Structures hiérarchiques en géographie : des modèles linéaires aux modèles non linéaires (lois de puissance et corrections log-périodiques)
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La loi de puissance (et spécialement la loi rang-taille) est utilisée dans de nombreuses modélisations empiriques en géographie. Souvent, on peut observer une oscillation des points expérimentaux sur les graphiques bi logarithmiques. Jusqu'alors ces oscillations étaient interprétées comme des artefacts. Grâce à des développements mathématiques récents, on peut modéliser ces fluctuations par une loi fractale log-périodique comme nous allons le montrer.

Introduction

Nous utilisons, en géographie, depuis près d'un siècle une « loi » dite : rang-taille attribuée à Georges Kingsley [START_REF] Zipf | Selective studies and the principle of relative frequency in language[END_REF][START_REF] Zipf | Psycho-biology of languages[END_REF][START_REF] Zipf | National unity and disunity. The nation as a bio-social organism[END_REF][START_REF] Zipf | Human behavior and the principle of least effort[END_REF]. Cette relation empirique montre que si l'on reporte une variable V, par exemple la population urbaine en fonction du logarithme de l'inverse du rang r n , la distribution s'ajuste à une loi de puissance de la forme :

δ         = n n r V V 1 0 (1).
Plus tard, cette loi empirique a été théorisée comme une « loi fractale » par Benoît [START_REF] Mandelbrot | Les objets fractals, 1 ère édition[END_REF], et l'exposant de « Zipf » est devenu une dimension fractale. Nous avons donc là une loi d'échelle. Ce qu'apportent les travaux de B. Mandelbrot, outre l'introduction de cette relation empirique dans le corpus théorique de la géométrie fractale sur lequel nous aurons à revenir, c'est un éclairage sur la logique profonde de cette structure d'ordre dont l'ubiquité est avérée. « Quelque chose est l'inverse de quelque chose d'autre » note ce mathématicien (1997, p.193) qui ne fait que rappeler une figure classique : ce qui est petit se trouve en grand nombre et ce qui est grand est en petit nombre. Le classement réalisé sur la distribution expérimentale ne fait bien sûr que mettre en évidence les modalités de variation des différences inscrites dans la série statistique, modalités qui seront rapprochées de celles manifestées par la variation du rang.

En fait la distribution expérimentale est comparée à une distribution théorique dont le seul intérêt réside dans sa structure interne. Celle-ci est souvent exprimée par le rang mais aussi par des rétro fréquences. Les calculs montrent que l'exposant δ est souvent proche de 1 comme en témoignent différents travaux expérimentaux ou théoriques [START_REF] Schroeder | Fractals, Chaos, Power Laws: Minute from an infinite paradis[END_REF][START_REF] Livre | Quand la nature s'organise. Avalanches, tremblements de terre et autres cataclysmes[END_REF]. Il faut rappeler aussi que les objets mesurés pour constituer la distribution peuvent être des objets définis par leur caractère spatial comme la surface couverte par une ville et/ou par leurs caractéristiques fonctionnelles comme par exemple le nombre de personnes habitant une agglomération.

Il en est de même pour des objets relevant de la géographie physique tant pour les types d'objets spatiaux (surface des bassins versants) qu'a-spatiaux (débit moyens de bassins versants). L'exemple le plus connu étant peut-être celui de la magnitude des tremblements de terre.

Dans cette perspective la question est donc de savoir si le modèle puissance pour ne pas l'appeler loi est seulement une bonne solution de description, une bonne solution pour résumer l'information (ou une partie de l'information) contenue dans la distribution -auquel cas c'est un outil à ranger au même rang que les régressions ou les analyses factorielles -ou si c'est la manifestation de relations, de tensions, intrinsèquement liées au fonctionnement et aux contraintes structurelles qui transcendent le fonctionnement de la nature et de la sphère anthropique ? Dans la seconde hypothèse qui est la nôtre il est logique de chercher à faire entrer ce modèle puissance et ses avatars dans un cadre théorique. Dans la première cela n'a guère de sens.

Il est peut-être ici utile de rappeler les modèles isométriques et allométriques de croissance qui mettent en oeuvre une dynamique portée par un flux de matière, d'énergie, d'information dans un cadre qui est celui d'une compétition, d'une concurrence rendue inévitable en partie par le caractère limité des ressources et/ou la finitude de l'espace tangible. Ceci peut être décliné pour le réseau urbain caractérisé soit par la taille surfacique des organismes, soit par le niveau de sa population. Il n'est dès lors pas étonnant d'obtenir une relation puissance entre cette surface et la taille de la population (Le Bras, 2000, p.112). La modification de la hiérarchie urbaine correspondant en fait à une variation soit unitaire, soit locale -en termes d'échelles -, du taux de croissance urbaine (Guérin -Pace, 1993).

Cela étant le modèle puissance, même s'il révèle une dimension transcendantale, reste un archétype, une solution théorique qui est globalement réalisée mais qui est aussi insuffisante en raison d'une part d'une fréquente disposition en arc de cercle (courbure) qui apparaît dans les graphiques bi logarithmiques et en raison d'autre part d'oscillations, de fluctuations de ces mêmes distributions de points tant dans le cas linéaire (modèle puissance stricte ou modèle fractal linéaire (Laherrère, 1996)) que dans celui où se manifeste une courbure (modèle fractal parabolique (Laherrère, 1996 ;Laherrère et Sornette, 1998)) (Fig. 1).

Il apparaît donc quatre situations possibles (Fig. 1) : le Modèle Fractal Linéaire (MFL), le Modèle Fractal parabolique (MFP), le Modèle Fractal Log Périodique et le Modèle Fractal Log Périodique avec une puissance à deux paramètres. Le problème est ainsi nettement plus complexe et serait grandement précisé s'il pouvait être intégré dans un soubassement théorique formel. Cela est aujourd'hui possible avec la théorie de la relativité d'échelle de Laurent [START_REF] Nottale | Fractal space-time et microphysics[END_REF][START_REF] Nottale | La relativité dans tous ses états[END_REF]. Avec cet outil il est non seulement possible de généraliser davantage ces lois rang-taille, mais aussi de proposer des méthodes déductives qui permettront d'obtenir de meilleurs ajustements numériques, donc d'accroître leurs dimensions explicative et prospective. Cet article, par rapport à l'imposante littérature détaillant les subtilités des lois rang-taille (Pumain (sous la direction de), 2006), vise juste à proposer un développement théorique, basé sur les apports de Laurent Nottale (http://luth2.obspm.fr/~luthier/nottale/) que nous pensons utile à faire connaître aux géographes. Il s'agira de présenter un début d'analyse mathématique des lois rangtaille, ainsi qu'une approche purement conceptuelle de certains éléments de la théorie de la relativité d'échelle de Laurent [START_REF] Nottale | Fractal space-time et microphysics[END_REF][START_REF] Nottale | La relativité dans tous ses états[END_REF].

Pour des détails sur cette construction nous renvoyons les lecteurs aux travaux de son auteur. Cela étant il nous faut quand même tout d'abord rappeler les trois principes premiers sur lesquels repose cette théorie. C'est d'abord, le principe de relativité. Il s'énonce de la manière suivante : « les lois de la nature doivent être valides quel que soit le système de coordonnées choisi » (Einstein, in [START_REF] Nottale | La relativité dans tous ses états[END_REF]. C'est ensuite, le principe de covariance. Il met en oeuvre le principe de relativité. Ici, « les lois de la nature doivent conserver la même forme mathématique (la plus simple possible) ». C'est enfin, le principe d'équivalence. Il assure la liaison entre le principe de relativité et celui de covariance pour un « objet » donné. Dans cette théorie l'approche fractale et l'instrumentalisation des équations différentielles d'échelle permettent de retrouver le formalisme des lois de puissance comme étant la solution d'équations différentielles.

La position du problème

Les lois rang-taille ont été utilisées par Vilfredo Pareto (1896) en économie [START_REF] Mandelbrot | Fractale, hasard et finance[END_REF]) et, successivement (Armatte, 1995), en géographie par Georges Kingsley [START_REF] Zipf | Human behavior and the principle of least effort[END_REF] et par Robert [START_REF] Gibrat | Les inégalités économiques[END_REF]. Elles ont un usage semblable à celui des lois statistiques log-normales.

L'idée d'utiliser ces lois, en géographie, était en rapport avec entre autres choses la théorie des lieux centraux de Walter [START_REF] Christaller | Die zentralen orte in Süddeutschland : eine ökonomisch-geographische untersuchung über die gesetz massigkeit der verbreitung und entwicklung der siedlungen mit städtischen funktionen[END_REF]) ou d'August Lösch (1940), théorie qui n'est pas très satisfaisante dans beaucoup de cas expérimentaux et cela même si elle a pu donner lieu à des développements de nature fractale [START_REF] Lam | Fractal in geography[END_REF]. Quoi qu'il en soit, pour que les lois rangtailles aient un sens, il faut d'une part postuler l'existence d'un réseau urbain, c'est-à-dire de quelque chose qui lie ensemble les agglomérations et dont rend compte le niveau de la population urbaine, et d'autre part postuler que ce réseau est hiérarchisé selon un ordre décroissant.

Les lois fractales invariantes d'échelle

Le premier apport théorique complémentaire a été l'intégration de la loi rang-taille dans la théorie empirique de Benoît [START_REF] Mandelbrot | Les objets fractals, 1 ère édition[END_REF] connue sous le nom de géométrie fractale. En effet, l'équation (1) comprend un exposant δ qui sera désormais identifié à une dimension fractale. Cette équation est également identifiée au cas d'invariance d'échelle et d'autosimilarité, soit celui d'une variation constante dans l'ordre des échelles.

Aujourd'hui, nous proposons d'identifier cette loi aux lois d'échelle développées par Laurent Nottale qui offrent une compréhension plus aboutie des structures fractales découvertes par Benoît Mandelbrot. Dans cette théorie, la loi précédente

D V V       = ε 1 0 (2)
devient la solution d'une équation différentielle d'échelle du premier ordre de la forme :

( ) ( ) ε ε ε DV V = ln d d (3).
La solution de l'équation (3) est de la forme :

( )

D V V       = ε λ ε 0 (4).
On peut par conséquent rapprocher l'équation (1) de l'équation (4). Il suffit de poser :

     = = = D r n δ ε λ 1
λ correspond à la constante d'intégration qui sera identifiée à ce que l'on appelle l'échelle de coupure c'est-à-dire à la résolution à partir de laquelle un phénomène devient fractal ou, au contraire, non fractal. Dans le cas des lois rang-taille, elle sera égale à 1. Cependant, le simple fait d'avoir identifier λ = 1 nous autorise à prendre n'importe quelle valeur pour λ. En effet, le fait de modifier cette constante n'aura pour conséquence que de translater la courbe vers la gauche ou vers la droite. ε est une résolution. δ correspond à la dimension fractale et V 0 à la valeur initiale de la série.

L'exemple d'une loi : rang vs population urbaine

Nous allons maintenant présenter la relation classique entre le rang et la population urbaine, classée en ordre décroissant qui est l'exemple classique des lois rang-taille en géographie. On la trace généralement sur un graphique bi logarithmique. Par commodité mathématique, nous utiliserons le logarithme népérien. Cet espace bi logarithmique sera appelé espace des échelles. L'équation (4) devient :

      + = ε λ ln ln ln 0 D V V (5).
Autrement dit, il s'agit sur un graphique bi logarithmique d'une droite dans laquelle la pente correspond à la dimension fractale D (Fig. 3). Il faut remarquer que la dimension fractale correspond, elle, à la dérivée de ln V par rapport au ln ε :

D V = ε ln d ln d (6).
Nous proposons, pour tester cette loi, d'étudier la base de données de l'ONU qui recense les 435 premières villes ou conurbations mondiales disponible sur le web (http://www.populationdata.net/palmaresvilles.php ). On constate que l'ajustement statistique n'est pas satisfaisant. D'ailleurs, il est probable qu'aucune série ne correspond parfaitement à une loi puissance pure. En effet, sur la figure 2, on voit très bien qu'à partir de la valeur -2, l'ajustement diverge complètement par rapport aux données analysées. Pour y remédier, il suffit d'ajuster un polynôme du second degré dans l'espace des échelles (Laherrère, 1996) (Fig. 4).

Fig. 4 Ajustement d'un polynôme du second degré entre le -ln(Rang) et le ln(Population).

Est-ce une curiosité ? Une anomalie ? Est-ce la preuve que l'approche fractale est inadaptée pour une étude géographique ? Vraisemblablement pas ! Nous allons montrer, en étendant le concept d'invariance d'échelle à celui de dépendance d'échelle, comment il est possible de faire fond sur la géométrie fractale pour mieux décrire cette structure d'ordre qui transparait dans le réseau urbain mondial sommairement rendu par le niveau des populations des agglomérations.

La dépendance d'échelle

L'invariance d'échelle n'est qu'un cas très particulier de l'expression de la fractalité d'une distribution. Le cas le plus général est celui de la dépendance d'échelle. Pour ce, il nous faut compliquer, un tout petit peu, l'équation différentielle d'échelle (3). En effet, on obtient la dépendance d'échelle en posant l'équation différentielle du premier ordre suivante :

( ) ( ) ( ) ε ε ε V D D V V T - + = 0 ln d d (7).
Le simple fait d'avoir ajouté la valeur initiale V 0 dans l'équation différentielle (3) permet de changer la nature de la fractalité : on passe d'une invariance d'échelle à une dépendance d'échelle. L'équation (7) se résout très facilement en :

( )               + = -T D D V V ε λ ε 1 0 (8).
où D T correspond à la dimension topologique.

La loi rang-taille parabolique

Nous avons pu ajuster dans l'espace des échelles une parabole (fig. 3), ce qui correspond à une équation de la forme :

c b a V +       +               = ε λ ε λ ln ln ln 2 (9) ce qui se transforme en : b a c e V +             = ε λ ε λ ln c = V 0 et on appellera la constante e c = C 25/09/2009 7 / 14 b a C V +             = ε λ ε λ ln (10).
Dans l'équation (10), nous constatons que l'exposant est devenu variable. En effet, si on reprend, en vertu du principe de covariance, la définition de la dimension fractale de l'équation (6), à savoir la dérivée de ln V par rapport à ln ε, on obtient donc :

( ) b a V D + = = ε ε ε ln 2 ln d ln d ln (11) b a + ε ln 2
qui correspond à la définition de la dimension fractale de L. Nottale est devenue variable.

On notera en outre que b a + ε ln 2 correspondrait grosso modo à la variable z = a.ln(x-x 0 ) + b de la loi de Gibrat.

Nous allons maintenant essayer de trouver l'origine de la loi parabolique. Nous savons que d'après l'équation ( 2 , puis de porter ce taux théorique (t A ) en fonction du taux empirique (T A ). Le résultat est donné dans la figure 6. On n'observe alors nettement une fluctuation log-périodique qui peut être modélisée.

Fig. 6. Relation entre le taux d'accroissement théorique et le taux d'accroissement empirique dans le réseau urbain mondial (Pr n → Pr n+3 ).

On notera que l'oscillation entre 0 et 5 présente bien une structuration du phénomène selon deux échelles : l'une déployée sur la totalité de l'intervalle, l'autre, à une autre échelle, emboîtée dans la première et qui est donc plus détaillée. L'accroissement au-delà de la porteuse est donc beaucoup plus complexe qu'on ne le pense généralement. A l'inverse la répartition sur un graphique bi logarithmique des points autour de l'ajustement principal (porteuse) n'est pas un artéfact et doit être étudié comme tel si non on ne voit pas pourquoi ces points ne seraient pas distribués aléatoirement.

La correction log-périodique des lois de puissance

Cette correction a été utilisée, par Didier [START_REF] Sornette | Critical phenomena in natural sciences[END_REF], en science de la terre et en économie. Cela étant, les physiciens la connaissent depuis de nombreuses décennies. Elle était alors principalement utilisée pour des phénomènes physiques tels que la température. L'apport de Didier Sornette a été de l'appliquer au temps.

La correction log-périodique et l'invariance d'échelle

Didier Sornette a essayé de modéliser l'oscillation observée en utilisant une dimension fractale complexe. Rappelons qu'un nombre complexe est un nombre z tel que z = a + ib, où a est appelé la partie réelle et ib la partie imaginaire avec i² = -1. Ainsi arrive-t-on à modéliser cette oscillation en utilisant la forme trigonométrique des nombres complexes.

En effet,

( ) ( ) [ ] ε ε ε ε ε ε ε ln sin ln cos 0 ln 0 0 0 b i b V e V V V V a r ib a ib a ib a + = = = = + La partie réelle est ( ) ( ) ε ε ε ln cos Re 0 b V a = (15).
Elle correspond à une fluctuation log-périodique. Il faut remarquer qu'il est très courant dans des sciences, comme la physique, d'utiliser les nombres complexes pour ensuite revenir aux nombres réels, ce qui, d'un point de vue analytique, est correct puisque les nombres complexes sont une « extension » des nombres réels. Cette partie réelle correspondant à une fluctuation logpériodique de l'invariance d'échelle.

La correction log-périodique et la dépendance d'échelle

Si l'on revient à la théorie de la relativité d'échelle, il faut trouver une équation différentielle d'échelle donnant cette fluctuation log-périodique. La démonstration est plus compliquée que celle de l'invariance d'échelle, mais elle aura pour effet de satisfaire au principe de covariance : la dépendance d'échelle log-périodique aura la même forme mathématique, mais plus sophistiquée, que la dépendance d'échelle puissance.

Avant de poursuivre le raisonnement, il faut opérer un changement de variable et poser :

C i r r 1 1 - = ε , où C r
1 correspond à ce que l'on appelle la valeur critique de manière générale, et dans le cas des lois rang-taille, on appellera cette valeur le rang critique.

Pour obtenir une telle fluctuation, il faut reprendre l'équation (3) :

( ) ( ) 0 ln d d = - ε ε ε DV V (16).
On exige que l'équation ( 16) ne soit plus égale à zéro :

( ) ( ) ( ) ε χ ε ε ε = -DV V ln d d (17).
Cependant, en vertu du principe de covariance, on exige que ( ) ε χ corresponde à une équation différentielle de la même forme que l'équation (16).

On obtient donc :

( ) ( ) 0 ' ln d d = - ε χ ε ε χ D (18) où D' = D + iω.
Toutefois, D' correspond à une dimension fractale complexe. Pour trouver ( ) ε V , il faut dériver par le logarithme de la résolution l'équation (17), ce qui donne :

( ) ( ) ( ) ( ) ε ε χ ε ε ε ε ln d d ln d d ln d d 2 2 = - V D V (19).
Dans l'équation (19), on remplace 

( ) ( ) ( ) ( ) ( ) ( ) 0 ' ln d d ' ln d d 2 2 = + + - ε ε ε ε ε V DD V D D V (20).
L'équation (20) se résout très facilement car elle correspond à un modèle d'équation différentielle connu dont la solution est :

( ) ( ) δ ε ε ε b V V D + = 1 0 (21) où ω δ i = .
En posant l'équation (21) sous sa forme trigonométrique, on obtient :

( ) ( ) ( ) ( ) ( ) ε ω ε ε ω ε ε ln sin ln cos 1 0 0 D D b V i b V V + + = (22).
Dans l'équation ( 22), on exige, tout comme dans le paragraphe précédent, que la partie imaginaire soit négligeable, et on obtient la correction log-périodique dépendante d'échelle :

( ) ( ) ( ) ε ω ε ε ln cos 1 0 b V V D + = (23).
Autrement dit, le simple fait d'avoir un « plus un » supplémentaire par rapport à la formule de Didier Sornette (équation 15) suffit à la transformer en une relation dépendante d'échelle et obtenir une équation plus pratique.

La loi rang-taille parabolique et la correction log-périodique

Nous nous sommes longtemps questionnés face à nos données pour savoir si la meilleure solution était une correction log-périodique invariante d'échelle ou dépendante d'échelle.

Le plus simple a été de les tester toutes les deux. A l'issue des calculs, il s'est avéré que nous avions à faire à une dépendance d'échelle log-périodique. Contrairement à la théorie, nous n'allons pas ajouter une valeur critique car, ici, ce n'est pas nécessaire puisque l'inverse du rang ordonné de façon décroissante tend vers zéro. Nous allons donc multiplier l'équation (10) par une correction log-périodique, ce qui donne :

( ) ( ) ε ω β ε ε ln cos 1 ln + = +b a C V ( 24 
)
dans notre cas, β = 0,1 et ω = 4, en première approximation. Dans ce cas, la dimension fractale sera égale à :

( ) i b a V D 4 ln 2 ln d ln d ' + + = = ε ε (25).
Il faut remarquer que la partie réelle est une fonction. Il n'y a donc aucune raison d'interdire la mise en fonction de la partie imaginaire de D' ce qui permettrait d'obtenir un meilleur ajustement. En plus, c'est peut-être par la partie imaginaire que l'on pourrait introduire l'espace géographique dans les lois rang-taille. Elle correspond peut-être à la dimension fractale du nuage de points des villes étudiées. Les données n'étant pas à notre disposition pour vérifier cette hypothèse, la question reste ouverte.

Comme les lois de puissance, cette correction log-périodique demeure profondément analytique. Il faut essayer maintenant d'identifier les variables la paramétrant. A quoi correspondent β et ω ? Cela reste à établir. Autrement dit, sans relation annexe, il est extrêmement difficile de paramétrer la courbe. Pourtant, de nombreux phénomènes en géographie présentent clairement, de manière intuitive, des oscillations log-périodiques, mais il est extrêmement difficile de les paramétrer. Toutefois, la figure 7 montre bien qu'un ajustement log-périodique est beaucoup plus pertinent pour la loi rang vs population urbaine, même si le coefficient de détermination est un peu plus faible. 

La discrétisation des lois log-périodiques

Il est clair que les oscillations décrites dans la figure 6 se retrouvent dans celui proposé par Chaline et Marchand en 2002 (Fig. 8). Sur la base de cette homologie de formes, mais pas seulement (L. Nottale a réussi à théoriser cette relation log-périodique sous la forme d'une chaîne de Markov puisqu'on y observe qu'un évènement au temps T n dépend uniquement de celui au temps T n+1 et de celui au temps T n-1 . En conséquence de quoi, on peut écrire les équations envisagées ci-dessous à partir de ces trois valeurs), il est possible d'envisager les oscillations discutées pour ces types de modèles sous une forme discrète. et Marchand D., 2002d'après D. Sornette, 1998, complété) Ainsi la discrétisation des lois log-périodiques a été utilisée, entre autres, par Laurent Nottale (et al., 2000) sous la forme d'une relation de récurrence :

g V V V V C n C n - + = +1 (15).

La théorie

Cette approche est intéressante dans la mesure où V C et g sont des paramètres assez simples à estimer. V C est ce que l'on appelle la valeur critique. Il s'agit d'une valeur vers laquelle converge ou diverge la série. Il n'y a pas vraiment de condition sur V C , si ce n'est que cette valeur doit être choisie à l'extérieur de la série des données. g est, par contre, un rapport d'échelle constant qui permet de lier toutes les données. On peut estimer g et T C de la manière suivante :

n n n n V V V V g - - = + + + 1 1 2 (16) ; 1 1 - - = + g V gV V n n C (17).
Il faut noter qu'il existe de nombreuses autres formules équivalentes à ( 16) et ( 17). Pour l'instant, cette méthode n'a été appliquée qu'à des séries chronologiques. La valeur critique sera ici un temps critique (qui est l'équivalent d'un rang). Toutefois, on pourrait imaginer appliquer cette méthode à un ordre spatial, ce qui est bien sûr plus compliqué. En effet, le temps n'a qu'une dimension tandis que l'espace géographique en a au minimum deux.

Nous allons présenter rapidement deux exemples de lois fractales log-périodiques discrètes. Fig. 9 Tableau récapitulatif de la série chronologique de Boves.

L'exemple de la série chronologique du château de Boves

La figure 9 résume l'application réalisée pour la série chronologique archéo-historique de la motte de Boves (Forriez, 2005, Forriez, Martin, à paraître). Il montre deux régimes : un régime de création et un régime de destruction. On passe de l'un à l'autre grâce à une bifurcation temporelle.

Des travaux sont en cours pour relier cette analyse temporelle à une analyse spatiale, mais cette mise en relation demande des développements mathématiques beaucoup plus lourds que ceux développés dans cet article.

Exemple de découverte et d'exploration de nouvelle(s) cavité(s) de plus de 1000 mètres

La figure 10 présente une autre application temporelle. On y retrouve également deux régimes : l'un correspondant à la période de fermeture des pays sous domination soviétique où l'exploration spéléologique était très limitée et les territoires inaccessibles aux occidentaux et l'autre à leur ouverture qui a permis d'accroître fortement les espaces explorables. Fig. 10 Tableau récapitulatif de la série chronologique du résultat de la découverte et de l'exploration de nouvelle(s) cavité(s) supérieure(s) à 1000 m de profondeur.

On notera que le modèle intègre parfaitement la date de la chute du mur de Berlin qui ouvre de fait les espaces ex-communistes mais que dans la réalité il faudra 4 ans pour que cela se traduise dans les statistiques spéléologiques. Quand on sait que cela se fait sur des « camps » d'été qui se prévoient donc d'année en année et que le premier d'une série sur une zone est généralement plus tourné vers une estimation des potentiels et vers la faisabilité technique, juridique, etc. de la chose, il n'est pas étonnant de trouver un tel décalage. Celui-ci s'est progressivement comblé pour disparaître en 2006.

Conclusion

On est passé d'un modèle fractal linéaire (droite, parabole) à un modèle non linéaire (puissance corrigée par une loi log-périodique) pour expliquer la taille de la population des villes en fonction de leur rang décroissant. Cela signifie d'abord que la distribution n'est pas auto-similaire, comme on peut trop le lire. Toutefois, cela ne signifie pas qu'elle ne soit pas fractale, au contraire. Autrement dit, la relativité d'échelle permet, non seulement, de clarifier la notion mathématique de « fractale » mais aussi son utilisation. ARMATTE M., 1995, Robert Gibrat et 
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 7 Fig. 7 L'ajustement parabolique corrigé par une loi log-périodique.
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