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Abstract1

Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone,2

and thereby contribute to ozone pollution. However, their actual impact on ozone formation is3

strongly related to their spatial and temporal emission patterns, which warrant high-resolution4

estimates.5

Here, we combined an agro-ecosystem model and a series of geo-referenced databases to map6

these sources over the 12 000 km2 administrative region surrounding Paris, France. The mod-7

eled NO emission rates from agricultural soils ranged from 1.5 kg N-NO ha−1to 11.1 kg N-NO8

ha−1for the 14-month simulation period, and averaged 5.1 kg N-NOha−1. This corresponded9

to a mean emission factor of 1.7% for fertilizer-derived NO emissions. These emissions were10

characterized by a strong seasonal variability, being highest in May due to the fertilization of11

spring crops and lowest in wintertime. Their simulation wasstrongly sensitive to soil type and12

crop management practices, along with the resolution of theclimate and soil input maps.13

14

The use of an agro-ecosystem model at regional scale makes it possible to map the emissions15

of nitric oxide from arable soils at a resolution compatible with tropospheric ozone models.16



1 Introduction1

Although agricultural soils have been recognized as a significant source of nitric oxide (NO),2

their contribution is still uncertain, ranging from 10% to 23% of the global NOx budget (David-3

son and Kingerlee, 1997; Delmas et al., 1997). In Europe, they account for an estimated 15% of4

NO (Simpson et al., 1999). In addition, agricultural soils may play a significant role in the tropo-5

spheric chemistry of ozone (O3) in rural areas, where NOx emissions from combustion reactions6

are relatively small. This also holds in the vicinity of urban areas, where arable soils are tightly7

intertwined with other sources of ozone precursors (such asroad traffic, forests, or residential8

and industrial areas). Photochemical processes are highlydependent on the spatial and temporal9

patterns of natural and anthropogenic sources of ozone precursors, and their simulation warrants10

high-resolution estimates of these sources in both space and time.11

In arable soils, NO is produced through the microbial processes of nitrification and denitrifica-12

tion. Nitrification is an oxidation of NH+4 to NO−

2 and NO−

3 , which requires the availability of13

molecular oxygen, while denitrification is an anaerobic reduction of NO−

3 to gaseous forms of N14

(N2O and N2). The nitrification pathway predominates in temperate zones (Laville et al., 2005),15

accounting for 60% to 90% of total NO emissions (Godde and Conrad, 2000), and is regulated by16

environmental and agronomic factors, including cropping practices, soil characteristics and cli-17

mate. Crop management influences the dynamics of soil ammonium content, which is a substrate18

for nitrification, while the latter influence soil temperature and water-filled pore space (WFPS),19

which is a proximate for soil oxygen concentration and a driver for gaseous diffusivity (Linn and20

Doran, 1984).21

Given the complexity of the microbial processes driving theexchanges of reactive N (Nr) be-22

tween soils and the atmosphere, estimates of biogenic sources remain highly uncertain at re-23

gional to global scales. National inventories of Nr sourcesfrom ecosystems currently mostly24

rely on sets of emission factors derived from field-scale experiments, assuming Nr emissions to25
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be a fixed fraction of Nr inputs or dependent solely on soil temperature. Such is the case for the1

widely-used EMEP/CORINAIR methodology (Skiba et al., 2001; Stohl et al., 1996).2

3

In recent years, biophysical ecosystem models have been used to develop more realistic, spatially-4

explicit inventories of gaseous Nr emissions from soils, based on specific geographical informa-5

tion systems (GIS) and databases (Butterbach-Bahl et al., 2001, 2004, 2009; Li et al., 2004;6

Gabrielle et al., 2006b). Such models make it possible to simulate the temporal and spatial7

dynamics of emissions, typically on a daily basis. Geo-referenced databases are used to local-8

ize the sources of Nr emissions, as well as to map model inputs, including soil characteristics,9

land-use and management, and weather data. They are used in awide range of scientific fields,10

including climatology and climate change studies, agriculture, forestry and ecology (Chapman11

and Thornes, 2003). For instance, the DNDC and PnET-N-DNDC models were used to develop12

regional inventories NO and N2O emissions from cropland and forests in various parts of the13

world (Butterbach-Bahl et al., 2001; Li et al., 2004; Butterbach-Bahl et al., 2004; Kiese et al.,14

2004). Similarly, a rice crop model was coupled with GIS databases to simulate the emissions15

of methane from rice paddocks in Asia (Matthews et al., 2000). In these studies, the spatial16

generalization at the regional scale was based on plot-scale simulations at the nodes of a regular17

grid involving particular sets of crop management, soil, and climate data. Spatial interpolation18

of the grid points to cover the entire domain was either not considered (implying the points were19

representative of the whole grid cell), or done using kriging techniques. The density of the grid20

points (with a grid resolution of 4 to 20 km) was generally toolow to adequately capture the21

short-range variations in agricultural field properties, which are in the 0.1-1 km range.22

23

An alternative approach consists of using over vectorial contours, delineated by the geographical24

borders of soil and land-use classes, as well as administrative zones.This makes it possible to25

encompass the range of soils, land-uses and climates occurring over the entire geographical zone26

2



considered, and not only their particular realizations at the nodes of a regular grid. Such was1

the basis of the N2O inventory developed by Gabrielle et al. (2006b) for wheat-cropped soils in2

northern France, which resulted in principle in a more accurate localization of emission sources3

compared to grid-point simulations. The spatial distribution of meteorological data, which are4

input to biophysical models, is also an issue given their short-range variability. They are mostly5

taken from ground-based stations (Monestiez et al., 2001),and less frequently from global or6

meso-scale meteorological models (Bardossy and Plate, 1992). The latter allow a higher resolu-7

tion in time and space, typically down to the hourly and 6 km scale, and provide a more regular8

rendering of weather patterns over a given area (Faivre et al., 2004).9

10

Achieving a vectorial, high-resolution inventory for NO emissions from arable soils is paramount11

to understanding and predicting their effects on tropospheric chemistry, especially in urbanized12

areas where the sources of precursors are tightly intertwined. This is clearly not the case in cur-13

rent chemistry-transport models (CTM), which rely on fixed,biome-specific emission factors,14

such as the Stohl et al. (1996) algorithm in the CHIMERE model(Schmidt et al., 2001), or on15

simplified, algorithms with regional parameterizations (Rolland, 2008). These models may thus16

benefit from the recent progresses in the prediction of NO inventories by ecosystem models.17

However, none of the earlier above-mentioned studies in that direction had a spatial resolution18

compatible with the short-range variations of arable soilsand crop management.19

20

Here, we intended to set up a high-resolution inventory of NOemissions from agricultural soils21

with the environmentally-oriented crop model CERES-EGC (Gabrielle et al., 2006a,b), coupled22

with a set of regional GIS databases. The domain area was the Ile de France administrative region23

(12 072 km2), surrounding Paris, in northern France, which faces significant tropospheric ozone24

pollution (Deguillaume et al, 2008). Our main objective wasthus to improve the prediction of25

photochemical ozone formation in chemistry-transport models (CTM) via a finer estimation of26
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agricultural sources. Sensitivity tests were also carriedout to determine the influence of climate1

variability, soil properties, and crop management on NO emissions.2

2 Material and methods3

2.1 The CERES-EGC model4

CERES-EGC was adapted from the CERES family of soil-crop models (Jones and Kiniry, 1986),5

with a focus on the simulation of environmental outputs suchas nitrate leaching and gaseous6

emissions of ammonia and nitrogen oxides (Gabrielle et al.,2006a). CERES-EGC contains sub-7

models for the major processes governing cycles of water, carbon and nitrogen in soil-crop mod-8

els. A physical module simulates the transfer of heat, waterand nitrates down the soil profile9

as well as soil evaporation, plant water uptake, and transpiration in relation to climatic condi-10

tions. A microbiological module simulates the turnover of organic matter in the plough layer,11

involving both mineralization and immobilization of mineral N (denitrification and nitrification).12

CERES-EGC includes a submodel that simulates the production of NO through the nitrification13

pathway (Rolland et al., 2008). Nitrification is modeled as aMichaëlis-Menten reaction, with14

NH+
4 as substrate, as modulated by soil water content and temperature. The fraction of nitri-15

fied ammonium evolved as NO is considered fixed for a given croptype (Laville et al., 2005).16

CERES-EGC runs on a daily time step, and requires daily rain,mean air temperature and Penman17

potential evapo-transpiration as forcing variables.18

2.2 Regional simulations19

2.2.1 Geographical database20

We simulated NO emissions from agriculture over the Ile de France region (12072km
2), ie an21

approximately 150 km× 150 km square area surrounding Paris, France. The region is character-22

ized by a variety of land-uses, among which the share of agricultural and forest soils is 55% and23

23%, respectively. A GIS database was constructed with available geo-referenced data on the24
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region, including administrative borders, localization of emission sources (arable lands), man-1

agement for the major crops in the Ile de France region, soilsand climate. The various layers of2

spatial information (mostly in vector format) were super-imposed to delineate elementary spatial3

units representing unique combinations of soil types, weather pattern, and agricultural manage-4

ment. These units were subsequently used in the CERES-EGC simulations at the field-scale, in5

a bottom-up approach to map the emissions.6

2.2.2 Land-use and crop management7

Geographical information concerning land-use in Ile de France were taken from theCorine Land8

Cover database (thereafter referred to as CLC2000 - UE-Ifen CLC (2000)), which includes 449

classes, with a 150 m positioning accuracy and a minimum mapping unit of 25 ha. It thus10

allowed a precise localization of arable fields. Agricultural statistics on the area of arable crops11

on a county (’canton’) basis were taken from the statistics and survey bureau of the French12

Ministry of Agriculture (SCEES), as obtained from a comprehensive census carried out from13

October 2000 to March 2001. Informations of agricultural cropping practices were available at14

the regional scale, from a detailed survey (Agreste/SCEES,2001), including statistics on sowing15

dates, the dates, forms and rates of fertilizer applications, and crop yields.16

The agricultural statistics showed that six crop types and fallow soils accounted for 91.5% of the17

total area of arable land (573 590 ha) in the Ile de France region in 2001. Table 1 summarizes their18

management, as taken from the above-mentioned surveys. Winter wheat crop was the dominant19

crop with 44.8% of the total area.20

2.2.3 Soils21

Soils were parameterized based on a 1:250 000 scale map and attached thematic database (Fig.22

1). The map is organized into geographical soil map units (SMU), containing a mixture of soil23

typological units (STU), following the model of the soil mapof the European Union (King et al.,24

1994). In order to reduce the number of soil units to be parameterized, we first selected the25
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dominant ones in Ile de France, as determined from their percentage of land-cover on a county1

basis. Secondly, we grouped STUs according to their drainage class, geological substrate, and2

their texture class. These characteristics were considered particularly influential in the prediction3

of NO emissions, as evidenced by the sensitivity analysis. We ultimately obtained 14 groups of4

soils, as listed on Table 2 and mapped out on Fig. 1. They were parameterized based on previous5

tests against field experimental data with CERES-EGC, involving similar soil classes in Europe6

(Table 2). When such prior information was unavailable, theCERES-EGC soil input file was7

created from the information listed in the soil database, using pedo-transfer functions and expert8

knowledge (Gabrielle et al., 2002).9

2.2.4 Climate10

CERES-EGC was supplied with gridded weather data generatedby the meso-scale model MM511

(Dudhia, 1993), with an horizontal resolution of 5 km.Each CERES-EGC elementary spatial12

simulation unit was associated with the closest MM5 grid point for weather data. Potential13

evapo-transpiration (PET) was calculated from the MM5 datausing the Penman relationship14

(Penman, 1948).15

16

CERES-EGC was run from 1 November 2000 to 31 December 2001 foreach elementary spatial17

simulation unit representing a given set of soil type, climate and crop management (Fig. 1). This18

period encompassed the growing cycles of both winter and spring crops, and the interval between19

harvest and sowing of the following crops.20

2.3 Sensitivity analysis21

As the data used in the GIS database were simplified or aggregated compared to their original for-22

mat, some uncertainty is likely to have been produced duringthe upscaling process (Butterbach-23

Bahl et al., 2004; Li et al., 2004). We addressed it by examining the sensitivity of the simulated24

NO efflux to soil, meteorological, and crop management inputs.25
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Sensitivity tests were first run at the plot-scale, using a complete experimental design to simulta-1

neously vary crop type, fertilizer N rate, soil type, soil microbiological parameters, and weather2

data. The crop and soil types corresponded to those occurring in Ile de France (Table 2), while3

two climatic locations were tested: Grignon (west of Ile de France) and Auradé (Southwestern4

France). Two values for the microbiological parameterVmax (maximum nitrification rate) were5

taken from a previous modeling study on NO emissions (Rolland et al., 2008). They were varied6

independently of soil type since they had a strong influence on predicted NO emissions and little7

relation to soil pedological class (Cortinovis, 2004). Thesensitivity of the yearly NO efflux to8

the above factors was assessed using boxplots, which provide a graphical representation of the9

distribution of model outputs, and variance analysis. The latter breaks down the total variance of10

model outputs into fractions attributable to individual factors and their interactions, based on the11

statistical theory of linear models (Monod et al., 2006).12

At the regional-scale, the sensitivity of NO emissions to the resolution of input data was also13

investigated by comparing emission maps obtained for a short period of April 2001 with: i/14

spatially-distributed meteorological and soil data, ii/ uniform weather data (from the Grignon15

meteorological station) and soil map, and iii/ distributedmeteorological data and uniform soil16

(Neoluvisol; Table 2). Lastly, the response of year-round NO emissions to N fertilizer rates was17

also investigated by varying the latter from 0 to 200 kg N ha−1 in 50 kg N ha−1 increments,18

encompassing the range of rates applied in Ile de France.19

3 Results20

3.1 Sensitivity analysis21

3.1.1 Plot-scale tests22

The simulated NO emissions were sensitive, by increasing order: to soil type, crop type (includ-23

ing fertilizer N rates), climate and soil microbiological parameters. The marginal distributions24

of NO emissions with fixed climate or crop type were relatively homogeneous, and resembled25
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the overall distribution of this variable (see boxplots of Fig. 2 a-c). Conversely, the marginal1

distributions related to soil types were more dissimilar and differed from the overall distribution,2

evidencing a strong influence of this factor on NO emissions (Fig. 2 b). In particular, emission3

rates were markedly higher with the Luvisols, which tended to have higher water contents than4

sandy Podzosols. The analysis of variance allowed us to quantify the weights of the main factors5

and their interactions (Monod et al., 2006), and its resultsare presented in Table 5. The sensi-6

tivity indices of the main factors explained 82.5% of the total variance of NO emissions, while7

first-order interactions between factors accounted for 17.4% of it (the residual variance was thus8

negligible). Soils were by far the most influential factors,and its interactions with crops was the9

most significant term. Crop type explained 4% of total variance, and the other factors appeared10

negligible since they only explained 1% of the variance.11

3.1.2 Regional scale12

Regarding the sensitivity of NO fluxes to fertilizer N rates,there was a notable difference between13

winter and spring crops, the latter releasing more NO due to higher soil temperatures during their14

growth period and to the fact that they were fertilized at sowing, some weeks before crop demand15

for N became significant. The response of NO emissions to fertilizer rates was remarkably well16

fitted by a linear regression (with R2 values above 0.99), whose slopes (the emission factors)17

were higher for the maize crop (2.6%) than for the wheat (1.9%). For both types of crops, the18

background NO emissions were around 2.6 kg N ha−1 over the 14 month simulation period.19

The regional distribution of soils appeared as a major driver in the spatial patterns of NO fluxes20

(Figures 3 a-c). Two zones to the East and to the South-West ofParis were characterized by21

high NO emission rates, due to their higher proportion of arable crops and the predominance22

of Luvisols, which are prone to emit NO, as mentioned earlier(Fig. 1). In the simulation with23

uniform soil type (Neoluvisol) across the region, the spatial distribution of NO emissions was24

nearly homogeneous, implying that climate variability only exerted a marginal effect on NO25
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emissions.1

3.2 Drivers of NO emissions in Ile de France2

In the CERES-EGC model, NO emissions are driven by the 3 environmental variables: soil3

temperature, soil moisture and ammonium contents (Lavilleet al., 2005), whose regional distri-4

butions are depicted on Fig. 4. Soil moisture content was markedly heterogeneous across the5

region, as a result of the heterogeneity in soil types and rainfall. The Podzosols, with sandy6

texture, presented the lowest levels of soil moisture, appearing as red and orange spots to the7

South-East of Paris on Fig. 4a. Intermediate levels of soil moisture were simulated for the vari-8

ous types of Luvisols around Paris, with a drier fringe alongthe southwestern limit. In these soils9

the average moisture content was close to the optimum for nitrification and thus NO production.10

Neoluvisols had the highest moisture contents, ranging from 28 to 35 % (v/v). Spring crops11

generally resulted in drier soil conditions than winter crops, with a relative difference reaching12

up to 15% over the simulation time period.13

3.3 Time course of NO emissions14

Figure 5 a-b compares the dynamics of NO emissions under winter and spring crops, and for15

5 soil types with contrasted hydrodynamic regimes. Soil andcrop types had a clear impact on16

the emission patterns, as a result of strong differences in some of their environmental drivers17

(Figure 5 c-i). First, the magnitude of NO emissions under the maize crop was higher than the18

wheat crop after fertilization due to higher soil temperatures and optimal soil moisture content19

(corresponding to 60% water-filled pore space - Linn and Doran (1984)). Fertilizer was applied20

earlier on the wheat crops, at a time when soil moisture was above the optimum for nitrification,21

which strongly reduced its activity. However, towards the end of the summer, both crops had22

similar NO emissions, due to the mineralization of soil organic matter and similar soil environ-23

mental conditions (see Fig. 5). Throughout autumn and winter, mineralization slowly decreased24
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due to decreasing soil temperature, and NO emissions reached a stable background level of few1

g N-NO ha−1 d−1. There were further reduced by sub-optimal soil moisture content, the latter2

being either too low in autumn or too high in winter.3

The sensitivity to soil types is mostly related to differences in their soil water-filled pore space4

(WFPS) dynamics (Fig. 5). Typical Luvisols produced higherNO peaks than the hydromorphic5

soils (hydromorphic Luvisols and Planosols), or than the cherty Calcosols, because they were6

well-drained and their water balance led to optimal soil moisture content for nitrification upon7

fertilizer applications in spring. The WFPS of hydromorphic soils tended to remain above the8

optimum for nitrification, which hampered this process at that time. However, during the rest9

of the simulation period, the hydromorphic Luvisols emitted more NO than the other Luvisols10

whatever the crop, due to higher WFPS, and their efflux totaled 8.6 g N-NO ha−1 d−1compared11

to 6.2 g N-NO ha−1 d−1for the latter.12

3.4 Spatial distribution of NO emissions over Ile de France13

Figures 6 and 7 map the NO emissions for the various crops considered, as cumulated over the14

14-month simulation time-frame. Emissions were larger over spring crops (maize and surgar-15

beet) than winter crops (wheat, barley and rapeseed), pea-cropped and fallow soils being the16

weakest emitters due to the absence of mineral fertilizer application. A large heterogeneity in17

NO emissions may be noted on all maps: the fluxes ranged between 2.8 and 16.5 kg N-NO18

ha−1 for the spring crops, with a median value of 4.9 kg N-NO ha−1, whereas the range was19

2.3-10.1 kg N-NO ha−1 for winter crops, with a median of 3.8 kg N-NO ha−1. Lastly, for the20

crops without fertilizer application values are comprisedbetween 0.66 and 9.3 kg N-NO ha−1,21

with a median value of 2.8 kg N-NO ha−1. There were consistent emission pattern across the22

maps, with largest emissions occurring to the East of the domain, and to a lesser proportion in23

its Southern and the South-Western parts. This pattern was strongly linked with the spatial24

distribution of soils at a regional scale (Fig. 1). The largest emitters corresponded to Luvisols,25
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due to their texture and their hydrodynamic characteristics (well-drained), which create topsoil1

water contents conducive to nitrification.2

3.5 Comparison with other estimates3

According to our simulations, NO emissions from agricultural soils averaged 5.1 kg N-NO ha−1
4

between November 2000 and December 2001, and ranged from 1.47 to 11.1 kg N-NO ha−1.5

Since the mean fertilizer application rate was 150kg N-NO ha−1, we could estimate an aggre-6

gated emission factor of 1.7% for Ile de France, after subtracting the background flux of 2.6 kg7

N-NO ha−1. Figure 8 compares our NO emission maps with those currentlyimplemented in8

the chemistry transport model CHIMERE, based on either the Stohl et al. (1996) NO algorithm9

or the Laville et al. (2005) model. For the same time period, these models yielded emissions10

ranging from 0.5 and 2.5 kg N-NO ha−1, and from 0.5 and 1.5 kg N-NO ha−1, respectively. An11

explanation for these rates being lower than ours may be thatbackground NO emissions (i.e.12

emissions in the absence of fertilization) are smaller in magnitude with these algorithms. The13

spatial distribution of cropland sources was more homogeneous with the CHIMERE algorithms14

than with ours, because the latter are only based on a single landcover class (arable land) which15

does not take soil type into account (Fig. 8). In our approach, as showed in the previous section,16

the variability of soil types had a strong effect on NO emissions.17

18

We compared the regional total of 2761.0 t N-NO simulated by CERES-EGC over the 14-month19

time-frame with other inventories. The national inventoryof atmospheric pollutants in France20

(CITEPA, 2008) provides an estimate of the contribution of agricultural soils, based on emis-21

sion factors specific to N-fertilizer forms FAO/IFA (2001),and on the delivery data supplied22

by the French association of fertilizer manufacturers. Theresulting estimate for Ile de France is23

404.3 t N-NO yr−1, which may be compared to our estimate by adding the background emissions24

(1328.4 t NO2 yr−1), yielding a total of 1838.2 t N-NO yr−1 it i.e. 33% lower than our estimate25

11



(albeit for a 2-month shorter period). Using an approach similar to ours, Butterbach-Bahl et al.1

(2004) predicted average NO emission rates of 8.6 kg N-NO ha−1 yr−1 for arable crops in the2

Saxony region of Germany, which is of similar magnitude as our regional mean. A more recent3

EU-wide simulation with the same methodology resulted in a much lower range for the Ile de4

France area, with soil emission rates varying from 1 to 1.5 kgN-NO ha−1 yr−1 (Butterbach-Bahl5

et al., 2009), ie 4 times less than our average. This may have been an effect of inter-annual cli-6

mate variability, since the simulations were run for the year 2000, compared to mostly 2001 in7

our case, but both years had similar annual rainfall (869 and765 mm, resp.) and mean air tem-8

perature (11.4 and 11.1◦C). This gap is more probably due to the DNDC model under-estimating9

the mean observed NO fluxes by a factor of 4 in the Grignon experimental test site, located in10

western Ile de France.11

Lastly, we checked our bottom-up estimate of N fertilizer inputs to arable crops against the total12

input that may be approximated from the fertilizer deliverydata in Ile de France. In 2001, the13

latter amounted to 70229 t of fertilizer N. In our approach, based on agricultural statistics and14

field surveys of management practices, the average fertilization rate was about 150 kg ha−1 (see15

Table 1), and arable crops covered 573590 ha. Thus, the totalfertilizer input was estimated at16

86038 t N, which is within 18% of the UNIFA estimate. This means that the dominant crops we17

selected in the region enabled us to account for the overall use of fertilizers in agriculture.18

4 Discussion19

4.1 Uncertainties in data inputs20

Land-use or land cover information is usually obtained by remote-sensing satellite imaging,21

which enables a comprehensive monitoring at high resolution. However, it comes with the disad-22

vantage that it is only valid for the year considered. Since arable crops are rotated, they change23

from one year to the other on a given field. To correct for the possible biases associated with the24

use of such landcover information systems, we compared to area of arable soils in Ile de France25
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provided by two different sources: the CLC2000 database (UE-Ifen CLC, 2000), which was1

used as input in our inventory, and French agricultural census data at the county level (RGA).2

According to the latter, arable soils covered 573590 ha in 2000, whereas the figure was 6944233

ha for CLC2000. This 21% relative difference occurring between the two land-cover databases4

introduced significant uncertainties in the magnitude and spatial distribution of the NO sources,5

along with the cumulative emissions from agriculture at theregional level.6

4.2 Relevance of emission maps to the photochemical modeling7

Although biogenic NO emissions may significantly contribute to photochemical processes in8

rural and urban areas (Stohl et al., 1996), few studies have tested or discussed the possible in-9

fluence of a finer-scale description for them in the context ofatmospheric chemistry modeling.10

Here, the use of an agro-environmental model made it possible to achieve a more realistic predic-11

tion of NO emissions as related to its main drivers: soil and crop types, agricultural practices and12

meteorological conditions. Moreover, the model was able toaccount for environmental condi-13

tions year-round, and to simulate background NO emissions,due to the mineralization of organic14

N inputs, before and after the fertilization period. Since background emissions represent several15

grams of N-NO ha−1 d−1 all year long, they make up a significant part of the soils source strength16

and should not be ignored, as they are in current NO emission inventories.17

Solmon (2001) predicted fine-scale scenarios of biogenic VOC emissions from forests at the re-18

gional level, with a similar resolution as ours for NO. Different spatial distributions of sources19

were tested with a chemical transport model. An heterogeneous spatial distribution of VOC20

sources, such as patches of forests or other concentrated sources in a much larger zone with little21

background emissions, induced heterogeneous patterns of ozone production in the vicinity of22

these sources, compared to an homogeneous spatial distribution of sources.23

The maps on Fig. 8 show that a finer spatial resolution of biogenic NO sources has the potential24

for bearing a similar influence on photochemical pollution:when only one soil type is assumed25

13



over the whole Ile de France region, the emissions are relatively homogeneous, as is the case1

with the Stohl et al. (1996) and the Laville et al. (2005) approaches. Taking into account the2

diversity of soil types occurring on this domain results in amarked spatial differentiation, with3

higher emission rates to the East and the South-West of Paris. These areas may contribute all the4

more to the production of ozone in modifying the chemical regimes. The ozone plume is mostly5

localized at distances between 25 and 110 km from downtown Paris (Tulet et al., 1999), and6

often to the Southwest of Paris (Menut et al. , 2000).7
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Figure 1: Soil map units as overlaid with administrative county limits and the presence of arable
crops in the Ile de France region.

21



Figure 2: Boxplots of marginal distributions for each classof data inputs: crop types (a), soil
types (b), weather stations (c) and microbiological parameters (d). The boxplot of the overall
distribution of NO emissions is also depicted, showing the median (solid line), first and third
quartile (limits of colored rectangles), and 10th and 90th percentiles (error bars).
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Figure 3: Influence of physical input data on the simulated spatial patterns of NO emissions over
a short period (1-10 April 2001): (a) uniform weather data taken from a ground meteorological
station and soil map, (b) gridded MM5 weather data and uniform soil type (Neoluvisol), and (c)
MM5 data and soil map.
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Figure 4: Emission drivers simulated by CERES-EGC: time-averaged soil moisture, in volumet-
ric percents (a), soil temperature (b), and soil ammonium content (c) under a winter wheat crop.
Map (d) displays the ratio of soil moisture contents under spring maize and winter wheat.
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Figure 5: Dynamics of NO emissions (a-b) and drivers: water-filled pore space (c-d), ammonium
(e-f), and net N mineralization (g-h), under a similar climate (Grignon county), for a spring crop
(maize) and a winter crop (wheat) and 5 soil types.
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Figure 6: Maps of cumulated NO emissions from November 2000 through December 2001, for
4 land-use types.
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Figure 7: Maps of cumulated NO emissions from November 2000 through December 2001, for
3 crop types.
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Figure 8: Maps of cumulative NO emissions from arable soils (kg N-NO ha1 yr−1), as estimated
by our spatial inventory (a), by the Stohl et al. (1996) model(b) and by the Laville et al. (2005)
model (c), from November 2000 to December, 31st 2001.
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Crop Area Management practices
type (ha) Sowing Fertilizer application

Date Date Ratea Form
Maize (Zea mays L.) 43 144 107(2001) 115 (2001) 140 UANb

Wheat (Triticum aestivum L.) 256 974 295 (2000) 63 (2001) 60 UANb

93 (2001) 100 ANc

Barley (Hordeum vulgare L.) 60 162 289 (2000) 54 (2001) 60 UAN
92 (2001) 100 UAN

Rapeseed (Brassica napus L.) 52 015 251 (2000) 29 (2001) 60 AN
51 (2001) 120 AN

Pea (Pisum sativum L.) 32 278 98 (2001) none
Sugarbeet (Beta vulgaris L.) 41 727 112 (2001) 29 (2001) 40 AN

58 (2001) 89 AN
Fallow soilsd 38 711 240 (2000) none

Table 1: Areas and management practices for the 6 dominant crop types and fallow soils in the
Ile de France region. Dates are given as days of year (year).

a unit: kg N ha−1.
b UAN: nitrogen solution (50% urea and 50% ammonium-nitrate,in liquid form).
c AN: ammonium nitrate.
d Simulated as a mustard catch crop, ploughed in date on day of year 182 (2001).
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Soil group Drainage characteristics Geological substrateTexture Reference
(Baize and Girard, 1998)

Brunisol well-drained, hydromorphic variable sandy to clayey created
Calcisol well-drained limestone clay loam (Gabrielle et al., 2002)
Calcosol, cherty well-drained limestone or chalk clay loam (Roche et al., 1999)
Calcosol, sandy well-drained limestone silt sandy created
Calcosol, typical well-drained limestone or chalk silty created
Fluviosol well-drained alluvial deposits silty created
Luvisol on loess well-drained loess clay loam (Hermel, 2001)
Luvisol, hydromorphic hydromorphic clay clay loam (Gabrielle et al., 2002)
Luvisol, typical well-drained limestone clay loam (Gabrielle et al., 2002)
Neoluvisol well-drained limestone clay loam (Gabrielle etal., 2002)
Pelosol very hydromorphic clay clay created
Planosol very hydromorphic clay silty or sandy/clayey created
Podzosol very well-drained sand sandy (Gabrielle et al., 1998)
Rendosol well-drained limestone clay loam (Gabrielle et al., 1998)

Table 2: Groups of dominant soil types defined for the Ile de France region.
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Input Factors Sensitivity index
Soil type 0.784∗∗∗,a

Crop type 0.039∗∗∗

Climate 0.001∗∗∗

Vmax 0.001∗∗∗

Soil:Crop 0.155∗∗∗

Soil:Climate 0.005∗∗∗

Soil:Vmax 0.002∗∗∗

Crop:Climate 0.001∗∗∗

Crop:Vmax 2.4E-5
Climate:Vmax 2.4E-11
Residual 0.011

a: significance level (F-test): 0.01%.

Table 3: Sensitivity indices derived from the ANOVA table ofthe simulated NO emissions as a
function of the various factors included in the plot-scale sensitivity analysis. They are calculated
as the ratio of the marginal (main effect or first-order interactions) to total variances of NO fluxes.
Parameter Vmax is the maximum nitrification rate in soil (2 levels).

32


