
HAL Id: hal-00419990
https://hal.science/hal-00419990

Submitted on 18 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Context and Dynamic Adaptations with
Feature Models

Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine
Moisan, Jean-Paul Rigault

To cite this version:
Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine Moisan, et al.. Modeling Con-
text and Dynamic Adaptations with Feature Models. 4th International Workshop Models@run.time
at Models 2009 (MRT’09), Oct 2009, United States. pp.10. �hal-00419990�

https://hal.science/hal-00419990
https://hal.archives-ouvertes.fr


Modeling Context and Dynamic Adaptations
with Feature Models

Mathieu Acher1, Philippe Collet1, Franck Fleurey2, Philippe Lahire1, Sabine
Moisan3, and Jean-Paul Rigault3

1 University of Nice Sophia Antipolis, I3S Laboratory (CNRS UMR 6070), France
{acher,collet,lahire}@i3s.unice.fr

2 SINTEF, Oslo, Norway
franck.fleurey@sintef.no

3 INRIA Sophia Antipolis Mediterranée, France
{moisan,jpr}@sophia.inria.fr

Abstract. Self-adaptive and dynamic systems adapt their behavior ac-
cording to the context of execution. The contextual information exhibits
multiple variability factors which induce many possible configurations of
the software system at runtime. The challenge is to specify the adapta-
tion rules that can link the dynamic variability of the context with the
possible variants of the system. Our work investigates the systematic use
of feature models for modeling the context and the software variants,
together with their inter relations, as a way to configure the adaptive
system with respect to a particular context. A case study in the domain
of video surveillance systems is used to illustrate the approach.

1 Introduction

Dynamic Adaptive Systems (DAS) are software systems which have to dynam-
ically adapt their behavior in order to cope with a changing environment. A
DAS needs to be able to sense its environment, to autonomously select an ap-
propriate configuration and to efficiently migrate to this configuration. Handling
these issues at the programing level proves to be challenging due to both the
large number of contexts and the large number of software configurations which
have to be considered. The use of modeling and the exploitation of models at
runtime provide solutions to cope with the complexity and the dynamic nature
of DAS [1].

DAS have similarities with Software Product Lines (SPLs). The basic idea
of SPL engineering is to design and implement a products family from which
individual products can be systematically derived [2]. An SPL is typically spec-
ified as a set of variation points together with their alternatives. The products
are derived by selecting different sets of alternatives associated to the varia-
tion points. SPLs are usually modeled using feature models which provide an
intuitive way for stakeholders to express the variation points, alternatives and
constraints between these alternatives. Depending on how the feature models are
linked to the SPL artefacts (e.g. models), the product derivation can be more or
less automated.

Just like an SPL, an important characteristic of a DAS is its variability. SPL
techniques can be applied to model the variability in a DAS but do not provide



any solution to model when the system and how the appropriate configuration
should be chosen according to the environment. To tackle this issue, an emerging
approach is to use Dynamic SPLs [3] which try to achieve the self-modification
of a system by dynamically (re)binding variation points at runtime. Modeling a
DAS not only requires the modeling of variability in the system. It also needs
models of its environment and some adaptation rules that specify which config-
uration of the DAS should run in each specific context.

The contribution of this paper is to propose an approach based on SPL tech-
niques not only for specifying the variability in the DAS but also the variability
in its environment. The idea is to model the DAS and its environment as two
different SPLs and then to link them in order to capture adaptation. In prac-
tice, the DAS and its environment are modeled using two independent feature
models. They are then connected by dependency constraints that specify how
the DAS should adapt to changes in its environment. The use of feature models
allows one to present homogeneously the system, its environment and the asso-
ciated constraints. The feasibility of the approach has been evaluated through
a case study of a digital video processing application. To ensure its usability,
the proposed approach has been built on top of the Domain Specific Modeling
Language (DSML) for adaptive systems proposed in [4].

The paper is structured as follows. Section 2 first introduces the DSML-based
approach on top of which the contribution is built, then recalls the basics of
feature models. It also introduces our case study and finally details how the pro-
posed approach leverages feature models to revisit the DSML-based approach.
Section 3 details how feature models are used to model the context, the adap-
tive system and the adaptation rules. Section 4 compares the approach to related
work. Section 5 concludes and addresses future work.

2 From DSML to Feature Models

2.1 A DSML for Modeling Adaptation

In [5], the authors propose to combine the use of models at runtime and aspect-
oriented modeling techniques to implement DAS. The proposed approach is
based on an adaptation model connected to a set of alternatives implemented as
aspects. At runtime, a reasoning engine processes the adaptation model and se-
lects the functionality which matches the context. The adaptation of the system
is implemented by weaving the corresponding aspects in a model kept causally
connected with the running system. The adaptation model is made of four main
elements:
Variants They make references to the available variability for the application.

Depending on the complexity of the system, it can be a simple list of variants
or a data structure like a hierarchy.

Constraints They specify constraints on variants to be used over a configu-
ration. For example, the use of a particular functionality (variant model)
might require or exclude others. These constraints reduce the total number
of configurations by rejecting invalid configurations.



Context The context model is a minimal representation of the environment
of the adaptive application to support the definition of adaptation rules. It
only considers elements of the environment relevant for expressing adapta-
tion rules. These elements are updated by sensors deployed on the running
system.

Rules These rules specify how the system should adapt to its environment. In
practice, these rules are relations between the values provided by the sensors
and the variants that should be used.

Fig. 1. Excerpt of the adaptation DSML

Until then, two different formalisms have been experimented for capturing the
adaptation rules. In [5], the adaptation model is based on event-condition-action
(ECA) rules. In [4], the adaptation model combines a set of hard-constraints
and optimization rules. Both of these approaches rely on a model capturing the
variability in the system and the variability in the context. Fig. 1 presents an
excerpt of the adaptation DSML used in the last approach [4]. The root class for
the DSML is VariabilityModel. On the left, it contains a set of variables which
model the context of the DAS. On the right, it contains a set of Dimensions and
Variants which models the variability in the system. The classes VariantCon-
straint and ContextConstraint are used to express hard-constraints between the
system and its context. Finally, the classes Rule and Property are used to choose
the best solution among the acceptable configurations in a particular context.

2.2 Feature Models

Feature models (FMs) are perhaps the most common formalism used to model
SPL commonalities and variabilities [6,7,8]. A FM can capture different kinds of
variability, ranging from high-level requirement variability to software variabil-
ity. SPL variants are configured by selecting a set of features that satisfy FM
constraints. Every member of an SPL is represented by a unique combination



of features and a FM compactly defines all features in an SPL and their valid
combinations. It is basically an AND-OR graph with constraints which organizes
hierarchically a set of features while making explicit the variability.

A configuration of a FM is a set of concrete features. An SPL is the set
of all configurations that are valid for the FM which represents the SPL. A
configuration is valid if the selection of all features contained in the configuration
and the deselection of all other concrete features is allowed by FM. The semantics
of FM is defined as follow: i) if a feature is selected, so should be its parent; ii)
if a parent is selected, all the mandatory child features of its And group, exactly
one of its Xor group(s), and at least one of its Or group(s) must be selected;
iii) cross-tree constraints relating features (e.g. feature dependencies) must hold.
For brevity’s sake, we do not exemplify here FMs; the reader will find examples
in Section 3.

2.3 Video Surveillance Case Study

Throughout the paper we propose to compare the systematic use of FMs with
the DSML-based approach for modeling the adaptive system with a case study
of Video Surveillance (VS) systems.

The purpose of VS is to analyze image sequences to detect interesting situ-
ations or events. The corresponding results may be stored for future processing
or may raise alerts to human observers (detecting intrusion, counting objects
or events, tracking people or vehicles, recognizing specific scenarios, etc.). At
the implementation level, a typical VS processing chain starts with image ac-
quisition, then segmentation of the acquired images, clustering to group image
regions into blobs, classification of possible objects, and tracking these objects
from one frame to the other. The final steps depend on the precise task (see
Fig. 2).

SPL of 
Segmentation SPL of 

Classification 

SPL of Frame 
to Frame 
Analysis 

SPL of 
Task 

Dependent 

Segmentation Classification
Frame to 

Frame 
Analysis

Task 
DependentAcquisition

Variants

Base

Fig. 2. A processing chain of the VS system and the SPLs

An important issue is that each kind of task has to be executed in a partic-
ular context. This context includes many different elements: information on the
objects to recognize (size, color, texture, etc.), nature and position of the sensors
(especially video cameras), etc. The number of different tasks, the complexity of
contextual information, and the relationships among them induce many possible
variants at the specification level, especially on the context side. The first activ-
ity of a VS application designer is to sort out these variants to precisely specify



the function to realize and its context. In our case study, the underlying software
architecture is component-based. The processing chain consists of any number
of components that transform data before passing it to other components. As a
result, the designer has to map this specification to software components that
implement the needed algorithms. The additional challenge is to manage the
dynamic variability of the context to cope with possible runtime change of im-
plementation triggered by context variations (e.g. lighting conditions, changes
in the reference scene, etc.).

2.4 Revisiting the Approach with Feature Models

In comparison with the DSML approach previously described [4], we propose a
more intuitive and more compact notation for the adaptation models. One of the
major benefits of the DSML is to provide the ability to simulate and validate
the adaptation model at design-time. Part of our objective is thus to keep a
similar expressiveness so that existing simulation and validation techniques can
be reused.

The key idea is to model the context and the software variants as two fam-
ilies (i.e. SPLs). The context model is represented as an SPL of context where
each member of the SPL describes one valid state of the context. The software
system is also an SPL and should adapt itself with respect to a contextual in-
formation. In SPL terminology, adaptation to context changes corresponds to
product derivation or product configuration (i.e. the choice of a member of the
SPL). In our case, we use a FM both for modeling the SPL of context and the
set of possible variants. As previously described, the specification of constraints
between features is possible. The constraints on variants can thus be directly
expressed in the FM formalism. Moreover, the inter relations between context
elements and software variants specify the adaptation rules. They are also repre-
sented with constraints between features of the context FM and features of the
software variants FM. Using FMs, a configuration of the context corresponds
to the actual contextual information where the software operates. At runtime,
context changes mean that the context FM has a new configuration. A config-
uration of the software variants is an effective software system considering that
all variants are then comprehensively integrated. The concept of configuration
in FM formalism also helps to clarify the semantics relation between the two
models: each configuration of the context should correspond to a configuration
of the software system.

3 Modeling Context and Adaptation

3.1 Modeling Software Variants

All steps of the VS processing chain correspond to software components that the
designer must correctly assemble to obtain a processing chain. A mandatory task
is to acquire images. Then, for each step, many variants exist, along different
dimensions (see Fig. 2). The first challenge is thus to model the software variants.



Fig. 3. SPL of the VS system

For instance, there are various Classification algorithms with different ranges
of parameters, using different geometrical models of physical objects, with dif-
ferent strategies to identify relevant image blobs. Another example is depicted
in Fig. 3 where the subtree of the FM whose root is Segmentation represents a
family of segmentation algorithms. For each combination of subfeatures of Seg-
mentation, we assume that there is a corresponding component. As an example, if
TraversalAlgorithm, Grid Step, With Window, Kernel Function, Edge, Color features are
selected, a fully parameterized component can be derived. Another component
would be derived if the Region and Grey features are selected (instead of Edge and
Color). Additional constraints are used to express dependencies between features:

GridStep or WithWindow excludes Edge (C1)
GridStep excludes Ellipse (C2)

Edge excludes Density (C3)

The constraint C1 means that if the features GridStep or WithWindow are
selected, then it is not possible to select Edge. Note that the constraints do not
necessary relate features of the same kind of algorithms (e.g. the constraint C2

states that if the feature GridStep of a segmentation algorithm is selected, then the
feature Ellipse of a classification algorithm is not selected). These constraints are
expressed in propositional logics and correspond to the hard-constraints defined
in the DSML (see Section 2.1). (A excludes B is a shortcut to express A implies
not B).

Models at runtime may deal with values, which can be for example provided
by sensors. To be able to handle them we need to use an extended formalism of
basic FMs that propose adding extra-functional information to the feature using
attributes [9]. A feature attribute has a a domain and possibly an assignment
value when the feature is selected. For instance, threshold is an attribute of the
feature Segmentation whose type is an integer in Fig. 3. Another example is the
attribute of the feature TimeOfDay which can take the value night or day in Fig. 4.
An attribute corresponds to the Property concept defined in the DSML.



3.2 Modeling Context

At present, there is a set of configurations available for each category of com-
ponent in order to achieve each task of the processing chain. The contextual
information is needed to reason at runtime on the effective choices of compo-
nents. For instance, lighting changes can have an impact on the parametrization
(i.e. configuration) of some components of the processing chain. Our approach is
to represent the context model also as a FM. In Fig. 4, a contextual information
that needs to be defined is the Objects of interest(s) to be detected, together with
their properties.

Fig. 4. SPL of the context

Then, Scene is the feature with the largest sub-tree; it describes the scene
itself (its topography, the nature and location of cameras) and many other envi-
ronmental properties (only some of them are shown on the figure). The elements
of the FM may be related together with intra constraints which can reduce the
configuration space.

3.3 Modeling Adaptation

The purpose here is to define the adaptation logics that defines the behaviour of
the software system considering the context. In our approach and terminology,
it means that the SPL system should change its configuration. As the available
context information is also a configuration that affects the SPL configuration,
we propose to inter relate the two FMs with adaptation rules. Adaptation rules
are defined with the constraint language of FMs (i.e. propositional logic-based
language). Abstract syntax rules consist of a Left hand side (LHS) and Right
hand side (RHS). Both of them address features possibly connected with “and”,
“or”, “not”. With this mechanism, simple ECA rules can be expressed. The LHS
represents the condition part and is an expression based on the context informa-
tion. The action is a change in the configuration of variants (RHS of the rules).



LightingConditions

TimeOfDay
Night
Day

NaturalLight
ArtificialLight

Indoors
Outdoors

LightingNoise

Shadows
HeadLight

Flashes

Scene

VSContext

(a) Initial context

TraversalAlgorithm

KernelFunction
Edge
Region

GridStep
WithMask
WithWindow

Classification

Contour
Density

Segmentation

VSSystem

ShadowElimination

LightingAnalysis

HeadLightDetection
DetectRapidChanges

(b) Initial system

LightingConditions

TimeOfDay
Night
Day

NaturalLight
ArtificialLight

Indoors
Outdoors

LightingNoise

Shadows
HeadLight

Flashes

Scene

VSContext

(c) New context

TraversalAlgorithm

KernelFunction
Edge
Region

GridStep
WithMask
WithWindow

Classification

Contour
Density

Segmentation

VSSystem

ShadowElimination

LightingAnalysis

HeadLightDetection
DetectRapidChanges

(d) SPL after reconfiguration

Fig. 5. Configurations of the VS system with respect to context changes
As an example, the following adaptation rule:

Night and HeadLight implies HeadLightDetection (AR0)

states that if the contextual information describes that the Night and HeadLight
are active, then the feature HeadLightDetection which corresponds to a component
of the platform is integrated in the software system.

Some other adaptation rules are defined as follow:
not LightingNoise implies Region (AR1)

LightingNoise implies Edge (AR2)
ArtificialLight implies DetectRapidChanges (AR3)

Flashes or HeadLight implies Contour (AR4)

The Fig. 5(a) depicts an excerpt of the initial context configuration where
the VS system operates. (The green icon in the box states that a feature is
selected while the red cross means that the feature is deselected). One can notice
that the system is executed in an Outdoor environment during the Day. The
corresponding configuration of the VS system is represented in Fig. 5(b). As the
feature LightingNoise is not selected in the context, the feature Region is selected
in the VS system applying the rule AR1.

An adaptation of the VS system is required with respect to context changes
depicted in Fig. 5(c). Here, the system should run during the Night and the



light is now Artificial. Additionally, the HeadLights (e.g. of the vehicles) should be
taken into account. Applying the different rules (AR0, AR2, AR3 and AR4), the
adaptive system is then configured (see Fig. 5(d)).

4 Related Work
Feature Modeling. As in our running example, a few other approaches use
multiple FMs during the SPL development. Kang et al. define four layers, each
containing a number of FMs [6]. The paper discusses these layers and their FMs
on a structural level and provides guidelines for building FMs. Some layers de-
fined in their papers, like operating environment or capability, can be part of
the contextual information. In [7], FMs are used to model decisions taken by
different stakeholders at different stages of the software development. Hartmann
et al. introduce context variability model (CVM) to represent context informa-
tion of software products [10]. The combination of the CVM and another FM
results in a so-called Multiple Product Line FM. All above-mentioned papers do
not explicitly present their work as suited to self-adaptive or dynamic systems.
The configuration of the FMs is rather static and does not evolve over time.
In [11], Fernandes et al. propose to model context-aware systems. As in our ap-
proach, the authors use FMs to represent the context and the software system.
A domain-specific language is also designed and allows the developer to specify
context rules. Nevertheless, the formalism and notation used to represent FMs
are not standard ; their work can be seen as an hybrid approach between the
DSML-based and the FM-based approaches.
Adaptation Modeling. Beyond the approach presented in [4] and discussed
in the beginning of the paper, a number of techniques have been proposed in
the literature to capture and express adaptation. These techniques can be cat-
egorized under two families. The first one is the most commonly used and is
based on event-guard-action type of rules [5, 12]. In these approaches the con-
text and the configurations are related by a set of rules, which express how
the evolution of the context should affect the running configuration of the ap-
plication. The second family of approaches relies on the optimization of some
utility functions [13,3] associated to the system. In these approaches, changes in
the environment trigger an optimization process that evaluates possible alterna-
tive configurations and adapt the system to maximize the utility of the running
configurations. The FM notation proposed in this paper is very well suited to
represent event-guard-action type of rules as these rules can be captured as con-
straints across the FMs. For optimization based-techniques, a possible solution
would be the use of attributes in the FMs in order to represent the information
needed by the optimization process. This will be investigated as future work.

5 Conclusion and Future Work
This paper addresses the reconfiguration of Dynamic Adaptive Systems and pro-
poses to reason at the model level in order to compute the new configuration
according to context changes. We have shown that the concepts in the DSML
are expressible with the FM formalism. The concept of configuration is natu-
rally present in FMs: the valid combination of variants or context elements is



defined by the semantics of the FMs. As a result, there is no need to define an
ad-hoc semantics or constraint checking techniques. The context elements are
no longer represented as Boolean variables and the user can structure hierar-
chically domain concepts. Besides, it is possible to express constraints between
the elements of the context model, invariants and adaptation in the FM formal-
ism. The uniform representation of the context model and the software system
makes possible to express relations between the two models. The DSML-based
approach and the FM-based approach can complement each other. On the one
hand, the FM-based approach can take advantage of simulation and validation
checking proposed in [5, 4]. On the other hand, the DSML-based approach can
use the infrastructure, tools, techniques, etc. associated to FMs. As part of our
future work, we intend i) to address the validation and simulation directly at the
level of FMs and ii) to leverage the expressiveness of the FM-based approach
(e.g. using attributes). We also plan on achieving a better separation of concerns
thanks to a set of operators allowing to extract a subset of the context model;
we believe that the context that may influence the runtime execution of the
system is most of the time only a part of it. Finally, our long term goal is to con-
nect state-of-the-art adaption engines to our models and provide an end-to-end
software solution.
References

1. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J., Solberg, A., Dehlen, V., Blair, G.:
An Aspect-Oriented and Model-Driven approach for managing dynamic variability.
In: Model Driven Engineering Languages and Systems conference. (2008)

2. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag (2005)

3. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to
build adaptive systems. In: Software Product Line Conference. (2006)

4. Fleurey, F., Solberg, A.: A domain specific modeling language supporting specifi-
cation, simulation and execution of dynamic adaptive systems. In: Model Driven
Engineering Languages and Systems conference. (2009)

5. Fleurey, F., Delhen, V., Bencomo, N., Morin, B., Jézéquel, J.M.: Modeling and
validating dynamic adaptation. In: Proceedings of the 3rd International Workshop
on Models@Runtime, at MoDELS’08, Toulouse, France (oct 2008)

6. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software
Engineering 5(1) (1998) 143–168

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specializa-
tion and Multilevel Configuration of Feature Models. Software Process: Improve-
ment and Practice 10(2) (2005) 143–169

8. Batory, D.S.: Feature models, grammars, and propositional formulas. In Obbink,
J.H., Pohl, K., eds.: SPLC. Volume 3714 of LNCS., Springer (2005) 7–20

9. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated reasoning on feature
models. LNCS, CAiSE 2005 3520 (2005) 491–503

10. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model
multiple product lines for software supply chains. In: SPLC ’08, IEEE (2008) 12–21

11. Fernandes, P., Werner, C.M.L.: Ubifex: Modeling context-aware software product
lines. In Thiel, S., Pohl, K., eds.: SPLC (2), Limerick, Ireland (2008) 3–8

12. Zhang, J., Cheng, B.H.C.: Specifying adaptation semantics. In: WADS ’05: Pro-
ceedings of the workshop on Architecting dependable systems, ACM (2005) 1–7

13. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using
architecture models for runtime adaptability. IEEE Softw. 23(2) (2006) 62–70


