event B method[2,4] and the related Pro B tool[13].

3.1 Overview of Event B

Within the Event B framework, asynchronous systems may be developed and
structured using abstract systems [2,4]. Abstract systems are the basic structures
of the so-called event-driven B, and they replace the abstract machines which are
the basic structures of the earlier operation-driven approach of the B method[1].
An abstract system [2,4] describes a mathematical model of a system behav-
iour1. It is made mainly of a state description (constants, properties, variables
and invariant) and several event descriptions. Abstract systems are comparable
to Action Systems [7]; they describe a nondeterministic evolution of a system
through guarded actions. Dynamic constraints can be expressed within abstract
systems to specify various liveness properties [4,10]. The state of an abstract
system is described by variables and constants linked by an invariant. Variables
and constants represent the data space of the system being formalised. Abstract
systems may be refined like abstract machines [10,3].

Data of an Abstract System. At a higher level an abstract system models
and contains the data of an entire system, be it distributed or not. Abstract
systems have been used to formalise the behaviour of various (including distrib-
uted) systems [2,9,10,3]. Considering a global vision, the data that are formalised
within the abstract system may correspond to all the elements of the distributed
system.

Events of an Abstract System. Within B, an event is considered as the
observation of a system transition. Events are spontaneous and show the way a
system evolves. An event e is modelled as a guarded substitution: e =̂ eG =⇒ eB
where eG is the event guard and eB the event body or action.

An event may occur or may be observed only when its guard holds. The ac-
tion of an event describes, with generalised substitutions, how the system state
evolves when this event occurs. Several events may have their guards held simul-
taneously; in this case, only one of them occurs. The system makes internally
a nondeterministic choice. If no guard is true the abstract system is blocking
(deadlock).

An event has one of the general forms (Fig. 1) where gcv denotes the global
constants and variables of the abstract system containing the event; bv denotes
the bound variables (variables bound to any). P(bv ,gcv) denotes a predicate
P expressed with the variables bv and gcv ; in the same way GS(bv ,gcv) is a
generalised substitution S which models the event action using the variables bv
1 A system behaviour is the set of its possible transitions from state to state beginning

from an initial state.

Event-Based Approach to Modelling Dynamic Architecture 773

eventName �=
select P(gcv)

then GS(gcv)

end

(SELECT Form)

eventName �=
any bv where P(bv,gcv)

then GS(bv,gcv)

end

(ANY Form)

Fig. 1. General forms of events

and gcv . The select form is a particular case of the any form. The guard of
an event with the select form is P(gcv). The guard of an event with the any

form is ∃(bv).P(bv ,gcv).

Semantics and Consistency. The semantics of a B model described as an
abstract system relies on its invariant and is guaranteed by proof obligations
(POs). The consistency of the model is established by such proof obligations:

i) the initialisation U should establish the invariant I : [U]I ;
ii) each event of the given abstract system should preserve the invariant of the
model.

The proof obligation of an event with the any form (Fig. 1) is:

I(gcv) ∧ P(bv ,gcv) ∧ term(GS(bv ,gcv)) ⇒ [GS(bv ,gcv)]I(gcv)

where I(gcv) stands for the invariant of the abstract system.
The predicate term(GS(bv ,gcv)) expresses that the event should terminate. The

deadlock-freeness should be established for an abstract system: the disjunction
of the event guards should be true. The event-based semantics of an abstract
system A is the event traces of A (traces(A)); the set of finite event sequences
generated by the evolution of A. The B method is supported by the theorem
provers Atelier-B [12] and B-Toolkit [6] which are industrial tools. Public domain
tools such as B4free2 and ProB3 are available.

3.2 Overview of ProB

The ProB tool [13,14] is an animator and a model checker for B specifications.
It provides functionalities to display graphical view of automata. It supports
automated consistency checking of B specifications (an abstract machine or a
refinement with its state space, its initialisation and its operations). The con-
sistency checking is performed on all the reachable states of the machine. The
ProB also provides a constraint-based checking; with this approach ProB does
not explore the state space from the initialisation, it checks whether applying
one of the operation can result in an invariant violation independently from the
initialisation.

The ProB offers many functionalities. The main ones are organised within
three categories: Animation, Verification and Analysis. Several functionalities
2 B4free is one of the tool dedicated to Event B: www.B4free.fr
3 ProB www.stups.uni-duesseldorf.de/ProB/, is a free model checker for B.

774 C. Attiogbé

are provided for each category but here, we just list a few of them which are
used in this article.

In the Verification category, the following functionalities are available:
Temporal Model Checking: starting from a set of initialisation states (initial nodes),
it systematically explores the state space of the current B specification.
LTL Model Checking: this functionality enables one to check the specification
against a given LTL property.

In the Analysis category we consider the following functionality:
Compute Coverage: the state space (the nodes) and the transitions of the current
specification are checked, some statistics are given on deadlocked states, live
states4, covered and uncovered operations.

The ProB tool is used in our study to help in discharging consistency proof
obligations (invariant violation) and to check liveness properties.

4 Modelling the MANET System

The study of MANET (Mobile Ad-hoc Network)[11] is an active and challenging
field as this type of network is rapidly growing and supporting small and medium
size applications such as mobile services sharing, wireless peer-to-peer systems,
etc. We chose the field of MANET for this work because it is a challenging field
in the frontier of computer networks and software engineering. Especially, com-
munication protocols, which are specific software systems, should be correct to
ensure the (quality of) services deployed on networks. From the software sys-
tem point of view, the MANET system is a typical asynchronous system with
dynamically evolving architecture, it is decentralised. Moreover, its properties
(dynamicity, mobility, correctness, etc) need a combined use of several verifica-
tion techniques (namely a multifacet analysis).

4.1 Overview of Mobile Ad-Hoc Network

A mobile ad-hoc network [11] is a network formed by wireless mobile nodes
(called ad-hoc nodes) which are the users equipments or devices. A MANET
has no dedicated network infrastructure, but each node serves as a part of the
network and acts a router to forward messages or packets since there is no router
dedicated to that task.

A mobile ad-hoc network is formed only when a group of users put together
their resources to enable and perform communications; hence a mobile ad-hoc
network is dynamically created and may also desappear quickly.

In a MANET, the nodes communicate either by exchanging directly or via
intermediate nodes. Technically they use ISM band5 and more generally Wireless
LAN technologies. Each node is equipped with one or more radio interfaces
with specific transmission features. The transmission range of a node is the
transmission area accessible from this node. All the nodes in this range are
4 The already computed states.
5 They are radio system frequency initially dedicated to industrial, scientific and med-

ical usage.

Event-Based Approach to Modelling Dynamic Architecture 775

accessible directly (one hop); they are called the neighbours. To address a known
node which is not in its transmission range, the sender node sends its packet to
one of the neighbour nodes which is closer to the destination node (according
to the transmission ranges). Each node may communicates directly or indirectly
using relay nodes (multi-hop), with other nodes that are outside the sender range.

Dynamic Aspect. One of the main features of a MANET is its dynamic aspect:
the structure or topology of the network is frequently changing. A node may
join or leave the net at any time, changing the net topology. The structure or
topology of the net is then highly dynamic.

Mobility Aspect. The ad-hoc nodes may move at any time and very frequently
due to their mobile nature; consequently this impacts not only on the net topol-
ogy but also on its quality; there may be route changes, information loss, parti-
tions of the network into different networks, etc. As far as routing is concerned,
in classical infrastructure-based network, there are one or several nodes called
routers that are in charge of routing packets between nodes. For this purpose
the routers and the nodes are equipped with a routing table where there is the
information about how to join a given destination node or a network identified
with an Internet Address (IP address).

In the scope of MANET, efficient routing protocols development is a chal-
lenging concern. A message or packet sent to a node reaches it unless the net
is partitionned. The destination node of a packet is either in the range of the
sender node or it is in the range of an intermediate node that is closer to the des-
tination node or that is itself the destination. Concerning the time, it is assumed
to be discrete and divided into frames. A node has a set of neighbour nodes
during a frame. During a frame a node may be iddle, it also may send messages,
receive messages, forward the received messages. Before sending a message to a
destination, a source node sn which does not have the destination node address,
sends a route request to get this destination address. The request travels through
the net possibly with multi-hop and reaches the destination which sends back it
address. When the address is received by sn the latter can send its message to
the right destination address.

4.2 Formal Specification of MANET

In our study, a MANET is viewed as an evolving global system. Formally, it is
a set of nodes with a connection relationship: a configuration. The evolution of
the MANET is viewed as the combined evolution of the nodes, hence a sequence
of configurations; going from a configuration to another is observed as an event
and it depends on the actions performed by the net nodes.

Specifying Node Processes. A node is modelled as a process using Event B.
Each node has some features: an identifier, a location, an IP address, a connection
relation that indicates its neighbours, etc. Accordingly we have the Si part of
the node. A set of events (Ei) with the associated behaviours (Evti) defines the
process behaviour which leads the evolution of the system. Any node may initiate
a message for a given destination, send a message, receive a message, forward a

776 C. Attiogbé

message, leave a net (a transmission range). The behaviour described by these
events is observed only when a net exists; that means the net structuring events
are related to those needed for the routing. Also we deal with the creation of
a network by nodes which have a given range, other nodes may join or leave
this range. Therefore, in the B model, we link the range of a node with a given
abstract network.

Event B Specification of MANETs. The MANET is formed by the nodes
(already defined with Si ,Ei ,Evti). The formal specification of a MANET is a
set of possible sequence of configurations of the considered nodes. Concerning
the structuring aspect, we describe the configuration by state variables (hence a
state space) resulting from the fusion of the node state variables; the sequence of
configurations is modelled through the enabling of events which possibly modify
the state space. Concerning the evolution of the entire MANET system, we
consider the events of the nodes and also the common events related to the entire
system network (ie the management of ranges). All the network is dynamic, the
nodes leave and join it at any time, new ranges appear, others disappear, etc.

Moreover, from the methodological point of view, we have considered two
aspects in the Event B specification of MANET: the structuring of the networks
(the configuration related to the net topology) and the routing in the networks.

As far as routing is concerned we consider one of the widely studied routing
protocol of MANET: Ad-hoc On demand Distance Vector (AODV) [11].

Therefore a part of our B specification is related to the structuring and another
part is about the routing protocol.

Specifying the MANET Structure. The structuring of a MANET is achieved
using a set of state variables and an invariant that describes the nodes and their
current configurations:

invariant

nodes ⊆ NODE ∧ ranges ⊆ RANGE ∧ messages ⊆ MSG
∧ rangNodes ∈ ranges ↔ nodes ∧ reqMsg ∈ nodes ↔ messages
∧ inReqMsg , inRspMsg ∈ nodes ↔ messages
∧ waitReqMsg ∈ nodes ↔ messages
∧ · · ·

The evolution of the system depends on the set of events that define the nodes
and the specific system events: the observation of a net creation (newRange); an
existing net may disappear if there is no more connected nodes (rmvRange). The
other events considered for the network structuring are summarised in the table
Tab. 1;

The combination of the two categories of events forms an abstract MANET
specification which is the reference model for the specification. It describes a sys-
tem composed of node processes and abstract MANET networks. The evolving
of the system architecture is based on the fact that the event guards depends on
the variables nodes ,messages , · · · which in turn depend on current event. This
is illustrated by the non-deterministic form of the event specifications:

event =̂ ANY sn WHERE sn ∈ nodes THEN ... END

Event-Based Approach to Modelling Dynamic Architecture 777

Table 1. Network structuring events

Event Description
newRange A new network range appears
joinRange A node joins a range
leaveRange A node leaves a net range
newNode A new node appears
newMsg A node initiate a message

Specifying the AODV Routing Protocol. Within the Ad-hoc On demand
Distant Vector (AODV) protocol, each node acts as a router, contributes to
construct routes and forward messages to other nodes. There are two phases of
the protocol: route discovery and route maintenance. Route discovery is achieved
by exchanging Route Request (RREQ) and Route Response (RREP) messages.
The algorithm of the nodes is as follows: when a node desires to set up a route to
a destination node, it broadcasts a RREQ message to its neighbours (the nodes
in its range). The RREQ/RREP messages have the following main parameters:
the source node Id, the destination node Id, the number of hop.

When a node nd receives a RREQ message, i) either nd is itself a destina-
tion and nd responds with a RREP or nd is an active route to the searched
destination node then nd responds with a route information using the RREP
message; ii) otherwise nd broadcasts the RREQ further with the hop count of
RREQ increased by 1. When a node nd receives a duplicate RREQ, it drops the
message. The routing of message is symmetric when a node receives a RREP
message. The Event B specification comprises the events related to the routing
protocol described above. These events are listed in the table Tab. 2.

Table 2. Routing events

Event Description
sndRREQ Route Request sending
fwdRREQ Route Request forwarding
rcvRREQ Route Request receiving
sndRREP Route Response sending
fwdRREP Route Response forwarding
rcvRREP Route Response receiving

The B specification of a MANET is then an abstract system equipped with
these events (see Fig. 2).

We give in the following (see Fig. 3) the specification of the sndRREQ event
to illustrate the specification principle. Here, any node (sn) may send a message
(msg) that it has already prepared (msg ∈ reqMsg[{sn}]) to all the nodes in its
range (otherNodesInRange). Exchanged messages are modelled using abstract
channels (inRepMsg,repMsg).

The other events are specified in quite the same way. Therefore the complete
specification enables us to model the dynamic evolution of the MANET (as

778 C. Attiogbé

system MANET
sets NODE, RANGE, MSG /* abstract sets */
variables

nodes, ranges, messages, · · · /* state variables*/
invariant /* state space predicate

nodes ⊆ NODE ∧ ranges ⊆ RANGE
∧ messages ⊆ MSG ∧ rangNodes ∈ ranges ↔ nodes
∧ · · ·
initialisation

nodes, ranges, messages, rangNodes := ∅, ∅, ∅, ∅
‖ · · ·

events

newNODE �= · · ·
; newRANGE �= · · ·
; joinRange �= · · ·
; leaveRange �= · · ·
; newMsg �= · · ·
; sndRREQ �= · · ·
; rcvRREQ �= · · ·
; fwdRREQ �= · · ·
; newRespMsg �= · · ·
; sndRREP �= · · ·
; rcvRREP �= · · ·
end

Fig. 2. Structure of the abstract system

sndRREQ �= /* route request from sn to dn */
ANY sn,msg WHERE

sn ∈ nodes /* source */
∧ msg ∈ MSG ∧ msg ∈ messages
∧ msg ∈ reqMsg [{sn}] /* a msg initiated by nd */

THEN

LET otherNodesInRange
BE otherNodesInRange = {ndi | ndi ∈ nodes
∧ ndi �= sn ∧ rangNodes−1(sn) = rangNodes−1(ndi)}
IN inReqMsg :=

inReqMsg ∪ (otherNodesInRange ∗ {msg})
‖ reqMsg := reqMsg − {(sn �→ msg)}

END

END

Fig. 3. Specification of the sndRREQ event

Fig. 4. Evolution and various dynamic interactions

illustrated in Fig. 4) and the routing protocol via dynamically interacting vari-
able number of node processes.

4.3 Analysis of the Specified MANET System

A multifacet analysis with a reference abstract model is performed on the MANET
system. For this purpose two different tools are used but they cover different facets

Event-Based Approach to Modelling Dynamic Architecture 779

of the analysis: B4free and ProB [13]. Both tools use one common input specifica-
tion: the B reference model previously specified; this ensures consistency of veri-
fication and feedbacks.

Consistency and Refinement of System. The previously described abstract
system is proved consistent (see Sect.3.1) using the B4free tool. Then it is re-
fined; more details are added to the state space and the event specifications;
for instance we consider the management of the IP addresses of the nodes and
exchanged messages. Unlike in the abstract system where a packet destination
is nondeterministically selected, in the refinement the nodes and the messages
have IP addresses, therefore, the receiver node is checked against the destination
IP address. The resulting refined system is also proved correct with respect to
consistency using the B4free tool. However to accomplish the proofs, we com-
bine the use of B4free and ProB. That is, when a proof obligation is not dis-
charged by B4free, we model-check the specification and discover possible errors
by displaying and analysing the displayed error state. Accordingly the feedback
is propagated in the reference model and we iterate. This multifacet analysis
approach helps here to make precise the correct ordering of the events: the sim-
ulation functionalities and the listing of uncovered operations help to correct the
B abstract system. This aspect is very important because, an abstract system
proved correct, may have an incomplete or even a wrong behaviour if for example
we have an event which is never enabled. Using the multifacet approach, helps us
to get a complete analysis. The ab. 3 shows a ProB experiment result where one
deadlock is detected after the exploration of 31257 nodes and 1168 transitions ;
all operations (the B events) are covered, with the indicated occurrences.

Table 3. Analysis results

NODES
invariant violated : 0
deadlocked : 1
live : 2521
explored transitions : 1168
open : 28735
total : 31257
TOTAL OPERATIONS
44110

COVERED OPERATIONS
initialise machine : 1
newRANGE : 225
rcvRREP : 14
sndRREP : 29
newRespMsg : 300
sndRREQ : 1829
rcvRREQ : 1697
newNODE : 10487
joinRange : 7411
leaveRange : 9721
newMsg : 11042
fwdRREQ : 1354
UNCOVERED OPERATIONS

The state corresponding to the deadlock is carefully analysed. We discover
that it corresponds to a situation (net partitioning) where there are nodes with
some packets to be transmitted but no node in the current net range. This

780 C. Attiogbé

corresponds to a real-life situation which is due to the dynamic aspect of the
MANET and the mobility of nodes. A feedback is then propagated in the Event
B specification. To confirm that, the model is corrected by strengthening the
guard of message initiation by the hypothesis of non-emptiness of the net range.
Thus the analysis of the model runs without errors6. In the real-life situation,
this corresponds to the fact that after a while the net may be reconstituted with
other nodes.

Liveness Properties Analysis. Many properties of the MANET routing pro-
tocol are well-expressed using LTL formula which is not supported by the B4free
tool. We express these liveness properties with the ProB LTL formalism. Then
we extend the Event B abstract system with these LTL properties; the resulting
specification is model-checked.

The following are illustrations of some checked properties.
P1. A route request is always followed by a response:
G(e(sndRREQ) ⇒ F (e(sndRREP))) false
P2. A route request may be followed by a response:
e(sndRREQ) ⇒ F (e(sndRREP)) true
P3. A route request may be finally received:
F (e(sndRREQ) ⇒ X (e(rcvRREQ))) true

We come to the conclusion that our model of the MANET extended with the
stated properties, is correct with respect to these properties.

5 Conclusion

We presented the main features of decentralised system with dynamically evolv-
ing architecture; we showed that these features are not well handled with classical
state-oriented approaches and accordingly we presented a method that deals with
them using event-based approach. The composition of processes used to model
the system components is completely decoupled to favour the evolving of the sys-
tem architecture. The method which combines a process-oriented view (at low
level) and an event-based one (at global level) was illustrated with the specifica-
tion and the analysis of a MANET system. The proof is given that the specified
system with dynamic architecture may be studied with respect to safety and live-
ness properties. For this purpose the Event B tools are used. There are several
works on dynamic and self-managing component architectures, [8] presents a sur-
vey; most of them use a process-algebra oriented approach, focus on the changes
on defined architectures and define rules to perform reconfiguration. Compared
with these works our event-based approach adds distribution and mobility of
processes and no predefined reconfiguration rules are needed, instead we con-
sider the behaviour of process types. Ongoing works are about the scalability of
our approach; we consider precisely two aspects, one is the analysis of Mobile
Linux codes (drivers) for embedded systems by considering their abstractions,
the other one is the strengthening of message passing aspects and the refinement
of our specifications into executable codes for physical devices.
6 The experiment result tables, not displayed here, show 0 deadlocked states for hun-

dreds of explored states and transitions.

Event-Based Approach to Modelling Dynamic Architecture 781

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Extending B without Changing it (for developping distributed sys-

tems). In: Habrias, H. (ed.) Proc. of the 1st Conf. on the B method, France, pp.
169–190 (1996)

3. Abrial, J.-R., Cansell, D., Mery, D.: Formal Derivation of Spanning Trees Algo-
rithms. In: Bert, D., et al. (eds.) ZB 2003. LNCS, vol. 2651, pp. 457–476. Springer,
Heidelberg (2003)

4. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

5. Attiogbé, C.: Multi-process Systems Analysis using Event B: Application to Group
Communication Systems. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260,
pp. 660–677. Springer, Heidelberg (2006)

6. B-Core. B-Toolkit, UK (consulted, 2007), www.b-core.com
7. Back, R., Kurki-Suonio, R.: Decentralisation of Process Nets with Centralised Con-

trol. In: Proc. of the 2nd ACM SIGACT-SIGOPS Symp. on Principles of Distrib-
uted Computing, pp. 131–142 (1983)

8. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: WOSS 2004: Pro-
ceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, pp. 28–33.
ACM, New York (2004)

9. Butler, M., Walden, M.: Distributed System Development in B. In: Habrias, H.
(ed.) Proc. of the 1st Conference on the B method, France, pp. 155–168 (1996)

10. Cansell, D., Gopalakrishnan, G., Jones, M., Mery, D.: Incremental Proof of the
Producer/Consumer Property for the PCI Protocol. In: Bert, D., P. Bowen, J., C.
Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 22–41.
Springer, Heidelberg (2002)

11. Chlamtac, I., Conti, M., Liu, J.: Mobile Ad hoc Networking: Imperatives and Chal-
lenges. Ad Hoc Networks 1(1), 13–64 (2003)

12. ClearSy. Atelier B V3.6. Steria, Aix-en-Provence, France, (consulted, 2007),
www.clearsy.com

13. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

14. Leuschel, M., Turner, E.: Visualizing Larger State Spaces in ProB. In: Treharne,
H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp.
6–23. Springer, Heidelberg (2005)

15. Lotos, I.: A Formal Description Technique Based on The Temporal Ordering of
Observational Behaviour. In: IOS - OSI, Geneva (1988); International Standard
8807

16. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

17. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Journal of
Information and Computation 100 (1992)

18. Roscoe, A.: The Theory and Practice of concurrency. Prentice-Hall, Englewood
Cliffs (1998)

www.b-core.com
www.clearsy.com

	Introduction
	Modelling Dynamic Architecture
	Features of Multi-process Systems
	Related Specification Approaches
	The Specification Method: Overview

	Overview of the Used Materials
	Overview of Event B
	Overview of ProB

	Modelling the MANET System
	Overview of Mobile Ad-Hoc Network
	Formal Specification of MANET
	Analysis of the Specified MANET System

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

