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Abstract

Let us consider a diffusion process (Xt),..,, with drift b(«) and diffu-
sion coefficient o(z). This process is assumed to be strictly stationnary,
G-mixing and ergodic. At discrete times ¢, = kd for k£ from 1 to M, we
have at disposal noisy data of the sample path, Yis = Xis + €x. The
random variables (gx) are i.i.d, centred and independent of (X;). In or-
der to reduce the noise effect, we split data into groups of equal size p
and build empirical means. The group size p is chosen such that A = pd
is small whereas nA = N is large. Then, we estimate the drift func-
tion b in a compact set A in a nonparametric way by a penalized least
squares approach. We obtain a bound for the risk of the resulting adap-
tive estimator. We also provide several examples of diffusions satisfying
our assumptions and realise various simulations. Our simulation results
illustrate the theoretical properties of our estimators.

Running title : Estimation for noisy diffusions
Keywords : drift; model selection; noisy data; nonparametric estimation; sta-
tionary distribution.

1 Introduction

Consider a one-dimensional diffusion process (X;) satisfying the stochastic dif-
ferential equation (SDE):

dX, = b(Xy)dt + o(X)dW,,  Xo =, (1)

where b,0 : R — R are unknown functions, 7 is a real valued random variable
and (W;) a Wiener process independent of 1. The process (X;) is assumed to
be strictly stationary, ergodic and (-mixing. At discrete times t; = ko, k =
0,1,..., M, we have at disposal noisy data of the sample path, i.e, we observe

Yis = Xps + € (2)

where (g, k > 0) are i.i.d. centred random variables independent of (X;). Our
aim is to realize non parametric estimation of the drift function b over a compact
interval A = [ag,a1] (A = [0,1] for instance), under the asymptotic framework
that M — 400, 6 =y — 0 and Mdy; — +o0.



Several papers deal with nonparametric drift estimation for non noisy data,
ie. for the direct observation (Xjs). (see e.g Hoffmann (1999), Comte et al.
(2007), Schmisser (2009) for multidimensional diffusions). However, in pratice,
it is often the case that one cannot observe exactly (Xgs). This may be due
to either measurements devices or to what is called microstructure noise for
financial data. For instance, Zhang et al. (2005) and Jacod et al. (2009) study
the estimation of the integrated volatility fol oZdt within a fixed-length time
interval (i.e. Mdpr = 1). In the same context, Gloter and Jacod (2001) study the
estimation of unknown parameters in the diffusion coefficient from noisy high-
frequency data. With data within of fixed time interval, it is well known that
the drift cannot be estimated. The high frequency data context for diffusions
observed with noise requires specific tools to reduce the noise effect while keeping
enough information to estimate the coefficients of the diffusion. In order to
reduce the noise effect, we split data into groups of equal size p and build
empirical means as follows. Assuming that M = (n + 2)p, we set N = np,
A=pdandfor k=0,1,...,n+2,

Yia = Xka + &k, (3)
with

P P
XA = EZX]CA-HYS and & = EZSkp_._j. (4)
P P

The group size p is chosen such that A = pd is small whereas nA = N/ is
large. Then, based on the means sample (Yia, k=0,1,...,n+2), we apply
the method of Comte et al. (2007). First, we find an adequate regression-type

equation: ~ ~
Yitna — Yea

A

(The lag is here to avoid cumbersome correlations.) Then, a penalised least-
square approach is used to build a non parametric adaptive estimator of b(.)
(without knowledge of o(.)). We introduce a family of finite-dimensional sub-

= b (Y(;_1)a) + noise + remainder.

spaces (S,,) of L?(A) and define a collection (Z)m) of estimators of by = bl 4.

Then, introducing a penalty, we select, by a data-driven procedure, an adaptive
estimator by, among the collection. We prove that the adaptive estimator risk
achieves the usual optimal non parametric rate of the non noisy data case un-
der the assumption of sub-Gaussian noises, which include Gaussian or bounded
noises.

In Section 2, we specify the model and the assumptions. Section 3 describes
the approximation spaces. In Section 4, we precise the regression-type equation

and the construction of the collection (I;m) of estimators. Theorem 1 gives the

risk bound of an estimator by, for fixed m. Theorem 2 and 3 give the risk bound
of the adaptive estimator b;,. In Section 5, we propose examples of models with
different noises distribution and implement the estimation method on simulated
data. Proofs are gathered in Section 6 and in the Appendix.



2 Model and assumptions

Recall that A = [ap,a1] is the compact set where b is estimated and consider
the following assumptions:

Assumption 1.
Functions o(x) and b(x) are globally Lipschitz.

We denote by by, and o, the Lipschitz constants of b and o.

Assumption 2.
There exist constants r > 0 and «« > 1 such that

IMy € RY, Vz,|z| > My, zb(x) < —rlz|”.

Assumption 3.
The diffusion coefficient o is bounded from below and above:

Joi,02 >0, VreR, of<o’(x)<ol

Under Assumptions 1-3, there exists a unique invariant density 7 such that

(z) J%m exp (2 /Ox 0%@) . (5)
Assumption 4.

The process is stationary:
n~m

Under Assumptions 2-3, n has moments of any order. Moreover, we derive
from equation (5) that there exists a positive constant m; such that

Ve e Rym(x) <m (6)
and, over I = [ag — 2, a1 + 2], there exists a positive constant 7y such that
Vo € I, m(x) > mo. (7

According to Pardoux and Veretennikov (2001), Proposition 1 p.1063, under
Assumptions 2-3, the process (X;) is exponentially -mixing: there exist positive
constants C, 6 such that, for all positive ¢,

Bx(t) < Ce™?, (8)

where (x (t) is the f—mixing coefficient of (X;). Moreover, Proposition A p.226
of Gloter (2000) implies that, under Assumptions 1 and 4, for any integer k& > 1,
there exists a positive constant ¢(k) such that

Vt>0, VYh,0<h<1l, R ( sup  |b(X,) — b(Xt)|k> < c(k)h*2. (9)
sE[t,t+h]

Assumption 5.
The random variables €y, have density f, are centred and have moments of order

4.



For fixed p and 6, the processes (Xza) and (Yja) defined in (3)-(4) are
strictly stationary. Their invariant densities are respectively denoted 7, s and

Tp,s-

Assumption 6.
There exist positive constants To, 71 independent of p and § such that:

Ve e R, Tps(x) <@ and Vze B,mps(x) > T
where B = [ag — 1,a1 + 1].
We prove this assumption under sufficient conditions on b and o.

Proposition 1.

If
(a) the process (X¢); is an Ornstein-Uhlenbeck process.
(b) the functions b and o are €3, |b|,|b'|, |o|, |0/, |0”| are bounded and

o s bounded from below by o1 > 0,
Assumption 6 is satisfied.

In fact, it is necessary to bound the function 7. The following proposition
will be very usefull in proves:

Proposition 2.
Under Assumptions 5 and 6, there exist positive constants g and 71 such that,
for all 6, if p > po (constant depending only on the law of €1):

Ve e R, 7p5(x) <71 and Vre A 7,s(x) > To.

3 Approximation spaces

Our aim is to estimate the drift function b over an interval A = [ag, a1] of R. For
simplicity, we choose A = [0,1]. Below, we construct a family of nested linear
subspaces (Sm),,c g Of L? (A) where ./, is the index set of the collection:

My(r) = My = {m, Dy, :=dim(Sp) < D}, (10)

where the maximal dimension %, will be specified later. For any m € .,
an estimator by, of by = bl belonging to S, is computed. Then the “best”
possible estimator is chosen by introducing a penalty function pen(m).

Spline functions are used in order to construct the spaces S,,. The spline
function of degree r, denoted g, is the convolution (r+ 1) times of the indicator
function of [0, 1]. It is "~ and supported on [0,7+1]. The linear subspaces S,
are generated by translating/dilating g,: Sy, = Vect {(fm k), k= —r,...,2™ — 1}
where

fmpo(@) = 2m/2g, 2"z — k) Lpo,1()-

The following proposition will be proved in the Appendix:

Proposition 3.
Functions fmp, k € {—r,—r+1,..,2™ — 1} are linearly independent.



The dimension of S,, is then D,,, = 2™ + r. The infinite norm and the L?
norm are connected: according to Schmisser (2009), Proposition 3 p.6, there
exists a positive constant ¢; such that, for any function ¢ € S,,:

2 2
”tHoo < (ZS?Dm ||t||L2 (11)
2 2 1
where [t = sup;epo,q) [t(z)] and [|t]|7. = [y t*(2x)dz

Proposition 4.
We can construct an orthonormal basis (1Vx) of Sy such that:

3¢27 V)\7 card({)\/, ||1/J)\w)\'||oo 7é O}) S ¢2-

This proposition will be later proved. According to Meyer (1990), spline
functions generate a multiresolution analysis of L? (R), and, according to Propo-
sition 4, p.50, for any function ¢ in a Besov space BS ., ([0, 1]) with 7 > «, there
exists a positive constant C such that the orthogonal projection (L?) of t over
S denoted by t,, satisfies:

[t = tmll 2 < 27mC. (12)

4 Estimation

Let us introduce the normalised increment

Y(k-i—l)A —Yia

Tkn = A (13)
which satisfies the equation
Tia = b(Y(k—1)a) + Aka + Bra + Ria + Ixa + Zia, (14)
where
1 P pHDA+GS
ZkA = — / U(Xs)dW57
PA G=1 7 kA+jS
1< .
Apn = 5 z (Xkatis) | —b(Xp—1a), (15)
1 (kE+1)A+j6
IkA = — / bXS _kaA i ds
m; o, ) ()

are only functions of the non noisy process (X;). The other terms By and Ria
contain the noises:

1 _ _
Ry = N (k1 —&x) and  Bra =b(Xp—na) — b (Y—1)a) - (16)

For t belonging to S,,, we set:

n

[Tea =t (Ys-1)a)]
k=1

’ (17)

’Yn(t) = %



and define the estimator lA)m as:

by, = arg in Y (2).
Remark 1. We can always find a function minimising ~,,, but it may be not
unique. Let us denote by vx the transpose of the vector v. Setting T =
(Ta, .., Taa)*, the random vector (b (Yo), . .., bm(Yin—1)a))* = I (T), where
I1,,, is the Euclidean projection over the subspace
{(t(YO)7 e ,t(Y(n_l)A), te Sm}, is always uniquely defined.

This is why, as in Comte et al. (2007), we choose the risk function as the
expectation of an empirical norm:

R (b) <Hb fbA
where [[t]|? = L S0 t*(Y(5_1)a) and ba = b1 4.

4.1 Risk of the non-adaptive estimator

Let us introduce the asymptotic assumptions and constraints on p, 4, n. We
assume that p = p,, 6 = §,, depend on n, but to ease notations, we omit the
subscript n.

Assumption 7.

(i) n—oo, p—oo, 0—0
(ii) pd=A—0, N&=nA— o
(iii) B -0 Pn <oty

where Py, is the mazimal dimension (see (10)). It is also assumed that A < 1.

Theorem 1. .
Under Assumptions 1-7, if npA% — oo, the risk of the estimator b, satisfies:

o2 72 co 2
(Hb — bAH ) < 371 || b — bAH +cDp, (N(5 + ]\W>+N§+N 252 +cp5+p
where ¢ is a constant.
It remains to optimise the risk with respect to p. We have to minimise the
main variance term, that is c¢D,, (;—% + #2252), so we have to take p ~ §~1/2,

Corollary 1.
If Assumptions 1-7 are satisfied, the minimum of the risk is obtained for a
p ~ 612 and satisfies:

) 2\ Dn K
E (Hbm - bAHn) < 371 b — ballfz + ¢ (07 +7%) Tk + 5 + O8V/2

with ¢, C, K constants.



4.2 Optimisation of the dimension space

For given (N, ), we wish to select m in order to obtain the best compromise
between the bias term, ||bs — bm”iz, and the main variance term, D,,(NJ)~!
In a first step, the regularity of b4 is known, that is b4 belongs to a Besov
space BS . ([0,1]) and ||b||?3(21oo < 1. According to (12), it is known that

b — ball < C272m 50 m has to satisfy the equation
_ log,(NJ)
 142a

and we derive from Corollary 1:

£ (Jin»

The risk of a non-noisy process satisfies the same inequality except for the last
term which is ¢ instead of §'/2.

) < K (N§)~2e/ et 4 NL(S + 512,

Remark 2. Let us set 6 ~ N—?, with 0 < 8 < 1. We have

| A |  main term | convergence rate |
‘0<ﬁ< T ‘ 512 ‘ N2 ‘
’ Gagny <A <1 \ (N§)~20/ZetD) ‘ —2a(1-0)/(2a+1) ‘
| 23<p<1 | | |

The convergence rate of the risk is bounded below by N~1/3, and is optimum
for N§%/2 = O(1). We recall that, for a non-noisy process, the rate is optimum
for N92 = O(1), and is bounded below by N~1/2,

4.3 Adaptive estimation: sub-Gaussian case

Our aim is to select automatically , without any knowledge of the regularity
of b. Let us introduce a penalty function pen(m), depending on the dimension
D,,,, the number of observations N and the discretization step d: h is defined
as

m = arg ml/?[ [’Yn(i)m) —l—pen(m)} )

me

and the resulting estimator is denoted by, . We search pen(m) such that, ideally,

5 ([on - oal]

An additional assumption is needed.

. 2
) <0t (Ioa = bl +penm).

Assumption 8.
The variables 5, are sub-Gaussian: there exists a constant v such that:

VAER, E () <e?™N/2



Remark 3. Gaussian and bounded variables satisfy this assumption. For in-
stance, a uniform law on [—wv,v] is sub-Gaussian of parameter v2. Moreover,
a random variable of law f(x) o x2ke*I2/(202), where k is an integer, is sub-
Gaussian of parameter v? = (2k + 1) 0.

Theorem 2.
Under Assumptions 1-8, there exists a universal constant k such that, if we set

k(03 +v%) Dy,

>
pen(m) > A ;

for p ~ 6712, the risk of the adaptive estimator is bounded by

E (||Bm — bAHi) <C ienf ([[bm — ball72 + pen(m)) + Cloo+r) + 542,

M, N§

The parameter v is assumed to be known. On the contrary, o is unknown,
but we can replace it by a rough estimator (see section 5.2 of Comte et al.
(2007)). The adaptive estimator automatically realizes the bias-variance com-
promise: whenever by belongs to some Besov ball, if » > «, by achieves the
optimal corresponding nonparametric rate.

4.4 Adaptive estimation: general case

If Assumption 8 is not satisfied, the inequality of Theorem 1 cannot be gener-
alised to the adaptive case. Nevertheless, it is possible to use a weaker inequality.

Lemma 1. .
Under Assumptions 1-7, if pA? = p362 — oo, the risk of the estimator b,,
belonging to Sy, satisfies:

2 2
cog

. 2 5 D,, cT
E <Hbm — bAH ) S 37T1 ||bm - bAH?L +CO’8m + m + 1)3752 +Cp5.

In order to minimise this inequality, one has to minimise ”22 + ¢pd, that is

p30
to take p ~ 63/4. We obtain that

- 2 . 2 D, C
E (Hbm - bAHn> < 371 || — ball7s + cogN—é +tag T Cot/A,

The term 6/2 of Corollary 1 is replaced by §'/#, the other terms are the
same.

Theorem 3.
Under Assumptions 1-7, there exists a universal constant k such that, if we set

k& Dy,
Né

pen(m) =

the risk of the adaptive estimator with p ~ §—3/* satisfies:

R . Co?
E <|\bm - bA||fL> <O inf, ([bm —ballfs +pen(m)) + 2 +C'6'/".



5 Numerical simulations on examples

We use various methods to simulate variables (Xys5). The following table presents,
for each model, the drift and the diffusion functions, as well as the method of
simulation.

| model || b(z) | o(x) | simulation |

‘ Model 1 H -2 ‘ 1 ‘ exact ‘

‘ Model 2 H —\/% ‘ 1 ‘ Beskos ‘
sinh(z) 1 1

Model 3 _COShQ(x) (1 i 2cosh(x)> cosh(z) Beskos

‘ Model 4 H —2z + 3sin(x) ‘ 1 ‘ Euler ‘

’ Model 5 H —23 + 22 ‘ 1 ‘ Euler ‘

Model 1 is an Ornstein-Uhlenbeck process, so it can be exactly simulated
using Gaussian variables. Models 2 and 3 are detailed in Comte et al. (2007).
They can be exactly simulated by the retrospective algorithm of Beskos and
Roberts (2005) (actually, Model 3 is a transformation of Model 2). Models 4
and 5 are simulated using an Euler scheme. Models 3 and 5 do not satisfy all
our assumptions (the diffusion coefficient o(x) of Model 3 is not bounded from
below, and the drift of Model 5 is not Lipschitz).

We use three different laws to compute the noise vector (¢x): a normal law
A4 (0,1), a uniform law over [—1, 1] and a Laplacian law. We recall the density of
a Laplacian law (sometimes called double exponential): f(z) = 3e~*I=l. Here,
we choose A = 1. This noise is not sub-Gaussian. A

For every (m,r) € M, x {1,...,6}, we compute the estimator by, , := by, Of
the drift b. Then, introducing the penalty function

2™ 4
nA

pen(m,r) := pen(m) = £ (o§ + v°)

(we recall that D,, = 2™ + ), we select the adaptive estimator Bm, The con-
stant  is chosen equal to 3 by numerical calibration (see Comte and Rozenholc
(2004) for a complete discussion). The error between IA)ﬁws and by is measured
by the empirical norm error = ||bs,» — bal|%. In order to check that the algo-

rithm is adaptive, we compute emin = min,, , {||IA)Tm - bA||%} and the oracle

error/emin.

Figures correspond to an estimation of the drift on the interval [—2, 2] with
N =105, § = 10~* and p = 100.

In tables below, for each triplet (V,p,d), we have simulated 50 samples of
{(Xks), k=1,..., M}. We give the empirical risk of the estimator, “ris =mean(
error)” over the fifty estimations, and the mean of the oracle “or =mean(error/emin)”.
The values selected by the algorithm are denoted m and 7. In the tables, we
compute their means. The minima of ris and or are set in bold.

Comments: The empirical error and the oracle are in general better for the
uniform noise, and worse for the Laplacian noise, nevertheless, this is mainly
because the noises have different variances: 1/3 for the uniform noise, 1 for the
Gaussian noise, and 2 for the Laplacian noise. The results for the Laplacian



noise are very similar to the other results. Actually, even if the variables (gi)
are not sub-Gaussian, according to the central limit theorem, variables (&) are
nearly Gaussian.

If the drift is linear, most of the time, the estimators are linear. The contrary
is not true (see Models 2 and 3). Moreover, the smaller A = pd and (NJ)™!,
the smaller the error, nevertheless, the risk is not proportional to this variation.
This can be due to the constants involved in the computation of the risk. The
best possible estimators are in general obtained for N = 1076, § = 1074, either
for p = 100, either for p = 103.

6 Proofs

6.1 Proof of Theorem 1

We recall the Rosenthal inequality (see Hall and Heyde (1980) theorem 2.12
p.23).

The Rosenthal inequality.
Let (m1,...,mn) be centred and independent variables such that E (|n;|") < oc.
Then, there exists a positive constant r, such that

(|

n
2m
=1

p/2

p) <7 iZ:;EIm“r (gﬂﬁ))

The following lemma will be proved in the Appendix. Processes Axa, Ixa,
Bia, Ria and Zga are defined in (15) and (16).

Lemma 2.

2 2 2 2 55%7'2 2 cr?
E (Ak:A + IkA) S CbLC(Q)A, E (Bk:A) S and E (Rk‘A) S p72,

4 4 4

E(Iia +Afa) < cble(®)A%, E(Bia) < Cb;; CbLIES(El)
et CE(e})
and E (Rjp) < AT T AT

2 1\ E(c%(Xo) cE (0%(Xy)

E(Zia) = <3 + p> % and E(Zis) < %7

where ¢ is a universal constant, 72 = E (62), by, is the Lipschitz constant of b
and ¢(2), ¢(4) are defined in (9).

We have

n

Yn(t) — (b)) = %Z (0(Yik—1)a) — t(Y(k—l)A))Q

k=1

sl

2 _ _
+ Z (Ika + Rea + Zia + Aka + Bea) (0(Y—1)a) — t(Y—1)a)) -
k=1

10



Let us denote by b, the orthogonal projection (L?) of b over S, and set, for
te S,

1 < _ 1 « _
vn(t) = -~ Z Zeat(Ye—na), pn(t) = - Z Riat(Yi-1)a),
k=1 k=1

1 _
E.(t) = - Z (Aga + Bra + Ia) t(Y—1)a), (18)
k=1

(see (15)- (16)). By definition , v (bm) — Yn (b) < Y (brm) — Yn (D), s0:
~ 2 ~ ~ ~
Hbm - bH < b — bl + 20 (b — b + 21 (bm - bm) 1 2B, (bm - bm)
and, as b and by, are A-supported:
) 2 ) . ) .
Hbm - bAHn < Hbm - bA”n + 2Vn(bm - bm) +2pn (bm - bm) +2FE, (bm - bm) .

Let us consider the norm ||t||72~T = [, t*(x)7(x)dx where T = 7, 5 is the density of

Ya. As the random variables Y, A have density 7, we have that E (||t|\i) = ||t||72~T
Let us introduce the set

2
[1£]]5,

-1
2
[1£]1%

Q=S wvte | Sm+Sm, <

m,m’

N~

in which norms ||.||,, and ||.||. are equivalent: on (2, we have
2 2 2
1815 < 2]l < 3125 - (19)

In a first step, we will bound the risk over Q,,. Let us set #,,, = {t € Sp,, ||t~ < 1}
According to the Cauchy-Schwarz inequality, we have that, on one hand,

2 (Vn + pn) (bm - bm)

IN

2H8m—bm

_sup |vp(t) + pn(t)]
T AE B,

2
~+28 sup (VfL(t) + pi(t))
7 tE By,

1 -
< — ||lbm — bm
<l
and on the other hand,

2B, (b — b )<3Hi) —b H2+§Zn:(A2 + Bia+12a)
n \ Ym m) =58 ("M aim n & kA kA kA) -

As, according to (19), on Q,,

2

~ 2 “ 2 “ 2 9
Hbm—bm ) §2Hbm—bm §2Hbm—bA +21lba — bl? -

and Hl;m —bm

n

By collecting terms, we obtain:

7 2 2 2 56 = 2 2 2 2
Hbm - bAH < 3|bm — ball;,+56 sup Vn(t)‘i‘; D (Afa + Bia +Iia + Ria) -
n 1E€EBm k—1

11



Moreover, E <||bm - bAHi) = ||bm — bA||f~r < 71 ||by — bal|32. Using Lemma 2,
we get:

. 2 2
E (Hbm - bAH ]lgn> < 371 ||by — bal|32+56E ( sup v2(t) + Pi(t)>+m—+c’A.
n tEBm, p

It remains to bound E (sup,c . v2(t)) and E (sup,c g v2(t)). Let (ox, A € Ap)
be an orthonormal basis for the L?r—norm of S,,. Any function ¢t € S,,, can be
written t = ZAeAm axpx and

It <1 Z ay < 1.
AEA,
Hence,

E [ sup I/Z(t):| =E
t€Brm

sup 12 (;axmﬂ <> Efv

2
DI AEA

According to the Cauchy-Schwartz inequality:

E [v2(o2)] pTLQAzZ (Z@A (k- 1)A/k

Let us consider the following filtrations

(k4+1)A+j6

2
O'(Xs)dWS>
A+56

Fr=0(n, Ws,s<t) and % =o(n, Ws,s<t, j,j0 <t). (20)

For any k, }7(k_1)A is %(;—1)a-measurable and (fot o(Xs)dWs, t > 0) is a (%)-

martingale with quadratic variation fg 0?(Xs)ds. So

, (k+1)At56 2
E[V2(er)] < anAQZZE % (Yie-1a) E (/k O'(Xs>dWS> Grps

j=1k=1 A+jo
gkp5>‘|

(kDA
o3 (Y- 1)A)/ o?(X,)ds| .
A+j6

+ 22 Z [ox (Yie—1)a) ox (Ya—1)a)

j=11<i<k<n

(I+1)pd+j0 (k+1)A+56
/ o (Xs)dWs E / o(Xs)dWy
l k

po+36 A+36

P n
< ankZE
1

j=1

Thanks to Assumption 3, we obtain
E [12(e)] < 3K [l
n\PA] = nA PAlln | -
ASE [al2] = llpall2 = 1, we have that

D
E | su V?lt:|<0'2 =, 21
sw 2(0)] <oBly (21)

12



In the same way, we have that

E [t?;é’% pi(t)] < AEEA:]E (2 (ox)]

# >_E ( > a(Va-na) Ere —@))

AEA, k even

IN

2
2
Ry ZE (Z%\ (k-1)A) 5k+1_5k)>

AEA N, k odd

The splitting into odd and even indexes has the following advantage: each sum
is composed of uncorrelated variables with identical distributions. Moreover,
since Y(k—l)A = X(k—l)A + &x_1, thanks to the lag, cp,\(f/(k_l)A) is independent
of (Ex+1 — €k). We can write:

Bl 0] < 2 Y (Bl allE [ -27)

tEBm AEA,

D,
npA2’

IN

So
N 2 D,, D,
E ( by, — bAH ]].Qn) < 3m ||bm — bAH%Q —|—CUS nAL + cr? A2 + ? +C/A
n
(22)

It remains to bound the risk over €. The following lemma will be proved in
the Appendix:

Lemma 3.
c 1
P(O5) < .
Let us set e = (ea,...,ena)*, where exa = Tha — b(Y(x—1)a) where Tja is

defined by (13) and IL,T = Iy (Ta, ..., Tan)* = (Bm(ffo), N .,z;m(f/(n_m))
where II,, is the orthogonal projection over S,,. Then

R 2
Hbm—bA

L, T — ball% < 2]Jba — Woball? + 2| nba — 1L, T2

IN

2 2 2 2
2[[bally, + 2 [Mmell;, < 210l + 21lell,
According to the Cauchy-Schwarz inequality and Lemma 3,

1/2 c
-n

MmMmgsmm%nmm E (04 (Y0))-

According to Assumption 6, E (b4 (Yo)) = [ b4 (x)7(z)dz < 7y [|balls,. Using
(14),

E (Jlel; To; ) < = [E(Ifa) +E (4fs) +E (Ba) + E (Bla) +E (21a)].

13



By Lemma 2, we obtain:

(oot 20 ) < £ (04 ca4 S T ).

Hence, as A — 0 and p — oo:

. 2 1 1
E Hbmfb H lo | <K([—+—_). 2
( All, " ) = nAJrnpA2 (23)

Collecting terms, we obtain (see (22) and (23)):

N§  Np262
1 1 1
+ K(N(S+]W)+C(p6+p)
6.2 Proof of Theorem 2
Let us consider the ball &, .,y = {t € Sp, + Swv, ||t]]z < 1}. By definition,

~ 2 2 2
]E(Hbm—bAH> < 3ﬁ1||bm—bA|ia+cDm<%+ a )

Tn (bm) + pen(im) < vu (bm) + pen(m),
so we have that, on Q,, :

2
lo, < 3|bm— bAHi + 2pen(m) — 2pen(1h)

o4

SRS

+ 56 sup  (V2(t)+pi(t) + = > (Afa + Bia+1a) -
tee@m)m k=1

Using Lemma 2, we find that:

R 2
]E(HbmbAH ngn) < inf 37 by — ballj + 2E ((pen(m) - pen(ii))La, )

+ 56E ( sup  (V2(t) + p2(1)) ]lgn> +C (A + 1) .
tEBm,m p

It remains to bound the supremum of v2(¢) and p2(t) over the random ball
B, (depending on m). Let us introduce a function p(m,m’) such that

D,y + Dy D,, + Dy,

p(m,m/) = K/IUST + H2U2W

and the associated penalty function:

1= p1(m,m’) + pa(m, m’)

Dy, Dy,
pen(m) = 28/@103E + 28k90? Az := peny (m) + pena(m).

We can write that

E = E l<24 sup v2(t) + (peni(m) —penl(m))> lgzn] (24)

t€=@m,m

IN

E l24 ( sup VA (t) pﬂmnﬁ)) 1q,

tegnz,ﬁz

+ (peni(m) — peni(m) + 28p1(m,m)) 1q, | .

14



As peny(m) — penq (1) + 28p;1 (m, m) < 2pen;(m), it remain to bound the term

E

( sup v2(t) —p1 (m,rh)) ]].Qn‘| .

tEBm,m

In the same way, we have that

F = E (28 teb;;p A P2 (1) + (peng(m) —penz(ﬁL))> ]lgn] (25)
< E ( sup  p2(t) — pa (m, 7?1)) 1g, | + 2peng(m).

tEBm m
The following lemma will be later proved:

Lemma 4.
Under Assumptions 1-7, we have:

2 2 "
, > < < — — .
P(Vn(t) >, |1t £ ¢ ) _2exp< nA808C2>
The function vy, (t) is defined by (18).

Lemma 5.
If Assumptions 1-8 are satisfied, then

2
P (pn(t) 2 m 1] < ) < 2exp (—npN 83242)

where py(t) is defined by (18).

Lemma 6. -
Let us consider a function fn : Spmm — R, fol(t) =Y 5, axt (Y(k—l)A)’ with
(ak, k=1,...,n) real numbers. Let us assume that
2 2 i’
P (170 = m. 1l < ) < Kesp (~775 ).
Then, denoting Dy, y,y = Dy, + Dy, there exists a contant k > 0 such that
D , Dyt
E| sup f2(t)— B mm' < 5or e
teggnl,nl/ n 4 n

Moreover, for any function f, : Si4m — R

sup fﬁ(t)—m(Dm;Dm)] <y

tEBm m + m' e My

o 2022

, n

tEBr, N
Applying the Lemmas, as >, e~ Pm < 1, we get that there exist two constants

k1 and ko such that

l€10'(2)

A (26)

teK@n‘L,ﬁl

E l sup vi(t) —m (m,m)] <104
+

15



and
2

E| sup pp(t) —pa(m )| < 10. 4K2U :
tEBm 1
: +
So, according to (24) and (25), we have that
o2 02
E< 300,%1% + 2peny(m) and F < 300k2 A2 + 2pens(m)

For the study on ¢, the end of the proof of Theorem 1 can be used. Collecting
terms, we obtain:

7 2 . ~ 2 C C/ 2 CS
E <||bm - bAHn) < ot (3o = ballfs + dpen(m) b G+ CAE
Setting p = 6~ 1/2, we obtain the result.
6.2.1 Proof of Lemma 4
Let us denote
_ 1<
HY = Y t(Ya-na) Leaws2a)(s) | = D Lpatis tesnatss)($)o(X,)
keven, k<n p j=1
and
12
HP) = Z t(Ye-1a) Lika(kr2)a - Z Lipatjs (ke 1)a+i6)(8)o(Xs)
kodd, k<n pj:l
The processes
t t
M= / HYaw,, M = / HPdw,
0 0
are two (%;)-martingales. We have that
W B 1 (k+1)A+55
MPpa= X tana) (5[ oX)aw,
keven, k<n j=1 kA+j6
and
M(1)> < oAt
< (n+2)a — kev§k<n ( “ I)A)
We obtain similar results for M((ZZFQ)A Moreover, for any ¢ > 0, i € {1,2},

we have that (M®) < o2nA|t|%, so exp ()\M() 2(M@), /2) are ;-
martingales with respect to the filtration %;. Therefore, for any A > 0, n,{ > 0,

ie{1,2):
(MO >0 (MO) <) < P <exp <AM§” _ A; <M<i>>s> - exp <M - );C>)
exp <An + A;c) )

16
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Minimising with respect to A\, we obtain that

P (Ms(i) >, < ”> < C) < exp <Zz> -
As
P (I/n(t) >, l1t1? < g) < i;;zp <M<(Z+2>A . ngn, < M(i)>(n+2m < agnAg) :

we deduce that

2 2 772
> < < — .
P(Vn(t) >, |1t < ¢ ) _2exp< nA&T(Q)CZ)

6.2.2 Proof of theorem 5

Let us consider the two martingales

k

Yi-1)a) N;EQ) = Zt (Ya-1)a) €141
=1

(1)

I\Mw

We can notice that ngl) is a 9(4+1)a-martingale whereas N,EQ)

martingale. Moreover

E (e’\él) = (IE (e/\EO/P))p < exp ()\ZZ2> ,

so, for ¢ € {1,2}, we have

is a g(k+2)A'

(27)

)\2U2t2 (YkA)
2p '

(exp()\NkH)‘ %CA) < exp ()\ngi)) exp <

According to the Tchebitchev inequality, for any A > 0,

) A202n 1412 A202¢
P |exp )\N,(L’) — w > exp ()\cn _4ve n>
2p 2p

/\2 2¢ . )\2 2 ¢ 2
exp (—)\cn—|— v Cn)]E exp ()\NS)—U;;H”” .

2p
According to (27), we have that
A202n 11412 )
E <exp (_van> E [exp ()\N,(f)) ‘ %nA}>
2p

‘ 220, [1£]12
exp (w X ”")]
2p
; )\2’1}2 n—1 B
E <exp ()\Nrg)l e 12 (Yi-1)a) .
k=1

We deduce by induction that E (exp ()\N,(f) — N2 t)? /(2p))) < 1, there-
fore,

P (N = en, 11} < )

IA

IN

E

IA

IN

. )\2 2.
P (NT(L’) > en, |t]? < c/) < exp <)\cn + 2 c n) .
P

17



Minimising with respect to A\, we obtain that

2
~ 2 npc
P (N = en, )1} < ) < exp (W> :

Ann
P(on(t) 2l < ¢?) < 3 p (w90 2 A0 g < 2),

i=1,2

we obtain that
2
P (pn(t) >, |[t]2 < Cz) < 2exp ( npA® 242>

6.2.3 Proof of Lemma 6
We have that

D o D
E| sup f2(t)— "2 ] = / P[ sup f2(1) — = >z de
LEB,, m/ n 0 LEB  m! n
il + )
e D
= fm/ P[ sup  f3(t) > raly +D) dy.
0 te%’m,m/ n

The remainder of the proof is done in Baraud et al. (2001) by a L?-chaining
technique (see their Section 7, p. 44-47, Lemma 7.1, with s> = a and v,, = f,,).

6.3 Proof of Theorem 3.

We assume that pA? — oo and we set e, = F, (l;m - bm) + pr(bm — by)-
Then )
Hi)m - bAH < lbm = ball? + 20 (b — b)) + 2en.m-

We will first bound this inequality on €2,,. We obtain that, on €,

. 2 48 &
[ = ba| <316 — ball+48 sup v2()+— 7 (AFx + IR + Bia + Ria) -
n tEBm k::l

So, according to Lemma 2 and (26),

/!

~ 2 - 2 2Dm ’ C
E Hbm - bAHn o, ) <370 Jom — ballz + cof X+ A+ 5

On qu we use (3)1 and: as pAQ — 00, We obtain:

- 2 co?
E Hbm—bH 1o ) < &90,
( A n Q" - TLA

So, collecting terms, we have:

~ 2 ~ 2 _D KU C/
E (Hbm - bAHn) <871 b — ballza + o 2+ TR+ CAF 7

18



which proves Lemma 1.
Now let us define a function

KJ%(Dm + Dm/)

N —
p(m3 m ) - nA
and the associated penalty
24/{0(2)Dm
pen(m) = —

Let us set
E =E [(24 sup v2(t) + (pen(m) —pen(ﬁz))) 19”1 :
tEBm,m

According to the previous proof, we obtain that there exists x such that £’ <
2
250k % + 2pen(m). Moreover, we know that on €,

2
~ g,
E (Jlba — ballila; ) < 0%

Then, collecting terms, we have:

~ . B 0.2 CQ
E (||bm - bAH;i) < il (371]lby — ball7s + dpen(m)) + C-% + C'A+ AT

Using that N = pn and A = pd, we obtain that

~ . B 02 CQ
E (||bm - bAH;i) < inf (371][bm — ballfa + dpen(m)) + O3 + C'pd + prel

This inequality is minimum if p§ ~ 1/(p>6?), that is if p ~ §—3/4.

A Additional proofs

A.1 Proof of Lemma 2
As b is Lipschitz, we derive from (9) that:

2

1< _
E[Afa] = E ];Zb(Xmﬂ‘&) —b(X(k-1)a)
j=1

IN

b & .
;L S E ([Xmﬂ»é _ X(,H)A]Q) < 202 ¢(2)A
=1

and E(A} ) < 4b%c(4)A?. The same arguments are used to prove the following
inequalities:

, 12 (k+1)A+j0 )
E(I2)) < EEE /M (b(X.) — b(Xeayys) ds
< bvie(2)A)2

19



and E(I,) < b}c(4)A?/3. Using that b is Lipschitz and the Rosenthal inequal-
ity, we obtain:

E [B}A]

E ([b(Xu-na) = b (Xpna +21-1)]%)
b%T2

< BEI[E 1<
> 0p [51@71}_ D

As, moreover,
E(B{a) = E (b (Xe-1a) = b (X +21))'| SBE[L1],

we have that E(B},) < cp73E (1) + cr'p~2. We derive from (9) that
1 2 _ 472
ATM) | T pAR

cE (e 74
B(R) = o BE) = B

E (Ra) < 4E

and, from the Rosenthal inequality:

We have that

E (ZI%A) _ (; + p12> E (U(XXO))'

The Burkhélder-Davis-Gundy inequality allows us to write:

e 2 (k+1)A+55 2
E(Z{y) < —= Y E / o?(X,)ds
ha PA4; kA4S
C
< E]E(U4(X0))~

A.2 Proof of Lemma 3

Let us assume that n = 2p,q,, with ¢, = [%Xﬂ + 1 (0 is defined in(8)).

According to Assumption 7, 11(2) — 0 so p, — 0.

Lemma 7. -
There exists variables Y’ such

1. forl=1,...,p,, the random vectors

_>* Vo VK 74 \ \
Vi = (Y2(l—1)an7 s ’Y((2l—1)qn—1)A> and Vi1 = (Y?(lfl)an’ e 7Y((2l*1)qn71)ﬁ)

have same law, as vectors

_>>¢< " * " * 7 \ \
Vie= (Y(zz—l)qnm-~~,Y(zzqn_1)A) and Vo= Ya_1)g.a - Youg-na) -

2. for each a € {1,2}, random vectors ‘Zfa, ceey V;fn . are independent.

20



3. IP’(EIk, Yk*A £Yin, k=1,... ,n) < pnfBx (gnA).

To prove this lemma, we use a Berbee coupling method like in Proposition
5.1 of Viennet (1997). We know that there exists variables X; s such that

e Forl=1,...,p,, the random vectors

Ui —( [2(1—1)pgn+1185 -+ =+ X (20— 1)pqn6) and UlTl = (X[*Q(l—l)PQn'f'lM’""X&l—l)pqn&)

have same law, as the vectors

Uz = (X[(2l—1)pqn+1]6v s 7X21pqn<5) and Ulfz = (XiZZ—l)pqn+1]§7 s 7X;lpqn6> .

o Forl=1,....pn, a € {1,2}, P (Oha # U7, ) < Bx(anpd) = Bx (and) -

e For each a € {1,2}, random vectors U'l*’a, ..Tj';n . are independent.

As the e are independent, variables Y;'n = & 30_ Xja 5 + €npej satisfy (1)
and (2). Let us set

Q* :{Xk(s:X;:(;,k:].,,N}C {Yk*A:YkA}

We have that P (Q2*) < P (3k, Xis # Xi5) < pnBx (gnA), which proves (3).
The end of the proof is done for example in Comte et al. (2007), section 7 as
long as In(n)/(nA) — 0 and Z,, < ¢y 1n2( ik

A.3 Proof of Proposition 1

As (X}),s is stationary, (Xga)k>o is stationary for p, 6 fixed. Since the initial
variable 1 has a density 7 and (X;) has transition densities, the random variables
Xy have a density 7 := 7, 5. Assumption 6 requires precisions on this density.

If (X;) is an Ornstein-Uhlenbeck process, it is centred and Gaussian. Its
covariance function is (s,t) — o02/2bexp (— |t — s|). Therefore, the random
variable X is a centred Gaussian, with variance

p —bs —bps
Z balji| _ O 2 2 (1) 1 _
2 p(1—eb9) 2

pP(1—eb)? p

If we set © = e~ we find that

A-5 (3 i;ﬁ (1—))

and then

)

Jj=1
We have that )
) p i1
2 2,
937 P
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SO 9 9
0" bA/3 - =2 0" A
—e <on < —e’7.
9b —TAS

Then, the invariant density of the variables X,

) = e (1 )

)= ——exp| ——— |,
V2Toa P 25’2

is bounded from below and above. Assumption 6 is satisfied.

We will now prove the second condition. In a first step, it is assumed that
-1
Xo = . The process y, = VA (Xyua — 1), for 0 < u < 1, is solution of the

SDE . -
dye = b(ys)dt + 6 (y)dWr, Yo =0,

where b(t) = vAb (t\/Z—i— x), 5 (t) = o(tv/A +2) and W,, = Wya /VA. Func-

tions b(x) and &(x) and their derivatives are bounded and &(z) is bounded from
below by og. Processes (X;) and (y:) are linked by the equations:

p
(XA,XA) = (:v + \/ZU,$+ \/ZV) where U = %Zyk/p and V =y.
k=1

The following lemma is exactly Theorem 4 p.109 in Gloter and Gobet (2008)

Lemma 8.
Let us consider a process (x:) solution of the stochastic differential equation

dry = b(zy) + o (x)dWy, and z9==x

with &(z) and b(x) are €°, 6(z), b(z) and their derivatives are bounded and
there exist 5o > 0 such that (x) > Go. Let p be a probability measure on [0, 1]
such that 1 (]0,1[) > 0. Then, if we set

0.9 = ([ aints). o)

there exist constants ¢ and cy depending only on the bounds of b, & and their
derivatives such that the density of (U,V), p.(4,v) satisfies:

0;16761(ﬁ2+62) < P (1, 0) < 02_16762(&2“72).

As p(du) = p~' 3°%_, §;/,(du) is a probability measure, there exists con-
stants ¢; and ¢g such that the density p,.(u,v) of (U, V) satisfies:
u2+v2)

—1 _—co (u2+v2)

cl_lefcl( < pe(u,v) <cye

Integrating this result with respect to v, we easily obtain bounds for the density
pz(u) of U: there exists constants Ky and K, depending only on the bounds of
b, & and their derivatives such that

)

Ki'exp (—e1u?) < po(u) < K3 exp (—cou?).
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Let us denote by 7,(y) the density of Xa given Xg = x. As Xa = o +
VAU, 7,(y) = A™Y?p, ((y — 2) A=1/2) and, substituting u by (y —z) A~Y/2,
we obtain:

—1 _ )2 —1 _ )2
If/lg exp (—01 (QI/A)> <7 (y) < If/zz exp (—cz(yA)> .

The invariant density of Xa, 7, satisfies 7 (y) = [ 7, (y)7(x)dx. Integrating the
previous inequality, we have:

Kt /Rexp (—e1z®)m (y + Z\/K) dz < 7(y) < Ky* /Rexp (—cez®) 7 (y + Z\/E) dz.

Then, we derive from (6) that there exists a constant Cy depending only on
functions b and o such that, for any y € R,

ﬁ(y) S 027'(1.

In the same way, we deduce from (7) that there exists a constant C; such that,
for any y € [ap — 1,a1 + 1],
T (y) Z 017'(0.
A.4 Proof of Proposition 2
Proof. Let us denote by f, the density of &y. Since [ f, =1, for all z € R,

Tips(2) i= 7(x) = /Rfr(y)fp(x —y)dy <7 /R fo(z —y)dy < 7.
According to the law of large numbers,

lim fp(z)dr = lim P(]&| > 1) =0.
R\[—1,1] pmoe

Then, there exists a constant py such that, for any p > pg, we have f_ll fp(x)dz >
1/2. So, for all x € A, for any integer p larger than py, we have:

a1+1 1
wo) = [ 7y = [ ste-ndy =m0 [ =0

ap—1

A.5 Proof of Proposition 3

Let us denote by &2, the set of piecewise polynomials on [k, k + 1], k € Z, of
degree r, ¢"~ !, defined on [—r — 1,1] and null on [—r — 1, —7].

Lemma 9.
The set 2, is generated by the spline functions of degreer, {(g-(x +r —k)), 0 < k <r}.

Proof. Let us consider P € &,.. For any z € Z, we can write P, .j(z) =
dicoaj(x—2) et P .y(x) = 37 bj (x — 2)”. As this polynomial is €'

1(2) = jla; = PY(2) = jlb;. Then

at point z, for any j < r, pY (2,241

[s—
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P .iy(@) =X ga (@ —2)" + (br —ay) (x — 2)", and there exists a constant
c such that
P[ZVZJ’,I] (.T) = P[zfl,z] (l‘) +c (.Z‘ — Z)T . (28)

Now, let R and @Q be two functions of &, equal on [z —1, z]. According to (28),
there exists a constant ¢’ such that

R[Z,erl] (33) - Q[Z,z+1] (37) = (CC - Z)T : (29)

Moreover, the spline function of degree r, denoted by g,., belongs to &, and, on
[0,1], is equal to z"/r!. We prove by induction on k that, over [—r — 1,7 + k],
there exist some real numbers (¢;, 0 < j < k — 1) such that

k—1

P(x) = chgT(x +r—7).

Jj=0

Let us denote fj(z) = Z?;& cigr(x+r—75). As P_,_y _,(x) = 0, the induction
hypothesis is true for k = 0. Let us assume that it is satisfied for k. Functions
fx and P belongs to &, and are equal on [—r + k — 1, —r + k], so, according to
(29), there exists a constant ¢ such that, on [—r + k,—r + k + 1],

P(x) — folx) =cr(z +7r—k)".

Hence, on [-r + k,—r + k + 1], P(z) = Z?:o rlejgr(z + 1 — j) = fry1(z).
As the function z — ¢jg,(z +r — k) is equal to 0 on [—oo, —r + k], on the
interval [—r — 1,—r + k 4+ 1], P(z) = fr+1(x). There exist some real numbers
(¢j, 0 <j <r)such that P(x) = Z;:o ¢;gr(x +r — j). This property is true
for any P € ;.

O

Lemma 10.
Let Q be a polynomial of degree lower or equal to r on [0,1]. There exists a
polynomial P € &2, such that the restriction of P on [0,1] is Q.

Proof. Let P be a function of &,. It is known that P_._; _,(x) = 0, so
according to (28), there exists ag such that P, _, y)(z) = ao (z —7)". By
induction, there exist some real numbers a;,0 < j < r such that

Po1y(z) = Zaj(x +r—j) = Zka’ff Zaj (r— j)rik .
j=0 k=0 3=0

The polynomial @ can be written Q(z) = >, _,bxz". Polynomials P and Q

are equal if and only if for any k,0 < k < r, they satisfy % a; (r — =

b,/CF. The real numbers (a;, 0 < j < r) exist if the matrix C' = ((r )

is invertible. We have:

rr r—1)" ... 10
el (r—1)! 10
= : : SRR [
r r—1 ... 1.0
1 1 ... 11
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then its determinant is proportional to a Vandermonde’s. Therefore, the matrix
C is invertible.
O

Let @ be a polynomial of degree lower or equal to r over [0, 1]. According to
Lemma 10, there exists a polynomial P € £, such that Py j(z) = Q(z).
According to Lemma 9, there exist constants (c;)o<j<r such that P(z) =
> r—o¢kgr(z + k). Then

T) = chgr(ﬂf + k) 1po,1y(x).

k=0

The space of polynomials of degree lower or equal to r on [0,1] is generated
by the spline functions {(fo,x(z) = g-(x+7—k)1jg1(2)), 0<k <r}. The
dimension of this space is r 4+ 1, we have r 4+ 1 generating functions, functions
fox(z), for k= —r,...,0, are linearly independent.

Let us now consider a function h € S,,, equal to 0. We can write h(z) =

i_:: o fm k(). The function h(z) is null on [0,1/2™] so we have

h(x)Ljp,1/2m) = Z argr (2™ — k) Ljg,1/2m] = 0.
k=—r

Hence, Zgz_r argr (y — k) Ljp,;) = 0. We know that functions g, (z—k)1L ) are
linearly independent, sofor k = —r,...,0, ap = 0 and h(z) = Zizo_l ok frm k().
On [1/2™,2/2™], the function h(z) is equal to ay fm 1(z) so ag = 0. We prove
by induction on k that for k = —r,...,2™ — 1, a3 = 0. Therefore, functions
(fmk, k= —r,...,2™ — 1) are linearly independent.

A.6 Proof of Proposition 4

Our aim is to construct an orthonormal basis of S,,. Let us denote ¢, 1 (z) =
Jmarh—1)4a for k=0,...,[(2™ =1)/rland a = 1,...,7r

The supports of functions ¢y 5 are Iy, =27 [r(k— 1)+ 1,rk + 1] N[0, 1].
They are disjoints, so the functions ¢, are orthogonal, and their length are
smaller than 27 r. Let us set 1 1 = 1,1/ f cp%,k. Those function are orthonor-
mal.
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The functions ¢, are orthogonal to every function i j except 9, and
Y1 k+1. Using the Graam-Schmidt orthogonalisation procedure, we can con-
struct a function 2, = api i + b1 k+1 + cp2 i orthogonal to ¥y i and 9y , and
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such that fquk = 1. The functions 19 ;, et 12, are orthogonal if k # [. The
supports of functions v, are I = 2"™[r (k—1)+1,r(k+1)+1]NJ0,1]. The
functions (v1 k, 12,%) are an orthonormal family of S,,. They generate the same
space as the functions (o1 x, Y2.1)-

08 T
0.7
0.6~
05
0.4~
03—
0.2~

0.1
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By induction on a, we can construct an orthonormal basis
(Yar,a=1,...,7k=0,...,[(2™ —1)/r]) of S,, such that the supports of the
functions 1,k are included in 2= [r(k — 1)+ 1,7(k+ 1) +a— 1] N0, 1].
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F1G. 1 — Model 1 : Ornstein-Uhlenbeck

Gaussian noise Uniform noise

Laplace noise

2 15 2
15 15
.

.
! 0.5] 05
0s
0 0
0
-1 - -15
-15 18 -2
_: true drift
: estimated drift
F1G. 2 — Model 2
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Gaussian noise

Fi1c. 3 — Model 3

- ci:;(iv)) <1 N ZCoslh(x))

Uniform noise

Laplace noise
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Fi1G. 4 — Model 4
b(x) = —2z + 3sin(x)
Gaussian noise Uniform noise Laplace noise
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ris : empirical error,

TAB. 1 — Model 1 : Ornstein-Uhlenbeck

or : oracle

b(x) = —2z.

Gaussian noise

Uniform noise

5 N p ris [ or [ m | 7 ris [ or [ m | 7
10=* | 107 | 6-'/2 || 0.0057 | 1.14 | 0.04 | 1.08 || 0.0031 | 1.08 | 0.04 | 1.02
10=% | 108 | 6°1/2 0.024 | 1.19 | 0.02 | 1.04 0.023 | 1.11 | 0.02 | 1.02
10=% | 10° | 6 1/2 0.27 1.14 | 0.02 | 1.02 0.22 1 0 1
1073 | 3.10% | 6—1/2 0.038 | 1.01 | 0.08 | 1.1 0.013 | 1.02 | 0.04 | 1.12
1073 | 3.10° | 6 1/2 0.049 | 121 0.1 | 1.1 0.017 | 1.03]0.02 | 1
1073 | 3.10% | 6~ /2 0.12 1.06 0 1.02 0.10 1.41 | 0.1 | 1.06
1072 | 10° | 67172 0.26 1.01 | 0.12 | 1.16 0.10 1 0 | 1.02
1072 | 10* | 67 1/2 0.28 1.13 | 0.18 | 1.18 0.12 1.05 | 0.06 | 1.04
1072 | 10% | 61/ 0.70 1.65 | 0.24 | 1.14 0.28 1.15 | 0.04 | 1.02
10-6 | 3.107 | §—3/4 0.065 1 0 1 0.067 | 1.04 | 0.02 1
104 | 108 | 5—3/4 0.050 1 0 1 0.049 1 0 1
107* | 10> | §73/4 0.19 1 0 1 0.19 1 0 1

Laplace noise

5 N D ris [ or | m 7
1074 | 107 |62 | 0.011 | 1.02 | 0.02 | 1
107* | 106 | Y2 | 0.086 | 2.74 | 0.2 | 1.18
1074 | 10° | 6°1/2 0.24 1 0 1
1073 | 3.10% | %2 | 0.095 | 1.05 | 0.36 | 1.22
1073 | 3.10° | 6~ /2 0.13 1.48 | 0.44 | 1.32
1073 | 3.10% | 6°1/2 0.32 | 2.02 | 0.12 | 1.18
1072 | 10° | 6-1/2 0.58 | 1.026 | 0.42 | 1.5
1072 | 10* | 671/ 0.55 1.21 | 0.34 | 1.46
1072 | 10% | 61/ 1.58 1.70 | 0.3 | 1.14
1076 | 3.107 | 63/% || 0.064 1 0 1
10=* | 106 | §=3/* || 0.051 1 0 1
1074 | 10° | 634 || 0.19 1 0 1
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F1G. 5 — Model 5

b(z) = —a3 + 2z

Gaussian noise Uniform noise Laplace noise

_: dérive réelle
. : dérive estimeée

TAB. 2 — Model 2

b(x) — T
(z) = Tt
ris : empirical error, or : oracle
Gaussian noise Uniform noise
5 N p ris | or [ m | 7 ris | or [ om | 7
1074 106 | 6—1/2 0.038 | 1.31 | 0.08 | 1.1 0.037 | 1.31 | 0.08 | 1.08
1073 | 3.10* | 6=Y2 ]| 0.16 | 1.72 | 0.1 | 1.1 0.12 | 1.56 | 0.16 | 1.06
1072 103 | 671/ 0.29 2.28 | 0.16 | 1.18 0.29 1.37 | 0.08 | 1.06
104 10® | 6341 0.034 | 1.10 | O | 1.02 ([ 0.035 | 1.14 | 0 | 1.04
1074 10° §3/4 0.28 1.01 0 1 0.30 1.07 | 0.02 | 1.02

Laplace noise

5 N D ris | or [ m | 7
1074 | 10% | 671t 0.049 | 1.44 | 0.04 | 1.08
1073 | 3.10% | 6! 042 | 4.81 | 032 | 1.24
1072 | 10° | 61t 1.28 | 3.00 | 0.24 | 1.28
10=4 | 10% | 673 0.034 | 1.09 0 1
107* | 10° | 673 028 |1.01| 0 1

L L L B
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TAB. 3 — Model 3

sinh(x) 1
ble) = cosh?(z) <1 M 2cosh(m))
ris : empirical error, or : oracle
Gaussian noise Uniform noise
) N ) ris | or [ m | 7 ris | or [ m | 7
1074 ] 105 [ 6-%2 ][ 0.065 | 2.61 | 0.06 | 1.04 || 0.060 | 2.68 | 0.14 | 1.12
1073 | 3.10* | 6~ Y2 || 0.086 | 1.31 0 1.06 || 0.088 | 1.59 | 0.1 | 1.08
1072 | 10% | 61/ 0.34 1.59 | 0.06 | 1.1 0.21 1.35 | 0.04 | 1.04
107% | 108 | 6=%/4 ] 0.063 | 229 | 0 | 1.06 || 0.060 | 2.21 | 0.04 | 1.1
1074 | 10° | §—3/4 0.19 | 1.07 0 1 0.19 | 1.07 0 1
Laplace noise
5 N p ris | or [ m | 7
107% | 10 | 6=Y2 || 0.087 | 2.41 | 0.06 | 0.9
1072 | 3.10% | 6~ %2 || 0.080 | 2.34 | 0.18 | 1.14
1072 | 10% | 671/ 0.68 2.34 | 0.16 | 1.14
10=% | 10% | 6=3/4 || 0.063 | 2.33 0 1
107% | 10> | §73/4 0.19 | 1.07 0 1
TAB. 4 — Model 4
b(x) = —2x + 3sin(x)
ris : empirical norm, or : oracle
Gaussian noise Uniform noise
5 N ) ris [ or | m [T ris | or [ m | 7
1074 10 | 6~1/2 ][ 0.11 | 1.96 | 0.48 0.058 | 1.18 | 0.54 | 2.38
1073 [ 3.10% | 6-12 ] 031 | 1.76 | 0.14 | 1.2 0.28 1.68 | 0.24 | 1.5
1072 10 |6 Y2 ] 079 | 1.92 | 0.2 | 1.2 || 044 | 1.34 | 0.04 | 1
1074 | 10% | 83/ ] 0.14 | 2.55 | 0.34 | 1.7 || 0.096 | 1.69 | 0.54 | 2.04
1074 ] 10° | 67%/4 | 043 | 1.19 | 0 1 0.48 | 1.32 | 0.04 | 1.08
Laplace noise
) N ) ris | or [ m [ 7
1074 | 10 [ 6-1/2 ] 0.16 | 2.25 | 04 1.9
1073 | 3.10* | 6~ %2 || 0.55 | 1.83 | 0.28 | 1.38
1072 | 10 |62 0.69 | 3.09 | 0.3 1.3
107* | 106 | s34 ] 0.22 | 3.75 | 0.1 | 1.22
1074 10° | 6734 ] 044 | 1.21 | 0 1
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TAB. 5 — Model 5

b(z) = —2> + 2z

ris : empirical error, or : oracle

Gaussian noise Uniform noise

5 N P ris | or [ m | 7 ris | or [ m | 7

10=* | 106 |61 0.076 | 1.28 | 0.7 | 2.3 || 0.061 | 1.25 | 0.62 | 2.38

1073 | 3.10% | 571 0.58 1.72 | 0.36 | 1.84 0.29 1.38 | 0.36 | 2.06

1072 | 10% | 67! 1.38 | 1.73 | 0.14 | 1.08 1.05 | 1.59 | 0.12 | 1.02

107* | 10 | 673 0.26 | 1.06 | 0.9 | 2.04 0.26 | 1.06 | 0.9 | 2.04

=R N NN

107% | 10° | 63 0.80 | 1.69 | 0.02 | 1.04 0.77 | 1.64 | 0.04 | 1.08

Laplace noise

5 N D ris | or | m | T
10=* | 10% | 61t 0.11 | 1.08 | 0.62 | 2.38
1073 | 3.10% | 61 1.07 | 1.80 | 0.22 | 1.26
1072 | 10° | 6! 1.73 | 1.39 | 0.12 | 1.04
107* | 106 | 673 029 | 1.13 | 0.8 | 2.06
1074 | 10° | 673 0.83 | 1.71 0 1

L L S B
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