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SHAPE SENSITIVITY ANALYSIS OF A QUASI-ELETROSTATIC PIEZOELECTRIC SYSTEM IN
MULTILAYERED MEDIA

G. LEUGERING, A.A. NOVOTNY, G. PERLA MENZALA, AND J. SOKOŁOWSKI

ABSTRACT. The optimization of shape and topology of piezo-patches or layered piezo-electrical material attached
to structural parts, like elastic bodies, plates and shells plays a major role in the design of smart structures, as piezo-
mechanic-acoustic devices in loudspeakers or energy harvesters. While the design for time-harmonic motions is
genuinely frequency-dependent, as has been reported in the literature in the context of density optimizaiton with
the SIMP-method, time-varying piezoelectric material has not been investigated with respect to optimal design so
far. Therefore, shape sensitivities for layered piezoelectric material and time-varying loads and charges are derived
in this paper. In particular, we provide the shape-derivatives for nested piezo-layers associated to a class of shape
functional. More general layers can be dealt with similarly.

1. INTRODUCTION

Piezo-electrical materials play an important role in sensor and actuator devices used in smart-materials.
There are naturally occurring piezo-materials, typically revealing rather weak piezoelectric effects usable for
sensor applications, and those synthetically manufactured, like ceramics, which exhibit high coupling effects
and are therefore important in actuator devices. The spectrum of applications is becoming broader in recent
years. In particular small loudspeakers, c-muts and piezoelectric harvesters contain layers of piezoelectric
material. Most of the recent application of piezoelectric sensor- and actuator devices are on a small scale and
require a minimum of such material while maximizing its effect. Because of such restrictions on weight and
the cost of the material with respect to a particular performance of the desired device, the piezo-layers should
be optimized with respect to their shape and their topology.

The mechanical properties of piezoelectric material are well understood. The literature is vast and therefore
we refrain from attempting an appropriate account of publications. Let us mention instead surveys as [14, 15].
While well-posedness of the static equations has been handled in many publications, the full dynamic equations
of piezoelectricity and also multi-component piezo-structures have been studied in e.g. [5, 16, 17, 23]. Again
the list far from being complete.

When it comes to optimization in the context of piezoelectricity the literature is sparce. Topology optimiza-
tion of piezo-patches has been considered by Silva and Kikuchi [20] and Kögel and Silva [12]. Coupling of
piezoelectric patches and elastic material has been treated in the context of SIMP-optimization in Wein et al.
[24, 25]. In particular in [26] a piezo-patch was considered as being glued to a 3-d elastic body. The piezo-patch
was subject to a frequency input of a defined frequency ω and the maximal displacement of the elastic body
was calculated. See Figure 1 for the set-up.

The question raised in [24, 25, 26] was concern as to whether the topology of the piezo-patch coupled
to the elastic plate could be optimized with respect to a given cost-function, like maximal displacement at a
given point, by using the material interpolation method SIMP [1, 20]. This question was considered under the
assumption of time-harmonic motions, that is to say, based on a Helmholtz-like static model. The optimization
was done for a given frequency or a given frequency band. A partial result can be seen in figures 2,3.

Sweeping over a frequency range, the overall behavior has been tested numerically. See Figure 4.
It is obvious that the optimal topology obtained this way is frequency dependent. Moreover, the SIMP-

method as such provides optimal density distributions rather than shapes or true 0-1 designs. The question of
optimal shapes of piezo-layers and their 0-1 topology designs was left open. Even though robust topology op-
timization with respect to frequency bands has been achieved using min-max-SIMP optimization, the question
of optimal shape and topology for time-dependent problems, was also left open.
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(a) an optimized topology (b) displacement

FIGURE 1. [26] set-up and corresponding displacement

(a) an optimized topology (b) displacement

FIGURE 2. [26] SIMP optimized topology and corresponding displacement

(a) an optimized topology (b) displacement

FIGURE 3. [26]SIMP optimized topology and corresponding displacement

We recall that shape derivatives obtained for solutions of boundary value problems lead to the shape gradients
of the associated functionals. By the structure theorem for such a shape gradient of a shape differentiable
functional, it follows that it is given by a distribution supported on the moving boundary. On the other hand,
we require the shape gradient given by a function in order to apply the level-set strategy for numerical solution
of the associated shape optimisation problem. This issue is also addressed in the paper, and the appropriate
regularity of solutions to boundary value problems is discuss to guarantee the required regularity of shape
gradients.

The more general boundary perturbations which are called singular domain perturbations cannot be directly
analysed by the speed method. However, such boundary perturbations as well as the associated topological
derivatives can be used in the numerical procedure in order to change the domain topology, by creating small
voids, or adding small rigid inclusions in an elastic body. The analysis of singular domain perturbations is
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FIGURE 4. [26] a frequency sweep and gain

performed by means of matched and compound asymptotic expansions, with the estimates of asymptotic re-
mainders in weighted spaces [2]. We point out that the topological gradients of shape functionals can be
obtained in the form of singular limits of shape derivatives when the radius of a small void is going to zero.
This observation indicates that the topological gradients are in fact of the same nature as the shape derivatives,
even if the derivation procedure is more involved from the mathematical point of view. Another observation on
this aspect of shape sensitivity analysis is that in the elliptic case the topological gradient are in fact continuous
with respect to contrast, which turns out to be an easy way of the derivation. First, we consider the regular
perturbations of the coefficient of the elliptic operator by adding a small inclusion, then perform the limit pas-
sage in the resulting topological derivative with respect to the contrast, i.e. the coefficient which transforms the
elastic inclusion into a void or into a rigid inclusion. Unfortunately, this argument does not work for evolution
problems, since the topological derivatives obtained for regular perturbations cannot furnish by such a limit
passage the topological derivatives for singular perturbations. On the other hand, this passage is possible for
time harmonic regime, if the frequency is fixed.

It is this set-up that we want to further investigate in this paper. In particular, once a topology optimization
step is performed, either using topological gradients (see [2]) or material interpolation (e.g. by SIMP [26]) one
may use shape optimization and the level-set method in order to promote the optimal shape using the speed-
method. To this end one needs the shape-gradient for piezo-electric material. In this paper we go a step further,
and ask for such gradients when the fully dynamic problem is considered. We consider the shape optimization
problem of minimizing the shape functional JΩ(u, q) for the coupled fields: elastic displacement u and electric
potential q. The model, for a given shape Ω, is given by a coupled electromechanical system. For the problem
we establish:

• the existence of an optimal shape;
• the first order optimality conditions.

Therefore, we need to perform the shape sensitivity analysis of solutions to the model. We also need to
determine the shape gradients and their densities for the associated shape functionals. To this end the speed
method is used (see [21]).

2. THE PROBLEM FORMULATION

Let us consider an open bounded domain Ω of R3 with smooth boundary ∂Ω = S. We assume that Ω has
the form Ω = B0�B1, where B0 and B1 are open bounded domains with B1 ⊂ B0, with (·) used to denote
the closure of (·). In addition, ∂B0 = S0 and ∂B1 = S1, thus S = S0 ∪ S1. Let m > 1 be a given integer.
For each i with 1 ≤ i ≤ m let Di be and open subset with smooth boundary Γi and such that B1 ⊂ Di ⊂ B0,
Di ⊂ Di+1. We set Ω0 = D1�B1, Ωi = Di+1�Di for 1 ≤ i ≤ m − 1 and Ωm = B0�Dm. In summary,
as shown in fig. 5, we have Ω = ∪m

i=0Ωi, such that Ωi ∩ Ωj = ∅ for i 6= j, with boundaries ∂Ω = S0 ∪ S1,
∂Ω0 = S1 ∪ Γ1, ∂Ωi = Γi ∪ Γi+1 for i = 1, ...,m− 1, and ∂Ωm = Γm ∪ S0.
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FIGURE 5. Domain Ω with boundary ∂Ω = S0 ∪ S1.

2.1. The strong system. Let u : Ω × [0, T ] → R3 be such that u(x, t) is the displacement of the body Ω in
x ∈ Ω at the time t ∈ [0, T ]. Let moreover q : Ω× [0, T ] be such that q(x, t) is the electric potential at x ∈ Ω
and t ∈ [0, T ]. We define ∇su := 1

2(∇u +∇uT ). The electromechanical interaction phenomenon is modeled
by the following coupled system [9]

{
utt − divσ = F

−divϕ = G
in Ω× (0, T ) , (2.1)

where σ is the mechanical stress tensor and ϕ the electrical displacement field, F is a given load and G a
given field. The material law describing the piezoelectric effect in the linearized case of small mechanical
deformations and electric fields reads as{

σ(u, q) = Cε(u)− Pe(q) ,
ϕ(u, q) = P T ε(u) + De(q) ,

(2.2)

where C is the elasticity fourth-order tensor, P the piezoelectric coupling third-order tensor and D the dielectric
second-order tensor. As usual C, D satisfy the symmetry conditions Cijkl = Cjikl = Cklij and Dij = Dji,
whereas P satisfies Pijk = Pjik. Furthermore, there exist nonnegative constants c0, d0 such that

CijklXijXkl ≥ c0X
2
ij , Dijyiyj ≥ d0y

2
i ,

where Einstein’s summation convention is used. It is assumed for simplicity that all tensors are piecewise
constant, i.e., constant in each layer. In addition, the mechanical strain tensor ε and the electric vector field e
are given by

ε(u) = ∇su and e(q) = −∇q . (2.3)

We also associate with system (2.1) the following given initial conditions

u(x, 0) = f(x) and ut(x, 0) = g(x) , (2.4)

and boundary conditions of the form
{

σn = Σ
q = 0 on S0 × (0, T ) and

{
ϕ · n = Φ

u = 0 on S1 × (0, T ) , (2.5)

where n is the outward unit normal vector pointing toward the exterior of Ω. It is apparent that the inhomo-
geneous Dirichlet conditions can be shifted into the right hand sides of (2.1) and be incorporated to F and G.
Thus, without loss of generality, we may consider homogenous Dirichlet boundary conditions in (2.5), namely
q = 0 on S0 × (0, T ), in the sequel. Finally, we consider the following transmission conditions

{
[[σ]]n = 0
[[u]] = 0 and

{
[[ϕ]] · n = 0

[[q]] = 0 , (2.6)
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where, for any (x, t) ∈ Γi × (0, T ), i = 1, 2, ..., m, the symbol [[(·)]] is used to denote the jump between
quantities evaluated on the boundary Γi of each pair Ωi−1 and Ωi, that is

[[(·)]] = (·)(i) − (·)(i−1) , (2.7)

and n = n(i) = −n(i−1) is the unit normal vector pointing toward the exterior of Ωi.

Remark 1. Notice that system (2.1) can be derived from the fully coupled dynamic equations governing the
elasto-dynamic system and the Maxwell system with constitutive relations (2.2):





utt − divσ(u,E) = 0
Et = rotH

µ0Ht = −rotE
(2.8)

Without loss of generality, we can assume the permeability µ0 = 1, E(q) is regular enough such that the
second equation can be differentiated with respect to time, the third then being inserted and finally the div
operator being applied. This deletes the term −rot(rotE). After that one can integrate twice with respect time
and obtain the second equation in (2.1). From this setting one also obtains various important simplifications
such as transverse isotropic material, where the equations become much simpler. The full system (2.8) and
its shape-sensitivity is subject to current research. We note that Nicaise [18] has treated well-posedness for a
similar system using semi-group theory. See also [10, 11].

Remark 2. We may introduce time-harmonics upon introducing

u(x, t) =: e−ωtû(x), q(x, t) =: e−iωtq̂(x).

Then the system (2.1) reads as follows
{

ω2û + divσ̂ = 0 in Ω
divϕ̂ = 0 in Ω

(2.9)

where σ̂ = σ̂(û, q̂) = Cε(û) − Pe(q̂), ϕ̂ accordingly. System (2.9) can be considered as a Helmhotz-type
system [19]. We associate to (2.9) the boundary and transmission conditions (2.7),(2.6). See e.g. Mercier and
Nicaise [17] for well-posedness. The SIMP-based topology optimization in [25, 24, 26] has been based on such
time-harmonic models. Moreover, for ω = 0 (2.9) reduces to a problem that has been discussed in Cardone et
al.[2] also with respect to topological sensitivities.

2.2. The weak system. The weak formulation of the piezoelectric problem reads as follow. Given the initial
conditions (2.4), find for each t ∈ (0, T ) the displacement u ∈ WM (Ω) and the electric potential q ∈ WE(Ω),
such that 



〈utt, η〉Ω + aMM

Ω (u, η) + aEM
Ω (q, η) = 〈F, η〉Ω + 〈Σ, η〉S0 ∀η ∈ WM (Ω)

aEE
Ω (q, ξ)− aME

Ω (u, ξ) = 〈G, ξ〉Ω + 〈Φ, ξ〉S1 ∀ξ ∈ WE(Ω)
, (2.10)

where

〈utt, η〉Ω =
∫

Ω
utt · η , (2.11)

aMM
Ω (u, η) =

∫

Ω
C∇su · ∇sη and aEM

Ω (q, η) =
∫

Ω
P∇q · ∇sη , (2.12)

aEE
Ω (q, ξ) =

∫

Ω
D∇q · ∇ξ and aME

Ω (u, ξ) =
∫

Ω
P T∇su · ∇ξ , (2.13)

with aEM
Ω (q, u) = aME

Ω (u, q) and ∇ := ∂/∂x. In addition, the spaces WM (Ω) and WE(Ω) are respectively
defined as

WM (Ω) = {u ∈ [H1(Ω)]3 : u|S1
= 0, [[u]]|Γi

= 0, i = 1, 2, ..., m} , (2.14)

WE(Ω) = {q ∈ H1(Ω) : q|S0
= 0, [[q]]|Γi

= 0, i = 1, 2, ..., m} . (2.15)
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Theorem 3. Let the initial data u(x, 0) := f(x), ut(x, 0) := g(x) satisfy

f ∈ WM (Ω), g ∈ L2(Ω), (2.16)

and consider distributed data

F ∈ L∞(0, T ;WM (Ω)∗), G ∈ L∞(0, T ;WE(Ω)∗), Gt ∈ L2(0, T ;WE(Ω)∗),

Σ ∈ L∞(0, T ;H
1
2 (S0)∗), Φ ∈ L∞(0, T ;H

1
2 (S1)∗), Φt ∈ L2(0, T ; H

1
2 (S1)∗). (2.17)

Then there exists a unique weak solution (u, q) to (2.10) such that

u ∈ L∞(0, T ;WM (Ω)), ut ∈ L∞(0, T ; L2(Ω)), utt ∈ L2(0, T ;WM (Ω)∗), q ∈ L∞(0, T ;WE(Ω)), (2.18)

If in addition we assume that

f ∈ H2(Ω)3, g ∈ WM (Ω), Φ(0) ∈ H
1
2 (S1)∗, Σ(0) ∈ H

1
2 (S0) (2.19)

such that there is a q0 ∈ H2(Ω) with (f, q0) satisfying and the boundary conditions
{

σ(f, q0)n = Σ(0)
q0 = 0 on S0 × (0, T ) and

{
ϕ(f, q0) · n = Φ(0)

f = 0 on S1 × (0, T ) , (2.20)

together with the transmission conditions
{

[[σ]]n = 0
[[u]] = 0 and

{
[[ϕ]] · n = 0

[[q]] = 0 , on Γi (2.21)

and

F ∈ L∞(0, T ;L2(Ω)) Ft ∈ L2(0, T ; L2(Ω)), G ∈ L∞(0, T ;WE(Ω)∗), Gtt ∈ L2(0, T ;WE(Ω)∗),

Σ ∈ L∞(0, T ; L2(S0)) Σt ∈ L2(0, T ; L2(S0)), Φ ∈ L∞(0, T ; H
1
2 (S1)∗), Φtt ∈ L2(0, T ; H

1
2 (S1)∗).

(2.22)

Then the solution to (2.10)-(2.20)-(2.21) satisfies

u ∈ L∞(0, T ; H2(Ω)), ut ∈ L∞(0, T ;WM (Ω)), utt ∈ L∞(0, T ;L2(Ω)),

q ∈ L∞(0, T ; H2(Ω)), qt ∈ L∞(0, T ;WE(Ω)) . (2.23)

Proof. The proof can be established by a Galerkin procedure. For weak solutions with different boundary con-
ditions see the PhD thesis [13]. In [8] the authors consider a semigroup approach, based on a Shur-complement
operator that reduces the piezoelectric system to an elliptic problem in u. As we treat different boundary condi-
tions and also need weak and strong regularity of the solutions which is not revealed from [13, 8], for the sake
of self-consistency, we provide the necessary a priori estimates. We consider sequences {ηj}, {ξj} in WM (Ω)
and WE(Ω), respectively. Then we have the finite dimensional subspaces WM (Ω)m = span {η, . . . , ηm} and
WE(Ω)m = span {ξ1, . . . ξm}, such that the union over all such spaces is mutually dense inWM (Ω),WE(Ω).
Clearly, taking the test functions η = um(t), ξ = qm(t) we obtain for finite m that (2.10) has a unique so-
lution (um(t), qm(t)) with initial data um(0) = um

0 , um
t (0) = um

1 , where um
0 → u(0) = f in WM (Ω) and

um
1 → ut(0) = g in L2(Ω), as m →∞. The finite dimensional system of ordinary differential equations takes

the form

〈um
tt (t), η〉 + aMM

Ω (um(t), η) + aEM
Ω (qm(t), η) + aEE

Ω (qm(t), ξ)− aMR
Ω (um(t), ξ)

= 〈F (t), η〉+ 〈G(t), ξ〉+ 〈Σ, η〉S0 + 〈Φ, ξ〉S1 , ∀(η, ξ) ∈ Wm
M (Ω)×Wm

E (Ω) (2.24)

We then take test functions (um
t (t), 0) in (2.24) and, after differentiating with respect to time (0, qm(t)), use the

symmetry aME
Ω (u, q)− aEM

Ω (q, u) = 0 and obtain after adding the results followed by integration with respect
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to time from 0 to t:

〈um
t (t), um

t (t)〉 + aMM
Ω (um(t), um(t)) + aEE

Ω (qm(t), qm(t))

= 〈um
1 , um

1 〉+ aMM
Ω (um

0 , um
0 ) + aEE

Ω (qm(0), qm(0))

+2
∫ t

0
(〈F (s), um

t (s)〉+ 〈Gt(s), qm(s)〉) ds

+2
∫ t

0
(〈Σ(s), um

t (s)〉S0 + 〈Φt(s), qm(s)〉S1) ds (2.25)

To obtain an initial condition for qm we need to solve

aEE
Ω (qm(0), ξ) = aME

Ω (um
0 , ξ) + 〈G(0), ξ〉+ 〈Φ(0), ξ〉S1 ∀ξ ∈ Wm

E (Ω).

Since we know the regularity of um
0 and G(0), we can apply the Lax-Milgram Lemma to obtain a unique

solution qm(0) ∈ WE(Ω), such that

‖qm(0)‖2
WE(Ω) ≤ C{‖um

0 ‖2
WM (Ω) + ‖G(0)‖2

WE(Ω)∗ + ‖Φ(0)‖
H

1
2 (Ω)∗

}.

Now, using the coercivity of aMM
Ω , aEE

Ω in WM (Ω) and WE(Ω), respectively, and applying the Gronwall-
Lemma we obtain

‖um
t (t)‖2

L2(Ω) + ‖um(t)‖2
WM (Ω) + ‖qm(t)‖2

WE(Ω)

≤ C
{
‖um

1 ‖2
L2(Ω) + ‖um

0 ‖2
WM (Ω) + ‖F‖2

L2(0,T ;L2(Ω)) + ‖Gt‖2
L2(0,T ;W)E(Ω)∗

+‖G‖2
L∞(0,T ;WE(Ω)∗) + ‖Σ‖2

L2(0,T ;H
1
2 (Ω)∗)

+ ‖Φt‖2

L2(0,T ;H
1
2 (Ω)∗)

+ ‖Φ‖2
L∞(0,T ;WE(Ω))

}
(2.26)

A standard argument give us the estimate

‖um
tt ‖L2(0,T ;WM (Ω)∗) ≤ C. (2.27)

Using the a priori energy estimates (2.26) and (2.27), one may then extract subsequences {um}, {um
t }, {um

tt },
which we relabel by original indices converging weak-(?) in L∞(0, T ;WM (Ω)), L∞(0, T ;WE(Ω)) and weak
in L2(0, T ;WM (Ω)∗), respectively to elements u∗, u∗t , u∗tt. Standard arguments reveal that these elements solve
the weak system (2.10) and that the initial data are matched in the corresponding spaces as well.

As for the second part of the theorem, we first differentiate the weak system and take (um
tt (t), 0) and

(0, qm
t (t)) as test functions. We obtain

1
2
{‖utt‖2

L2(Ω)3 + aMM
Ω (um

t (t), um
t (t)) + aEE

Ω (qm
t (t), qm

t (t))}
= 〈Ft(t), um

tt (t)〉+ 〈Gtt(t), qm
t (t)〉+ 〈Σt(t), um

tt (t)〉S0 + 〈Φtt(t), qm
t (t)〉S1 (2.28)

Integration with respect to time give us

‖um
tt (t)‖2

L2(Ω) + ‖um
t (t)‖2

WM (Ω) + ‖qm
t (t)‖2

WE(Ω)

≤ C
{
‖um

tt (0)‖2
L2(Ω) + ‖um

t (0)‖2
WM (Ω) + ‖qm

t (0)‖2
WE(Ω)

+
∫ t

0
‖Ft(s)‖2

L2(Ω)ds +
∫ t

0
‖Gtt(s)‖2

WE(Ω)∗ds +
∫ t

0
‖um

tt (s)‖2
L2(Ω)ds

+
∫ t

0
‖qm

t (s)‖2
WE(Ω)∗ +

∫ t

0
‖Σt(s)‖2

L2(S0)ds +
∫ t

0
‖Φtt(s)‖2

H
1
2 (Ω)∗

ds

}
(2.29)

We need estimates on ‖um
tt (0)‖L2(Ω)3 and ‖qm

t (0)‖W(Ω) in terms of our data. As now um
t (0) ∈ WM (Ω) and

Gt(0) ∈ WE(Ω)∗ we can uniquely solve the second equation of (2.10) to obtain

‖qm
t (0)‖WE(Ω) ≤ C{‖Gt(0)‖WE(Ω)∗ + ‖um

t (0)‖WMΩ) + ‖Φt(0)‖
H

1
2 (Ω)∗

}
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Moreover, for given um(0) ∈ H2(Ω) let qm(0) ∈ H2(Ω) be such that



div D∇q = G(0) + div P T∇sum(0), in Ω
D∇q · n = P T∇sum(0) · n− Φ(0) on S1

q = 0 on S0

[[σ]]n = 0, [[u]] = 0 on Si

[[ϕ]] · n = 0, [[q]] = 0 on Si

Then ‖qm(0)‖H2(Ω) ≤ {‖G(0)‖L2(Ω) +‖um(0)‖H2(Ω)3}. Evaluating the strong solution at t = 0 and applying
Gronwall’s lemma we obtain the a priori estimate

‖um
tt (t)‖2

H2(Ω) + ‖um
t (t)‖2

W(Ω) + ‖um
tt (t)‖2

L2(Ω) + ‖qm(t)‖2
H2(Ω) + ‖qm

t (t)‖2
W(Ω)

≤ C{‖um(0)‖2
H2(Ω) + ‖um

t (0)‖2
W(Ω) + ‖F‖2

L∞(0,T ;L2(Ω)) + ‖Ft‖2
L2(0,T ;L2(Ω))

+‖G‖2
L∞(0,T ;W(Ω)∗) + ‖Gtt‖2

L2(0,T ;W(Ω)∗) + ‖Σ‖2
L∞(0,T ;L2(S0)) + ‖Σt‖2

L2(0,T ;L2(S0))

+‖Φ‖2

L∞(0,T ;H
1
2 (S1)∗)

+ ‖Φtt‖2

L2(0,T ;H
1
2 (S1))∗

} (2.30)

We then subtract weak-(?) convergent subsequences and pass to the limit in the equations. The fulfillment of
the initial data is proved by a standard argument. Note that also non-homogenous boundary conditions for q
(and u ) can be easily handled. ¤
Remark 4. The weak formulation of the piezoelectric problem reads:



〈−ω2u, η〉Ω + aMM

Ω (u, η) + aEM
Ω (q, η) = 〈F, η〉Ω + 〈Σ, η〉S0 ∀η ∈ WM (Ω)

aEE
Ω (q, ξ)− aME

Ω (u, ξ) = 〈G, η〉Ω + 〈Φ, η〉S1 ∀ξ ∈ WE(Ω)
,

This system with ω = 0 has been investigated e.g. in [2]. The corresponding differential operator in (2.9) has
a compact resolvent. Hence it exhibits a pure point spectrum. Therefore, for ω2 in the resolvent set of this
operator the problem can be uniquely solved for u, q by Lax-Milgram lemma.

2.3. The shape functional. We consider the shape functional of the form

JΩ(u, q) =
∫ T

0
JΩ(u, q) . (2.31)

Some particular examples of shape functionals are given explicitly in section 3.2. We assume that
• the sets Ω range in the set O of subsets of R3 satisfying the uniform cone property. Under the further

assumption that Ω → (u, q)Ω is continuous, then G = {(Ω, (u, q)Ω)|Ω ∈ O} is compact;
• that J is lower semi-continuous in the sense that for Ωn ∈ O, (un, qn) ∈ WM (Ωn)×WE(Ωn)

Ωn → Ω in O, Ωn, Ω ∈ O
(un, qn) → (u, q) ∈ (u, q) ∈ WM (Ω)×WE(Ω)

}
=⇒ lim inf

n→∞JΩn(un, qn) ≥ JΩ(u, q) .

Theorem 5. Assume that the admissible family of domains Uad = O, the set G is compact and the function JΩ

is lower semi-continuous. Then there exists a solution to the shape optimization problem.

Proof. The proof is standard. See e.g., Sokolowski and Zolesio [21] as well as Delfour and Zolesio [3]. ¤
Remark 6. We will prove, by an application of the speed method of the shape sensitivity analysis, that in fact
the solutions (u, q) depend continuously on the domain Ω ∈ O.

2.4. The adjoint system. In order to simplify the further calculation, let us introduce the adjoint states v and
q, which solve the following variational system. Given the final conditions

v(x, T ) = 0 and vt(x, T ) = 0 , (2.32)

find, for each t ∈ (0, T ), the adjoint displacement v ∈ WM (Ω) and the adjoint electrical potential p ∈ WE(Ω),
such that, 



〈vtt, η〉Ω + aMM

Ω (v, η)− aEM
Ω (p, η) = −〈Du(JΩ(u, q)), η〉 ∀η ∈ WM (Ω)

aEE
Ω (p, ξ) + aME

Ω (v, ξ) = −〈Dq(JΩ(u, q)), ξ〉 ∀ξ ∈ WE(Ω) .
(2.33)
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The notation for right-hand sides could be misleading. Therefore, we explain here that the linear forms
Du(JΩ(u, q)) and Dq(JΩ(u, q)) are given in general by volume integrals and by the surface integrals, roughly
speaking there exists functions Fi , i = 1, . . . , 4 such that

〈Du(JΩ(u, q)), η〉 =
∫

Ω
F1η +

∫

∂Ω
F2η (2.34)

〈Dq(JΩ(u, q)), ξ〉 =
∫

Ω
F3ξ +

∫

∂Ω
F4ξ . (2.35)

In particular, F1 = F, F2 = Φ, F3 = G, F4 = Σ. In order to assure the existence of solutions to the adjoint
system, it is assumed that Fi satisfy the assumptions of Theorem 3 for the respective regularity requirements.

From the above system, we can define the adjoint stress tensor σa and the adjoint electrical displacement ϕa

as following {
σa(v, p) = Cε(v) + Pe(p) ,
ϕa(v, p) = −P T ε(v) + De(p) .

(2.36)

Remark 7. We can consider the weak adjoint system in the time-harmonic case:



〈−ω2v, η〉Ω + aMM

Ω (v, η)− aEM
Ω (p, η) = −〈Du(JΩ(u, q)), η〉 ∀η ∈ WM (Ω)

aEE
Ω (p, ξ) + aME

Ω (v, ξ) = −〈Dq(JΩ(u, q)), ξ〉 ∀ξ ∈ WE(Ω).

Existence and uniqueness of weak (or more regular case) solutions can be done using the same arguments as
in the original problem. See Remark 2.

3. SHAPE SENSITIVITY ANALYSIS

For sake of simplicity, in this section we consider that the Neumann data Σ on S0 × (0, T ) and Φ on
S1 × (0, T ) in (2.5) are homogeneous. We also consider that the source terms F and G in (2.1) are identically
zero. Thus, we focus our attention to the non-homogeneous initial conditions f and g in (2.4).

The perturbed domain, parameterized by τ ∈ R+ small enough, is denoted as

Ωτ = {xτ ∈ R3 : xτ = x + τV, x ∈ Ω, τ ≥ 0} , (3.1)

where V is a smooth vector field defined in Ω that represents the shape change velocity. Thus, the original
domain is retrieved by setting τ = 0, that is Ω0 ≡ Ω. The shape functional defined in the perturbed domain
reads

JΩτ (uτ , qτ ) =
∫ T

0
JΩτ (uτ , qτ ) , (3.2)

where the pair uτ = uτ (xτ , t) and qτ = qτ (xτ , t) are solutions of the following variational problem defined in
the perturbed domain Ωτ : given the initial conditions uτ (xτ , 0) = f(xτ ) and uτt(xτ , 0) = g(xτ ), find for each
t ∈ (0, T ) the displacement uτ ∈ WM (Ωτ ) and electrical potential qτ ∈ WE(Ωτ ), such that




〈uτtt , η〉Ωτ + aMM

Ωτ
(uτ , η) + aEM

Ωτ
(qτ , η) = 0 ∀η ∈ WM (Ωτ )

aEE
Ωτ

(qτ , ξ)− aME
Ωτ

(uτ , ξ) = 0 ∀ξ ∈ WE(Ωτ ),
(3.3)

where

〈uτtt , η〉Ωτ =
∫

Ωτ

uτtt · η , (3.4)

aMM
Ωτ

(uτ , η) =
∫

Ωτ

C∇suτ · ∇sη and aEM
Ωτ

(qτ , η) =
∫

Ωτ

P∇qτ · ∇sη , (3.5)

aEE
Ωτ

(qτ , ξ) =
∫

Ωτ

D∇qτ · ∇ξ and aME
Ωτ

(uτ , ξ) =
∫

Ωτ

P T∇suτ · ∇ξ , (3.6)
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with aEM
Ωτ

(qτ , uτ ) = aME
Ωτ

(uτ , qτ ) and ∇ := ∂/∂xτ . In addition, the spaces WM (Ωτ ) and WE(Ωτ ) are
respectively defined as

WM (Ωτ ) = {uτ ∈ [H1(Ωτ )]3 : uτ |S1τ
= 0, [[uτ ]]|Γτi

= 0, i = 1, 2, ..., m} , (3.7)

WE(Ωτ ) = {qτ ∈ H1(Ωτ ) : qτ |S0τ
= 0, [[qτ ]]|Γτi

= 0, i = 1, 2, ...,m} . (3.8)

Theorem 8. There exist shape derivatives u′, u′t and q′ of solutions to system (2.10), such that

u′ ∈ L∞(0, T ; H1(Ω)), u′t ∈ L∞(0, T ;L2(Ω)), q′ ∈ L∞(0, T ; H1(Ω)), (3.9)

given by weak solutions to the following system:

• equations are given by (2.1)
• in general, the nonhomogeneous transmission conditions come out from (2.5) and (2.6)

3.1. Shape derivative calculation. Our strategy can be described as follows. The first step is the proof of
shape differentiability of solutions and of the shape functionals. So, at this stage the material derivatives are
used.

When the shape differentiability is established, we are interested in the identification of the shape gradients
as well as in the regularity of the obtained expressions for shape gradients. This step is crucial for numeri-
cal methods. The discretized shape gradient can be used e.g., for numerical solution of shape optimization
problems. In the framework of the level-set strategy for solution of shape optimization problems we require in
addition that the shape gradients are given by some functions. In general, however, the structure theorem for
shape differentiable functionals leads only to the distributions supported on the boundary [21].

To obtain the expressions for the shape gradients, first by some manipulations including integration by parts
we arrive at boundary integrals, cf. e.g., (3.50). Then using exclusively the velocity vector fields normal to the
boundary we can identify the expressions for the shape gradients.

Let us perform the shape sensitivity analysis of the functional JΩτ (uτ , qτ ). Thus, we need to calculate its
derivative with respect to the parameter τ at τ = 0, that is

∫ T

0
J̇Ω(u, q) = J̇Ω(u, q) :=

d

dτ
JΩτ (uτ , qτ )

∣∣∣∣
τ=0

. (3.10)

In order to proceed, it is convenient to introduce an analogy to classical continuum mechanics [6] whereby
the shape change velocity field V is identified with the classical velocity field of a deforming continuum and
τ is identified as an artificial time parameter (refer to [22] for analogies of this type in the context of shape
sensitivity analysis). Thus, the shape derivative of the functional JΩ(u, q) is given by

J̇Ω(u, q) = 〈DΩ(JΩ(u, q)), V 〉+ 〈Du(JΩ(u, q)), u̇〉+ 〈Dq(JΩ(u, q)), q̇〉 . (3.11)

Let us now calculate the derivative of the state system (3.3) with respect to the parameter τ at τ = 0. Thus,
by making use of the concept of material derivative of a spatial field [6, 7] and considering the Reynolds’
Transport Theorem, we obtain

〈utt, η〉·Ω =
∫

Ω
u̇tt · η +

∫

Ω
(utt · η)divV , (3.12)

ȧMM
Ω (u, η) = aMM

Ω (u̇, η) +
∫

Ω
(C∇su · ∇sη)divV −

∫

Ω
(∇uT (C∇sη) +∇ηT (C∇su) · ∇V ,(3.13)

ȧEM
Ω (q, η) = aEM

Ω (q̇, η) +
∫

Ω
(P∇q · ∇sη)divV −

∫

Ω
(∇q ⊗ P T∇sη +∇ηT P∇q) · ∇V , (3.14)

ȧEE
Ω (q, ξ) = aEE

Ω (q̇, ξ) +
∫

Ω
(D∇q · ∇ξ)divV −

∫

Ω
(∇q ⊗D∇ξ +∇ξ ⊗D∇q) · ∇V , (3.15)

ȧME
Ω (u, ξ) = aME

Ω (u̇, ξ) +
∫

Ω
(P T∇su · ∇ξ)divV −

∫

Ω
(∇uT P∇ξ +∇ξ ⊗ P T∇su) · ∇V , (3.16)
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where we have used the fact that the admissible variations η and ξ do not depend on the parameter τ . Thus, the
so-called material derivative of the state system, after some rearrangements, is given by the following identities

〈u̇tt, η〉Ω + aMM
Ω (u̇, η) + aEM

Ω (q̇, η) =
∫

Ω
(∇uT (C∇sη) +∇ηT (C∇su) +∇q ⊗ P T∇sη +∇ηT P∇q) · ∇V

−
∫

Ω
(utt · η + C∇su · ∇sη + P∇q · ∇sη)divV , (3.17)

aEE
Ω (q̇, ξ)− aME

Ω (u̇, ξ) =
∫

Ω
(∇q ⊗D∇ξ +∇ξ ⊗D∇q −∇uT P∇ξ −∇ξ ⊗ P T∇su) · ∇V

−
∫

Ω
(D∇q · ∇ξ − P T∇su · ∇ξ)divV , (3.18)

supplemented with initial conditions (cf. (2.4))

u̇(x, 0) = (∇f(x))V and u̇t(x, 0) = (∇g(x))V . (3.19)

Theorem 9. Given initial conditions (∇f)V ∈ H1(Ω) and (∇g)V ∈ L2(Ω), there is a unique weak solution
to system (3.17)-(3.18) and (3.19), such that

u̇ ∈ L∞(0, T ;H1(Ω)), u̇t ∈ L∞(0, T ; L2(Ω)), u̇tt ∈ L∞(0, T ;H−1(Ω)), q̇ ∈ L∞(0, T ; H1(Ω)).
(3.20)

If we assume the appropriate compatibility conditions for the initial and boundary conditions (cf. Theorem
3), then the weak solution becomes strong solution.

We return to the evaluation of shape gradients for the piezo system. To this end, by setting η = v and ξ = p
in (3.17)-(3.18) we obtain

〈vtt, u̇〉Ω + aMM
Ω (u̇, v) + aEM

Ω (q̇, v) =
∫

Ω
(∇uT (C∇sv) +∇vT (C∇su) +∇q ⊗ P T∇sv +∇vT P∇q) · ∇V

−
∫

Ω
(utt · v + C∇su · ∇sv + P∇q · ∇sv)divV

+ 〈vtt, u̇〉Ω − 〈u̇tt, v〉Ω , (3.21)

aEE
Ω (q̇, p)− aME

Ω (u̇, p) =
∫

Ω
(∇q ⊗D∇p +∇p⊗D∇q −∇uT P∇p−∇p⊗ P T∇su) · ∇V

−
∫

Ω
(D∇q · ∇p− P T∇su · ∇p)divV , (3.22)

where we have introduced the term ±〈vtt, u̇〉Ω in the left hand side of the first equality. Using integration by
parts, we have

∫ T

0
〈vtt, u̇〉Ω −

∫ T

0
〈u̇tt, v〉Ω = 〈vt, u̇〉Ω|T0 − 〈u̇t, v〉Ω|T0

= 〈vt(T ), u̇(T )〉Ω − 〈vt(0), u̇(0)〉Ω − 〈u̇t(T ), v(T )〉Ω + 〈u̇t(0), v(0)〉Ω
= 〈ġ, v(0)〉Ω − 〈vt(0), ḟ , 〉Ω
= 〈(∇g)V, v(0)〉Ω − 〈vt(0), (∇f)V 〉Ω , (3.23)

which implies ∫ T

0
(〈vtt, u̇〉Ω − 〈u̇tt, v〉Ω) =

∫

Ω
(∇gT v(0)−∇fT vt(0)) · V . (3.24)

On the other hand,
∫

Ω
(utt · v)divV =

∫

∂Ω
(utt · v)n · V −

∫

Ω
∇(utt · v) · V

=
∫

∂Ω
(utt · v)n · V −

∫

Ω
(∇uT

ttv +∇vT utt) · V , (3.25)
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and from an integration by parts
∫ T

0

∫

Ω
(∇uT

ttv) =
∫

Ω
(∇uT

t v)
∣∣∣∣
T

0

−
∫

Ω
(∇uT vt)

∣∣∣∣
T

0

+
∫ T

0

∫

Ω
(∇uT vtt)

=
∫ T

0

∫

Ω
(∇uT vtt)−

∫

Ω
(∇gT v(0)−∇fT vt(0)) . (3.26)

Therefore from (3.25) and (3.26) we have
∫ T

0

∫

Ω
(utt ·v)divV =

∫ T

0

∫

∂Ω
(utt ·v)n·V −

∫ T

0

∫

Ω
(∇uT vtt+∇vT utt)·V +

∫

Ω
(∇gT v(0)−∇fT vt(0))·V .

(3.27)
Finally, we obtain
∫ T

0
(〈vtt, u̇〉Ω− 〈u̇tt, v〉Ω)−

∫ T

0

∫

Ω
(utt · v)divV =

∫ T

0

∫

Ω
(∇uT vtt +∇vT utt) · V −

∫ T

0

∫

∂Ω
(utt · v)n · V .

(3.28)
Thus, (3.21)-(3.22) can be re-written as

〈vtt, u̇〉Ω + aMM
Ω (u̇, v) + aEM

Ω (q̇, v) =
∫

Ω
(∇uT (C∇sv) +∇vT (C∇su) +∇q ⊗ P T∇sv +∇vT P∇q) · ∇V

+
∫

Ω
(∇uT vtt +∇vT utt) · V −

∫

∂Ω
(utt · v)n · V

−
∫

Ω
(C∇su · ∇sv + P∇q · ∇sv)divV , (3.29)

aEE
Ω (q̇, p)− aME

Ω (u̇, p) =
∫

Ω
(∇q ⊗D∇p +∇p⊗D∇q −∇uT P∇p−∇p⊗ P T∇su) · ∇V

−
∫

Ω
(D∇q · ∇p− P T∇su · ∇p)divV . (3.30)

In the same way, let us set η = u̇ and ξ = q̇ in the adjoint system (2.33), then


〈vtt, u̇〉Ω + aMM

Ω (v, u̇)− aEM
Ω (p, u̇) = −〈Du(JΩ(u, q)), u̇〉

aEE
Ω (p, q̇) + aME

Ω (v, q̇) = −〈Dq(JΩ(u, q)), q̇〉.
(3.31)

By comparison of (3.29)-(3.30) and (3.31), we observe that

〈Du(JΩ(u, q)), u̇〉 =
∫

Ω
(C∇su · ∇sv + P∇q · ∇sv)divV + aEM

Ω (q̇, v) + aEM
Ω (p, u̇)

−
∫

Ω
(∇uT (C∇sv) +∇vT (C∇su) +∇q ⊗ P T∇sv +∇vT P∇q) · ∇V

−
∫

Ω
(∇uT vtt +∇vT utt) · V +

∫

∂Ω
(utt · v)n · V , (3.32)

〈Dq(JΩ(u, q)), q̇〉 =
∫

Ω
(D∇q · ∇p− P T∇su · ∇p)divV − aME

Ω (u̇, p)− aME
Ω (v, q̇)

−
∫

Ω
(∇q ⊗D∇p +∇p⊗D∇q −∇uT P∇p−∇p⊗ P T∇su) · ∇V . (3.33)

where we have used the fact that the bilinear forms aMM
Ω (·, ·) and aEE

Ω (·, ·) are symmetric. In addition, since
aEM

Ω (p, u̇) = aME
Ω (u̇, p) and aEM

Ω (q̇, v) = aME
Ω (v, q̇) we have

〈Du(JΩ(u, q)), u̇〉+ 〈Dq(JΩ(u, q)), q̇〉 =
∫

Ω
S ·∇V +

∫

∂Ω
(utt ·v)n ·V −

∫

Ω
(∇uT vtt +∇vT utt) ·V , (3.34)

where the Eshelby tensor S reads (see the fundamental paper [4])

S = (σ · ∇sv − ϕ · ∇p)I − (∇uT σa +∇vT σ −∇q ⊗ ϕa −∇p⊗ ϕ) , (3.35)



13

with σ, ϕ and σa, ϕa given, respectively, by (2.2) and (2.36). In addition, we observe that

∫

Ω
S · ∇V =

∫

∂Ω
Sn · V +

m∑

i=1

∫

Γi

[[S]]n · V −
∫

Ω
divS · V . (3.36)

Let us calculate the divergence of tensor S, which leads

divS = −(∇uT divσa −∇qdivϕa)− (∇vT divσ −∇pdivϕ) . (3.37)

Taking into account that the pair σ, ϕ satisfies the system (2.1), then

divS + (∇uT vtt +∇vT utt) = ∇uT (vtt − divσa) +∇qdivϕa +∇vT (utt − divσ) +∇pdivϕ

= ∇uT (vtt − divσa) +∇qdivϕa . (3.38)

Considering these last results together with (3.34) in (3.11), we obtain the shape derivative of the functional
JΩ(u, q) independent of u̇ and q̇, namely

J̇Ω(u, q) =
∫ T

0
〈DΩ(JΩ(u, q)), V 〉 −

∫

Ω
b · V

+
∫ T

0

∫

∂Ω
(utt · v)n · V +

∫ T

0

∫

∂Ω
Sn · V +

∫ T

0

m∑

i=1

∫

Γi

[[S]]n · V , (3.39)

where b is given by

b = ∇uT (vtt − divσa) +∇qdivϕa . (3.40)

3.2. Examples of shape functional. Let us present some examples of shape functional which should be useful
for practical applications. In particular, the shape functional JΩ(u, q) is defined as

JΩ(u, q) :=
∫

Ω
FΩ(u, q) +

∫

∂Ω
FS(u, q) , (3.41)

where, for the sake of simplicity we assume that ∂uFS(u, q)|S1
= 0 and ∂qFS(u, q)|S0

= 0. In this case, the
adjoint system (2.33) becomes




〈vtt, η〉Ω + aMM

Ω (v, η)− aEM
Ω (p, η) = − ∫

Ω ∂uFΩ(u, q) · η − ∫
S0

∂uFS(u, q) · η ∀η ∈ WM (Ω)

aEE
Ω (p, ξ) + aME

Ω (v, ξ) = − ∫
Ω ∂qFΩ(u, q)ξ − ∫

S1
∂qFS(u, q)ξ ∀ξ ∈ WE(Ω)

(3.42)
The strong system associated to (3.42) is given by

{
vtt − divσa = −∂uFΩ(u, q)

−divϕa = −∂qFΩ(u, q) in Ω× (0, T ) , (3.43)

where the adjoint stress tensor σa and the adjoint electrical displacement ϕa are defined in (2.36). We associate
with system (3.43) the final conditions (2.32). In addition, since v ∈ WM (Ω) and p ∈ WE(Ω), from (3.42) we
have the boundary conditions

{
σan = −∂uFS(u, q)

p = 0 on S0 × (0, T ) and
{

ϕa · n = −∂qFS(u, q)
v = 0 on S1 × (0, T ) , (3.44)

and, for any (x, t) ∈ Γi × (0, T ), i = 1, 2, ..., m, the transmission conditions of the form
{

[[σa]]n = 0
[[v]] = 0 and

{
[[ϕa]] · n = 0

[[p]] = 0 . (3.45)
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3.2.1. Domain integral. We set FΩ(u, q) in (3.41) as following

FΩ(u, q) :=
1
2

(
α(u− u∗Ω)2 + β(q − q∗Ω)2

)
, (3.46)

where u∗Ω and q∗Ω are given functions defined in Ω such that u∗Ω|S1
= 0 and q∗Ω|S0

= 0, and α = 1 − β with
β ∈ [0, 1]. Thus, since the pair σa, ϕa satisfies the adjoint system (3.43), then vector b defined through (3.40)
can be written as

b = −∇uT ∂uFΩ(u, q)−∇q∂qFΩ(u, q)

= −α∇uT (u− u∗Ω)− β∇q(q − q∗Ω) . (3.47)

For this case, the derivative of the shape functional JΩ(u, q) with respect to the domain reads

〈DΩ(JΩ(u, q)), V 〉 =
1
2

(
α

∫

Ω
(u− u∗Ω)2divV + β

∫

Ω
(q − q∗Ω)2divV

)

= α
1
2

(∫

Ω
div[(u− u∗Ω)2V ]−

∫

Ω
∇[(u− u∗Ω)2] · V

)

+ β
1
2

(∫

Ω
div[(q − q∗Ω)2V ]−

∫

Ω
∇[(q − q∗Ω)2] · V

)

= α
1
2

∫

∂Ω
(u− u∗Ω)2n · V − α

∫

Ω
∇uT (u− u∗Ω) · V

+ β
1
2

∫

∂Ω
(q − q∗Ω)2n · V − β

∫

Ω
(q − q∗Ω)∇q · V . (3.48)

From the above results we observe that

〈DΩ(JΩ(u, q)), V 〉 −
∫

Ω
b · V =

1
2

(
α

∫

∂Ω
(u− u∗Ω)2n · V + β

∫

∂Ω
(q − q∗Ω)2n · V

)
. (3.49)

By considering this last result in (3.39) we obtain

J̇Ω(u, q) =
1
2
α

∫ T

0

∫

S0

(u− u∗Ω)2n · V +
1
2
β

∫ T

0

∫

S1

(q − q∗Ω)2n · V

+
∫ T

0

∫

∂Ω
(utt · v)n · V +

∫ T

0

∫

∂Ω
Sn · V +

∫ T

0

m∑

i=1

∫

Γi

[[S]]n · V . (3.50)

The above form of shape derivative of the distributed functional can serve us to identify the shape gradient.
Since the shape functional in question is differentiable in the sense of the shape sensitivity analysis in [21],
we can apply the structure theorem to this end. In particular, from the boundary and transmission conditions,
namely, (2.5)-(3.44) and (2.6)-(3.45), respectively, it is straightforward to verify that the above equation holds
the structure theorem. Therefore, it is sufficient to take into consideration the speed vector fields normal to the
boundaries and the interfaces. This observation influences only two boundary integrals with the Eshelby tensor,
and the result is the following.

Lemma 10. The density g of the boundary shape gradient of the distributed shape functional is given by the
following expression

〈g, V · n〉 =
1
2
α

∫ T

0

∫

S0

(u− u∗Ω)2V · n +
1
2
β

∫ T

0

∫

S1

(q − q∗Ω)2V · n

+
∫ T

0

∫

∂Ω
(utt · v)V · n +

∫ T

0

∫

∂Ω
(Sn · n)V · n +

∫ T

0

m∑

i=1

∫

Γi

([[S]]n · n)V · n . (3.51)

As it is indicated before, in order to apply the level-set strategy of shape optimization, it is required that
the density g of the boundary shape gradient is given by functions supported on the boundaries and on the
interfaces.
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Remark 11. For the distributed functional in the time harmonic case the boundary shape gradient is deter-
mined in the following form

〈g, V · n〉 =
1
2
α

∫

S0

(u− u∗Ω)2V · n +
1
2
β

∫

S1

(q − q∗Ω)2V · n

−
∫

∂Ω
(ω2u · v)V · n +

∫

∂Ω
(Sn · n)V · n +

m∑

i=1

∫

Γi

([[S]]n · n)V · n . (3.52)

3.2.2. Boundary integral. Now, we set FS(u, q) in (3.41) as following

FS(u, q) :=
1
2

(
α(u− u∗S)2 + β(q − q∗S)2

)
, (3.53)

where u∗S and q∗S are given functions defined on S such that u∗S |S1
= 0 and q∗S |S0

= 0, and α = 1 − β with
β ∈ [0, 1]. Thus, since the pair σa, ϕa satisfies the adjoint system (3.43), then vector b defined through (3.40)
vanishes, that is, b = 0. For this case, the derivative of the shape functional JΩ(u, q) with respect to the domain
reads

〈DΩ(JΩ(u, q)), V 〉 =
1
2

(
α

∫

S0

(u− u∗S)2div∂ΩV + β

∫

S1

(q − q∗S)2div∂ΩV

)
, (3.54)

where div∂ΩV = (I −n⊗n) · ∇V is the superficial divergence of the velocity field. By considering these last
results in (3.39) and recalling (2.31) we obtain

J̇Ω(u, q) = α
1
2

∫ T

0

∫

S0

(u− u∗S)2div∂ΩV + β
1
2

∫ T

0

∫

S1

(q − q∗S)2div∂ΩV

+
∫ T

0

∫

∂Ω
(utt · v)n · V +

∫ T

0

∫

∂Ω
Sn · V +

∫ T

0

m∑

i=1

∫

Γi

[[S]]n · V . (3.55)

Let us point out that in the above expression the integration by parts on the boundaries S0 and S1 in two
integrals is necessary (cf. Lemma 2.14 in [21]) to obtain the expression for the shape gradient. In addition,
by taking into account the boundary and transmission conditions respectively given by (2.5)-(3.44) and (2.6)-
(3.45), it is straightforward to verify again that the above equation holds the structure theorem, leading to the
result below.

Lemma 12. The shape gradient for the boundary functional is given in the following form

〈g, V · n〉 = α
1
2

∫ T

0

∫

S0

(u− u∗S)2κV · n + β
1
2

∫ T

0

∫

S1

(q − q∗S)2κV · n

+
∫ T

0

∫

∂Ω
(utt · v)V · n +

∫ T

0

∫

∂Ω
(Sn · n)V · n +

∫ T

0

m∑

i=1

∫

Γi

([[S]]n · n)V · n , (3.56)

where κ stands for the mean curvature [21] on the boundaries S0 and S1.

Remark 13. For the distributed functional in the time harmonic case the boundary shape gradient is deter-
mined in the following form

〈g, V · n〉 =
1
2
α

∫

S0

(u− u∗S)2κV · n +
1
2
β

∫

S1

(q − q∗S)2κV · n

−
∫

∂Ω
(ω2u · v)V · n +

∫

∂Ω
(Sn · n)V · n +

m∑

i=1

∫

Γi

([[S]]n · n)V · n . (3.57)

4. CONCLUSION AND OUTLOOK

We have derived shape sensitivities for time-varying solutions of the piezoelectric system. The results also
apply almost directly to time-harmonic solutions. The corresponding numerical simulations are under way.
Given the shape sensitivities and topological sensitivities for piezoelectric material, the full alternating scheme
for sensitivity-based topology optimization can be applied, where one performs a topological gradient descent
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followed by a level-set based shape gradient descent. The numerical implementation is beyond this paper and
will be subject to a forthcoming publication.

The acoustic- and piezo-electric and elastodynamic-coupling is also subject of current research. See [26] for
a first treatment.
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