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Information Extraction From Sound for
Medical Telemonitoring

Dan Istrate, Eric Castelli, Michel Vacher, Laurent Besacier, and Jean-Frangois Serignat

Abstract—Today, the growth of the aging population in Europe
needs an increasing number of health care professionals and fa-
cilities for aged persons. Medical telemonitoring at home (and,
more generally, telemedicine) improves the patient’s comfort and
reduces hospitalization costs. Using sound surveillance as an al-
ternative solution to video telemonitoring, this paper deals with
the detection and classification of alarming sounds in a noisy envi-
ronment. The proposed sound analysis system can detect distress
or everyday sounds everywhere in the monitored apartment, and
is connected to classical medical telemonitoring sensors through
a data fusion process. The sound analysis system is divided in
two stages: sound detection and classification. The first analysis
stage (sound detection) must extract significant sounds from a con-
tinuous signal flow. A new detection algorithm based on discrete
wavelet transform is proposed in this paper, which leads to accu-
rate results when applied to nonstationary signals (such as impul-
sive sounds). The algorithm presented in this paper was evaluated
in a noisy environment and is favorably compared to the state
of the art algorithms in the field. The second stage of the system
is sound classification, which uses a statistical approach to iden-
tify unknown sounds. A statistical study was done to find out the
most discriminant acoustical parameters in the input of the clas-
sification module. New wavelet based parameters, better adapted
to noise, are proposed in this paper. The telemonitoring system
validation is presented through various real and simulated test
sets. The global sound based system leads to a 3% missed alarm
rate and could be fused with other medical sensors to improve
performance.

Index Terms—Gaussian mixture model (GMM), medical tele-
monitoring, sound classification, sound detection, wavelet trans-
form.

1. INTRODUCTION

HE ACTUAL growth of the aging population in Europe
T results in the needs for an increasing number of health-
care professionals and facilities for aged persons. A possible
solution to this problem is telemedicine, the practice of distance
medicine by means of telematic tools, which includes a wide
variety of tasks like telediagnosis, distance teaching and learn-
ing, telesurveying [1], and distributed database applications. All
these tasks involve the sharing of knowledge, data, expertise,
and services among health-care professionals. Medical tele-
monitoring at home, a telemedicine application, is an interesting
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solution compared to health facility institutions for the elderly,
since it offers medical surveillance in a familiar atmosphere for
the patient.

Information technology is taking on an important role in
health care service. Many applications have already shown that
a rational use of telemedicine becomes a cost-effective solution
in the treatment of elderly patients [2], [3].

Despite the large number of advantages, there are some
problems with telemedicine, such as software complexity, data
compression, data transmission, and software reliability. One
solution to simplify the software complexity and to increase
its reliability is the use of specific informatics agents [4]. Data
compression for medical information is submitted to severe
constraints in order to conserve all the important medical
details [5]. The choice of the transmission channel is also
difficult; the Ethernet network, WAP (data transmission through
a GSM terminal) [6], and television cable [7] are some of the
solutions investigated.

Most of the systems used in this field only take into ac-
count medical sensors (blood pressure, pulse, oxymeter) and
localization sensors (infrared or contacts) to survey patient
[8]-[10]. Current systems use sound and video, but these
supports are dedicated only for communication between the
patient and the medical staff [11], and not for patient
telesurveillance.

In this paper, we present a system for the detection and
classification of everyday life sounds. The aim of our research
is to develop a medical supervising system using sound sensors.
The telemonitoring system must cover all the areas of the
apartment, including the toilets, the bathroom, and the bedroom.
If a video camera is installed in every room, the patient could
have the uncomfortable feeling of being spied on. On the other
hand, a sound sensor is more discreet and the patient’s privacy
is less disturbed, as there is no continuous recording of the
sound in the room, but only a real-time analysis applied to the
last 10 s audio capture.

The originality of this research is to use sound as an
informative source simultaneously with other sensors. We
propose to extract and classify everyday life sounds such as:
door banging, glass breaking, sounds of doing the dishes,
falling objects, person, sound, etc. in the aim of detecting
serious accidents such as falls or somebody fainting everywhere
in the apartment. Thus, our approach consists of replacing the
video camera by a multichannel sound acquisition system that
analyzes the sound environment of the apartment in real time
and detects distressful situations.

In order to respect privacy, no continuous sound recording
is made. Only the latest detected sound event is kept and sent
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to the alarm monitor, if it is considered to be a possible alarm.
This signal can also be used by a human operator to make the
decision of a medical intervention.

In order to reduce the computation time necessary for a multi-
channel real time system, the sound extraction process has been
divided in two stages: detection and classification. Sound event
detection is a complex task because the audio signals occur in a
noisy environment.

First, the medical context and the global telemonitoring sys-
tem are introduced in Section II. The detection stage of the
system is described in Section III, and the classification stage
is described in Section IV. The method of coupling these two
steps has an important influence on the sound classification.
Two possible cases of realizing this coupling are discussed in
Section V of the paper. In order to evaluate the proposed sys-
tem, we have collected a sound corpus, which is described in
Section VI. The performance of every step of the system has
been evaluated individually in a noisy environment, in addition
to the performance of the global system. These results are illus-
trated in Section VIIL. The system characteristics, strengths, and
applications are presented in Section VIII.

II. THE TELEMONITORING SYSTEM
A. About Telemonitoring

The living area used in our experiments is a 30 m? apart-
ment situated in the TIMC' laboratory buildings. The rooms
are equipped with medical sensors: blood pressure, oxymeter
and a weighing scale, infrared position and sound. The sensor
locations are the following: the microphones and the infrared
sensors are distributed in every room (kitchen, hall, living room,
shower room, and toilet) while the most-used medical sensors
are wireless. The telemonitoring system architecture is made up
of two computers which exchange information through an Eth-
ernet network as presented in Fig. 1. The sound extraction and
analysis system has a dedicated PC (sound analysis PC) which
acquires the signals from all five microphones.

The other PC (data fusion PC in Fig. 1) collects data from
fixed and moving sensors, as well as the information from the
smart audio sensor (the sound analysis PC). Depending on the
information provided by the sound analysis PC and the rest of
sensors, the data fusion PC will send an alarm, if necessary.

This paper will focus only on the smart audio sensor, which
will be described in the following.

B. The Sound Analysis

From daily patient surveillance, a sound signal flow is con-
tinuously analyzed. Among different everyday life sounds, only
some of them are considered alarming sounds: glass breaking,
screams, etc. In order to have a reliable sound telemonitor-
ing system, every sound event is detected (a sudden change in
the environnemental noise), extracted, and used as input for the
classification stage. This second step of the system aims to iden-
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tify the sound type among several predefined classes which are
detailed in Section VI.

The sound analysis system has been divided in three modules
as shown in Fig. 2. The advantage of this division is to make
real time implementation possible. Other methods [sound seg-
mentation using a hidden Markov model (HMM), or (BIC) joint
with a Gaussian mixture model (GMM)] which involve more
complex models would not allow real time processing.

The first module is applied to each channel in order to de-
tect sound events and to extract them from the signal flow.
The source of sound or speech can be localized by comparing
the estimated signal-to-noise ratio (SNR) for each channel. The
fusion module selects the best channel if several events are
detected simultaneously. The third module receives the sound
event extracted by the previous module, and it estimates the
most probable sound class.

The system has been designed to respond to several con-
straints: the real-time five channels analysis, the wide dynamic
amplitude of the useful signal, the use of this system 24 h/24 h,

Sound Classification

Fig. 2. Sound analysis.
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the eventual presence of significant nonstationary noise, and the
wide variety of sounds that need to be classified.

III. DETECTION
A. Method

In medical telemonitoring systems, signal detection is very
important because if a sound event is lost during the first stage
of the system, it is lost forever. On the other hand, if there
are too many false alarms (signal detected when nothing has
occurred) the recognition system becomes saturated. Therefore,
the performance of the detection algorithm is very important for
the entire system.

Detection consists of identifying the desired signals in a noisy
environment. The two hypotheses of binary detection are

Hy: o(t) =b(t)
{ Hy olt) = s(t) + bit) M

where o(t) is the analyzed signal, b(¢) is the noise, and s(t) the
signal to be detected. The basic function of a detection algorithm
is to extract some measured features or quantities from the input
signal, and to compare these values with a threshold.

Signal detection is a wide domain that includes detection
of numerical signals in noise [12], radar signal detection, and
voice activity detection. There are various possibilities with
which to define the measured features; for example, energy,
likelihood of a statistical model, and high-order statistics [13].
Most of the existing systems try to detect the human voice
(voice activity detection) and not the impulsive sounds [14].
Voice detection is based on speech properties such as pitch,
spectral characteristics [15], and linear predictive coefficients
(LPC) [16], [17]. There has not been much work done in deal-
ing with impulsive sound detection. Dufaux (2001) proposed
three algorithms of impulsive sound detection with good re-
sults only in white noise: one based on the variance of the
signal energy, and the other two algorithms based on the con-
ditioning median filtering of the energy [18]. The algorithm
based on conditioning median filtering is used in our study as
a state of the art algorithm; its measured feature is the differ-
ence between signal energy and the conditioning median filtered
energy.

In our first experiments, we noticed that the environmental
noise of experimental apartment had quite different properties
than that of white noise, which lead to a decrease of system
performance. This constraint has directed our research on the
improvement of the algorithms, notably in the environmental
noise, which has mainly low frequency components and in-
cludes impulsive sounds coming from the neighborhood of the
apartment.

B. Proposed Detection Algorithm Based on Wavelet Filtering

Compared to the Fourier transform, the wavelet transform
is better adapted to signals which have very localized features
in the time-frequency space. Therefore, this transform is often
used in signal detection and audio processing [19], [20] because
of its nonuniform time and frequency resolution.

Cyo | 1024 components (indices 1024 - 2047)

C, | 512 components (indices 512 - 1023)

C, l:l 256 components (indices 256 - 511)
C, l:l 128 components (indices 128 - 255)

C l:l 64 components (indices 64 - 127)

Cs |:| 32 components (indices 32 - 63)
C, I:I 16 components (indices 16 - 31)
C, [| 8 components (indices 8 - 15)

C, H 4 components (indices 4 - 7)

C, | 2 components (indices 2 - 3)

Fig. 3.
ples).

Layout of the resulting wavelet transform matrix (frame of 2048 sam-

All signals z(t) can be decomposed in a sum of functions
thy s (t) localized and weighted by k,,

2(t) =Y husthus(t) 2)

where u is the time shift (a constant for Fourier transform) and
s is the scale factor. The type of v, ;(¢) makes the difference
between the short time Fourier transform (“frequency” analysis)
and the wavelet transform (“time-scale” analysis).

The discrete wavelet transform (DWT) has nonuniform fre-
quency and time resolution. The time resolution, compared to
frequency one, is greater in high-frequencies and poor in low
frequencies which explain the use of DWT for impulsive sig-
nal detection. The wavelet base is generated by translation and
dilatation of the mother wavelet v. In signal processing ap-
plications (e.g., noise filtering, and signal compression), the
Daubechies wavelets are used as the mother wavelet due to their
properties, including good regularity for high number of mo-
ments. In the proposed algorithm, we use Daubechies wavelets
with six vanishing moments in computing the DWT [21], [22].

Discrete wavelet transformation is applied to the sampled
data, and its output forms a vector with the same length as the
signal. This vector has a pyramidal structure and is composed of
12 wavelet transform coefficients for a frame of 2048 samples.
The layout of the coefficients in the vector is given in Fig. 3.

The proposed algorithm (flowchart in Fig. 4) calculates the
energy of three upper wavelet transform coefficients (higher
order coefficients which contain, respectively, 1024, 512, and
256 samples), because the significant wavelet coefficients of the
sounds to be detected are of a rather higher order (corresponding
to high frequency in the sounds). The analysis frame length is
128 ms (2048 samples) because of the real time acquisition
constraint, but for a better time resolution analysis, the DWT
output vector is analyzed by a window of 32 ms (four windows
of 32 ms inside the DWT frame). Thus, the detection threshold
is applied to a three depth wavelet tree.

Finally, to complete detection, the system applies a threshold
to the sum of energies in the three depth wavelet tree. The
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Fig. 4. Flowchart of the wavelet based algorithm.

threshold is self-adjustable and depends on the average of the
N last energy values (in this study we have used 40 values for a
statistical representation).

An example of signal detection is shown in Fig. 5 where a
phone ring, starting at t = 3 s, is mixed with flowing water noise
at0dB of SNR (upper window). In the lower window of the same
figure, the energy of the three wavelets coefficients is presented
in black, and the adaptative threshold is shown with the dotted
line. We can see that the phone ringing signal is detected by the
proposed algorithm.

IV. SOUND CLASSIFICATION
A. Method

Pattern recognition domain uses many techniques, such as
the Gaussian mixture model (GMM) [23], HMMs, dynamic
time warping (DTW), neural networks, and others. Since sound
classification is a subdomain of pattern recognition, all these
different techniques can be used. Existing studies on environ-
mental sound classification are quite limited and still at a pre-
liminary stage. Woodard [24] uses the HMM method to classify
sounds, but his corpus has only three sound classes, and the
noise presence is not taken into account. Another classification
method is presented by Papadopoulos et al. in [25]. This method
is based on a comparison between normalized spectrum and
learned sound classes spectrum, and the results are given only
for three sound classes. A comparison between neural network,
DTW, and vector quantization is presented by Cowling [26]. The
results are done for eight sound classes, but the sound database
duration is only 35 s.

The GMM method is flexible with regard to signal type and
it performs well in speaker/sound recognition, as demonstrated
by Reynolds [27], which are the main reasons for choosing
this method in our study. The HHMs are more complex with
longer computation time, and are not very well adapted to short
signal classification. The results obtained by Dufaux [18] with a
three stage HMM are similar to GMM classification. The GMM
method works in two stages: training and classification.

1) Training: For each class of signals (wy ) from the corpus,
a training stage is initiated in order to obtain a model containing
the characteristics of each Gaussian distribution (m) of the class:
the weight of the Gaussian (7, ,,, ), the average vector (fi m ).
and the covariance matrix (3 ,, ). These values are calculated
after M iterations (M = 20) of the expectation maximization
(EM) algorithm [28], which follows a K-means algorithm. The
covariance matrices are diagonal.

2) Recognition: Each extracted signal (X) is a series of n
acoustical vectors (z;) of p components. The parameters 7, 1,
and X have been estimated during the training stage. The size
of acoustical vectors (d) is the number of acoustical parameters
extracted from the signal. The likelihood of each acoustical
vector given for a class wy, is calculated within the following
formula (N is the number of Gaussian distributions)

1 .eAz.k.m

N
p(lﬂwk) = Zmzl Tkm * m

1 T 1 (3)
Ai,k.m = (_i(xz - ,U/kxm) DT (xi - /’Lk,m))

The likelihood of the entire signal (n frames) is thus given by
p(X|wi) = [ [ p(wilwr) )
i=1

where n represents the number of signal frames. The algorithm
determines that the signal X will belong to the class w; in which
p(X|w;) is maximum.

B. Acoustical Parameters

Sound classification does not use direct sound signals, but
a parametric signal representation in order to eliminate redun-
dancies. In speech classification, the classical acoustical pa-
rameters are mel-frequency cepstral coefficients (MFCC) [29],
linear frequency cepstral coefficients (LFCC), LPC, etc. This
paper proposes a set of acoustical parameters based on wavelet
transform and three acoustical parameters traditionally used in
speech/music/noise segmentation: zero crossing rate, centroid,
and roll-off point. First and second derivative of the acoustical
parameters (called A and AA, respectively) are also used in
order to introduce the temporal variation of the signal in GMM
modeling [30].

The MFCC parameters are calculated as follows: direct fast
Fourier transform (FFT), the computation of the energy of
24 nonuniform triangular filters(Mel-scale), logarithm appli-
cation on energy values, and inverse discrete cosine transform
(DCT). The LFCC parameters are calculated in the same way,
but the triangular filters are uniform. The LPCC parameters are
the cepstral of LPC coefficients which represent the vocal tract
filtering model.

1) Zero Crossing Rate (ZCR): The value of the zero-crossing
rate is given by the number of zero-voltage crossings in the
analysis frame. In order to eliminate noise influence, we have
introduced a symmetric clipping threshold. The value of the
clipping threshold represents 0.03% of the signal amplitude. In
fact, the zero-crossing rate indicates the dominant frequency in
frame.
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2) Rolloff Point (RF): This feature is used to measure the
frequency which takes 95% of the power spectrum. The rolloff
point can be viewed as a measure of the “skewness” of the
spectral shape. The value is higher for right-skewed distribu-
tions. The value of the rolloff point is the solution of (5) with
0 =095

> X[k =0 X[k 5)
k

k<RF

3) Centroid: The centroid represents the balancing point of
the power spectrum distribution within a frame [31]. The cen-
troid for a frame at a specific time is computed as the rolloff
point, (5), where © = 0.5.

4) The Acoustical Parameters Proposed: Wavelet-Based
Coefficients: The wavelet transform applied in speech recog-
nition has been little studied [32], despite its better time reso-
lution at high frequencies. The acoustical parameters proposed
are based on the discrete wavelet transform similar to classical
cepstral coefficients. This acoustical parameter type will be re-
ferred as DWTC. Firstly, the DWT is computed in a 256 samples
window. Secondly, the energies of the last six wavelet transform
coefficients are calculated and followed by a logarithmic ampli-
tude transformation (by analogy with MFCC). The final acousti-
cal vector contains the DWT ! logarithmic energy coefficients.
The total number of parameters is six.

5) Selection of the Acoustical Parameters: In order to find
the relevant acoustical parameters for classification, a statistical
study has been conducted using the Fisher discriminant ratio
(FDR).

The FDR [in (6)] gives an indication of the separation capacity
of every acoustical features. In (6), the average of parameter
for the class i is z[i], the standard deviation of parameter x for
the class 4 is Var(z)[i], and the number of sound classes is &

Sima S (@l - o)
Yoiy Var(x)[i]

The results of this study are presented in Section VII-C.

FDR =

(6

V. COUPLING BETWEEN DETECTION AND CLASSIFICATION

The final module of the system implements the coupling of
the detection with the classification. The critical point of the
coupling for the classification stage is the precision of the sound
delimitation before sending the detected signal to the classi-
fication system. The possible errors in the sound delimitation

Time (s)

Detection example of a phone ringing mixed with flowing water noise at SNR = 0 dB.

are: 1) early detection of the sound (a part of the extracted signal
contains silence only); 2) signal detection with a delay (a part
of the sound is eliminated). This error has a reduced influence
on the GMM classification system, because the signal time pro-
gression is not taken into account by the GMM method.

One possible approach is to consider detection output as a
fix duration sound. However, the sound classification system is
very sensitive to the parts which are silent for a long time. In
order to solve this problem, we propose to use the detection of
the end of the signal. The end is detected by applying the same
detection algorithm on the time inverted signal.

The chosen configuration for the coupling of detection and
classification involves the following steps:

1) the output signal is extracted at the detection time; its
duration is 7s (the maximum sound duration of our test
set);

2) the signal is time inverted and the detection algorithm is
applied once again;

3) the detection of the signal end is used to cut the sound.

The resulting signal, sent to the classification system, has a
variable length of time.

Through this procedure, the classification system analyzes
only the typical part of the detected signal, which has a variable
length of time.

VI. THE SOUND DATABASE

In order to test and validate the event detection system and
the sound recognition system, we have collected a sound cor-
pus [33]. It contains recordings made in the Clips laboratory
(15% of the CD), the files of “Sound Scene Database in Real
Acoustical Environments” (70% of the CD) [34], and files from
a commercial CD (film effects, 15 % of the CD) [35]. There
are 3354, files and every file is sampled at both 16 kHz and
44.1 kHz.

At Clips laboratory, the sounds were recorded with a Beyer
Dynamics microphone and a digital tape (sampling rate 44.1
kHz), and transferred to the PC through its sound card. The
sound corpus contains door banging sounds (different types of
doors), chair sounds, walking sounds, electric shaver sounds,
hairdryer sounds, door locking sounds, dishes sounds, glass
breaking, falling objects sounds, screams, flowing water sounds,
telephone or door bell ringing, etc. To summarize, the sound
corpus contains 20 types of sounds with a minimum of ten
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repetitions per type (the maximum is 300 repetitions) for ap-
proximately 3 hours of total signal time.

A. Detection Test Set

In order to validate the detection algorithms, we have gener-
ated a test set which is a mixture of environmental noises and
useful sounds. For every sound, there are two signals in the
test set: one contains the mixture between the sound and the
noise (file with event), and the other contains only the noise
(file without event). Every sound and noise has been recorded
three times. Each file is 25 s long (because of the length of the
sound and of the time necessary to initiate the algorithms, which
is approximately 5 s). The sound starts at the tenth second of
the signal. In the test signal base, we considered three types of
noise (white noise, flowing water noise, and environmental noise
recorded in the apartment) and eleven types of sounds (screams,
falling chairs, falling book, glass breaking, door banging, walk-
ing sounds, coughs, sneezes, door locking, phone ringing, and
speech). For every mixture “sound-noise,” there are four files
with the following SNRs: 0, 10, 20, and 40 dB. The SNR is
calculated based on the total time length of the sound.

In order to validate the results obtained from the simulation
test set, we have recorded 60 files inside our testing apartment
(real life conditions) at different SNR (2 dB <SNR < 30 dB
with an average of 15 dB). We have used the same sounds
(played with a loudspeaker) as in the simulation test set.

B. Classification Test Set

The test set used for the sound classification is composed of
seven sound classes: door banging (523 sounds), phone ringing
(517 sounds), walking sounds (13 sounds), sounds of doing the
dishes (163 sounds), door locking (200 sounds), glass breaking
(88 sounds), and screams (73 sounds). There are five sets in
the seven classes: one contains pure sounds, and the other four
contain mixtures of sound and environmental noise (named HIS
noise) at 0, 10, 20, and 40 dB SNR.

C. Coupling Test Set

This test set is used for the performance evaluation of cou-
pling between detection and sound classification, and for the
validation of the entire audio information system. This final test
set contains all the sounds of the recognition test set superposed
to HIS environmental noise. There are seven files corresponding
to the seven sound classes. Each file is made up of a succession
of signals corresponding to all the sound classes and periods of
silence at random duration. The SNR for each sound has a ran-
dom value between 10 and 20 dB with a uniform distribution.
Silence between consecutive sounds varies randomly between
5 to 60 s. The total number of useful sounds to be detected is
15717.

TABLE I
THE PERFORMANCE OF WAVELET BASED ALGORITHM ARE IN BOLD IN THE
TABLE AND COMPARED TO THE STATE OF THE ART ALGORITHM

EER for different type of noise

Detection algorithm

SNR  HIS noise White noise
[dB] [%] [%]
0 7.3 6.1
Wavelet based +10 0 4.0
+20 0
+40 0
State of the art 0 64.9 30
- Median 410 358
conditioning
filtering +20 10.4
+40 0

VII. EXPERIMENTAL RESULTS
A. Evaluation of the Detection Algorithm Performance

Missed detection rate (Ryp) and false detection rate (Rgp)
are used to characterize detection performance in our test set.
They are calculated according to (7) and (8)

No. missed detections

N

R f—
MD No. events to detect

No. false detections

Rrp 8)

~ No. false detections 4 No. events to detect’
A detection is considered to be false if an event is detected while
there is no real event. A detection is considered to be missed
when the system detects nothing in the interval 0.5 s before the
event and the end of the signal event. A detection occurring
during this interval is considered to be a good detection of the
event.

To compare the algorithms, we have determined the equal
error rate (EER) from receiver operating characteristics (ROC)
curves, defined as the value of Ryp for which Ryip = Rpp
(the intersection between ROC curve and the first bisector). The
ROC curve plots missed detection rate versus false detection
rate.

B. Detection Results With the Test Set

The evaluation of the state of the art algorithm and the wavelet
based algorithm on the detection test set is illustrated in Table 1.
The first column represents the SNR, and the other two columns
the EER for white noise and HIS noise. For each noise, the
performance are presented with a SNR of 0, 10, 20, and 40 dB.
Note that HIS noise is the environmental noise recorded in
our experimental apartment. For a wavelet based algorithm, a
constant of the detection threshold (an offset of self-adjustable
threshold) is varied in order to obtain a variation of Ryp and
Rpp from O to 1.

To analyze the results, we must principally compare the cor-
responding performance of HIS environmental noise and low
SNR (real life environmental conditions).
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TABLE II
BIC FOR 2, 3,4, 5, AND 8 GAUSSIAN (OPTIMAL VALUES FOR
BIC ARE IN BOLD)
No. Gaussian 2 3 4 5 8
BIC 11043 10752 10743 10757 13373

The state of the art algorithm (median conditioning filtering)
is not suitable because EER is greater than 10% for a value
of SNR < 20 dB. The new algorithm based on wavelet filtering
gives the best results for HIS noise: EER = 0% for SNR > +-10
dB, and EER = 7.3% for SNR = 0 dB. The results are not very
good for white noise (EER = 4% for SNR = 10 dB), but are
still better in comparison to the state of the art algorithm.

The results shown in Table I obtained from the simulation test
set are confirmed by the real detection test set (Section VII-A.
The wavelet based algorithm gives an EER of 0% for this real
test set.

C. Sound Classification

1) Model Selection: The BIC is used in this paper to de-
termine the optimum number of Gaussians [36]. BIC criterion
expressed by (9) selects the model through the maximization of
integrated likelihood

BICm,K = _2-Lm¢K + Um K hl(n) )

where L,, i is the logarithm of likelihood maximum, equal to
log f(x|m, K, é) (f is integrated likelihood), m is the model,
K the component number of the model, v, x is the number of
free parameters of the model m, and n is the frame number. The
minimum value of BIC indicates the best model.

The BIC has been calculated from the sound class with the
smallest number of files for 2, 4, 5, and 8 Gaussian. The results
presented in Table II are obtained from 16 MFCC parameters.
Looking at these results, a number of Gaussian between 3 and
5 seems to correspond to the best choice within our available
training data.

2) Statistical Study for the Choice of Efficient Parameters:
This statistical study shows the relevant acoustical parameters
using the Fisher discriminant ratio (FDR) expressed by (6) and
allows us to reduce the number of testings. Table III shows
FDR values in several acoustical parameters. The number that
follows the name of acoustical parameters represents the param-
eter position in the acoustical vector (MFCCl is the first MFCC
parameter).

Given the results shown in Table III, we can say that the sec-
ond, third, and fourth MFCC coefficients are the most relevant
MFCC parameters in separating our sound classes. ZCR, RF,
centroid, and the three wavelet-based coefficients (DWTC) are
relevant parameters; on the contrary, energy seems irrelevant.

3) Sound Classification Results: The analysis window (for
the calculation of the acoustical parameters) was set at 16 ms
with an overlap of 8 ms, which are values usually used in
speech/speaker recognition. The GMM model is made of four
Gaussian distributions. In these experiments, each of the 1577
sounds in the database is used as a test with the so called “leave

TABLE III
ACOUSTICAL PARAMETERS WITH HIGH FDR (FDR, > 2). THE CHOSEN
PARAMETERS FOR TESTS ARE IN BOLD

Parameter FDR  Parameter FDR  Parameter FDR
MFCC1 2.72  MFCCI10 334  Centroid 23.75
MFCC2 16.07 MFCCI11 2.88  Energy 2.54
MFCC3 10.33 MFCCI12 320 DWTC3 2.89
MFCC4 10.02 MFCCl14 3.61 DWTC4 4.54
MFCCS5 2.01 MFCCI15 326 DWTCS 6.02
MFCC6 2.91 MFCC16 4.41 DWTC6 8.69
MFCC7 336 ZCR 18.00

MFCC8 360 RF 16.70

TABLE IV

SOUND CLASSIFICATION RESULTS FOR PURE SOUNDS. BOLD SHOWS THE BEST
COMPROMISE PERFORMANCE/COMPLEXITY AND THE FDR SUGGESTED
ACOUSTICAL PARAMETERS

Parameters PN CER [%]
A, AA(16MFCC+Energy+ZCR+RF+Centroid) 60 8.7
16 MFCC + Energy+ZCR+RF+Centroid 20 114
16LFCC+Energy 17 12.2
16LFCC+ZCR+RF+Centroid 19 12.7
16LPCC+Energy 17 14.7
16MFCC+Energy 17 15.2
3MFCC+ZCR+RF+Centroid 16.1
DWTC 18.7

one out” protocol: when a sound is used as a test, it is not used in
training step, so the training set consists of the whole database,
except the test sound.

Experimental results are presented in Table IV, showing the
average classification error rate (CER is the number of recog-
nition errors divided by the number of tests), and the corre-
sponding number of parameters (PN). We can observe that
good results are obtained with MFCC parameters (speech spe-
cific parameters), but new parameters, like zero crossing rate,
rolloff point, and centroid seem interesting when combined with
conventional parameters used in speech. The best results are
obtained with 60 acoustical parameters, and the first and the
second derivatives of 16 MFCC, energy, ZCR, RF, and cen-
troid. These parameters are denoted in the Table IV as A, AA
(16 MFCC + Energy + ZCR + RF + Centroid).

The three MFCC coefficients have been tested in conjunction
with zero crossing rate, rolloff point, and centroid, as suggested
by the statistical study (Table III). We have noticed that the
parameters considered to be irrelevant after the statistical study
can be eliminated with practically no negative influence on the
performance of the system; showing a drastical reduction of
the number of parameters (six instead of 20) produces only a
4.5% increase in the classification error rate (shown in bold in
Table IV).

4) Performance in Noisy Environment: Our classification
system has been tested in HIS noise situations with two types
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of training: training only on pure sounds or on pure sounds and
noisy sounds.

Training on pure sounds gives constant results for SNR > 20
dB; the CER decreases beyond this point: for 16 MFCC +
ZCR + RF and 16 LFCC parameters, classification error is
26.82% for SNR = +10 dB (Fig. 6). These results are not ac-
ceptable, since the SNR in the testing apartment varies between
10 and 20 dB.

DWTC parameters show greater performance than classical
MFCC parameters for SNR < 10 dB and only six parameters
are needed for classification, while in the other case, a minimum
of 17 is required.

The training step on the noisy sounds takes into account
several cases: training only on the noisy sounds for a particular
SNR, or on a combination of pure sounds and noisy sounds.
Better results are obtained from the combination of pure sounds
and noisy sounds at 10 dB SNR (Fig. 7). Our tests suggest using
a GMM class model for each SNR which would involve SNR
estimation before the classification stage.

D. Evaluation of Coupling Between Detection
and Classification

In order to evaluate the coupling between detection and classi-
fication, we use the wavelet detection algorithm, the same GMM
classification system, and the detection of the end of the signal.
The evaluation is made on the coupling test sets. The threshold
of the detection algorithm was set to an optimal value on the
detection test set. The acoustical parameters are 16 MFCC to-
gether with ZCR, rolloff point, and centroid. The GMM training
is made on pure sounds with a leave-one-out protocol.

The efficiency of the coupling between detection and classifi-
cation stages is studied, and the results are illustrated in Table V.
The tests of efficiency have been done on three cases:

TABLE V
COUPLING EVALUATION (THE GLOBAL AUTOMATIC SYSTEM IN BOLD)

CER
for SNR
10-20 dB
Reference :
Manual detection and real length of signals 215%
Rp=0, Rp=0
Automatic detection and fix length of signals 67.8 %
Ry=1%, Rp=1% 10 dB<SNR<20 dB e
Automatic detection and length estimation
Ry=1%, Rp=1% 10 dB<SNR<20 dB 27.7 %

1) the reference case: manual detection and signal delimita-

tion (no algorithm errors);

2) the coupling when the automatic detection algorithm and

a fixed time length of signal are used;

3) the coupling when the automatic detection algorithm and

signal time length estimation are used.

The CER obtained for manual detection confirms the classi-
fication performance in noisy conditions. The results obtained
with fixed time length extracted signals are not acceptable. The
error introduced by the lack of adapted coupling is approx-
imately 46%. The detection of the end of the signal signifi-
cantly improves the classification performance. The difference
between this coupling and the manual detection reflects the in-
fluence of false alarms and missed detections on the overall
classification system.

E. Global Alarm Detection System Evaluation

To evaluate the overall alarm detection system, all sound
classes are divided into two parts: alarm sounds and nonalarm
sounds.

The possible cases after detection are good detection event
(GD), false detection event (FD), and missed detection event
(MD). The detected events, GD and FD, are sent to the clas-
sification system. A part of the missed detection events does
not have serious consequence (we call this MDW) because they
belong to the nonalarm sound classes.

The classification stage, similar to the previous step, may
produce good alarms (GA), false alarms (FA), and missed alarms
(MA). A part of the missed alarms has no bad consequences
on the final results (we call this MAW). Fig. 8 illustrates an
analysis of the possible errors of each stage of the system, and
their propagation.

The global missed alarm rate (GMAR) is defined as the sum
of missed detection (MD) and MA. The global false alarm rate
(GFAR) is defined as the false alarm rate at the output of the
sound classification stage, and not the sum of FAs generated
by each system stage. Despite the fact that the false detection
errors generated by the detection stage are injected in the
classification stage, these errors may or may not influence the
GFAR after the classification stage. For example, if a false
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TABLE VI
SUMMARY OF THE PERFORMANCE OF OUR DETECTION AND CLASSIFICATION
SYSTEM. THE GLOBAL SYSTEM PERFORMANCE IS OUTLINED

Task Data % Error
Detection Real 0
Classification Simulated 8.7

. 3
Global System  Simulated (Missed Alarm Rate)

detection is classified in a nonalarm sound class, it is not used
in the GFAR computation.

The global missed alarm rate is 3% from the global system.
This value may be acceptable if the sound extraction system is
joined with results from other sensors. The global false alarm
rate is 12% from the global system, which in the working con-
ditions investigated represents approximately 12 FAs per day.
Some of these FAs could be eliminated with the fusion of the
sound analysis system with the classical medical telemonitor-
ing system. For example, when the localization of the sound
alarm does not correspond with that of infrared sensor output,
the alarm is eliminated. The fusion between the sound analysis
system and a classical medical telemonitoring system is the aim
of a future research.

VIII. CONCLUSION

A summary of the performance of our detection and clas-
sification system is illustrated in Table VI. Although some of
the tasks were evaluated on simulated data and still need to be
validated in real conditions, we can conclude that we have pro-
posed and tested efficient algorithms both for sound detection
and classification.

More precisely, the main results of this study can be summa-
rized as follows:

1) a sound detection algorithm has been proposed and vali-
dated; this new algorithm is based on the wavelet trans-
form with good performance in a noisy environment (SNR
between 0 and 10 dB);

2) the new acoustical parameters resulting from wavelet
transform are the best adapted to noise among the tested
parameters;

3) a technique to detect the end of the signal has also been

proposed;

4) an original methodology for the evaluation of the sound

medical telesurvey system has been presented.

The algorithm for signal detection has been compared with
the state of the art algorithm. The system allows us to detect a
sound event in the apartment with a 7% error rate for a SNR of
0 dB. A GMM system has been implemented for sound clas-
sification. Initially, classical parameters usually used in speech
recognition are tested. Subsequently, we proposed and tested
nonconventional and new parameters resulting from the DWT.
Nonconventional parameters like ZCR, RF, and centroid appear
to be very discriminant for the sound classification, while those
resulting from the DWT seem better adapted to environnemental
noise. The global system (detection coupled with classification)
has an acceptable rate of 3% missed detection. The sound ex-
traction process described here could also be applied to the
classification of multimedia documents, and to security surveil-
lance.
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