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Abstract

A seamless approach suitable for both design and analysisiofe and distributed software sys-
tems is a challenge. The object-based Unified Modeling LaggUML) is a popular medium for
effective design of most systems. PEPA nets are a recemrpahce modelling technique which of-
fers capabilities for capturing notions such as locatignchronisation and message passing, and are
thus suited for performance modelling of mobile and distiélol software. In this paper, we provide
a new constructive approach that links both models by degiai PEPA net which realises the same
language (legal set of traces) as a given Interaction Oseridiagram (IOD) in UML2. We prove
that the languages astrongly consister(iequivalent) by establishing the one-to-one correspocelen
between the traces of the models.

Keywords: UML 2 Interaction Diagrams, PEPA nets, Formal TransfororgtMobility, Performance Analysis

1 Introduction

The increasing complexity of mobile and distributed sofevsystems requires a more careful and sophis-
ticated design approach for successful implementatiore difject-based Unified Modeling Language
(UML) can describe the structural and behavioural aspectiese systems and is a popular medium
for effective design. We are interested in performance rtiodeand analysis of mobile distributed soft-
ware systems, and thus in the combination of UML-based desigl formal modelling techniques for
performance analysis of these systems. PEPA nets are darmpance modelling technique of choice,
combining the stochastic process algebra PEPA with cotbiBegri nets. PEPA nets [4] have capabilities
for capturing notions such as location, synchronisaticthrmaessage passing, and are thus ideally suited
for performance analysis of mobile and distributed sofevé&urthermore, there is an extensive suite of
tools available for the process algebra PEPA The combimatfdJML with PEPA nets should, how-
ever, be completely seamless and transparent to softwaetogers. In other words, a software designer
models a system using UML2, and is able to analyse the modtisw knowledge of the underlying
performance technique.

*This work is supported by the CNRS/Royal Society Project MEDs (IKSLU85079)



In previous work [10], we have shown how to model mobility gretformance information at the
design level using UML 2 and PEPA nets. In particular, weodtrced new notation at the UML level
to be able to capture performance information. In UML, we liskavioural models, namely sequence
diagrams and interaction overview diagrams (I0Ds), whegence diagrams capture the behaviour
of (mobile and static) objects at the locations in the systend the IOD is used to model the overall
distributed system and how mobile objects move betweettitotsa The UML models are extended with
a notion of activity, an action type with its correspondirager; to express performance information.

In this paper, we present a formalisation of performanceotted IODs and 10D nodes taking
into account complex behaviour within a node determineddweal and possibly nested interaction
fragments. We define the languages associated with |IODs BRé Rets, and present an algorithm
to synthesise a PEPA net model from an 10D model. We furthewdtow the algorithm guarantees
that our languages astrongly consistentln other words, the legal traces of an IOD have a one-to-one
correspondence to the legal traces of the underlying PEP#ndel. This is a crucial advantage as it
guarantees the absence of implied (unspecified or unatteptzehaviours that can be observed in the
synthesised model. The absence of implied scenarios inppuoach facilitates an accurate performance
analysis on the given UML design models.

Structure of this papertn the next section, we present the UML2 interaction diagramd extended
notation used to model mobile distributed systems. In ge@i we describe the performance modelling
technique PEPA nets. In section 4, we give a detailed degxripf the formal model for IODs and IOD
nodes. We introduce a notion of region, as a subset of evientspture interaction fragments in IOD
nodes. In this way we have a framework which allows us to gaadhe exact corresponding PEPA
expressions for the locations of the net. Section 5 descthrlanguages (set of legal traces) associated
with both models. Section 6 describes the synthesis dtgorand gives a proof for the equivalence of
the languages. Finally, section 7 describes related warksaction 8 concludes the paper with our plans
for future work.

2 Interaction diagrams in UML2.0

To model interactions, UML2.0 offers four kinds of diagranc®@mmunication diagrams, sequence di-
agrams, timing diagrams and interaction overview diagrahisre we are only interested in sequence
diagrams and interaction overview diagrams.

2.1 Sequence diagrams

Sequence diagrams are the more commonly used diagramsfuriog inter-object behaviour. In
UML2.0, a sequence diagram is enclosed in a frame and thesifiest box at the upper lefthand cor-
ner names the sequence diagram. Further, interactions ecatructured using so-called interaction
fragments. Each interaction fragment has at least one topédrald in the five-sided box at the upper left
corner of the fragment. There are several possible operdéstribed below. Figure 1 shows an example
of a sequence diagram using UML2.0 constructs.

The semantics of an interaction operator is describednmdtly in the UML2.0 superstructure spec-
ification [14]. Below we give the meaning of some operatoesdus this paper:

sd names a sequence diagram.

ref references an interaction fragment which appears in ardiffediagram. This fragment is called an
interaction use
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Figure 1: A sequence diagram.

alt designates that the fragment represents a choice of beinawd most one of the operands will
execute. The operand that executes must have a guard eéaprédsst evaluates to true at this
point in the interaction. If several guards are true, onédnefit is selected nondeterministically for
execution.

par designates that the fragment represents a parallel metgedre the behaviours of the operands.
The event occurrences of the different operands can bddated in any way as long as the
ordering imposed by each operand as such is preserved.

loop specifies an interaction fragment that shall be repeatee smmber of times. This may be indi-
cated using a guard condition. The loop fragment is execaseldng as the guard condition is
true.

2.2 Interaction overview diagrams

IODs constitute a high-level structuring mechanism thatsisd to compose scenarios through sequence,
iteration, concurrency or choice. IODs are similar to Hiehécal Message Sequence Charts (HMSCs),
also known as Message Sequence Graphs (MSGs), which prasttecturing mechanism for MSCs
[12].

IODs are a special and restricted kind of activity diagradBg) in UML where nodes are inter-
actions or interaction uses, and edges indicate the flowdaran which these interactions occur [14].
Semantically, however, IODs and ADs are given differenériptetations. 10Ds follow, similarly to
sequence diagrams, a trace semantics whereas ADs in UMte2uhderstood as Petri nets.

The notation used for I0Ds incorporates notation from seqeiediagrams, essentially references
(interaction uses) and sequence diagrams (inline inferemt with forks, joins, decision and merge



nodes from ADs. Branching and joining of branches in an IODsihe properly nested. The edges
in an 10D denote control flow only and according to the UML dfieation [14] object flow cannot be
represented.

Object flow in an AD is shown in Figure 2. The figure shows tweralative notations to denote the
flow of an object of typedrder from one nodd-illOrder to another nod&hipOrder. In the first case
the object is depicted in the middle of the edge, whereassiis¢gicond case the nodes have an output and
input pin of typeOrder. After the nodeFillOrder has been completed a token of typeder is placed in
the output pin oFillOrder. As soon as the edge fires the token moves to the input gahipOrder.

Fill Order Shi Ord%
Order p
Order Orde
Fill Order Ship Orde

Figure 2: Object flow examples.

A node can have more than one object as in/output. In this theee are several edges between
the underlying nodes, one for each type of token, and thesecige be fired independently. However,
whichever token reaches a target pin first will have to waittfee others before the final target node
can be initiated. Unless otherwise indicated, all pins aggiired as input values before a node can be
executed.

By default the number of tokens that are carried along an edgee, but an input or output pin can
collect several tokens of the same type. For instance inr€iguit may be the case that several orders
have been filled (the node has been executed several timgshe@corresponding tokens are placed in
the output pin oFillOrder waiting for the edge to fire and the tokens (one at a time) toeothe input
pin of ShipOrder. It is also possible that a pin can only accept a certain nurobwkens. We write
{upper Bound = 50} next to a pin to indicate that the maximum number of tokensdaa be stored in
that pin is 50. If the current number of tokens collected atghn is 50 and the pin is an input pin, then
no edge leading to that pin is allowed to fire. We assume thaleffgult the value of the upperBound is
one unless otherwise indicated.

Further, it is possible to have multiple edges leaving apwiyin as shown in Figure 3. Notice that
we cannot duplicate tokens on edges which means effectiiatywe have a case where the edges have
to compete for a token.

Paint at
Stationl

Paint at
. Station2

Figure 3: Nondeterministic choice.

In this example, we are modelling that after a part has beatertawill (hondeterministically) be
either painted at Stationl or at Station2. To avoid nondgtestic choice as in this example, it is
common to use mutually exclusive guards on edges. As in Allie®in IODs can have guards (boolean



expressions) to determine whether the edge may or not etfablarget node. Guards are written in
square brackets on the edge.

Finally, in an AD a node can only start execution if all its ihgins contain tokens as required,
and after execution tokens are placed in all output pins. etiomes, however, behaviour has alternative
inputs or outputs. In other words, we may want to allow theentwdexecute with just a few inputs and
produce only a subset of the possible outputs. To denotevthisse a double box around pins as shown
in

node

Figure 4: Alternative input and output pins.

Figure 4. Here, the activity node requires as input either tolken of typea, or one token of type
b and a token of typ&. In one case it produces as output a token of typ® a token of typee. At
this level we are not able to determine how input and outpkere are related. According to [16] it is
also not clear what happens if both sets of inputs are aVail&r interpretation here is that alternative
input/output pins denote concurrent object flow and the rotains a concurrent execution for each of
these inputs. This will become clearer later on with an eXarapan 10D.

Even though 10Ds only describe control flow and cannot shoablilow and pins, the notion of
object flow is implicitly present. A node in an 10D is a sequemiagram containing objects that can
progress to a further interaction according to the edgdseaiQD level. Moreover, from an 10D we can
derive the expected traces of behaviour for each of therinsetinvolved.

Take the example in Figure 5 showing an 10D with two inlineematctions.

intover 3J

sd 1
P ml o 3 3
] ] I I
s
I I I I

Figure 5: Simple IOD with two inline interactions.

The first interactiongd1 ) shows objecbl sending a messagrelto objecto2 and independently
objecto3 sending a message2to objecto4. The second interactiorsd2) shows just objecbl
sending a message3to objecto2. At the higher level, there are two ways of understandingetthge
from sd1 to sd2 which correspond to the two possible interpretations ofusatjal composition of
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interactions in an I0OD. The first interpretation could bet théeractionsdl has to complete before the
behaviour described in interacti@ul2 can start. This is the typical interpretation of transisan an
AD and corresponds to the notion stfong sequential compositiofowever, it is not entirely justified
in the case of IODs as will be made clear shortly.

A second and weaker interpretation could be that since dnjctsol ando2 are involved in the
second interaction, these two objects can move from theiriletaction to the second after completing
their behaviour in the first interaction. In other wordshbald be possible fonl ando2 to proceed to
the second interaction afted. ando2 have synchronised on messagéindependently of whethey3
ando4 have synchronised on messaggor not.

We are primarily interested in explicitly modelling the nild@p of objects, and thus we borrow the
notation of object flow and pins from activity diagrams asvehdon Figure 6. In other words, we do
not allow simple edges between nodes as depicted in Figuaedbwe always have to indicate pins on
edges. Implicitly, this means that we assume the secongbietation (weak sequential composition) by
default.

intover 3/
sa1)
iy
S my,
S
w ol [ Jo2
—
.

Figure 6: Independent object progression in an 10D.

We consider that all objects that want to progress from otezadction to another have an output pin
with the name and type of the object, and an input pin with #maesname and type in the following
interaction. As soon as an object completes its behaviodessribed in the first interaction, a token is
placed in the corresponding output pin and the edge can fingdad the target pin has enough space.
Whether or not the following interaction can execute depemrd how many input tokens are required
(recall also the case in Figure 4). In Figure 6, interacid@ can only start executing once both tokens
(one of typeol and one of typ@2) are available in the respective input pins, but regarddésghether
messagen2has been sent or not.

In order to allow both interpretations of sequential conifi@s, we can represent strong sequential
composition using a fork as shown in Figure 7.

In this example, the edges for objeotk ando2 cannot fire independently andare synchronised with
the edges for objects3 ando4. Only when all tokens are available on the fork can execytimteed,
with objectsol ando2 moving to nodesd2 and object©3 ando4 returning to nodesd1 (notice that
we could have made them move to a different node if we wantexvadd the repeated occurrence of
messagen?. In other words, a fork is used to synchronise the objects@ated with the edges it cuts
accross.

With both interpretations of sequential composition at@b llevel we obtain a powerful language

6
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Figure 7: Strong sequential composition in an 10D.

to model and structure interactions. In particular, withr approach IODs can be used to describe
interactions for mobile applications.

As shown in Figure 7, we use a tagged valieit Bound = n} which we write next to a pin to
indicate the initial number of tokensassociated with that pin. If this tag is not given next to athen
we are implicitly assuminginit Bound = 0}. Using the tagnit Bound simplifies our model as we do
not have to indicate the initial node (and possible fork,aken constraints) of the IOD. This gives the
initial marking of the 10D.

2.3 Performance Annotated Extension

In [10] we have shown how to use IODs and sequence diagramsddelling mobility and performance
information. In particular, we extended both diagrams t@ble to add the performance information to
the models. Here we only give a brief description of the adu®dtion.

For modelling mobility through edges in an IOD, it is usefoltte able to indicate, if intended, the
explicit activity (an action type with its correspondingepathat corresponds to the movement of an
object from one node or location to another. We can indidaiteadditional activity at the source pin of
an I0D edge. In the UML specification, a pin has a name and type ¢r the other may be omitted).
We assume here that a source pin of an edge carries the irfomea the associated activity by giving
the correspondingction typeandrate.

The textual label of a source pin is given kyyin _type;action  _type/rate  as shown in Fig-
ure 8.

Output pin Input pin
v v
node 1 [} ] node 2
pin_type;action_type/rate {upperBound=value

Figure 8: Input and output pins.

Similarly, the messages inside an 10D node (sequence diggne activities and represented by an



action type and one rate (denoting an individual objectagjior two rates (indicating synchronisation
between objects).

3 PEPA nets

PEPA nets [4] combine the process algebra PEPA with stachadbured Petri nets. This hybrid for-
malism can be regarded as using the stochastic procesgalB&PA as the inscription language for
labelled stochastic Petri nets. Viewed in another way, #tésused to provide a structure for combining
related PEPA systems. In either view the combined modeliinguage naturally represents such appli-
cations as mobile code systems where the PEPA terms areauseatiel the program code which moves
between network hosts (the places in the net).

In PEPA a system is described as an interactiooomfiponentsvhich engage, either singly or mul-
tiply, in activities These activities represent changes of state within arsyd®=PA nets are motivated
by the observation that in many systems we can identify twtirdit types of change of state, as changes
within the system may take place on different scales. Thegghere are two types of change of state in
a PEPA net. We refer to these fgngs of the net and afransitionsof PEPA components. Firings of
the net will typically be used to model macro-step gtwbal) changes of state such as context switches,
breakdowns and repairs, one thread yielding to another,roolzile software agent moving from one
network host to another. Transitions of PEPA componentktygically be used to model small-scale
(or local) changes of state as components undertake activities.

In PEPA net, each activity has action typeand its duration is represented by a parameter of the
associated exponential distributioactivity rate This parameter may be any positive real number, or
the distinguished symbal (read asunspecifiell Thus each activityg, is a pair(a, r) consisting of the
action type and the activity rate respectively. We assunmuatable set of components, denotedand
a countable sefy, of all possible action types. We denote dyt C )V x RT, the set of activities, where
R* is the set of positive real numbers together with the synihol

As the firings, on one hand, and the transitions, on the otinad fare special cases of PEPA activities,
we differentiate the action types associated with eachexfeh We denote by, the set of action types
at the net level and by; the set of action types inside the places suchlhat YV, U ;. Similarly, we
denote byAct; C V; x RT the set of activities undertaken by the components insidelices and by
Acty C Yy x RT the set of activities at the net level such thiatt = Acty U Act;.

A PEPA net is made up of PERfntextsone at each place in the net. A context consists of a number
of staticcomponents (possibly zero) and a numbecelfs (at least one). Like a memory location in an
imperative program, a cell is a storage area to be filled byt@ngd@f a particular type. In particular in
a PEPA net, a cell is a storage area dedicated to storing a B&mRponent of the specified type. The
components which fill cells are thmobile components and can circulate as tbkensof the net. In
contrast, the static components cannot move.

The mobile components or tokens of a PEPA net are terms of ERARtochastic process algebra
which define the behaviour of components via the activitiey undertake and the interactions between
them. Thus each token has a type given by its definition. Tpis tletermines the transitions and firings
which a token can engage in; it also restricts the places inolwihmay be, since it may only enter a cell
of the corresponding type.

We assume a countable set (possibly empty) of static conmp@€fie and a countable set of mobile
components or toker,; such thaCs UCy; = C.



Definition 3.1 A PEPAnet is atupleV = (P,7,1,0,¢,
m, Fp, K, My) such that

¢ P is afinite set of places;

7 is a finite set of net transitions;

e [:7 — Pisthe input function;

O : T — P is the output function;

¢:T — (Yyr,RT U{T}) is the labelling function, which assigns a PEPA activity|(é, rate)
pair) to each transition. The rate determines the negatix@oaential distribution governing the
delay associated with the transition;

7 : Yy — Nis the priority function which assigns priorities (represed by natural numbers) to
firing action types;

Fp : P — P is the place definition function which assigns a PEPA contaxttaining at least
one cell, to each place;

K is the set of token component definitions;

My is the initial marking of the net.

The syntax of PEPA nets is given in Figure 9. In that gramaenotes asequential component
and P denotes @oncurrent componenthich executes in parallel. stands for a constant which denotes
either a sequential or a concurrent component, as bound éfjraticn.

In PEPA, the behaviour of an expression is given by strudtoperational semantic rules [7]. These
give rise to a labelled transition system which can be regghets a derivation graph for the term: each
syntactic form is a node of the graph and the possible aetviive the arcs or transitions of the graph.
For a component’ € C, the set of reachable states, termeddé@evative setis denotedis(C'). Regard-
ing the graph as a state transition diagram gives rise to @underlying a PEPA expression (see [7]
for more details). The CTMC can be solved to obtain a stegalg-probability distribution from which
performance measures can be derived.

Similarly, PEPA net behaviour is governed by structuredrajenal semantic rules. These consist
of the original rules for PEPA and some additional rules wapy the meaning of a cell, as well as the
enabling and firing rules of the net level structure [4]. Ndw states of the model are the marking
vectors, which have one entry for each place of the PEPA nepréviously the semantic rules govern
the possible evolution of a state, giving rise to a labelleghgition system or derivation graph. Now
nodes of the graph of the marking vectors and the activitrefividual, shared or firing activities) give
the arcs of the graph.

As in PEPA the conflicts may be solved by the race policy bt @lso possible to assign different
priorities to different Petri net transitions, giving soffirengs priority over others [4]. However in this
paper we restrict consideration to PEPA nets in which allewed| transitions have the same priority.



N = KM (net)
(definitions and marking)

M = (Mp,...) (marking)
Mp == P[X,..] (place marking)
(marking vectors)

K === 1=85 (component defn)
| P[X] = P[X] (place defn)
| PlX,..] UI:e'P[X] BI P (place defn)
(identifier declarations)

def

S m= (a,71).8 (prefix)
| S+ S (choice)
| 1 (identifier)

(sequential components)

P = P D§ P (cooperation)
| P/L (hiding)
| PX] (cell)
| I (identifier)

(concurrent components)

X = (empty)
| S (full)
(cell term expressions)

Figure 9: The syntax of PEPA nets

4 A Formal IOD Model

In this section we describe 10Ds and IOD nodes formally. Tarenl model is then used in the next
section to define the language of an 10D.

Definition 4.1 An IOD D is a tuple defined by
D=(N,S,7T,P,Act,Lo, L], F,C,B) where

e N is afinite set of nodes;

e S is afinite set of fork nodes;

e 7 is afinite set of transitions;

e P is a set of pin types such th& = P; U Pp andP; N Py = 0, whereP; is the set of input pin
types andP, is the set of output pin types ;
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e Act is a set of activities such thadct = Act, U Act, where Act,, is the set of activities in
the nodes anddct,, is the set of activities at the 10D level. Each activity.4et is a pair (a,r)
consisting of an action typeand arater € RT™ U {T};

o Lo: T — {Po, Act,} is atotal labelling function which assigns an output pingygmd an activity
to the source pin of a transition;

e L;: T — {P;,N"}is a total labelling function which assigns an input pin tysed an upper
bound to the target pin of a transition;

e F: T — N x N is atotal function which assigns a pair of nodes (a sourceenadd a target
node) to a transition;

e C: S — 27 is atotal function which assigns a set of transitions to &foode;
e B :P — Nis the initial marking of the 10D.

An 10D D is described by a set of noddsand edged’, here called transitions, between the nodes.
In general, 10Ds can have forks (to split the control flow andigate parallelism), joins (to join the
control flow), and decision points (to indicate guarded cbpi We can model the behaviour of joins
and decision points with our transitions (we omit detailselieand they are thus not included in the
definition. We only consider an additional set of fork nodes

In order to capture object mobility, a transition in an IODassociated with a unique object and
indicates how it moves from one node to another. To indicdtielvobject is associated with a transition
we use a set of pin typeB distinguishing between input pin typgy and output pin type$o. We
use a set of activitiesict,, to indicate the action and rate associated with the objesctenand thus to
a transition. All transitions are associated with two pipdy: one output pin type (the source pin of
the transition) and one input pin type (the target pin of ta@dition). We use function§o and£; to
associate the specific pins to a transition. The source dfdiheition also carries the activity associated
with the object move. The target of the transition also haataral number indicating the number of
tokens allowed in the target pin (given by thpperBoundconstraint in the 10D - see Figure 8). If the
target pin has reached its maximum number of tokens theitiemss not enabled. A fork node i§,
which acts as a synchronisation bar, cuts across sevenaltioas to synchronise the objects associated
with the transitions. The set of transitions affected byr& fe given by the functior®. Finally, the initial
marking B of the IOD defines how many tokens are available at pin typeBeMa transition fires one
token from the source pin type of the transition is removeati@aced at the associated target pin type.

Take the example 10D of Figure 7. Formally, the 10D is givertly set of noded/ = {sd1, sd2},
one fork nodeS = {s1}, transitionsT = {t1, ta, t3, t4}, iNPUt PINSPr = {01541, 025415 O3isd1
Odisdls Olisd2, 02isd2 }» OULPUL PINSPO = {016541, 020sd15 O30sd1
040541}, Set of activitiesAct (not given as the example does not show activities), andrfstance
Lo(t1) = (010sa1 acto, ), L1(t1)
= (014542, 1), F(t1) = (sdl,sd2),C(sl) =T, B(01;sq1) = 1, B(010s41) = 0, and so on. Notice that we
encode in the pin information whether it is an input pin, thgot associated and which node it belongs
to (e.g.,01.41 i the input pin for objecbl in nodesdl).

The 10D defines the overall behaviour of the system whereels ieaividual node (sequence dia-
gram) in the 10D describes the behaviour of a location in yfsesn. A node is defined as follows.

Definition 4.2 A nodeA for an IODD whereA € NVisatupled = (0,&, <, M, Ta, Pa, pia,Za,Ua)
such that

11



O is a finite set of object types such tt@t= O,;|J Os whereO,, is the set of mobile object
types andDg is the set of static object types;

e £ is a set of events such that:

— & = Es|JEr where&s is the set of send events afig is the set of receive events,
— & = Uyeo & such that for anyy, 02 € O, if 01 # o2 then&,, s, =0,

e < is aset of partial orders<, C &, x &, witho € O;

e M, is afinite set of local labels (messages). Each labeE M 4 is defined asn = a/ri;ro
where(a, 1) € Act, and(a,r3) € Act,.

e T, is the set of local transitions such @5 C £g x M4 X Eg;
e P4 is the set of pin types of such thatP4 C P;
e 14 : P4 — Oy is atotal function which associates a mobile object typé aipin type;

e 7, isthe setof inputs tal such that each input € Z 4 is a set of pair (p,n)/p € Pr,,n € N}
whereP; , is the set of input pin types td andn is a number of tokens.

e U  isthe set of ouputs frotd such that each outpuf € U4 is a set of pair§(p,n)/p € Po,,n €
N*} wherePg , is the set of output pin types dfandn is a number of tokens.

A nodeAin an IOD is a sequence diagram describing an interactiomd®t objects). Some of the
objects enter/leave the node through input/output pinsaaedhemaobile objectgyiven by the se®,,
(the exact mapping of pin types to object types is given byttt functionp 4). Additional objects
involved in the interaction described by the diagram @iegic and given by the saDg. Static objects
reside in an IOD node and do not participate in any otheraatésn (node) elsewhere in the IOD. The
behaviour of the node is described by a set of evénterresponding to the sending and receiving of
messagesis and&g respectively). Each event is associated with one uniquecabj partial ordex
is defined over the set of events and based on the local pantieais, i.e., the partial orders defined over
the events of an object. Given a set of events and messads, labasitions in the node correspond to
triples of the form(e;, m, es) wherebye; is an event associated with the sending of messaged e
corresponds to the receipt of the same message.

Each message: consists of an action typg and two rates; andrs. If one of the rate is unspecified,
thatisr; = T orry = T, then the rate is omitted leading to a message of the farm a/r where
r = ry orr = ro. In this case the rate is associated with the object sentimgiessage. Note that, at
least one rate must be specified giving the frequency at vihilctivity is to be performed.

An 10D nodeA has a set of pin typeR 4 which is a subset of the pin types of the IOD, and as such
consists of a disjoint set of input and output pin types.

For a node to execute, it needs to have a set of tokens aeadaliis input pins. This is given by
Z 4. In particular, a node can haedternativeinputs andZ 4 is a family of sets of inputs to the node. For
exampleZ 4 = {{(p1,1), (p2,2)},{(ps3,1)}} indicates that nodel has three input pin types, p, and
p3, butpy, po are an alternative input t@;. Further, for the node to execute, we need one token of type
p1 and two tokens of typg, or alternatively one token of type. Similarly, once a node has executed,
it generates a set of tokens at its output pins. The outputegmond to a family of sets of output pins
Uy.
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Figure 10: An 10D node.

Consider the node in Figure 10. Formally, nogtél is given by objectsO,; = {o1,03} and
Os = {02}, events€ = {ey,...eq} Where local object events atg, = {ei,es}, &, = {e2,¢5},
&, = {ea,e5} and the partial order is such thai<,,es. The set of messages is given By i3 =
{m1,ma,m3}, and the local transitionS,43 = {t1,t2,t3} are such that; = (e;,m1,e2), ta =
(e3,ma,eq4) andts = (es,ms,e6). The pins to the node aBsys = {p1,p2,P3,pa} andpgqs(p1) =
Ksd3(p3) = o1, psaz(p2) = psaz(pa) = os. The activities are such that for instan@e,, r4) € Act,
and(ai,r11) € Act,. Finally, there is one possible input and one possible dugpuen by 743 =
{(p1. 1), (p2, )} andidsas = {{(p3. 1), (ps, 1)}}.

Since we can describe a variety of behaviour in a node ustegaiction fragments such as parallel
behaviour, alternative behaviour, and loops, we need ttuoaphe fragments associated with an 10D
node. In what follows, we considerragion as a subset of events. We define a so-cdblasic region
next.

Definition 4.3 R is a basic region ove(&, <) if R € £ andR = |J . Ro, WhereR, is a totally
ordered set of events for objeect The minimal and the maximal events/of are denotedfirstz, and
lastr, respectively.

A basic region is a subset of events where all events belgrtgithe same object are totally ordered
and hence we can refer to the first and last events for thatolipme example of a basic region is a node
wihtout any interaction fragments in it. The noded andsd2 from the example of Figure 7 are basic
regions. Notice that according to our definition a basicaegian be empty.

Definition 4.4 LetR be a basic region ovefé, <) defined over 10D nodel. R is closed iff for any
e € R if there is a local transitiort € T4 witht = (e, m,e’) ort = (¢',m, e) thene' € R.

A closed basic region does not cut across local transitibomsther words, if one event involved in
a transition belongs to a basic region so does its corregpgragend/receive event. In the sequel, we
assume that all our basic regions are closed.

Once we include alternative or parallel behaviour, we aréonger able to characterise the events
of an object as being totally ordered. This is the case in cenvipus example of Figure 10. Indeed, the
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whole set of event§ = {e1, ... e} does not define a region as for instarges,,, es. In this example,
we have two basic regions which correspond to the operantfe @it fragment, namelR; = {e1,e2}
andR, = {63, €4, €5, 66}.

Definition 4.5 Let’R be a basic region ove€, <) defined over 10D nodgl. The associated set of local
transitions forR is given byZ 4, and is such that for eache T4, , ! = (e1, m, e2) withe;, e2 € R.

The local transitions associated with the regions defineddoexample are given 0¥,43,, , = {t1}
andTSd3R2 = {tg,tg}.

Definition 4.6 Let R be a basic region ove(&, <) defined over IOD noded, andty,ty € Ta,. t1
preceedes, in the set of local transitions (writtety < t,) iff at least one of the following holds for
ty = (e11,m1, e12), t2 = (€21, M2, e22), and some € O

1. e11 <o €21, Whereen, €21 € 50
2. e12 <o €29, Whereelg, €929 € 50
3. e12 <o €21, Whereelg, €21 € 50
4. e11 <, €99, Whereen, e €&,

In other words the transitions share at least one objectttendssociated events for each object are
ordered. Back in our example, for basic reg®p with t5, t3 € Ty43, 5, t2 < t3 aSeq <o, €5.

Definition 4.7 LetR be a basic region and 4, be the associated set of local transitions ofr The
concurrency level of 4, is [, if 74, contains/ totally ordered subsets of transitionsy,, = 74,, U
... U T4y, such that, for two arbitrary distinct transitions, and ¢2, t1 € 7Ty, t2 € Ta,, and
’L7éj S [1,...,l],t1 §Z<t2andt2 Ktl.

Notice that for a basic regioR where7 4, has concurrency level, 74, is a totally ordered set of
local transitions. In our exampl&, 43, , is a totally ordered set of local transitions and has coecy
level 1. For the example of Figure 7, the basic region in nede containing both transitions labelled
my andmsg has concurrency leve asm; andmsy are completely independent. We can thus consider
two basic regions one associated with a set of transitionsasongm; and the other associated with a
set of transitions containing, (both singletons and hence trivially totally ordered).

Definition 4.8 For basic regionsk; andRs, R1.R2 is a basic region denoting the sequential composi-
tion of the regions satisfyintiistr, <, firstr,, foranyo € O.

The sequential composition of regions is as expected a waydefring the events of the respective
regions sequentially.

Definition 4.9 G is a basic arbitrary region if :

e (G is abasic alt region, thatig = R{ UR,U...URnN, N € N, whereeactR,,,n=1,..., N,
is a basic region, or

e G is a basic loop region, that i§ = R whereR is a basic region andV, N < N, is the loop
index,or
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e G is a basic par region, thati§ = [R1,R2,...,Rn], N € N, where eaclR,,,n =1,...,N,is
a basic region and the associated set of local transiti@ng is of concurrency level one.

If an alternative fragment does not have further nestirgdailed basic. A basic alternative fragment,
called basic alt region, can be seen as a finite ugiarfi regions where each region corresponds to one
of the operands in the alternative fragment and these regianbasic. We have already seen this for our
example of Figure 10. Similarly, a basic loop region and adysar region are made from basic regions:
one in the case of the loop where there is an iteration ovérdidisic region, and as many as there are
operands in the case of the par.

The careful reader may notice that if we have a basic regidih @dncurrency level greater than
(say!l) we can see it as a basic par fragment wittperands where each operand is a basic region of
concurrency level and given by one of the subsets of transitions. This is siatéte following lemma.

Lemma 4.1 Let R be a basic region such that the associated set of local thamsi 74, has con-
currency levell. Then there is an equivalent basic par regignwith [ operands such thag =
[R1,Ra,..., Ry and where eaclR,, for p € [1,...,1], is a basic region with associated set of local
transitions74,,  of concurrency level.

The idea is that a basic region with concurrency level graat one can always be replaced by a
basic par region where the level of concurrency gives us tinebxer of operands of the par region. The
proof is straightforward and we omit it here.

Given the lemma and without loss of generality, from now onamby consider basic regions with
associated set of local transitions of concurrency léy@lence totally ordered).

The next definition deals with more general alternative rfragts where nesting is allowed but re-
stricted to a finite number of times given by

Definition 4.10 G, is an alt region of levek with N operandst > 1, N € N*, if G, = UiV:1 R,
where eaclR,, is either a basic region or, for at least one valug of n, R,,, = Pre.Gy_1.Post. Both
Pre and Post are basic regions and_; is an arbitrary region of levek — 1. If k = 1 thengG; is a
basic arbitrary region.

If there is nesting in one of the operands of an alternatiagrfrent, the operand is not basic and can
be seen as the sequential composition of three regions biwvé®re.P.Post) where the first and the
last are basic an is again an interaction fragment of some kind (alternatpagallel, or loop).

Consider the example of Figure 11. This example describedtarngion of levelk = 3 with two
operands § = 2). Thus we havejs = R, U R, whereR1 = Pre.G,.Post andR, is a basic region
with associated set of local transitiofS,,, = {ms,mg}. In Ry, Go = R} URY, and bothPre
and Post are empty. At the second level of nesti®j is a basic region with associated set of local
transitions7, Ay = {m1,mo} whereask}, = Pre’.G;. Post’. BothPre’ andPost’ are empty and; is

a basic alt region. Finallyy; = R} U RY whereR/ andR} are basic regions, anﬁARg = {mg} and
TAR// = {m4}
2

Definition 4.11 G is a loop region ifG = Pre.(R)"™.Post wheren, n € N, is the loop indexPre and
‘Post are basic regions an® is an arbitrary region.

Notice that an arbitrary region can be any possible regioat is, a basic region, an alt region of
some level or a par region of some level as defined next.
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Figure 11: Alt region of levek = 3.

Definition 4.12 G, is a par region of levek with N operandsk > 1, N € NT,if G, = [R1,R2, R3, ..., Rn|
whereR,,,n = 1,..., N, is either a basic region or, for at least one valugofn, R,,, = [Pre.Gy_1.Post].
BothPre andPost are basic regions ang;,_; is an arbitrary region of levek — 1. If K = 1 theng; is

a basic arbitrary region.

Consider the example of Figure 12. This example describearaggion of levelk = 2 with
two operands ¥ = 2). Thus we havej, = [Ri,R2] whereR; = [Pre.Gi.Post] and Ry =
[Pre’.G} . Post']. Pre is a basic region with one messagg whereasPost, Pre’ andPost’ are empty
basic regions. Botly; andg; are basic par regions.

Figure 12: Par region of levéd = 2.

Figure 13 describes an example of nested alt and par regiolesed k1 = 3 with two operands
(V. = 2). As the region at the third level is an alt region we h&ge= R, U R, whereR, is a par
region of level 2 and thuR; = [R), R5] andR; is a basic region with associated set of local transitions
Tag, = {ma,ms}. R} is a basic region wittf4 ,, = {mi} andR’s = [Pre.G,.Post] wherePre

1
andPost are empty andj; is a basic par region such thgt = [RY,R5] with T, = {m2} and
1
TAR,2, = {m;g}
Given the framework described above to deal with interactiagments, we are now able to define

an IOD node fragment specification. Assume given a set ofdoten fragment operatof3 such that
par, alt, loop € (.

Definition 4.13 An 10D node fragment specification feris given bySpec4 = (Int 4, fa,g4) Where

16



alt

Figure 13: Nested alt and par region of le¥ek 3.

e Int 4 is a set of interaction fragment identifiers in nade

o fa:Intq— QxNxNisatotal function that assigns a triple, , V) to an interaction fragment
identifier wherep is an operator] a natural number indicating the level of the fragment avdhe
number of operands.

o ga:IntyxQxNxN— 2¢is an injective function that takes a tuple of the fofiyv, 7, N') and
if f4(i) = (0,1, N) then returns arv region of level with N operands, otherwise it is undefined.

5 Languages

In the following, we first define the associated language imitraction overview diagrams and then the
language associated with PEPA nets.

5.1 The language of an IOD

Given the formal model of an 10D as given above, we now deftassociated languagé(D) where

D is an 10D, corresponds to the legal set of trace®ofThe traces are defined by the ordering of the
events in the 10D nodes and respecting the ordering givemdyransitions at the 10D level. In other
words, a trace of an 10D is given by the union of the traces lfdokens in the I0D.

Definition 5.1 A trace of IOD noded = (O, &, <, M4, T4,

Pa,Ta,Uy) is a (possibly infinite) wordv = ¢;.c2 ... over the alphabeiM 4 iff there is a sequence
of local transitionst;.ty ... over 74, such thatt; < to < ..., t; = (esi,ai/Ti1;ri2,€ri) @Nd ¢; =
(ai,min(ri1,mi2)) for 0 < i < |wl|, es; € Eg ande,; € Eg.

We defineL; as the 10D alphabet such that = Act, U Act;.

Definition 5.2 A trace of IODD = (N, 8,7, P, Act, Lo,
Lr,F,C,B) is a (possibly infinite) wordlV = w;j.c;.ws.co ... over the alphabet; iff there is a se-
quence of transitions, .t, . .. over7 such that, fol0 < i < |W|,

e w; is atrace of IOD node4;,

o Lo(ti) = (pi,ci) wherep; € Po andc; = (a;,7;) € Acty,
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° .7:(15@) = (.AZ, Ai+1) whereA;, A;11 € N, and
e t1 € Tz where7g is the set of possible initial transitions obtained from thiéal marking 5.

Definition 5.3 Let a maximal trace be a trace which is not a proper prefix of ather trace. The
language of 10DD is the setL;(D) of words over the alphabel; whereL;(D) = {W | W is a
maximal trace oD}.

5.2 The language of a PEPA net

Let V' be the labelled transition system or derivation graph ofezg@P € P and let7y be the set of
all transitions in that graph. We defiheas the labelling function which assigns a PEPA activity tchea
transition in7y,.

Definition 5.4 Lett,ty € 7Ty . t1 preceedes, in the set of transitions (writtety < t») iff there is a
sequence of activitie®(t1).h(t2) whereh(t1) = (a1,71) andh(te) = (ag,r2), r1,72 € RT U{T}

In order to define the language of a PEPA Vietve first define the trace of a PEPA net pldee P
as follows.

Definition 5.5 A trace of a PEPA net plac® is a (possibly infinite) wordv = ¢y.co.... over the
alphabet Act; iff there is a sequence of transitions, t,, ... over 7y, such that, for0 < ¢ < |w|,
1 <ty < ...andc; = h(t;) = (a;,r;) Whereg; is either:

¢ an individual activity, or

e a shared activity, between two componefitsand C, which rate isr; = min(r;1, r;2) wherer;;
andr;, are the rates of the activity in componeidfs and Cs respectively.

We defineL, as the PEPA net alphabet such that= Act; U Act ;. Using the definition of the trace
w; of each place’; € P in the net, the trace of a PEPA ntis defined as follows.

Definition 5.6 A trace ofa PEPAneY = (P,7,1,0,¢,,
C, K, M) is a (possibly infinite) wordl/” = w;.c;.wsy.co . .. over the alphabeL, iff there is a sequence
of transitionst; .t . .. over7; such that, fol0 < ¢ < [W|,

e w; is a trace of the PEPA net plade € P,

e O(ti) =P

e I(t;) = P/ whereP! € P,

e ¢; =I(t;) = (a;,7;) Wherec; € Acty, and

o i1 € Ty, WhereTy,, is the set of possible initial transitions obtained from ihiéal marking M.

Now, we define the language of a PEPA WenotedL,(V), as follows:

Definition 5.7 Let a maximal trace be a trace which is not a proper prefix of ather trace. The
language of the PEPA nétis the setl,()) of words over the alphabéi, such thatl,(V) = {W | W
is a maximal trace o¥’}.
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6 The Transformation

In this section, we describe the algorithm behind the IOBXEPA net model transformation and prove
that the algorithm is correct by proving the equivalenceveen the language of an IOD and the one of
a PEPA net, that is, the language for an I@yiven by L, (D) is equivalent to the language for a PEPA
netV given by Ly (V).

6.1 The Algorithm

We can build a direct correspondence between the IOD nodetharobjects in the UML model, with,
respectively, the places and the components in the PEPAadInBoth models use activities and there
is a one-to-one correspondence between activities in 1Qj2edr IOD node messages, and PEPA net
firing transitions or PEPA transitions respectively.

In other words, an IOD can be viewed as a PEPA net model whete I€&D node corresponds to
a place in the PEPA net. An edge or transition between two 108es is transformed into a firing
transition between two places in the net with the same labable 6.1 describes the correspondence
between the elements of an IOD and those of a PEPA net, indaooe with our definition of an IOD
(definition 4.1), an IOD node (definition 4.2) and a PEPA nefi(dtion 3.1).

I0Ds PEPA nets
IOD D (def. 4.1) PEPA net) (def. 3.1)
IOD nodeA € N/ PlaceP € P

IOD transitiont € T
IOD activity c € Act,,
IOD node local transition € 74
Static objecO € Og

Firing transitiont € 7
Firing activity c € Acty
Transitiont € 7;

Static component’ € Cg

Mobile object, tokerD’ € Oy
IOD node activityc € Act,,
Set of inputs to 10D nodel

PEPA net toker’ € Cyy
PEPA activityc € Act;
Number of cells: in placeP

for corresponding token
PEPA component synchro-
nisation in the source place

(p7 n) S IA
IOD fork nodes € S

Table 1: Translation of IOD elements into PEPA net elements

A static object inside an IOD nodé)(e Og) corresponds to a static PEPA componeéntq Cg). In
UML, an object is defined by its name and its type with the felltg syntax:name:type where the
name of an object is optional. Both in the formal IOD model #me PEPA net model we only consider
the type of the object. Inside an IOD node, the behaviour dgaticsobject is described by a sequence
diagram. From this diagram, we can derive the complete hetawof the corresponding PEPA static
component.

A mobile object or UML tokenO’ € O, is translated into a PEPA net tokélf € C,;. The
behaviour of the mobile component’ can be derived from both the sequence diagram inside each
IOD node objectO’ visits and the information on the pins of these 10D nodes. ifif@mation on
a pin is translated in the PEPA net model as the actitdiistion_type, rate) of the firing transition
between the places representing the nodes. Moreover,diivgtyais added to componerit’ behaviour
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as (action_type, T) showing that the rate of this activity will be specified whée net transition with
label (action_type, rate) is fired.

The local activity(a, r) to a PEPA component is the translation of a messageon the sequence
diagram that the corresponding UML object sends to itseltoaperation activity between two PEPA
components”; andCs in a placeP € P is the translation of a message, in the sequence diagram of
IOD nodeA € N, that an object of typ&; sends to an object of tyg@,. This message, which is noted
b/r1;re, consists of the action typge and two rates; andr,. This action type will be the one on which
both PEPA components; andCs will have to cooperate with rates andr, respectively.

We can distinguish between an active component and a passe/dy considering which corre-
sponding object sends the message as follows:

- If an objectO; sends a message of the foiir; to another objectD-, then this message is
equivalent td/r;; T and that means that, in the context of the PEPA@ets an active component
for action typeb wheread’; is a passive one.

- Similarly if an objectO; receives a message of the fobifr, from an objectO,, thenO; should
be translated as a passive component regarding actionbtypedeed this form of message is
equivalent ta/T; rs.

In the following, we show how we translate an alt region, a gggion and a loop region given
definitions 4.10, 4.12 and 4.11 respectively.

The behaviour of an objec® in an alt region of levek with N operandsj; = [J"_, R,, can be
translated into a PEPA component behavioyisuch thaty, = Cr1+Crat...+Cn. If Ry isabasic
region which associated set of local transitidig,  is of sizeZ, then its corresponding derivative, ,,

is defined ag’y, ,, = (a1,m1).(ag,ra)..... (az,rz) wherea; andr; are respectively the action type and
one of the rates in message = a;/7,;7i,, m; € Ta, andi = 1,..., 7. r; = ry if O is the sender
of m; andr; = r;, if O is the receiver. Now, ifR,, is not a basic region, that 8,, = Pre.Gy_;.Post
thenCy,, £ Q1.Cx—1.Q2 whereQy £ (ar,r1).... .(az,,rz,) andQz = (af,7}).... .(dy,,,). Q1
and @), translatePre andPost respectively.Z, and Z, are the number of messagesfmne andPost
respectively.

The behaviour of an obje€? in a par region of levet with N operandsgy = [R1, R2, R3, ..., Rn],
can be translated into a PEPA component behavigusuch thatCy, = Ci ;1 || Cr2 || ... || Ckn

where eaclCy, ,, translates a regioR,,, n = 1,...,N. If R, is a basic region witl¥’ messages then
def

Crn = (a1,71)..... (az,r7) wherea; andr; are respectively the action type and one of the rates in mes-
sagem; = a; /7, ;Tiy, Mi € Tap andi=1,...,Z.r; = ry if Olisthe sender af; andr; = ry, if O'is
the receiver. Now, ifR,, is not a basic region that B,, = [Pre.G,_;.Post], thenCy, ,, = Q1.Cr_1.Q>
whereQ; £ (a1, 71).....(az,r7,) andQz = (d},r)).... (aly,,,). Q1 andQ, translatePre and
‘Post respectively.Z, andZ, are the number of messagesfne andPost respectively.

Note that, in both the alt and the par, if an objéxts not involved in all region®R,,, n =1,..., N
then only the regions in which it is involved have a derivatim the PEPA componeidi;. Similarly, if
the object is involved partially in a region, that is not ihthe messages in the region’s associated set of
local transitions, then only the messages in which it islirew are translated into PEPA activities and
used in the corresponding derivative.

The behaviour of an objec® in a loop regionG = Pre.(R)"™.Post can be translated into a PEPA
component behaviout’ = Q1.C".Q2 where@; and@Q- translatePre andPost respectively, such that
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Q1 = (a1,m1).... .(az,,rz,) andQz = (a},r)). ... .(ay,,1,). Z1 andZ, are the number of messages

in Pre andPost respectively.C’ £ C”.C’ whereC” translates the bahaviour in the arbitrary region
R. According to the type of this arbitrary region (alt, pao) we use its corresponding translation to
PEPA given above. Note that the loop indels taken into account using functional rates [8].

A definition of a formal semantics for UML sequence diagramd eperators we have used is given
in [9]. This semantics is based on the structural operattieemantics used in PEPA.

6.2 Equivalence of the languages

In section 5, we have described legal traces, or words, fdO@hnode, an 10D, a PEPA place and a
PEPA net. The set of legal traces determines the languagel6fdD given by L, (D) or a PEPA neV
given by L, (V). Given the algorithm described in the previous section, aregrove that the languages
are equivalent, also known atongly consistent

Theorem 6.1 Let D be an IOD andy the PEPA net derived frorP. If L, (D) is the set of words over
the alphabet; of D and Ly (V) is the set of words over the alphaliet of V then

1. L = Ly and

2. L1(D) = Lao(V)

Proof The first point is true by definition, given that = Act,, U Act,, = Act; U Acty = Lo.

The language equality can be proven in two steps:L{X)P) C Lo(V) and (2)L2(V) C L1(D).
We prove (1) by contradiction and assume there is a Wrduch thatV € L;(D) andW & Lao(V).
Since strong consistency is assumed by hypothesis, theevralation occurs at length+ 1, i.e., there
is a tracell = wy.cy.wy.C2 . .. w;.C;.w;it1.¢;41 SUCh thatwy.cq.ws.co ... w;.c; € Ly(V) but there is no
trace in Lo ()) which would contain the continuatiom;.c;+1 and thus there is either no wotd
in the PEPA placeP;; associated with nodel; or there is no net transitiog; € A;. The first
assumption contradicts the one-to-one correspondenegéetthe event ordering in an 10D node (and
thus the local transition ordering) and the sequences ofitses possible for the components in place
P, 1. The second assumptiom contradicts the one-to-one comdspce between the 10D transitions
and the PEPA net transitions (the languages= L-). The proof for (2) is similar.

a

Another notion commonly available in synthesis methodsadsriotion ofweak consistengywhere
the language of the target model contains the language sbilree model and more. When only a result
of weak consistency between languages can be guarantaed¢hieave a case of implied (unspecified
or unacceptable) behaviour in the synthesised modelsisligithe case, further methods have to be used
to detect such additional behaviours.

7 Related work

With the advances in networking technology and the devetopiraf systems based on mobile code, an
increased number of approaches have emerged for the desifpr formal verification of mobile sys-
tems. At the software design level this includes extensiidML for mobility (e.g., [1, 6] among many
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others). In [1], the authors extend UML activity diagramscapture mobile systems. Their extension
introduces concepts for representing mobile objectsfilmts, mobile locations, move actions and clone
actions, making use of UML'’s extension mechanisms (stgpest tagged values and constraints). Fur-
ther, the extension of activity diagrams is done in two vagaresponsibility-centred (using swimlanes)
and location-centred (using composite objects to visadhe hierarchy of locations). However, activity
diagrams are not adequate to capture at the same time tbustrof the system (locations), how objects
move between locationgand how objects behave/interact within locations. By conirdss is possible

in our approach using interaction overview diagrams. Furttore, our usage of 10Ds for modelling
interactions and mobility enhanced with performance imi@tion offer a rich language for capturing
mobile distributed systems for performance analysis. hiqadar, our extension of IODs are a natural
UML counterpart for the underlying performance technigtiPBPA nets [4].

There are several performance modelling approaches usitigddd an underlying formal model for
performance analysis including [11, 5, 3, 2] among otheosn&of the work using UML for performance
analysis has different motivation than ours. In this con{ét] uses activity diagrams to refirgo
activities in state machines and then obtain predictivéopmance measures from the performance model
obtained from these diagrams. Activity diagrams are atedtaith rates and durations according to the
UML profile for performance, schedulability and time. In [ authors introduce a mobility profile for
the performance analysis domain, but do not focus on newioongaavailable in UML2.0.

In [3] the authors report on a toolset for modelling systenith \werformance information using
UML. In this approach, a UML state diagram with performanomatations is mapped onto a PEPA
model for performance analysis. The outcomes of the arsadysi given to the designer as additional an-
notations to their original UML model. However, this appebaloes not consider mobility, and assumes
an underlying translation of mainly UML1.x notation intcetiprocess algebra PEPA. Our approach is
different, because we use recent UML2.0 notation and PERAazean underlying model. We are thus
concerned with both mobility and performance information.

In [15] the authors are also concerned with mobility. Howdkey propose a translation of UML1.x
specifications made up of sequence and state diagrams italculus processes. Our approach de-
scribes a mobile system at two levels. At the high level weidles the locations of the system and how
objects move between locations which is given in UML by an 1@Dthe lower level we describe how
objects behave and interact locally. This is given by théviddal nodes of the 10D, namely sequence
diagrams. Both levels are enriched with performance rel@®rmation (i.e., activities). This approach
does in particular allow us to define an automatic transftionaf IODs into PEPA nets.

As shown in this paper, our approach to synthesising PEPAfraeh IODs is such that the underlying
languages of both models are strongly consistent. Thisagtees the absence of so-called implied
scenarios at the PEPA net level. Implied scenarios areiadditscenarios or behaviour that was not
specified or intended. Other synthesis approaches, €,gdft&n have this problem as the models used
are very different in nature and essentially capture difieviews of the system. Transforming a model
with a global system view into a model based on individual Ecdl object views makes it impossible
to prevent implied scenarios from existing. Such approathen have to focus on mechanisms to detect
such unwanted and unacceptable additional behaviours.

An interesting aspect of PEPA nets lies in the combinatioRedfi nets with a process algebra there-
fore combining strengths of two different formalisms. Ugl@®Ds we lift the benefits to the UML design
level. The new sequence diagrams and I0Ds in UML2.0 have begely influenced by Message Se-
guence Charts (MSCs)[12], a common approach used in theotelaunication domain to represent
scenarios, and their higher-level language HMSCs. Ma/dty the fact that HMSCs are not an exe-
cutable model and have limited expressiveness, the auith@t8] introduced a new visual formalisms
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called netcharts. Netcharts combine Petri nets with MSQtsinstead of having MSCs in places (as in
IODs or PEPA nets) netcharts have MSCs in transitions. Asrasimilar but reverse approach which
combines MSCs with Petri nets is [17]. The approach diffesmf[13] as it uses Petri nets to describe
the relations among scenarios including multiple coneurpeocesses. In that respect it follows a more
similar approach to ours.The approach in [17] supportsyaisaand synthesis of MSC scenarios through
available analysis methods for Petri nets but does not addverformance analysis as our approach
does. The MSCs used in [17] are also basic whereas we usenseqdiagrams with (possibly nested)
interaction fragments.

8 Conclusion

In this paper, we have shown how to formalise performancetated IODs and 10D nodes taking
into account complex behaviour within a node determined dweal and possibly nested interaction
fragments. We defined the languages associated with IODPBERA nets, and presented an algorithm
to synthesise a PEPA net model from an IOD model. We furthewstd how the algorithm guarantees
that the languages astrongly consistentin other words, the set of legal traces of an IOD have a one-
to-one correspondence to the set of legal traces of the lyimdpPEPA net model. As mentioned in the
related work section, one crucial advantage of stronghsistent languages is the guaranteed absence
of implied (unspecified or unacceptable) behaviours thateaobserved in the synthesised model. The
absence of implied scenarios in our approach facilitateacaarate performance analysis on the given
UML design models.

We are currently completing the implemention of the aldponitfor the |IOD-to-PEPAnNet transforma-
tion in C. The implementation currently takes a textual laamge for the IOD model and supports the
formal 10D model as described in this paper. A future eximshould take a (hopefully standardised)
XMl file and do a model transformation following a model-dnivdevelopment (MDD) approach. In
other words, we aim to define the exact rules of the transfoomand implement them using the Simple
Transformer tool SITRA One advantage is that possible extensions to the UML madkiraplemen-
tation are easier to integrate.

One extension we want to be able to bring to the UML level isahdity to express priorities of
object moves by adding the information to 10D edges. As dised in section 3, PEPA nets already
incorporate the notion of priorities and we restricted theaTe to consider net level transitions with the
same priority.

A more challenging aspect of our future work concerns théopmance analysis itself. PEPA nets
mainly rely on the performance techniques available forA&mRl these ignore the location or mobility
information of the PEPA net. By contrast we want to exploé tiesign structure of our IOD and PEPA
nets to enhance verification and scalability and thus haveoi@ rsuitable approach for performance
evaluation of complex mobile distributed applications.
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