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Abstract

A seamless approach suitable for both design and analysis ofmobile and distributed software sys-
tems is a challenge. The object-based Unified Modeling Language (UML) is a popular medium for
effective design of most systems. PEPA nets are a recent performance modelling technique which of-
fers capabilities for capturing notions such as location, synchronisation and message passing, and are
thus suited for performance modelling of mobile and distributed software. In this paper, we provide
a new constructive approach that links both models by deriving a PEPA net which realises the same
language (legal set of traces) as a given Interaction Overview Diagram (IOD) in UML2. We prove
that the languages arestrongly consistent(equivalent) by establishing the one-to-one correspondence
between the traces of the models.

Keywords: UML 2 Interaction Diagrams, PEPA nets, Formal Transformation, Mobility, Performance Analysis

1 Introduction

The increasing complexity of mobile and distributed software systems requires a more careful and sophis-
ticated design approach for successful implementation. The object-based Unified Modeling Language
(UML) can describe the structural and behavioural aspects of these systems and is a popular medium
for effective design. We are interested in performance modelling and analysis of mobile distributed soft-
ware systems, and thus in the combination of UML-based design and formal modelling techniques for
performance analysis of these systems. PEPA nets are our performance modelling technique of choice,
combining the stochastic process algebra PEPA with coloured Petri nets. PEPA nets [4] have capabilities
for capturing notions such as location, synchronisation and message passing, and are thus ideally suited
for performance analysis of mobile and distributed software. Furthermore, there is an extensive suite of
tools available for the process algebra PEPA The combination of UML with PEPA nets should, how-
ever, be completely seamless and transparent to software developers. In other words, a software designer
models a system using UML2, and is able to analyse the models with no knowledge of the underlying
performance technique.

∗This work is supported by the CNRS/Royal Society Project PETMoDs (IKSLU85079)
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In previous work [10], we have shown how to model mobility andperformance information at the
design level using UML 2 and PEPA nets. In particular, we introduced new notation at the UML level
to be able to capture performance information. In UML, we usebehavioural models, namely sequence
diagrams and interaction overview diagrams (IODs), where sequence diagrams capture the behaviour
of (mobile and static) objects at the locations in the system, and the IOD is used to model the overall
distributed system and how mobile objects move between locations. The UML models are extended with
a notion of activity, an action type with its corresponding rate, to express performance information.

In this paper, we present a formalisation of performance annotated IODs and IOD nodes taking
into account complex behaviour within a node determined by several and possibly nested interaction
fragments. We define the languages associated with IODs and PEPA nets, and present an algorithm
to synthesise a PEPA net model from an IOD model. We further show how the algorithm guarantees
that our languages arestrongly consistent. In other words, the legal traces of an IOD have a one-to-one
correspondence to the legal traces of the underlying PEPA net model. This is a crucial advantage as it
guarantees the absence of implied (unspecified or unacceptable) behaviours that can be observed in the
synthesised model. The absence of implied scenarios in our approach facilitates an accurate performance
analysis on the given UML design models.

Structure of this paper:In the next section, we present the UML2 interaction diagrams and extended
notation used to model mobile distributed systems. In section 3, we describe the performance modelling
technique PEPA nets. In section 4, we give a detailed description of the formal model for IODs and IOD
nodes. We introduce a notion of region, as a subset of events,to capture interaction fragments in IOD
nodes. In this way we have a framework which allows us to generate the exact corresponding PEPA
expressions for the locations of the net. Section 5 describes the languages (set of legal traces) associated
with both models. Section 6 describes the synthesis algorithm and gives a proof for the equivalence of
the languages. Finally, section 7 describes related work, and section 8 concludes the paper with our plans
for future work.

2 Interaction diagrams in UML2.0

To model interactions, UML2.0 offers four kinds of diagrams: communication diagrams, sequence di-
agrams, timing diagrams and interaction overview diagrams. Here we are only interested in sequence
diagrams and interaction overview diagrams.

2.1 Sequence diagrams

Sequence diagrams are the more commonly used diagrams for capturing inter-object behaviour. In
UML2.0, a sequence diagram is enclosed in a frame and the five-sided box at the upper lefthand cor-
ner names the sequence diagram. Further, interactions can be structured using so-called interaction
fragments. Each interaction fragment has at least one operator held in the five-sided box at the upper left
corner of the fragment. There are several possible operators described below. Figure 1 shows an example
of a sequence diagram using UML2.0 constructs.

The semantics of an interaction operator is described informally in the UML2.0 superstructure spec-
ification [14]. Below we give the meaning of some operators used in this paper:

sd names a sequence diagram.

ref references an interaction fragment which appears in a different diagram. This fragment is called an
interaction use.
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:Account

:Order

:TicketDB

debit(cost)

interaction use

loop condition

guard

get existing customer

operands

alt

sd processOrder

create()

[get next item]

reserve(date,count)

add(seats)

[available]

[unavailable]

reject

return

alternative 

synchronous call

loop

ref

Figure 1: A sequence diagram.

alt designates that the fragment represents a choice of behaviour. At most one of the operands will
execute. The operand that executes must have a guard expression that evaluates to true at this
point in the interaction. If several guards are true, one of them is selected nondeterministically for
execution.

par designates that the fragment represents a parallel merge between the behaviours of the operands.
The event occurrences of the different operands can be interleaved in any way as long as the
ordering imposed by each operand as such is preserved.

loop specifies an interaction fragment that shall be repeated some number of times. This may be indi-
cated using a guard condition. The loop fragment is executedas long as the guard condition is
true.

2.2 Interaction overview diagrams

IODs constitute a high-level structuring mechanism that isused to compose scenarios through sequence,
iteration, concurrency or choice. IODs are similar to Hierarchical Message Sequence Charts (HMSCs),
also known as Message Sequence Graphs (MSGs), which providea structuring mechanism for MSCs
[12].

IODs are a special and restricted kind of activity diagrams (ADs) in UML where nodes are inter-
actions or interaction uses, and edges indicate the flow or order in which these interactions occur [14].
Semantically, however, IODs and ADs are given different interpretations. IODs follow, similarly to
sequence diagrams, a trace semantics whereas ADs in UML2.0 are understood as Petri nets.

The notation used for IODs incorporates notation from sequence diagrams, essentially references
(interaction uses) and sequence diagrams (inline interactions), with forks, joins, decision and merge
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nodes from ADs. Branching and joining of branches in an IOD must be properly nested. The edges
in an IOD denote control flow only and according to the UML specification [14] object flow cannot be
represented.

Object flow in an AD is shown in Figure 2. The figure shows two alternative notations to denote the
flow of an object of typeOrder from one nodeFillOrder to another nodeShipOrder. In the first case
the object is depicted in the middle of the edge, whereas in the second case the nodes have an output and
input pin of typeOrder. After the nodeFillOrder has been completed a token of typeOrder is placed in
the output pin ofFillOrder. As soon as the edge fires the token moves to the input pin ofShipOrder.

Fill Order Ship OrderOrder

Fill Order Ship Order
Order Order

Figure 2: Object flow examples.

A node can have more than one object as in/output. In this case, there are several edges between
the underlying nodes, one for each type of token, and the edges can be fired independently. However,
whichever token reaches a target pin first will have to wait for the others before the final target node
can be initiated. Unless otherwise indicated, all pins are required as input values before a node can be
executed.

By default the number of tokens that are carried along an edgeis one, but an input or output pin can
collect several tokens of the same type. For instance in Figure 2, it may be the case that several orders
have been filled (the node has been executed several times) and the corresponding tokens are placed in
the output pin ofFillOrder waiting for the edge to fire and the tokens (one at a time) to move to the input
pin of ShipOrder. It is also possible that a pin can only accept a certain number of tokens. We write
{upperBound = 50} next to a pin to indicate that the maximum number of tokens that can be stored in
that pin is 50. If the current number of tokens collected at the pin is 50 and the pin is an input pin, then
no edge leading to that pin is allowed to fire. We assume that bydefault the value of the upperBound is
one unless otherwise indicated.

Further, it is possible to have multiple edges leaving an output pin as shown in Figure 3. Notice that
we cannot duplicate tokens on edges which means effectivelythat we have a case where the edges have
to compete for a token.

Paint at
Station1

Paint at
Station2

Make Part

Figure 3: Nondeterministic choice.

In this example, we are modelling that after a part has been made it will (nondeterministically) be
either painted at Station1 or at Station2. To avoid nondeterministic choice as in this example, it is
common to use mutually exclusive guards on edges. As in ADs, edges in IODs can have guards (boolean
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expressions) to determine whether the edge may or not enablethe target node. Guards are written in
square brackets on the edge.

Finally, in an AD a node can only start execution if all its input pins contain tokens as required,
and after execution tokens are placed in all output pins. Sometimes, however, behaviour has alternative
inputs or outputs. In other words, we may want to allow the node to execute with just a few inputs and
produce only a subset of the possible outputs. To denote thiswe use a double box around pins as shown
in

node

d

ec

b

a

Figure 4: Alternative input and output pins.

Figure 4. Here, the activity node requires as input either one token of typea, or one token of type
b and a token of typec . In one case it produces as output a token of typed or a token of typee. At
this level we are not able to determine how input and output tokens are related. According to [16] it is
also not clear what happens if both sets of inputs are available. Our interpretation here is that alternative
input/output pins denote concurrent object flow and the nodecontains a concurrent execution for each of
these inputs. This will become clearer later on with an example of an IOD.

Even though IODs only describe control flow and cannot show object flow and pins, the notion of
object flow is implicitly present. A node in an IOD is a sequence diagram containing objects that can
progress to a further interaction according to the edges at the IOD level. Moreover, from an IOD we can
derive the expected traces of behaviour for each of the instances involved.

Take the example in Figure 5 showing an IOD with two inline interactions.

m3

o1 o2 03 o4

m2

m1

sd 1

intover 3

sd 2
o1 o2

Figure 5: Simple IOD with two inline interactions.

The first interaction (sd1 ) shows objecto1 sending a messagem1 to objecto2 and independently
object o3 sending a messagem2 to objecto4 . The second interaction (sd2 ) shows just objecto1
sending a messagem3 to objecto2 . At the higher level, there are two ways of understanding theedge
from sd1 to sd2 which correspond to the two possible interpretations of sequential composition of
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interactions in an IOD. The first interpretation could be that interactionsd1 has to complete before the
behaviour described in interactionsd2 can start. This is the typical interpretation of transitions in an
AD and corresponds to the notion ofstrong sequential composition. However, it is not entirely justified
in the case of IODs as will be made clear shortly.

A second and weaker interpretation could be that since only objectso1 ando2 are involved in the
second interaction, these two objects can move from the firstinteraction to the second after completing
their behaviour in the first interaction. In other words, it should be possible foro1 ando2 to proceed to
the second interaction aftero1 ando2 have synchronised on messagem1 independently of whethero3
ando4 have synchronised on messagem2or not.

We are primarily interested in explicitly modelling the mobility of objects, and thus we borrow the
notation of object flow and pins from activity diagrams as shown in Figure 6. In other words, we do
not allow simple edges between nodes as depicted in Figure 5,and we always have to indicate pins on
edges. Implicitly, this means that we assume the second interpretation (weak sequential composition) by
default.

m3

m2

m1

sd 1

intover 3

sd 2
o1 o2

o1 o2 o3 o4

o2

o1 o2

o1

Figure 6: Independent object progression in an IOD.

We consider that all objects that want to progress from one interaction to another have an output pin
with the name and type of the object, and an input pin with the same name and type in the following
interaction. As soon as an object completes its behaviour asdescribed in the first interaction, a token is
placed in the corresponding output pin and the edge can fire provided the target pin has enough space.
Whether or not the following interaction can execute depends on how many input tokens are required
(recall also the case in Figure 4). In Figure 6, interactionsd2 can only start executing once both tokens
(one of typeo1 and one of typeo2) are available in the respective input pins, but regardlessof whether
messagem2has been sent or not.

In order to allow both interpretations of sequential composition, we can represent strong sequential
composition using a fork as shown in Figure 7.

In this example, the edges for objectso1 ando2 cannot fire independently andare synchronised with
the edges for objectso3 ando4 . Only when all tokens are available on the fork can executionproceed,
with objectso1 ando2 moving to nodesd2 and objectso3 ando4 returning to nodesd1 (notice that
we could have made them move to a different node if we wanted toavoid the repeated occurrence of
messagem2). In other words, a fork is used to synchronise the objects associated with the edges it cuts
accross.

With both interpretations of sequential composition at an IOD level we obtain a powerful language
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o1 o2 o3 o4

m2

m1

sd 1

intover 3

sd 2
o1 o2

m3

{initBound=1}

o1 o2 o3 o4

o3 o4o1 o2
{initBound=1} {initBound=1}{initBound=1}

o1 o2

Figure 7: Strong sequential composition in an IOD.

to model and structure interactions. In particular, with our approach IODs can be used to describe
interactions for mobile applications.

As shown in Figure 7, we use a tagged value{initBound = n} which we write next to a pin to
indicate the initial number of tokensn associated with that pin. If this tag is not given next to a pinthen
we are implicitly assuming{initBound = 0}. Using the taginitBound simplifies our model as we do
not have to indicate the initial node (and possible fork, or token constraints) of the IOD. This gives the
initial marking of the IOD.

2.3 Performance Annotated Extension

In [10] we have shown how to use IODs and sequence diagrams formodelling mobility and performance
information. In particular, we extended both diagrams to beable to add the performance information to
the models. Here we only give a brief description of the addednotation.

For modelling mobility through edges in an IOD, it is useful to be able to indicate, if intended, the
explicit activity (an action type with its corresponding rate) that corresponds to the movement of an
object from one node or location to another. We can indicate this additional activity at the source pin of
an IOD edge. In the UML specification, a pin has a name and type (one or the other may be omitted).
We assume here that a source pin of an edge carries the information on the associated activity by giving
the correspondingaction typeandrate.

The textual label of a source pin is given by:pin type;action type/rate as shown in Fig-
ure 8.

Input pin

pin_type;action_type/rate

node 1

Output pin

{upperBound=value}

node 2

Figure 8: Input and output pins.

Similarly, the messages inside an IOD node (sequence diagram) are activities and represented by an
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action type and one rate (denoting an individual object activity) or two rates (indicating synchronisation
between objects).

3 PEPA nets

PEPA nets [4] combine the process algebra PEPA with stochastic coloured Petri nets. This hybrid for-
malism can be regarded as using the stochastic process algebra PEPA as the inscription language for
labelled stochastic Petri nets. Viewed in another way, the net is used to provide a structure for combining
related PEPA systems. In either view the combined modellinglanguage naturally represents such appli-
cations as mobile code systems where the PEPA terms are used to model the program code which moves
between network hosts (the places in the net).

In PEPA a system is described as an interaction ofcomponentswhich engage, either singly or mul-
tiply, in activities. These activities represent changes of state within a system. PEPA nets are motivated
by the observation that in many systems we can identify two distinct types of change of state, as changes
within the system may take place on different scales. Therefore there are two types of change of state in
a PEPA net. We refer to these asfirings of the net and astransitionsof PEPA components. Firings of
the net will typically be used to model macro-step (orglobal) changes of state such as context switches,
breakdowns and repairs, one thread yielding to another, or amobile software agent moving from one
network host to another. Transitions of PEPA components will typically be used to model small-scale
(or local) changes of state as components undertake activities.

In PEPA net, each activity has anaction typeand its duration is represented by a parameter of the
associated exponential distribution:activity rate. This parameter may be any positive real number, or
the distinguished symbol⊤ (read asunspecified). Thus each activity,a, is a pair(α, r) consisting of the
action type and the activity rate respectively. We assume a countable set of components, denotedC, and
a countable set,Y, of all possible action types. We denote byAct ⊆ Y ×R

+, the set of activities, where
R

+ is the set of positive real numbers together with the symbol⊤.
As the firings, on one hand, and the transitions, on the other hand, are special cases of PEPA activities,

we differentiate the action types associated with each of these. We denote byYf the set of action types
at the net level and byYt the set of action types inside the places such thatY = Yf ∪ Yt. Similarly, we
denote byAct t ⊆ Yt × R

+ the set of activities undertaken by the components inside the places and by
Actf ⊆ Yf × R

+ the set of activities at the net level such thatAct = Actf ∪ Act t.
A PEPA net is made up of PEPAcontexts, one at each place in the net. A context consists of a number

of staticcomponents (possibly zero) and a number ofcells (at least one). Like a memory location in an
imperative program, a cell is a storage area to be filled by a datum of a particular type. In particular in
a PEPA net, a cell is a storage area dedicated to storing a PEPAcomponent of the specified type. The
components which fill cells are themobilecomponents and can circulate as thetokensof the net. In
contrast, the static components cannot move.

The mobile components or tokens of a PEPA net are terms of the PEPA stochastic process algebra
which define the behaviour of components via the activities they undertake and the interactions between
them. Thus each token has a type given by its definition. This type determines the transitions and firings
which a token can engage in; it also restricts the places in which it may be, since it may only enter a cell
of the corresponding type.

We assume a countable set (possibly empty) of static componentsCS and a countable set of mobile
components or tokensCM such thatCS ∪ CM = C.
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Definition 3.1 A PEPA netV is a tupleV = (P,T , I,O, ℓ,
π,FP ,K,M0) such that

• P is a finite set of places;

• T is a finite set of net transitions;

• I : T → P is the input function;

• O : T → P is the output function;

• ℓ : T → (Yf , R+ ∪ {⊤}) is the labelling function, which assigns a PEPA activity ((type, rate)
pair) to each transition. The rate determines the negative exponential distribution governing the
delay associated with the transition;

• π : Yf → N is the priority function which assigns priorities (represented by natural numbers) to
firing action types;

• FP : P → P is the place definition function which assigns a PEPA context, containing at least
one cell, to each place;

• K is the set of token component definitions;

• M0 is the initial marking of the net.

The syntax of PEPA nets is given in Figure 9. In that grammarS denotes asequential component
andP denotes aconcurrent componentwhich executes in parallel.I stands for a constant which denotes
either a sequential or a concurrent component, as bound by a definition.

In PEPA, the behaviour of an expression is given by structured operational semantic rules [7]. These
give rise to a labelled transition system which can be regarded as a derivation graph for the term: each
syntactic form is a node of the graph and the possible activities give the arcs or transitions of the graph.
For a componentC ∈ C, the set of reachable states, termed thederivative set, is denotedds(C). Regard-
ing the graph as a state transition diagram gives rise to the CTMC underlying a PEPA expression (see [7]
for more details). The CTMC can be solved to obtain a steady-state probability distribution from which
performance measures can be derived.

Similarly, PEPA net behaviour is governed by structured operational semantic rules. These consist
of the original rules for PEPA and some additional rules capturing the meaning of a cell, as well as the
enabling and firing rules of the net level structure [4]. Now the states of the model are the marking
vectors, which have one entry for each place of the PEPA net. As previously the semantic rules govern
the possible evolution of a state, giving rise to a labelled transition system or derivation graph. Now
nodes of the graph of the marking vectors and the activities (individual, shared or firing activities) give
the arcs of the graph.

As in PEPA the conflicts may be solved by the race policy but it is also possible to assign different
priorities to different Petri net transitions, giving somefirings priority over others [4]. However in this
paper we restrict consideration to PEPA nets in which all netlevel transitions have the same priority.
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N ::= K+M (net)

(definitions and marking)

M ::= (MP, . . .) (marking)

MP ::= P[X, . . .] (place marking)

(marking vectors)

K ::= I
def
= S (component defn)

| P[X ]
def
= P [X ] (place defn)

| P[X, . . .]
def
= P [X ] ��

L

P (place defn)

(identifier declarations)

S ::= (α, r).S (prefix)

| S + S (choice)

| I (identifier)

(sequential components)

P ::= P ��
L

P (cooperation)

| P/L (hiding)

| P [X ] (cell)

| I (identifier)

(concurrent components)

X ::= ‘ ’ (empty)

| S (full)

(cell term expressions)

Figure 9: The syntax of PEPA nets

4 A Formal IOD Model

In this section we describe IODs and IOD nodes formally. The formal model is then used in the next
section to define the language of an IOD.

Definition 4.1 An IODD is a tuple defined by
D = (N ,S,T ,P,Act,LO ,LI ,F , C,B) where

• N is a finite set of nodes;

• S is a finite set of fork nodes;

• T is a finite set of transitions;

• P is a set of pin types such thatP = PI ∪ PO andPI ∩ PO = ∅, wherePI is the set of input pin
types andPO is the set of output pin types inD;
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• Act is a set of activities such thatAct = Actn ∪ Actp whereActn is the set of activities in
the nodes andActp is the set of activities at the IOD level. Each activity inAct is a pair (a, r)
consisting of an action typea and a rater ∈ R

+ ∪ {⊤};

• LO: T → {PO,Actp} is a total labelling function which assigns an output pin type and an activity
to the source pin of a transition;

• LI : T → {PI , N
+} is a total labelling function which assigns an input pin typeand an upper

bound to the target pin of a transition;

• F : T → N × N is a total function which assigns a pair of nodes (a source node and a target
node) to a transition;

• C: S → 2T is a total function which assigns a set of transitions to a fork node;

• B : P → N is the initial marking of the IOD.

An IOD D is described by a set of nodesN and edgesT , here called transitions, between the nodes.
In general, IODs can have forks (to split the control flow and indicate parallelism), joins (to join the
control flow), and decision points (to indicate guarded choice). We can model the behaviour of joins
and decision points with our transitions (we omit details here), and they are thus not included in the
definition. We only consider an additional set of fork nodesS.

In order to capture object mobility, a transition in an IOD isassociated with a unique object and
indicates how it moves from one node to another. To indicate which object is associated with a transition
we use a set of pin typesP distinguishing between input pin typesPI and output pin typesPO. We
use a set of activitiesActp to indicate the action and rate associated with the object move and thus to
a transition. All transitions are associated with two pin types: one output pin type (the source pin of
the transition) and one input pin type (the target pin of the transition). We use functionsLO andLI to
associate the specific pins to a transition. The source of thetransition also carries the activity associated
with the object move. The target of the transition also has a natural number indicating the number of
tokens allowed in the target pin (given by theupperBoundconstraint in the IOD - see Figure 8). If the
target pin has reached its maximum number of tokens the transition is not enabled. A fork node inS,
which acts as a synchronisation bar, cuts across several transitions to synchronise the objects associated
with the transitions. The set of transitions affected by a fork is given by the functionC. Finally, the initial
markingB of the IOD defines how many tokens are available at pin types. When a transition fires one
token from the source pin type of the transition is removed and placed at the associated target pin type.

Take the example IOD of Figure 7. Formally, the IOD is given bythe set of nodesN = {sd1, sd2},
one fork nodeS = {s1}, transitionsT = {t1, t2, t3, t4}, input pinsPI = {o1isd1, o2isd1, o3isd1,
o4isd1, o1isd2, o2isd2}, output pinsPO = {o1osd1, o2osd1, o3osd1,
o4osd1}, set of activitiesAct (not given as the example does not show activities), and for instance
LO(t1) = (o1osd1, acto1

), LI(t1)
= (o1isd2, 1), F(t1) = (sd1, sd2), C(s1) = T , B(o1isd1) = 1, B(o1osd1) = 0, and so on. Notice that we
encode in the pin information whether it is an input pin, the object associated and which node it belongs
to (e.g.,o1isd1 is the input pin for objecto1 in nodesd1 ).

The IOD defines the overall behaviour of the system whereas each individual node (sequence dia-
gram) in the IOD describes the behaviour of a location in the system. A node is defined as follows.

Definition 4.2 A nodeA for an IODD whereA ∈ N is a tupleA = (O, E , <,MA,TA,PA, µA,IA,UA)
such that
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• O is a finite set of object types such thatO = OM

⋃
OS whereOM is the set of mobile object

types andOS is the set of static object types;

• E is a set of events such that:

– E = ES

⋃
ER whereES is the set of send events andER is the set of receive events,

– E =
⋃

o∈O Eo such that for anyo1, o2 ∈ O, if o1 6= o2 thenEo1

⋂
Eo2

= ∅,

• < is a set of partial orders<o ⊆ Eo × Eo with o ∈ O;

• MA is a finite set of local labels (messages). Each labelm ∈ MA is defined asm = a/r1; r2

where(a, r1) ∈ Actn and(a, r2) ∈ Actn.

• TA is the set of local transitions such asTA ⊆ ES ×MA × ER;

• PA is the set of pin types ofA such thatPA ⊆ P;

• µA : PA → OM is a total function which associates a mobile object type with a pin type;

• IA is the set of inputs toA such that each inputI ∈ IA is a set of pairs{(p, n)/p ∈ PIA , n ∈ N
+}

wherePIA is the set of input pin types toA andn is a number of tokens.

• UA is the set of ouputs fromA such that each outputU ∈ UA is a set of pairs{(p, n)/p ∈ POA
, n ∈

N
+} wherePOA

is the set of output pin types ofA andn is a number of tokens.

A nodeA in an IOD is a sequence diagram describing an interaction between objectsO. Some of the
objects enter/leave the node through input/output pins andare themobile objectsgiven by the setOM

(the exact mapping of pin types to object types is given by thetotal functionµA). Additional objects
involved in the interaction described by the diagram arestatic and given by the setOS . Static objects
reside in an IOD node and do not participate in any other interaction (node) elsewhere in the IOD. The
behaviour of the node is described by a set of eventsE corresponding to the sending and receiving of
messages (ES andER respectively). Each event is associated with one unique object. A partial order<
is defined over the set of events and based on the local partialorders, i.e., the partial orders defined over
the events of an object. Given a set of events and message labels, transitions in the node correspond to
triples of the form(e1,m, e2) wherebye1 is an event associated with the sending of messagem ande2

corresponds to the receipt of the same message.
Each messagem consists of an action typea, and two ratesr1 andr2. If one of the rate is unspecified,

that isr1 = ⊤ or r2 = ⊤, then the rate is omitted leading to a message of the formm = a/r where
r = r1 or r = r2. In this case the rate is associated with the object sending the message. Note that, at
least one rate must be specified giving the frequency at whichthe activity is to be performed.

An IOD nodeA has a set of pin typesPA which is a subset of the pin types of the IOD, and as such
consists of a disjoint set of input and output pin types.

For a node to execute, it needs to have a set of tokens available at its input pins. This is given by
IA. In particular, a node can havealternativeinputs andIA is a family of sets of inputs to the node. For
example,IA = {{(p1, 1), (p2, 2)}, {(p3, 1)}} indicates that nodeA has three input pin typesp1, p2 and
p3, butp1, p2 are an alternative input top3. Further, for the node to execute, we need one token of type
p1 and two tokens of typep2 or alternatively one token of typep3. Similarly, once a node has executed,
it generates a set of tokens at its output pins. The outputs correspond to a family of sets of output pins
UA.
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alt

o1 o2 o3

sd 1

m3
a2/r21;r22

a3/r31;r32

m2

a1/r11;r12

m1

p2

p3;a4/r4 p4;a5/r5

p1

Figure 10: An IOD node.

Consider the node in Figure 10. Formally, nodesd1 is given by objectsOM = {o1, o3} and
OS = {o2}, eventsE = {e1, . . . e6} where local object events areEo1

= {e1, e3}, Eo2
= {e2, e6},

Eo3
= {e4, e5} and the partial order is such thate4<o3

e5. The set of messages is given byMsd3 =
{m1,m2,m3}, and the local transitionsTsd3 = {t1, t2, t3} are such thatt1 = (e1,m1, e2), t2 =
(e3,m2, e4) and t3 = (e5,m3, e6). The pins to the node arePsd3 = {p1, p2, p3, p4} andµsd3(p1) =
µsd3(p3) = o1, µsd3(p2) = µsd3(p4) = o3. The activities are such that for instance(a4, r4) ∈ Actp
and (a1, r11) ∈ Actn. Finally, there is one possible input and one possible output given byIsd3 =
{{(p1, 1), (p2, 1)}} andUsd3 = {{(p3, 1), (p4, 1)}}.

Since we can describe a variety of behaviour in a node using interaction fragments such as parallel
behaviour, alternative behaviour, and loops, we need to capture the fragments associated with an IOD
node. In what follows, we consider aregion as a subset of events. We define a so-calledbasic region
next.

Definition 4.3 R is a basic region over(E , <) if R ⊆ E andR =
⋃

o∈O Ro, whereRo is a totally
ordered set of events for objecto. The minimal and the maximal events ofRo are denotedfirstRo and
lastRo respectively.

A basic region is a subset of events where all events belonging to the same object are totally ordered
and hence we can refer to the first and last events for that object. One example of a basic region is a node
wihtout any interaction fragments in it. The nodessd1 andsd2 from the example of Figure 7 are basic
regions. Notice that according to our definition a basic region can be empty.

Definition 4.4 LetR be a basic region over(E , <) defined over IOD nodeA. R is closed iff for any
e ∈ R if there is a local transitiont ∈ TA with t = (e,m, e

′

) or t = (e
′

,m, e) thene
′

∈ R.

A closed basic region does not cut across local transitions.In other words, if one event involved in
a transition belongs to a basic region so does its corresponding send/receive event. In the sequel, we
assume that all our basic regions are closed.

Once we include alternative or parallel behaviour, we are nolonger able to characterise the events
of an object as being totally ordered. This is the case in our previous example of Figure 10. Indeed, the
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whole set of eventsE = {e1, . . . e6} does not define a region as for instancee1 6<o1
e3. In this example,

we have two basic regions which correspond to the operands ofthe alt fragment, namelyR1 = {e1, e2}
andR2 = {e3, e4, e5, e6}.

Definition 4.5 LetR be a basic region over(E , <) defined over IOD nodeA. The associated set of local
transitions forR is given byTAR

and is such that for eachl ∈ TAR
, l = (e1,m, e2) with e1, e2 ∈ R.

The local transitions associated with the regions defined for our example are given byTsd3R1
= {t1}

andTsd3R2
= {t2, t3}.

Definition 4.6 Let R be a basic region over(E , <) defined over IOD nodeA, and t1, t2 ∈ TAR
. t1

preceedest2 in the set of local transitions (writtent1 ≪ t2) iff at least one of the following holds for
t1 = (e11,m1, e12), t2 = (e21,m2, e22), and someo ∈ O

1. e11 <o e21, wheree11, e21 ∈ Eo

2. e12 <o e22, wheree12, e22 ∈ Eo

3. e12 <o e21, wheree12, e21 ∈ Eo

4. e11 <o e22, wheree11, e22 ∈ Eo

In other words the transitions share at least one object, andthe associated events for each object are
ordered. Back in our example, for basic regionR2 with t2, t3 ∈ Tsd3R2

, t2 ≪ t3 ase4 <o3
e5.

Definition 4.7 LetR be a basic region andTAR
be the associated set of local transitions overR. The

concurrency level ofTAR
is l, if TAR

containsl totally ordered subsets of transitionsTAR
= TAR1

∪
. . . ∪ TARl

such that, for two arbitrary distinct transitionst1 and t2, t1 ∈ TARi
, t2 ∈ TARj

and
i 6= j ∈ [1, . . . , l], t1 6≪ t2 andt2 6≪ t1.

Notice that for a basic regionR whereTAR
has concurrency level1, TAR

is a totally ordered set of
local transitions. In our example,Tsd3R2

is a totally ordered set of local transitions and has concurrency
level 1. For the example of Figure 7, the basic region in nodesd1 containing both transitions labelled
m1 andm2 has concurrency level2 asm1 andm2 are completely independent. We can thus consider
two basic regions one associated with a set of transitions containingm1 and the other associated with a
set of transitions containingm2 (both singletons and hence trivially totally ordered).

Definition 4.8 For basic regionsR1 andR2, R1.R2 is a basic region denoting the sequential composi-
tion of the regions satisfyinglastR1o

<o firstR2o
for anyo ∈ O.

The sequential composition of regions is as expected a way ofordering the events of the respective
regions sequentially.

Definition 4.9 G is a basic arbitrary region if :

• G is a basic alt region, that isG = R1 ∪R2 ∪ . . . ∪RN , N ∈ N, where eachRn, n = 1, . . . , N ,
is a basic region, or

• G is a basic loop region, that isG = RN whereR is a basic region andN , N ∈ N, is the loop
index,or
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• G is a basic par region, that isG = [R1,R2, . . . ,RN ], N ∈ N, where eachRn, n = 1, . . . , N , is
a basic region and the associated set of local transitionsTARn

is of concurrency level one.

If an alternative fragment does not have further nesting it is called basic. A basic alternative fragment,
called basic alt region, can be seen as a finite unionG of regions where each region corresponds to one
of the operands in the alternative fragment and these regions are basic. We have already seen this for our
example of Figure 10. Similarly, a basic loop region and a basic par region are made from basic regions:
one in the case of the loop where there is an iteration over that basic region, and as many as there are
operands in the case of the par.

The careful reader may notice that if we have a basic region with concurrency level greater than1
(say l) we can see it as a basic par fragment withl operands where each operand is a basic region of
concurrency level1 and given by one of the subsets of transitions. This is statedin the following lemma.

Lemma 4.1 Let R be a basic region such that the associated set of local transitions TAR
has con-

currency levell. Then there is an equivalent basic par regionG with l operands such thatG =
[R1,R2, . . . ,Rl] and where eachRp, for p ∈ [1, ..., l], is a basic region with associated set of local
transitionsTARp

of concurrency level1.

The idea is that a basic region with concurrency level greater than one can always be replaced by a
basic par region where the level of concurrency gives us the number of operands of the par region. The
proof is straightforward and we omit it here.

Given the lemma and without loss of generality, from now on weonly consider basic regions with
associated set of local transitions of concurrency level1 (hence totally ordered).

The next definition deals with more general alternative fragments where nesting is allowed but re-
stricted to a finite number of times given byk.

Definition 4.10 Gk is an alt region of levelk with N operands,k > 1, N ∈ N
+, if Gk =

⋃N
n=1

Rn,
where eachRn is either a basic region or, for at least one valuen1 of n, Rn1

= Pre.Gk−1.Post. Both
Pre andPost are basic regions andGk−1 is an arbitrary region of levelk − 1. If k = 1 thenG1 is a
basic arbitrary region.

If there is nesting in one of the operands of an alternative fragment, the operand is not basic and can
be seen as the sequential composition of three regions givenby (Pre.P.Post) where the first and the
last are basic andP is again an interaction fragment of some kind (alternative,parallel, or loop).

Consider the example of Figure 11. This example describes analt region of levelk = 3 with two
operands (N = 2). Thus we haveG3 = R1 ∪ R2 whereR1 = Pre.G2.Post andR2 is a basic region
with associated set of local transitionsTAR2

= {m5,m6}. In R1, G2 = R′
1 ∪ R′

2, and bothPre
andPost are empty. At the second level of nestingR′

1 is a basic region with associated set of local
transitionsTA

R′
1

= {m1,m2} whereasR′
2 = Pre′.G1.Post′. BothPre′ andPost′ are empty andG1 is

a basic alt region. Finally,G1 = R′′
1 ∪ R′′

2 whereR′′
1 andR′′

2 are basic regions, andTA
R′′

1

= {m3} and

TA
R′′

2

= {m4}.

Definition 4.11 G is a loop region ifG = Pre.(R)n.Post wheren, n ∈ N, is the loop index,Pre and
Post are basic regions andR is an arbitrary region.

Notice that an arbitrary region can be any possible region, that is, a basic region, an alt region of
some level or a par region of some level as defined next.
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m6

m4

m5

alt

o1 o2

alt m1

m2

alt m3

Figure 11: Alt region of levelk = 3.

Definition 4.12 Gk is a par region of levelk withN operands,k > 1, N ∈ N
+, if Gk = [R1,R2,R3, . . . ,RN ]

whereRn, n = 1, . . . , N , is either a basic region or, for at least one valuen1 ofn,Rn1
= [Pre.Gk−1.Post].

BothPre andPost are basic regions andGk−1 is an arbitrary region of levelk − 1. If k = 1 thenG1 is
a basic arbitrary region.

Consider the example of Figure 12. This example describes a par region of levelk = 2 with
two operands (N = 2). Thus we haveG2 = [R1,R2] whereR1 = [Pre.G1.Post] and R2 =
[Pre′.G′

1.Post′]. Pre is a basic region with one messagem0 whereasPost, Pre′ andPost′ are empty
basic regions. BothG1 andG′

1 are basic par regions.

m4

par m3

par

o1 o2

par m1

m0

m2

Figure 12: Par region of levelk = 2.

Figure 13 describes an example of nested alt and par regions of level k = 3 with two operands
(N = 2). As the region at the third level is an alt region we haveG3 = R1 ∪ R2 whereR1 is a par
region of level 2 and thusR1 = [R′

1,R
′
2] andR2 is a basic region with associated set of local transitions

TAR2
= {m4,m5}. R′

1 is a basic region withTA
R′

1

= {m1} andR′
2 = [Pre.G1.Post] wherePre

andPost are empty andG1 is a basic par region such thatG1 = [R′′
1 ,R

′′
2 ] with TA

R′′
1

= {m2} and

TA
R′′

2

= {m3}.

Given the framework described above to deal with interaction fragments, we are now able to define
an IOD node fragment specification. Assume given a set of interaction fragment operatorsΩ such that
par, alt, loop ∈ Ω.

Definition 4.13 An IOD node fragment specification forA is given bySpecA = (IntA, fA, gA) where
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o1 o2

par

par m2

m3

Figure 13: Nested alt and par region of levelk = 3.

• IntA is a set of interaction fragment identifiers in nodeA;

• fA : IntA → Ω×N×N is a total function that assigns a triple(o, l,N) to an interaction fragment
identifier whereo is an operator,l a natural number indicating the level of the fragment andN the
number of operands.

• gA : IntA×Ω×N×N → 2E is an injective function that takes a tuple of the form(i, o, l,N) and
if fA(i) = (o, l,N) then returns ano region of levell with N operands, otherwise it is undefined.

5 Languages

In the following, we first define the associated language withinteraction overview diagrams and then the
language associated with PEPA nets.

5.1 The language of an IOD

Given the formal model of an IOD as given above, we now define its associated language.L(D) where
D is an IOD, corresponds to the legal set of traces ofD. The traces are defined by the ordering of the
events in the IOD nodes and respecting the ordering given by the transitions at the IOD level. In other
words, a trace of an IOD is given by the union of the traces for all tokens in the IOD.

Definition 5.1 A trace of IOD nodeA = (O, E , <,MA,TA,
PA,IA,UA) is a (possibly infinite) wordw = c1.c2 . . . over the alphabetMA iff there is a sequence
of local transitionst1.t2 . . . over TA, such thatt1 ≪ t2 ≪ . . ., ti = (esi, ai/ri1; ri2, eri) and ci =
(ai,min(ri1, ri2)) for 0 < i ≤ |w|, esi ∈ ES anderi ∈ ER.

We defineL1 as the IOD alphabet such thatL1 = Actp ∪Actt.

Definition 5.2 A trace of IODD = (N ,S,T ,P, Act,LO ,
LI ,F , C,B) is a (possibly infinite) wordW = w1.c1.w2.c2 . . . over the alphabetL1 iff there is a se-
quence of transitionst1.t2 . . . overT such that, for0 < i ≤ |W |,

• wi is a trace of IOD nodeAi,

• LO(ti) = (pi, ci) wherepi ∈ PO andci = (ai, ri) ∈ Actp,
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• F(ti) = (Ai,Ai+1) whereAi,Ai+1 ∈ N , and

• t1 ∈ TB whereTB is the set of possible initial transitions obtained from theinital markingB.

Definition 5.3 Let a maximal trace be a trace which is not a proper prefix of anyother trace. The
language of IODD is the setL1(D) of words over the alphabetL1 whereL1(D) = {W | W is a
maximal trace ofD}.

5.2 The language of a PEPA net

Let V be the labelled transition system or derivation graph of a placeP ∈ P and letTV be the set of
all transitions in that graph. We defineh as the labelling function which assigns a PEPA activity to each
transition inTV .

Definition 5.4 Let t1, t2 ∈ TV . t1 preceedest2 in the set of transitions (writtent1 ≪ t2) iff there is a
sequence of activitiesh(t1).h(t2) whereh(t1) = (a1, r1) andh(t2) = (a2, r2), r1, r2 ∈ R

+ ∪ {⊤}.

In order to define the language of a PEPA netV, we first define the trace of a PEPA net placeP ∈ P
as follows.

Definition 5.5 A trace of a PEPA net placeP is a (possibly infinite) wordw = c1.c2. . . . over the
alphabetActt iff there is a sequence of transitionst1, t2, . . . over TV such that, for0 < i ≤ |w|,
t1 ≪ t2 ≪ . . . andci = h(ti) = (ai, ri) whereci is either:

• an individual activity, or

• a shared activity, between two componentsC1 andC2, which rate isri = min(ri1, ri2) whereri1

andri2 are the rates of the activity in componentsC1 andC2 respectively.

We defineL2 as the PEPA net alphabet such thatL2 = Actt∪Actf . Using the definition of the trace
wi of each placePi ∈ P in the net, the trace of a PEPA netV is defined as follows.

Definition 5.6 A trace of a PEPA netV = (P,T , I,O, ℓ, π,
C,K,M0) is a (possibly infinite) wordW = w1.c1.w2.c2 . . . over the alphabetL2 iff there is a sequence
of transitionst1.t2 . . . overTf such that, for0 < i ≤ |W |,

• wi is a trace of the PEPA net placePi ∈ P,

• O(ti) = Pi,

• I(ti) = P ′
i whereP ′

i ∈ P,

• ci = l(ti) = (ai, ri) whereci ∈ Actf , and

• t1 ∈ TM0
whereTM0

is the set of possible initial transitions obtained from theinital markingM0.

Now, we define the language of a PEPA netV, notedL2(V), as follows:

Definition 5.7 Let a maximal trace be a trace which is not a proper prefix of anyother trace. The
language of the PEPA netV is the setL2(V) of words over the alphabetL2 such thatL2(V) = {W | W
is a maximal trace ofV}.
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6 The Transformation

In this section, we describe the algorithm behind the IOD-to-PEPA net model transformation and prove
that the algorithm is correct by proving the equivalence between the language of an IOD and the one of
a PEPA net, that is, the language for an IODD given byL1(D) is equivalent to the language for a PEPA
netV given byL2(V).

6.1 The Algorithm

We can build a direct correspondence between the IOD nodes and the objects in the UML model, with,
respectively, the places and the components in the PEPA net model. Both models use activities and there
is a one-to-one correspondence between activities in IOD edges or IOD node messages, and PEPA net
firing transitions or PEPA transitions respectively.

In other words, an IOD can be viewed as a PEPA net model where each IOD node corresponds to
a place in the PEPA net. An edge or transition between two IOD nodes is transformed into a firing
transition between two places in the net with the same label.Table 6.1 describes the correspondence
between the elements of an IOD and those of a PEPA net, in accordance with our definition of an IOD
(definition 4.1), an IOD node (definition 4.2) and a PEPA net (definition 3.1).

IODs PEPA nets
IOD D (def. 4.1) PEPA netV (def. 3.1)
IOD nodeA ∈ N PlaceP ∈ P
IOD transitiont ∈ T Firing transitiont ∈ Tf

IOD activity c ∈ Actp Firing activity c ∈ Actf
IOD node local transitiont ∈ TA Transitiont ∈ Tt

Static objectO ∈ OS Static componentC ∈ CS

Mobile object, tokenO′ ∈ OM PEPA net tokenC ′ ∈ CM

IOD node activityc ∈ Actn PEPA activityc ∈ Actt
Set of inputs to IOD nodeA Number of cellsn in placeP

(p, n) ∈ IA for corresponding token
IOD fork nodes ∈ S PEPA component synchro-

nisation in the source place

Table 1: Translation of IOD elements into PEPA net elements

A static object inside an IOD node (O ∈ OS) corresponds to a static PEPA component (C ∈ CS). In
UML, an object is defined by its name and its type with the following syntax:name:type where the
name of an object is optional. Both in the formal IOD model andthe PEPA net model we only consider
the type of the object. Inside an IOD node, the behaviour of a static object is described by a sequence
diagram. From this diagram, we can derive the complete behaviour of the corresponding PEPA static
component.

A mobile object or UML tokenO′ ∈ OM is translated into a PEPA net tokenC ′ ∈ CM . The
behaviour of the mobile componentC ′ can be derived from both the sequence diagram inside each
IOD node objectO′ visits and the information on the pins of these IOD nodes. Theinformation on
a pin is translated in the PEPA net model as the activity(action type, rate) of the firing transition
between the places representing the nodes. Moreover, this activity is added to componentC ′ behaviour
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as(action type,⊤) showing that the rate of this activity will be specified when the net transition with
label(action type, rate) is fired.

The local activity(a, r) to a PEPA component is the translation of a messagea/r on the sequence
diagram that the corresponding UML object sends to itself. Acooperation activity between two PEPA
componentsC1 andC2 in a placeP ∈ P is the translation of a message, in the sequence diagram of
IOD nodeA ∈ N , that an object of typeO1 sends to an object of typeO2. This message, which is noted
b/r1; r2, consists of the action typeb, and two ratesr1 andr2. This action type will be the one on which
both PEPA componentsC1 andC2 will have to cooperate with ratesr1 andr2 respectively.

We can distinguish between an active component and a passiveone by considering which corre-
sponding object sends the message as follows:

- If an objectO1 sends a message of the formb/r1 to another objectO2, then this message is
equivalent tob/r1;⊤ and that means that, in the context of the PEPA net,C1 is an active component
for action typeb whereasC2 is a passive one.

- Similarly if an objectO1 receives a message of the formb/r2 from an objectO2, thenO1 should
be translated as a passive component regarding action typeb. Indeed this form of message is
equivalent tob/⊤; r2.

In the following, we show how we translate an alt region, a parregion and a loop region given
definitions 4.10, 4.12 and 4.11 respectively.

The behaviour of an objectO in an alt region of levelk with N operandsGk =
⋃N

n=1
Rn can be

translated into a PEPA component behaviourCk such thatCk
def
= Ck,1+Ck,2+. . .+Ck,N . If Rn is a basic

region which associated set of local transitionsTARn
is of sizeZ, then its corresponding derivativeCk,n

is defined asCk,n
def
= (a1, r1).(a2, r2). . . . .(aZ , rZ) whereai andri are respectively the action type and

one of the rates in messagemi = ai/ri1 ; ri2 , mi ∈ TARn
andi = 1, . . . , Z. ri = ri1 if O is the sender

of mi andri = ri2 if O is the receiver. Now, ifRn is not a basic region, that isRn = Pre.Gk−1.Post

thenCk,n
def
= Q1.Ck−1.Q2 whereQ1

def
= (a1, r1). . . . .(aZ1

, rZ1
) andQ2

def
= (a′1, r

′
1). . . . .(a

′
Z2

, r′Z2
). Q1

andQ2 translatePre andPost respectively.Z1 andZ2 are the number of messages inPre andPost
respectively.

The behaviour of an objectO in a par region of levelk with N operands,Gk = [R1,R2,R3, . . . ,RN ],
can be translated into a PEPA component behaviourCk such thatCk = Ck,1 ‖ Ck,2 ‖ . . . ‖ Ck,N

where eachCk,n translates a regionRn, n = 1, . . . , N . If Rn is a basic region withZ messages then

Ck,n
def
= (a1, r1). . . . .(aZ , rZ) whereai andri are respectively the action type and one of the rates in mes-

sagemi = ai/ri1 ; ri2 , mi ∈ TARn
andi = 1, . . . , Z. ri = ri1 if O is the sender ofmi andri = ri2 if O is

the receiver. Now, ifRn is not a basic region that isRn = [Pre.Gk−1.Post], thenCk,n
def
= Q1.Ck−1.Q2

whereQ1

def
= (a1, r1). . . . .(aZ1

, rZ1
) andQ2

def
= (a′1, r

′
1). . . . .(a

′
Z2

, r′Z2
). Q1 andQ2 translatePre and

Post respectively.Z1 andZ2 are the number of messages inPre andPost respectively.

Note that, in both the alt and the par, if an objectO is not involved in all regionsRn, n = 1, . . . , N
then only the regions in which it is involved have a derivative in the PEPA componentCk. Similarly, if
the object is involved partially in a region, that is not in all the messages in the region’s associated set of
local transitions, then only the messages in which it is involved are translated into PEPA activities and
used in the corresponding derivative.

The behaviour of an objectO in a loop regionG = Pre.(R)n.Post can be translated into a PEPA

component behaviourC
def
= Q1.C

′.Q2 whereQ1 andQ2 translatePre andPost respectively, such that
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Q1

def
= (a1, r1). . . . .(aZ1

, rZ1
) andQ2

def
= (a′1, r

′
1). . . . .(a

′
Z2

, r′Z2
). Z1 andZ2 are the number of messages

in Pre andPost respectively.C ′ def
= C ′′.C ′ whereC ′′ translates the bahaviour in the arbitrary region

R. According to the type of this arbitrary region (alt, par, loop) we use its corresponding translation to
PEPA given above. Note that the loop indexn is taken into account using functional rates [8].

A definition of a formal semantics for UML sequence diagrams and operators we have used is given
in [9]. This semantics is based on the structural operational semantics used in PEPA.

6.2 Equivalence of the languages

In section 5, we have described legal traces, or words, for anIOD node, an IOD, a PEPA place and a
PEPA net. The set of legal traces determines the language of an IODD given byL1(D) or a PEPA netV
given byL2(V). Given the algorithm described in the previous section, we can prove that the languages
are equivalent, also known asstrongly consistent.

Theorem 6.1 LetD be an IOD andV the PEPA net derived fromD. If L1(D) is the set of words over
the alphabetL1 ofD andL2(V) is the set of words over the alphabetL2 of V then

1. L1 = L2 and

2. L1(D) = L2(V)

Proof The first point is true by definition, given thatL1 = Actn ∪ Actp = Actt ∪ Actf = L2.
The language equality can be proven in two steps: (1)L1(D) ⊆ L2(V) and (2)L2(V) ⊆ L1(D).

We prove (1) by contradiction and assume there is a wordW such thatW ∈ L1(D) andW 6∈ L2(V).
Since strong consistency is assumed by hypothesis, the trace violation occurs at lengthi + 1, i.e., there
is a traceW = w1.c1.w2.c2 . . . wi.ci.wi+1.ci+1 such thatw1.c1.w2.c2 . . . wi.ci ∈ L2(V) but there is no
trace inL2(V) which would contain the continuationwi+1.ci+1 and thus there is either no wordwi+1

in the PEPA placePi+1 associated with nodeAi+1 or there is no net transitionci+1 ∈ Af . The first
assumption contradicts the one-to-one correspondence between the event ordering in an IOD node (and
thus the local transition ordering) and the sequences of activities possible for the components in place
Pi+1. The second assumptiom contradicts the one-to-one correspondence between the IOD transitions
and the PEPA net transitions (the languagesL1 = L2). The proof for (2) is similar.

2

Another notion commonly available in synthesis methods is the notion ofweak consistency, where
the language of the target model contains the language of thesource model and more. When only a result
of weak consistency between languages can be guaranteed then we have a case of implied (unspecified
or unacceptable) behaviour in the synthesised models. If this is the case, further methods have to be used
to detect such additional behaviours.

7 Related work

With the advances in networking technology and the development of systems based on mobile code, an
increased number of approaches have emerged for the design and/or formal verification of mobile sys-
tems. At the software design level this includes extensionsof UML for mobility (e.g., [1, 6] among many
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others). In [1], the authors extend UML activity diagrams tocapture mobile systems. Their extension
introduces concepts for representing mobile objects, locations, mobile locations, move actions and clone
actions, making use of UML’s extension mechanisms (stereotypes, tagged values and constraints). Fur-
ther, the extension of activity diagrams is done in two variants: responsibility-centred (using swimlanes)
and location-centred (using composite objects to visualise the hierarchy of locations). However, activity
diagrams are not adequate to capture at the same time the structure of the system (locations), how objects
move between locations,and how objects behave/interact within locations. By contrast, this is possible
in our approach using interaction overview diagrams. Furthermore, our usage of IODs for modelling
interactions and mobility enhanced with performance information offer a rich language for capturing
mobile distributed systems for performance analysis. In particular, our extension of IODs are a natural
UML counterpart for the underlying performance technique of PEPA nets [4].

There are several performance modelling approaches using UML and an underlying formal model for
performance analysis including [11, 5, 3, 2] among others. Some of the work using UML for performance
analysis has different motivation than ours. In this context [11] uses activity diagrams to refinedo
activities in state machines and then obtain predictive performance measures from the performance model
obtained from these diagrams. Activity diagrams are annotated with rates and durations according to the
UML profile for performance, schedulability and time. In [5]the authors introduce a mobility profile for
the performance analysis domain, but do not focus on new notations available in UML2.0.

In [3] the authors report on a toolset for modelling systems with performance information using
UML. In this approach, a UML state diagram with performance annotations is mapped onto a PEPA
model for performance analysis. The outcomes of the analysis are given to the designer as additional an-
notations to their original UML model. However, this approach does not consider mobility, and assumes
an underlying translation of mainly UML1.x notation into the process algebra PEPA. Our approach is
different, because we use recent UML2.0 notation and PEPA nets as an underlying model. We are thus
concerned with both mobility and performance information.

In [15] the authors are also concerned with mobility. However they propose a translation of UML1.x
specifications made up of sequence and state diagrams intoπ−calculus processes. Our approach de-
scribes a mobile system at two levels. At the high level we describe the locations of the system and how
objects move between locations which is given in UML by an IOD. At the lower level we describe how
objects behave and interact locally. This is given by the individual nodes of the IOD, namely sequence
diagrams. Both levels are enriched with performance related information (i.e., activities). This approach
does in particular allow us to define an automatic transformation of IODs into PEPA nets.

As shown in this paper, our approach to synthesising PEPA nets from IODs is such that the underlying
languages of both models are strongly consistent. This guarantees the absence of so-called implied
scenarios at the PEPA net level. Implied scenarios are additional scenarios or behaviour that was not
specified or intended. Other synthesis approaches, e.g.[18], often have this problem as the models used
are very different in nature and essentially capture different views of the system. Transforming a model
with a global system view into a model based on individual andlocal object views makes it impossible
to prevent implied scenarios from existing. Such approaches then have to focus on mechanisms to detect
such unwanted and unacceptable additional behaviours.

An interesting aspect of PEPA nets lies in the combination ofPetri nets with a process algebra there-
fore combining strengths of two different formalisms. Using IODs we lift the benefits to the UML design
level. The new sequence diagrams and IODs in UML2.0 have beenlargely influenced by Message Se-
quence Charts (MSCs)[12], a common approach used in the telecommunication domain to represent
scenarios, and their higher-level language HMSCs. Motivated by the fact that HMSCs are not an exe-
cutable model and have limited expressiveness, the authorsin [13] introduced a new visual formalisms
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called netcharts. Netcharts combine Petri nets with MSCs, but instead of having MSCs in places (as in
IODs or PEPA nets) netcharts have MSCs in transitions. Another similar but reverse approach which
combines MSCs with Petri nets is [17]. The approach differs from [13] as it uses Petri nets to describe
the relations among scenarios including multiple concurrent processes. In that respect it follows a more
similar approach to ours.The approach in [17] supports analysis and synthesis of MSC scenarios through
available analysis methods for Petri nets but does not address performance analysis as our approach
does. The MSCs used in [17] are also basic whereas we use sequence diagrams with (possibly nested)
interaction fragments.

8 Conclusion

In this paper, we have shown how to formalise performance annotated IODs and IOD nodes taking
into account complex behaviour within a node determined by several and possibly nested interaction
fragments. We defined the languages associated with IODs andPEPA nets, and presented an algorithm
to synthesise a PEPA net model from an IOD model. We further showed how the algorithm guarantees
that the languages arestrongly consistent. In other words, the set of legal traces of an IOD have a one-
to-one correspondence to the set of legal traces of the underlying PEPA net model. As mentioned in the
related work section, one crucial advantage of strongly consistent languages is the guaranteed absence
of implied (unspecified or unacceptable) behaviours that can be observed in the synthesised model. The
absence of implied scenarios in our approach facilitates anaccurate performance analysis on the given
UML design models.

We are currently completing the implemention of the algorithm for the IOD-to-PEPAnet transforma-
tion in C. The implementation currently takes a textual language for the IOD model and supports the
formal IOD model as described in this paper. A future extension should take a (hopefully standardised)
XMI file and do a model transformation following a model-driven development (MDD) approach. In
other words, we aim to define the exact rules of the transformation and implement them using the Simple
Transformer tool SiTRA1. One advantage is that possible extensions to the UML model and implemen-
tation are easier to integrate.

One extension we want to be able to bring to the UML level is theability to express priorities of
object moves by adding the information to IOD edges. As discussed in section 3, PEPA nets already
incorporate the notion of priorities and we restricted themhere to consider net level transitions with the
same priority.

A more challenging aspect of our future work concerns the performance analysis itself. PEPA nets
mainly rely on the performance techniques available for PEPA and these ignore the location or mobility
information of the PEPA net. By contrast we want to exploit the design structure of our IOD and PEPA
nets to enhance verification and scalability and thus have a more suitable approach for performance
evaluation of complex mobile distributed applications.
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