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INTRODUCTION

In coding theory, the so-called linear programming method, introduced by Philippe Delsarte in the seventies [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF] as proved to be a very powerful method to solve extremal problems. It was initially developed in the framework of association schemes and then extended to the family of 2-point homogeneous spaces, including the compact real manifolds having this property (see [START_REF] Delsarte | Spherical codes and designs[END_REF], [START_REF] Kabatiansky | Bounds for packings on a sphere and in space[END_REF], [START_REF] Conway | Sphere Packings, Lattices and Groups[END_REF]Chapter 9]). Let us recall that a 2-point homogeneous space is a metric space on which a group G acts transitively, leaving the distance d invariant, and such that, for (x, y) ∈ X 2 , there exists g ∈ G such that (gx, gy) = (x ′ , y ′ ) if and only if d(x, y) = d(x ′ , y ′ ). The Hamming space H n and the unit sphere of the Euclidean space S n-1 are core examples of such spaces which play a major role in coding theory. To such a space is associated a sequence of orthogonal polynomials (P k ) k≥0 such that, for all C ⊂ X,

(c,c ′ )∈C 2 P k (d(c, c ′ )) ≥ 0.
These inequalities can be understood as linear constraints on the distance distribution of a code and are at the heart of the LP method.

The applications of this method to the study of codes and designs are numerous: very good upper bounds for the number of elements of a code with given minimal distance can be obtained with this method, including a number of cases where this upper bound is tight and leads to a proof of optimality and uniqueness of certain codes, as well as to the best known asymptotic bounds (see [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF], [START_REF] Mceliece | New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities[END_REF], [START_REF] Kabatiansky | Bounds for packings on a sphere and in space[END_REF], [START_REF] Conway | Sphere Packings, Lattices and Groups[END_REF]Chapter 9], [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF]).

In recent years, the development of the theory of error correcting codes has introduced many other spaces with interesting applications. To cite a few, codes over various alphabets associated to various weights, quantum codes, codes for the multi antenna systems of communications involving more complicated manifolds like the Grassmann spaces, have successively focused attention. For these spaces there was a need for a generalization of the classical framework of the linear programming method. This generalization was developed for some of these spaces, see [START_REF] Tarnanen | On the nonbinary Johnson scheme[END_REF], [START_REF] Tarnanen | Upper bounds on permutation codes via linear programming[END_REF], [START_REF] Bachoc | Linear programming bounds for codes in Grassmannian spaces[END_REF], [START_REF] Roy | Bounds for codes and designs in complex subspaces[END_REF]. It turns out that in each of these cases, a certain sequence of orthogonal polynomials enters into play but unlike the classical cases, these polynomials are multivariate.

Another step was taken when A. Schrijver in [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF] succeeded to improve the classical LP bounds for binary codes with the help of semidefinite programming. To that end he exploited SDP constraints on triples of points rather than on pairs, arising from the analysis of the Terwilliger algebra of the Hamming scheme. His method was then adapted to the unit sphere [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF] in the framework of the representations of the orthogonal group. The heart of the method is to evidence matrices Z k (x, y, z) such that for all C ⊂ X, (c,c ′ ,c ′′ )∈C 3 Z k (c, c ′ , c ′′ ) 0.

Another motivation for the study of SDP constraints on k-tuples of points can be found in coding theory. It appears that not only functions on pairs of points such as a distance function d(x, y) are of interest, but also functions on k-tuples have relevant meaning, e.g. in connection with the notion of list decoding.

In these lecture notes we want to develop a general framework based on harmonic analysis of compact groups for these methods. In view of the effective applications to coding theory, we give detailed computations in many cases. Special attention will be paid to the cases of the Hamming space and of the unit sphere.

Section 2 develops the basic tools needed in the theory of representations of finite groups, section 3 is concerned with the representations of compact groups and Peter Weyl theorem. Section 4 discusses the needed notions of harmonic analysis: the zonal matrices are introduced and the invariant positive definite functions are characterized with Bochner theorem. Section 5 is devoted to explicit computations of the zonal matrices. Section 6 shows how the determination of the invariant positive definite functions leads to an upper bound for codes with given minimal distance. Section 7 explains the connection with the so-called Lovász theta number. Section 8 shows how SDP bounds can be used to strengthen the classical LP bounds, with the example of the Hamming space.

1.1. Notations: for a matrix A with complex coefficients, A * stands for the transposed conjugate matrix. A squared matrix is said to be hermitian if A * = A and positive semidefinite if it is hermitian and all its eigenvalues are non negative. This property is denoted A 0. We follow standard notations for sets of matrices: the set of n × m matrices with coefficients in a field K is denoted K n×m ; the group of n × n invertible matrices by Gl(K n ); the group U (C n ) of unitary matrices, respectively O(R n ) of orthogonal matrices is the set of matrices A ∈ Gl(C n ), respectively A ∈ Gl(R n ) such that A * = A -1 . The space C n×m is endowed with the standard inner product A, B = Trace(AB * ) = i,j A i,j B i,j . The number of elements of a finite set X is denoted card(X) of |X|.

LINEAR REPRESENTATIONS OF FINITE GROUPS

In this section we shortly review the basic notions of group representation theory that will be needed later. There are many good references for this theory e.g. [START_REF] Serre | Représentations linéaires des groupes finis[END_REF], or [START_REF] Sagan | The symmetric group. representations, combinatorial algorithms and symmetric functions[END_REF] which is mainly devoted to the symmetric group.

2.1. Definitions. Let G be a finite group. A (complex linear) representation of G is a finite dimensional complex vector space V together with a homomorphism ρ:

ρ : G → Gl(V )
where Gl(V ) is the general linear group of V , i.e. the set of linear invertible transformations of V . The degree of the representation (ρ, V ) is by definition equal to the dimension of V .

Two representations of G say (ρ, V ) and (ρ ′ , V ′ ) are said to be equivalent or isomorphic if there exists and isomorphism u : V → V ′ such that, for all g ∈ G, ρ ′ (g) = uρ(g)u -1 .

For example, the choice of a basis of V leads to a representation equivalent to (ρ, V ) given by (ρ ′ , C d ) where d = dim(V ) and ρ ′ (g) is the matrix of ρ(g) in the chosen basis. In general, a representation of G such that V = C d is called a matrix representation.

The notion of a G-module is equivalent to the above notion of representation and turns out to be very convenient. A G-module, or a G-space, is a finite dimensional complex vector space V such that for all g ∈ G, v ∈ V , gv ∈ V is well defined and satisfies the obvious properties: 1v = v, g(hv) = (gh)v, g(v + w) = gv + gw, g(λv) = λ(gv) for g, h ∈ G, v, w ∈ V , λ ∈ C. In other words, V is endowed with a structure of C[G]-module. One goes from one notion to the other by the identification gv = ρ(g)(v). The notion of equivalent representations corresponds to the notion of isomorphic G-modules, an isomorphism of G-modules being an isomorphism of vector spaces u : V → V ′ such that u(gv) = gu(v). Note that here the operations of G on V and V ′ are denoted alike, which may cause some confusion.

Examples.

• The trivial representation 1: V = C and gv = v.

• Permutation representations: let X be a finite set on which G acts (on the left). Let V X := ⊕ x∈X Ce x . A natural action of G on V X is given by ge x = e gx , and defines a representation of G, of degree |X|. The matrices of this representation (in the basis {e x }) are permutation matrices.

-The symmetric group S n acts on X = {1, 2, . . . , n}. This action defines a representation of degree n of S n . -For all w, 1 ≤ w ≤ n, S n acts on the set X w of subsets of {1, 2, . . . , n} of cardinal w. In coding theory an element of X w is more likely viewed as a binary word of length n and Hamming weight w. The spaces X w are called the Johnson spaces and denoted J w n .

• The regular representation is obtained with the special case X = G with the action of G by left multiplication. In the case G = S n it has degree n!.. It turns out that the regular representation contains all building blocks of all representations of G. • Permutation representations again: if G acts transitively on X, this action can be identified with the left action of G on the left cosets G/H = {gH : g ∈ G} where H = Stab(x 0 ) is the stabilizer of a base point.

-The symmetric group S n acts transitively on X = {1, 2, . . . , n} and the stabilizer of one point (say n) can be identified with the symmetric group S n-1 acting on {1, . . . , n -1}. -The action of S n on J w n is also transitive and the stabilizer of one point (say 1 w 0 n-w ) is the subgroup S {1,...,w} × S {w+1,...,n} isomorphic to S w × S n-w .

-The Hamming space H n = {0, 1} n = F n 2 affords the transitive action of G = T ⋊ S n where T is the group of translations T = {t u : u ∈ H n }, t u (v) = u + v and S n permutes the coordinates. The stabilizer of 0 n is the group of permutations S n .

• Another way to see the permutation representations is the following: let C(X) := {f : X → C} be the space of functions from X to C. The action of G on X extends to a structure of G-module on C(X) given by: gf (x) := f (g -1 x).

For the Dirac functions δ y (δ y (x) = 1 if x = y, 0 otherwise), the action of G is given by gδ y = δ gy thus this representation is isomorphic to the permutation representation defined by X. This apparently more complicated presentation of permutation representations has the advantage to allow generalization to infinite groups acting on infinite spaces as we shall encounter later. A G-module V is said to be irreducible if it does not contain any subspace W , W = {0}, V , invariant under G. Otherwise it is called reducible.

2.3.

Irreducibility. Let V be a G-module (respectively a representation (ρ, V ) of G). A subspace W ⊂ V is said to be G-invariant (or G-stable, or a G-submodule, or a subrepresentation of (ρ, V )), if gw ∈ W (respectively ρ(g)(w) ∈ W ) for all g ∈ G, w ∈ W . Example: V = V G and W = Ce G with e G =

Example:

The G-invariant subspaces of dimension 1 are necessarily irreducible. If G is abelian, a G-module of dimension greater than 1 cannot be irreducible, because endomorphisms that pairwise commute afford a common basis of eigenvectors.

The main result is then the decomposition of a G-module into the direct sum of irreducible submodules:

Theorem 2.1 (Maschke's theorem). Any G-module V = {0} is the direct sum of irreducible G-submodules W 1 , . . . , W k : (1) V = W 1 ⊕ W 2 ⊕ • • • ⊕ W k .
Proof. By induction, it is enough to prove that any G-submodule W of V affords a supplementary subspace which is also G-invariant. The main idea is to construct a G-invariant inner product and then prove that the orthogonal of W for this inner product makes the job. We start with an inner product x, y defined on V . There are plenty of them since V is a finite dimensional complex vector space. For example we can choose an arbitrary basis of V and declare it to be orthonormal. Then we average this inner product on G, defining:

x, y ′ := g∈G gx, gy .

It is not difficult to check that we have defined a inner product which is G-invariant. It is also easy to see that

W ⊥ := {v ∈ V : v, w ′ = 0 for all w ∈ W } is G-invariant, thus we have the decomposition of G-modules: V = W ⊕ W ⊥
It is worth to notice that the above decomposition may not be unique. It is clear if one thinks of the extreme case G = {1} for which the irreducible subspaces are simply the one dimensional subspaces of V . The decomposition of V into the direct sum of subspaces of dimension 1 is certainly not unique (if dim(V ) > 1 of course). But uniqueness is fully satisfied by the decomposition into isotypic subspaces. In order to define them we take the following notation: let R be a complete set of pairwise non isomorphic irreducible representations of G. We have seen that any G-module affords a G-invariant inner product so the action of G on R is expressed by unitary matrices in a given orthonormal matrix of R. According to the context we view R either as a G-module or as a homomorphism g → R(g) ∈ U (C n ). It will turn out that there is only a finite number of them but we have not proved it yet. The isotypic subspace I R of V associated to R ∈ R is defined, with the notations of (1), by:

(2)

I R := ⊕ W i ≃R W i . Theorem 2.2. Let R ∈ R.
The isotypic spaces I R do not depend on the decomposition of V as the direct sum of G-irreducible subspaces. We have the canonical decomposition

V = ⊕ R∈R I R . Any G-subspace W ⊂ V such that W ≃ R is contained in I R and any G- irreducible subspace of I R is isomorphic to R. A decomposition into irreducible subspaces of I R has the form I R = W 1 ⊕ • • • ⊕ W m R
with W i ≃ R. Such a decomposition is not unique in general but the number m R does not depend on the decomposition and is called the multiplicity of R in V . Moreover, if V is endowed with a G-invariant inner product, then the isotypic spaces are pairwise orthogonal.

Proof. We start with a lemma which points out a very important property of irreducible G-modules.

Lemma 2.3 (Schur Lemma).

Let R 1 and R 2 two irreducible G-modules and let ϕ : R 1 → R 2 be a G-homomorphism. Then either ϕ = 0 or ϕ is an isomorphism of G-modules.

Proof. The subspaces ker ϕ and im ϕ are G-submodules of respectively R 1 and R 2 thus they are equal to either {0} or R i .

We go back to the proof of the theorem. We start with the decomposition (1) of V and the definition (2) of I R , a priori depending on the decomposition. Let W ⊂ V , a G-submodule isomorphic to R. We apply Lemma 2.3 to the projections p W i and conclude that either p W i (W ) = {0} or p W i (W ) = W i and this last case can only happen if W ≃ W i . It proves that W ⊂ I R and that a G-irreducible subspace of I R can only be isomorphic to R. It also proves that

I R = W ⊂V,W ≃R W hence giving a characterization of I R independent of the initial decomposition. The number m R must satisfy dim(I R ) = m R dim(R) so it is independent of the decomposition of I R .
If V is equipped with a G-invariant inner product, we consider orthogonal projections. Schur Lemma shows that P W (W ′ ) = {0} or = W if W and W ′ are irreducible. Thus if they are not G-isomorphic, W and W ′ must be orthogonal.

2.4.

The algebra of G-endomorphisms. Let V be a G-module. The set of Gendomorphisms of V is an algebra (for the laws of addition and composition) denoted End G (V ). The next theorem describes the structure of this algebra.

Theorem 2.4. If V ≃ ⊕ R∈R R m R , then End G (V ) ≃ R∈R C m R ×m R .
Proof. The proof is in three steps: we shall assume first V = R is irreducible, then V ≃ R m , then the general case. Schur Lemma 2.3 is the main tool here.

If V is irreducible, let ϕ ∈ End G (V ). Since V is a complex vector space, ϕ has got an eigenvalue λ. Then ϕλ Id is a G-endomorphism with a non trivial kernel so from Schur Lemma ϕλ Id = 0. We have proved that

End G (V ) = {λ Id, λ ∈ C} ≃ C.
We assume now that V ≃ R m and we fix a decomposition

V = W 1 ⊕ • • • ⊕ W m . For all 1 ≤ i ≤ j ≤ m, let u j,i : W i → W j an isomorphism of G-modules such that the relations u k,j • u j,i = u k,i and u i,i = Id
hold for all i, j, k. Let ϕ ∈ End G (V ); we associate to ϕ an element of C m×m in the following way. From previous discussion of the irreducible case it follows that for all i, j there exists a i,j ∈ C such that, for all v ∈ W i ,

p W j • ϕ(v) = a j,i u j,i (v).
The matrix A = (a i,j ) is the matrix associated to ϕ. The proof that the mapping ϕ → A is an isomorphism of algebras carries without difficulties and is left to the reader.

In the general case,

V = ⊕ R∈R I R . Let ϕ ∈ End G (V ). It is clear that ϕ(I R ) ⊂ I R thus End G (V ) = ⊕ R∈R End G (I R )
and we are done.

It is worth to notice that End G (V ) is a commutative algebra if and only if all the multiplicities m R are equal to either 0 or 1. In this case we say that V is multiplicity free. It is also the unique case when the decomposition into irreducible subspaces (1) is unique.

Orthogonality relations.

Another important result which is a consequence of Schur lemma is the orthogonality relations between the matrix coefficients of the elements of R:

Theorem 2.5. For R ∈ R, let d R := dim(R). For all R, S ∈ R, i, j, k, l, R i,j , S k,l = 1 d R δ R,S δ i,k δ j,l . Proof. For A ∈ C d R ×d S , let A ′ = 1 |G| g∈G R(g)AS(g) -1 .
This matrix satisfies R(g)A ′ = A ′ S(g) for all g ∈ G. In other words it defines an homomorphism of G-modules from (C d S , S) to (C d R , R). Schur lemma shows that if S = R, A ′ = 0 and if S = R, A ′ = λ Id. Computing the trace of A ′ shows that λ = Trace(A)/d R . Taking A = E i,j the elementary matrices, with the property that S(g) -1 = S(g) * , leads to the announced formula.

2.6. Characters. The character of a representation (ρ, V ) of G is the function

χ ρ : G → C defined by χ ρ (g) = Trace(ρ(g)).
As a consequence of the standard property of traces of matrices Trace(AB) = Trace(BA), the character of a representation only depends on its equivalence class, and it is a complex valued function on G which is constant on the conjugacy classes of G (such a function is called a class function). The inner product of any two χ, ψ ∈ C(G) is defined by

χ, ψ := 1 |G| g∈G χ(g)ψ(g).
We have the very important orthogonality relations between characters:

Theorem 2.6 (Orthogonality relations of the first kind). Let χ and χ ′ be respectively the characters of two irreducible representations (ρ, V ) and

(ρ ′ , V ′ ) of G. Then χ, χ ′ = 1 if ρ ≃ ρ ′ 0 otherwise.
Proof. It is a straight forward consequence of Theorem 2.5, since the trace of a representation is the sum of the diagonal elements of any equivalent matrix representation.

A straightforward consequence of the above theorem is that χ ρ , χ R = m R for all R ∈ R. This property is a very convenient tool to study the irreducible decomposition of a given representation (ρ, V ) of G; in particular it shows that a representation is irreducible if and only if its character χ satisfies χ, χ = 1. In the case of the regular representation it leads to the following very important result: 

C(G) ≃ ⊕ R∈R R dim(R)
Proof. Compute the character of the regular representation.

A consequence of the above theorem is the finiteness of the number of irreducible representations of a given finite group, together with the formula

|G| = R∈R (dim(R)) 2
which shows e.g. completeness of a given set of irreducible G-modules.

A second consequence of the orthogonality relations is that a representation of G is uniquely characterized up to isomorphism by its character.

Theorem 2.8. (ρ, V ) ≃ (ρ ′ , V ′ ) ⇐⇒ χ ρ = χ ρ ′ .
Proof. If χ ρ = χ ρ ′ , the multiplicities of an irreducible representation of G are the same in V and

V ′ , hence V ≃ G V ′ .
Let us denote by R(G) the subspace of elements of C(G) which are constant on the conjugacy classes C 1 , . . . , C s of G. The dimension of R(G) is obviously the number s of conjugacy classes of G. We have seen that the characters χ R of the irreducible representations of G belong to R(G) and form an orthonormal family. It turns out that they in fact form a basis of R(G), which in other words means that the number of irreducible representations of G is exactly equal to its number of conjugacy classes. Theorem 2.9.

R(G) = ⊕ R∈R Cχ R . Proof. It is clear that C(G) = C[G]δ e . Thus End G (C(G)) ≃ C[G]. In particular, the center of End G (C(G)) is isomorphic to the center Z(C[G]) of C[G].
It is easy to verify that the center of C[G] is the vector space spanned by the elements λ i :=

g∈C i g associated to each conjugacy class C i of G, thus Z(C[G]
) is of dimension s the number of conjugacy classes of G. On the other hand, as a consequence of Theorem 2.7 and Theorem 2.4, we have

End G (C(G)) ≃ R∈R C d R ×d R where d R = dim(R). Thus the center of End G (C(G)) is isomorphic to C |R|
and we have proved that the number of G-irreducible modules is equal to the number of conjugacy classes of G.

Remark 2.10. There is not in general a natural bijection between the set of conjugacy classes of G and the set of its irreducible representations. However, in the special case of the symmetric group S n , such a correspondance exists. The conjugacy classes are naturally indexed by the partitions λ of n and to every partition λ of n is associated an irreducible module S λ also called a Specht module (see [START_REF] Sagan | The symmetric group. representations, combinatorial algorithms and symmetric functions[END_REF]). 2.7. Induced representation and Frobenius reciprocity. Induction is a way to construct representations of a group G from representations of its subgroups. Looking at the irreducible subspaces of representations that are induced from subgroups is a very convenient way to find new irreducible representations of a group G. Induction is an operation on representations which is dual to the easier to understand restriction. If V is a G-module and H is a subgroup of G, the restriction

Res G H (V ) is simply the space V considered as a C[H]-module. If V is an H-module, we define Ind G H (V ) to be the C[G]-module Ind G H (V ) := C[G] ⊗ C[H] V.
Here we exploit the bi-module structure of C[G] (the tensor product over C[H] means that λµ ⊗ v = λ ⊗ µv when µ ∈ C[H]). A more explicit (but less intrisic) formulation for this construction is the following: let {x 1 , . . . , x t } be a complete system of representatives of G/H, so that

G = x 1 H ∪ • • • ∪ x t H. Then Ind G H (V ) = ⊕ t i=1 x i V
where the left action of G is as follows: for all i, there is j and h ∈ H both depending on g such that gx i = x j h. Then gx i v := x j (hv) where hv ∈ V . A third construction of Ind G H (V ) is the following:

Ind G H (V ) = {f : G → V such that f (gh) = h -1 f (g)}.
The equivalence of these three formulations is a recommended exercise !

Example:

The permutation representation of G on X = G/H is nothing else than the induction of the trivial representation of H. In short, C(X) = Ind G H 1.

Since the induction of two isomorphic H-modules leads to isomorphic G-modules and similarly for the restriction, these operations act on the characters thus we denote similarly Res G H χ, Ind G H χ the characters of the corresponding modules.

Lemma 2.11. Let χ be a character of H. The induced character Ind G H χ is given by the formula:

Ind G H χ(g) = 1 |H| x∈G x -1 gx∈H χ(x -1 gx).
Proof. We take a decomposition

Ind G H (V ) = x 1 V ⊕ • • • ⊕ x t V
where {x 1 , . . . , x t } are representatives of G/H. Since gx i v = x j hv with the notations above, g(x i V ) ⊂ x j V and the block x i V will contribute to the trace of x → gx only when j = i, which corresponds to the case when x -1 i gx i ∈ H. Then, the multiplication by g on x i V acts like the multiplication by h = x -1 i gx i on V. Thus we have

Ind G H χ(g) = 1≤i≤t x -1 i gx i ∈H χ(x -1 i gx i ) = 1 |H| x∈G x -1 gx∈H χ(x -1 gx).
The duality between the operations of restriction and induction is expressed in the following important theorem: Theorem 2.12 (Frobenius reciprocity). Let H be a subgroup of G and let χ and ψ be respectively a character of H and a character of G. Then

Ind G H χ, ψ = χ, Res G H ψ .
Proof. Let χ : G → C be defined by: χ(g) = χ(g) if g ∈ H and χ(g) = 0 if g / ∈ H (of course χ is not a character of G). We compute Ind G H χ, ψ :

Ind G H χ, ψ = 1 |G| x∈G Ind G H χ(g)ψ(g) = 1 |G||H| g∈G x∈G χ(x -1 gx) ψ(g) = 1 |G||H| x∈G g∈G χ(x -1 gx)ψ(g) = 1 |G||H| x∈G g ′ ∈G χ(g ′ )ψ(xg ′ x -1 ) = 1 |G||H| x∈G g ′ ∈G χ(g ′ )ψ(g ′ ) = 1 |H| h∈H χ(h)ψ(h) = χ, Res G H ψ .
2.8. Examples from coding theory. In coding theory we are mostly interested in the decomposition of C(X) under the action of G = Aut(X) for various spaces X. We recall that the action of G on f ∈ C(X) is given by (gf )(x) = f (g -1 x).

The space C(X) is endowed with the inner product

f, f ′ = 1 |X| x∈X f (x)f ′ (x).
which is G-invariant.

2.8.1. The binary Hamming space H n : recall that G = T ⋊S n . Let, for y ∈ H n , χ y ∈ C(H n ) be defined by χ y (x) = (-1) x•y . The set {χ y , y ∈ H n } is exactly the set of irreducible characters of the additive group F n 2 , and form an orthonormal basis of C(H n ). The computation of the action of G on χ y shows that for σ ∈ S n , σχ y = χ σ(y) and for t u ∈ T , t u χ y = (-1) u•y χ y . Let, for 0 ≤ k ≤ n,

P k :=⊥ y,wt(y)=k Cχ y Thus P k is a G-invariant subspace of C(H n ) of dimension n
k and we have the decomposition

(3) C(H n ) = P 0 ⊥ P 1 ⊥ • • • ⊥ P n .
The computation χ P k , χ P k = 1 where χ P k is the character of the G-module P k shows that these modules are G-irreducible. Now we introduce the Krawtchouk polynomials. The element Z k := wt(y)=k χ y of C(H n ) is S n -invariant. In other words, Z k (x) only depends on wt(x). We define the Krawtchouk polynomial

K k for 0 ≤ k ≤ n by K k (w) : = Z k (x) = wt(y)=k (-1) x•y where wt(x) = w (4) = w i=0 (-1) i w i n -w k -i . ( 5 
)
We review some properties of these polynomials:

(1)

deg(K k ) = k (2) K k (0) = n k (3) Orthogonality relations: for all 0 ≤ k ≤ l ≤ n 1 2 n n w=0 n w K k (w)K l (w) = δ k,l n k
The last property is just a reformulation of the orthogonality of the

Z k ∈ P k , since, if f, f ′ ∈ C(H n ) are S n -invariant, and f (w) := f (x), wt(x) = w, f, f ′ = 1 2 n x∈Hn f (x)f ′ (x) = 1 2 n n w=0 n w f (w) f ′ (w).
The above three properties characterize uniquely the Krawtchouk polynomials.

Let C ⊂ H n be a binary code. Let 1 C be the characteristic function of C. The obvious inequalities hold:

(6) 0 ≤ k ≤ n, wt(y)=k 1 C , χ y 2 ≥ 0.
Since the decomposition of 1 C over the basis χ y reads

1 C = y∈Hn 1 C , χ y χ y .
the above inequalities are indeed reformulations of the non negativity of the squared norm of the projections p P k (1 C ). They express in terms of the Krawtchouk polynomials:

(7) 0 ≤ k ≤ n, 1 2 2n (x,x ′ )∈C 2 K k (d H (x, x ′ )) ≥ 0
or equivalently in terms of the distance distribution of the code C: if

A w (C) := 1 |C| |{(x, x ′ ) ∈ C 2 : d H (x, x ′ ) = w}| then 0 ≤ k ≤ n, |C| 2 2n n w=0 A w (C)K k (w) ≥ 0.
These inequalities are the basic inequalities involved in Delsarte linear programming method. We shall encounter similar inequalities in a very general setting.

In the special case when C is linear, we have

1 C , χ y = |C| 2 n 1 C ⊥ (y)
so that we recognise the identity

wt(y)=k 1 C , χ y 2 = |C| 2 2n n w=0 A w (C)K k (w)
to be the Mac Williams identity

A k (C ⊥ ) = 1 |C| n w=0 A w (C)K k (w).
The more general q-ary Hamming space affords similar results; it is treated in 5.3.

The Johnson spaces J w

n : the group is G = S n . Here, we shall see at work a standard way to evidence G-submodules as kernels of G-endomorphisms. For details we refer to [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] where the q-Johnson spaces are given a uniform treatment. We introduce the applications

δ : C(J w n ) → C(J w-1 n ) f → δ(f ) : δ(f )(x) := y∈J w n , x⊂y f (y) 
and

ψ : C(J w-1 n ) → C(J w n ) f → ψ(f ) : ψ(f )(x) := y∈J w-1 n , y⊂x f (y)
Both of these applications commute with the action of G. They satisfy the following properties: f, ψ(f ′ ) = δ(f ), f ′ , ψ is injective and δ is surjective. Therefore the subspace of C(J w n ):

H w := ker δ is a G-submodule of dimension n w -n w-1 and we have the orthogonal decom- position C(J w n ) = H w ⊥ ψ(C(J w-1 n )) ≃ H w ⊥ C(J w-1 n ).
By induction we obtain a decomposition

C(J w n ) ≃ H w ⊥ H w-1 ⊥ • • • ⊥ H 0
which can be proved to be the irreducible decomposition of C(J w n ) (see 5.3.1).

LINEAR REPRESENTATIONS OF COMPACT GROUPS

In this section we enlarge the discussion to the representation theory of compact groups. For this section we refer to [START_REF] Bump | Lie Groups[END_REF].

3.1. Finite dimensional representations. The theory of finite dimensional representations of finite groups extends nicely and straightforwardly to compact groups. A finite dimensional representation of a compact group G is a continuous homomorphism ρ : G → Gl(V ) where V is a complex vector space of finite dimension.

A compact group G affords a Haar measure, which is a regular left and right invariant measure. We assume this measure to be normalized, i.e. the group G has measure 1. With this measure the finite sums over elements of a finite group can be replaced with integrals; so the crucial construction of a G-invariant inner product in the proof of Maschke theorem extends to compact groups with the formula x, y ′ := G gx, gy dg.

Hence Maschke theorem remains valid for finite dimensional representations. We keep the notation R for a set of representatives of the finite dimensional irreducible representations of G, chosen to be representations with unitary matrices. A main difference with the finite case is that R is not finite anymore.

Peter Weyl theorem.

Infinite dimensional representations immediately occur with the generalization of permutation representations. Indeed, if G acts continuously on a space X, it is natural to consider the action of G on the space C(X) of complex valued continuous functions on X given by (gf )(x) = f (g -1 x) to be a natural generalization of permutation representations. A typical example of great interest in coding theory is the action of G = O(R n ) on the unit sphere of the Euclidean space:

S n-1 := {x ∈ R n : x • x = 1}.
The regular representation, which is the special case C(G), with the left action of G on itself, can be expected to play an important role similar to the finite case. It is endowed with the inner product

f, f ′ := G f (g)f ′ (g)dg.
For R ∈ R, the matrix coefficients g → R i,j (g) belong to unitary matrices. Theorem 2.5 establishing the orthogonality relations between the matrix coefficients of the elements of R remains valid; thus they form an orthogonal system in C(G).

The celebrated Peter Weyl theorem asserts that these elements span a vector space which is dense in C(G) for the topology of uniform convergence.

Theorem 3.1. [Peter Weyl theorem]

The finite linear combinations of the functions R i,j are dense in C(G) for the topology of uniform convergence.

Proof. We give a sketch of the proof:

(1) If V is a finite dimensional subspace of C(V ) which is stable by right translation (i.e. by gf (x) = f (xg)) and f ∈ V , then f is a linear combination of a finite number of the R i,j : according to previous discussion, there is a decomposition

V = W 1 ⊕ • • • ⊕ W n such that W k is irreducible. If W k ≃ R, there exists a basis e 1 , . . . , e d R of W k in which the action of G has matrices R. Explicitly, e j (hg) = d R i=1 R i,j (g)e i (

h).

Taking h = 1, we obtain e j = d R i=1 e i (1)R i,j . (2) The idea is to approximate f ∈ C(G) by elements of such subspaces, constructed from the eigenspaces of a compact selfadjoint operator. We introduce the convolution operators: let φ ∈ C(G),

T φ (f )(g) = (φ * f )(g) = G φ(gh -1 )f (h)dh.
(3) Since G is compact, f is uniformly continuous; this property allows to choose φ such that f -T φ (f ) ∞ is arbitrary small. (4) The operator T φ is compact and can be assumed to be selfadjoint. The spectral theorem for such operators on Hilbert spaces (here L 2 (G)) asserts that the eigenspaces V λ := {f : T φ f = λf } for λ = 0 are finite dimensional and that the space is the direct Hilbert sum ⊕ λ V λ . For t > 0, the subspaces V t := ⊕V λ, |λ|>t have finite dimension (i.e. there is only a finite number of eigenvalues λ with |λ| > t > 0). (5) The operator T φ commutes with the action of G by right translation thus the subspaces V λ are stable under this action. ( 6) Let f λ be the projection of f on V λ . The finite sums

f t := |λ|>t f λ converge to f -f 0 for the L 2 -norm when t → 0. (7) Moreover, for all f ∈ C(V ), T φ (f ) ∞ ≤ φ ∞ f 2 . Thus, T φ (f t ) converges uniformly to T φ (f -f 0 ) = T φ (f ). Finally, T φ (f t ) ∈ V t and V t is
finite dimensional and invariant under the action of G by right translations, thus by (1) T φ (f t ) is a linear combinations of the R i,j .

If d R = dim(R), the vector space spanned by {R i,j , i = 1, . . . , d R } is Ginvariant and isomorphic to R. So Peter-Weyl theorem means that the decomposition of the regular decomposition is

C(G) =⊥ R∈R I R where I R ≃ R d R , generalizing Theorem 2.

(one has a better understanding of this decomposition with the action of

G × G on G given by (g, g ′ )h = ghg ′-1 . For this action C(G) = ⊕ R∈R R ⊗ R * where R * is the contragredient representation, and R ⊗ R * is G × G-irreducible).
Since uniform convergence is stronger than L 2 convergence, we also have as a consequence of Peter Weyl theorem that the matrix coefficients R i,j (suitably rescaled) form an orthonormal basis of L 2 (G) in the sense of Hilbert spaces.

A slightly more general version of Peter Weyl theorem deals with the decomposition of C(X) where X is a compact space on which G acts homogeneously. If G x 0 is the stabilizer of a base point x 0 ∈ X, then X can be identified with the quotient space G/G x 0 . The Haar measure on G gives rise to a G-invariant regular measure µ on X and C(X) is endowed with the inner product

f, f ′ := 1 µ(X) X f (x)f ′ (x)dµ(x).
The space C(X) can be identified with the space C(G) Gx 0 of G x 0 -invariant (for the right translation) functions thus C(X) affords a decomposition of the form

C(X) ≃⊥ R∈R R m R for some integers m R , 0 ≤ m R ≤ d R ,
in the sense of uniform as well as L 2 convergence.

A more serious generalization of the above theorem deals with the unitary representations of G. These are the continuous homomorphisms from G to the unitary group of a Hilbert space. Theorem 3.2. Let π : G → U (H) be a continuous homomorphism from G to the unitary group of a Hilbert space H. Then H is a direct Hilbert sum of finite dimensional irreducible G-modules.

Proof. The idea is to construct in H a G-subspace of finite dimension and then to iterate with the orthogonal complement of this subspace. To that end, for a fixed v ∈ H, one chooses f ∈ C(G) such that G f (g)(π(g)v)dg = 0. From Peter Weyl theorem, f can be assumed to be a finite linear combination of the R i,j . In other words, there exists a finite dimensional unitary representation (ρ, V ) and e 1 , e 2 ∈ V such that f (g) = ρ(g -1 )e 1 , e 2 V . The operator T : V → H defined by

T (x) = G ρ(g -1 )
x, e 2 V (π(g)v)dg commutes with the actions of G and is non zero. Thus its image is a non zero G-subspace of finite dimension of H.

Examples.

3.3.1.

The unit sphere S n-1 : it is the basic example. The orthogonal group G = O(R n ) acts homogeneously on S n-1 . The stabilizer G x 0 of x 0 can be identified with O(x ⊥ 0 ) ≃ O(R n-1 ). Here µ = ω is the Lebesgue measure on S n-1 . We set ω n := ω(S n-1 ). The irreducible decomposition of C(S n-1 ) is as follows:

C(S n-1 ) = H n 0 ⊥ H n 1 ⊥ . . . H n k ⊥ . . . where H n
k is isomorphic to the space Harm n k of harmonic polynomials:

Harm n k := {P ∈ C[X 1 , . . . , X n ] k : ∆P = 0, ∆ = n i=1 ∂ 2 ∂x 2 i }
The space Harm n k is a O(R n )-module because the Laplace operator ∆ commutes with the action of the orthogonal group and it is moreover irreducible. Its dimension equals

h n k := n+k-1 k -n+k-3 k-2 . The embedding of Harm n k into C(S n-1
) is the obvious one, to the corresponding polynomial function in the n coordinates.

3.3.2.

The action of stabilizers of many points: for our purposes we are interested in the decomposition of some spaces C(X), X homogeneous for G, for the action of a subgroup H of G, typically H = G x 1 ,...,xs the stabilizer of s points. In order to describe it, it is enough to study the decomposition of the G-irreducible submodules of C(X) under the action of H; thus we have to decompose only finite dimensional spaces. However, because the same irreducible representation of H may occur in infinitely many of the G-isotypic subspaces, it happens that the H-isotypic subspaces are not of finite dimension. A typical example is given by X

= S n-1 , G = O(R n ) and H = G e ≃ O(R n-1
). It is a classical result that for the restricted action to H the decomposition of Harm n k into H-irreducible subspaces is given by: (8)

Harm n k ≃ k i=0 Harm n-1 i .
Hence, each of the H n k in (3.3.1) decomposes likewise:

H n k = H n 0,k ⊥ H n 1,k ⊥ . . . ⊥ H n k,k
where

H n i,k ≃ Harm n-1 i
. We have the following picture, where the H-isotypic components appear to be the rows of the second decomposition.

C(S n-1 ) = G H n 0 ⊥ H n 1 ⊥ . . . ⊥ H n k ⊥ . . . = H H n 0,0 ⊥ H n 0,1 ⊥ . . . ⊥ H n 0,k ⊥ . . . ⊥ H n 1,1 ⊥ . . . ⊥ H n 1,k ⊥ . . . • • • • • • • • • • • • • • • • • • • • • • • • ⊥ H n k,k ⊥ . . .

HARMONIC ANALYSIS OF COMPACT SPACES

We take notations for the rest of the lecture notes. X is a compact space (possibly finite) on which a compact group (possibly finite) G acts continuously. Moreover, X is endowed with a G-invariant Borel regular measure µ for which µ(X) is finite. If X itself is finite, the topology is the discrete topology and the measure is the counting measure. In the previous sections we have discussed the decomposition of the permutation representation C(X). In order to lighten the notations, we assume that G has a countable number of finite dimensional irreducible representations (it is the case if G is a group of matrices over the reals since then L 2 (G) is a separable Hilbert space), and we let R = {R k , k ≥ 0}, where R 0 is the trivial representation. We let d k := dim(R k ). From Theorem 3.2, we have a decomposition ( 9)

C(X) ⊂ L 2 (X) = ⊕ k≥0,1≤i≤m k H k,i
where

H k,i ⊂ C(X), H k,i ≃ R k , 0 ≤ m k ≤ +∞ (the case m k = 0 means that R k
does not occur, the case m k = +∞ may occur if G is not transitive on X). The isotypic subspaces are pairwise orthogonal and denoted I k :

I k = ⊕ m k i=1 H k,i
We take the subspaces H k,i to be also pairwise orthogonal. For all k, i, we choose an orthonormal basis e k,i,1 , . . . , e k,i,d k of H k,i such that in this basis the action of g ∈ G is expressed by the unitary matrix R k (g). The set {e k,i,s } is an orthonormal basis in the Hilbert sense.

Commuting endomorphisms and zonal matrices.

In this subsection we want to give more information on the algebra End G (C(X)) of commuting continuous endomorphisms of C(X). We introduce, for K ∈ C(X 2 ), the operators T K , called Hilbert-Schmidt operators:

T K (f )(x) = 1 µ(X) X K(x, y)f (y)dµ(y).
It is easy to verify that

T K ∈ End G (C(X)) if K is G-invariant, i.e. if K(gx, gy) = K(x, y) for all g ∈ G, (x, y) ∈ X 2 . A continuous function K(x, y) with this
property is also called a zonal function. It is also easy, but worth to notice that

T K • T K ′ = T K * K ′ where K * K ′ is the convolution of K and K ′ : (K * K ′ )(x, y) := X K(x, z)K ′ (z, y)dµ(z).
Let

K := {K ∈ C(X 2 ) : K(gx, gy) = K(x, y) for all g ∈ G, (x, y) ∈ X 2 }.
The triple (K, +, * ) is a C-algebra (indeed a C * -algebra, with K * (x, y) := K(y, x)).

Thus we have an embedding

K → End G (C(X)). Assume V ⊂ C(X) is a finite dimensional G-subspace such that V = W 1 ⊥ • • • ⊥ W m with W i ≃ R ∈ R.
By the same proof as the one of Theorem 2.4, End G (V ) ≃ C m×m . More precisely, we have seen that, if u j,i :

W i → W j are G-isomorphisms, such that u k,j • u j,i = u k,i , then an element φ ∈ End G (V ) is associated to a matrix A = (a i,j ) ∈ C m×m such that, for all f ∈ V , with p W i (f ) = f i , φ(f ) = m i,j=1 a j,i u j,i (f i ).
For all 1 ≤ i ≤ m, let (e i,1 , . . . , e i,d ), d = dim(R), be an orthonormal basis of W i such that in this basis the action of g ∈ G is expressed by the unitary matrix R(g).

We define

E i,j (x, y) := d s=1 e i,s (x)e j,s (y).
Then we have: Lemma 4.1. The above defined functions E i,j satisfy:

(1) E i,j is zonal: E i,j (gx, gy) = E i,j (x, y).

(2) Let T i,j := T E i,j . Then T j,i (W i ) = W j and T j,i (W k ) = 0 for k = i.

(

) T i,j • T j,k = T i,k . 3 
Proof.

(1) From the construction, we have

e i,s (gx) = d t=1 R s,t (g)e i,t (x) 
thus

E i,j (gx, gy) = d s=1 e i,s (gx)e j,s (gy) = d s=1 d k,l=1 R s,k (g)R s,l (g)e i,k (x)e j,l (y) = d k,l=1 d s=1 R s,k (g)R s,l (g) e i,k (x)e j,l (y) = d k e i,k (x)e j,k (y) = E i,j (x, y)
where the second last equality holds because R(g) is a unitary matrix. (2) We compute T j,i (e k,t ): (3) Similarly one computes that

T j,i (e k,t )(x) = 1 µ(X) X d s=1 e j,s (x)e i,s (y) e k,t (y)dµ(y) = 1 µ(X)
E i,j * E l,k = δ j,l E i,k .
The E i,j (x, y) put together form a matrix E = E(x, y), that we call the zonal matrix associated to the G-subspace V :

(10) E(x, y) := E i,j (x, y) 1≤i,j≤m .
At this stage is is natural to discuss the dependence of this matrix on the various ingredients needed for its definition.

Lemma 4.2. We have (1) E(x, y) is unchanged if another orthonormal basis of W i is chosen (i.e. if another unitary representative of the irreducible representation R is chosen).

(2) E(x, y) is changed to AE(x, y)A * for some matrix A ∈ Gl(C m ) if another decomposition (not necessarily with orthogonal spaces)

V = W ′ 1 ⊕ • • • ⊕ W ′ m is chosen. Proof.
(1) Let (e ′ i,1 , . . . , e ′ i,d ) be another orthonormal basis of W i and let U i be unitary d × d matrices such that (e ′ i,1 , . . . , e ′ i,d ) = (e i,1 , . . . , e i,d )U i . Since we want the representation R to be realized by the same matrices in the basis (e ′ i,1 , . . . , e ′ i,d ) when i varies, we have U i = U j = U . Then, with obvious notations,

E ′ i,j (x, y) =(e ′ i,1 (x), . . . , e ′ i,d (x))(e ′ i,1 ( 
y), . . . , e ′ i,d (y)) * =(e i,1 (x), . . . , e i,d (x))U U * (e i,1 (y), . . . , e i,d (y)) * =(e i,1 (x), . . . , e i,d (x))(e i,1 (y), . . . , e i,d (y)) * =E i,j (x, y).

(

) If V = W 1 ⊥ • • • ⊥ W m = W ′ 1 ⊥ • • • ⊥ W ′ m 2 
with basis (e i,1 , . . . , e i,d ) of W i and (e ′ i,1 , . . . , e ′ i,d ) of W ′ i in which the action of G is by the same matrices R(g), let φ ∈ End(V ) be defined by φ(e i,s ) = e ′ i,s . Clearly φ commutes with the action of G; if u j,i is defined by u j,i (e i,s ) = e j,s then we have seen that, for some matrix A = (a i,j ), e ′ i,s = φ(e i,s ) = m j=1 a j,i e j,s . Moreover A is invertible. It is unitary if the spaces W ′ i are pairwise orthogonal. With the notations E(x) := (e i,s (x)), we have

E(x, y) = E(x)E(y) * and E ′ (x) = A t E(x) thus E ′ (x, y) = A t E(x, y)A.
Going back to φ ∈ End G (V ), from Lemma 4.1 we can take u j,i = T j,i and we have the expression

φ = m i,j=1 a j,i T j,i = T A,E .
We take the following notation: the space of linear combinations of elements of the form f (x)g(y) for (f, g) ∈ V 2 is denoted V (2) . We have proved the following:

Proposition 4.3. Let K V := {K ∈ V (2) : K(gx, gy) = K(x, y) for all g ∈ G, (x, y) ∈ X 2 }.
The following are isomorphisms of C-algebras:

K V → End G (V ) C m×m → End G (V ) K → T K A → T A,E . Moreover, End G (C(X)) is commutative iff K is commutative iff m k = 0, 1 for all k ≥ 0.
Proof. The isomorphisms are clear from previous discussion. For the last assertion, it is enough to point out that

End G (C(X)) = k≥0 End G (I k ).
Remark 4.4. Proposition 4.3 shows in particular that K V and End G (V ) have the same dimension. It is sometimes easy to calculate the dimension of K V ; for example if X is a finite set and V = C(X), then dim(K V ) is exactly equal to the number of orbits of G acting on X 2 . On the other hand, in this case, the dimension of End G (V ) is the sum of the squares of the multiplicities in C(X) of the irreducible representations of G. For the binary Hamming space treated in 2.8.1, the orbits of G acting on X 2 are in one to one correspondance with the values taken by the Hamming distance, i.e. there are (n + 1) such orbits. Thus, once we have obtained the decomposition C(H n ) = P 0 ⊥ • • • ⊥ P n , because this decomposition involves allready (n + 1) subspaces, we can conclude readily that these subspaces are irreducible. This reasoning applies also to the Johnson space 2.8.2 and to the more general q-Hamming space 5.3. A variant of this method is as follows: if we suspect V ⊂ C(X) to be irreducible, then it is enough to prove that K V has dimension 1. See in 5.3.1 for an illustration.

4.2.

Examples: G-symmetric spaces.

Definition 4.5. We say that X is G-symmetric if for all (x, y) ∈ X 2 , there exists g ∈ G such that gx = y and gy = x. In other words, (x, y) and (y, x) belong to the same orbit of G acting on X 2 .

A first consequence of Proposition 4.3 is that G-symmetric spaces have multiplicity free decompositions.

Proposition 4.6. If X is G-symmetric then m k = 0, 1 for all k ≥ 0 and E k (x, y) is real symmetric. Proof. For all K ∈ K, K(x, y) = K(y, x). Thus K is commutative: indeed, (K ′ * K)(x, y) = 1 µ(X) X K ′ (x, z)K(z, y)dµ(z) = 1 µ(X) X K ′ (z, x)K(y, z)dµ(z) = (K * K ′ )(y, x) = (K * K ′ )(x, y)
. Examples of such spaces of interest in coding theory are numerous: the Hamming and Johnson spaces, endowed with the Hamming distance, for the action of respectively T ⋊ S n and S n ; the unit sphere S n-1 for the angular distance θ(x, y) and the action of the orthogonal group. It is a classical result that, apart from S n-1 , the projective spaces P n (K) for K = R, C, H, and P 2 (O), are the only real compact 2-point homogeneous spaces.

Moreover E k (x, y) = E k (x, y) = E k (y, x).
There are more examples of finite 2-point homogeneous spaces, we can mention among them the q-Johnson spaces. The q-Johnson space J w n (q) is the set of linear subspaces of F n q of fixed dimension w, with the action of the group Gl(F n q ) and the distance d(x, y) = dim(x + y)dim(x ∩ y). We come back to this space in the next section.

There are other symmetric spaces occurring in coding theory: 4.2.2. The Grassmann spaces: X = G m,n (K), K = R, C, i.e. the set of mdimensional linear subspaces of K n , with the homogeneous action of

G = O(R n ) (respectively U (C n )). This space is G-symmetric but not 2-point homogeneous (if m ≥ 2).
The orbits of G acting on pairs (p, q) ∈ X 2 are characterized by their principal angles [START_REF] Golub | Matrix computations[END_REF]. The principal angles of (p, q) are m angles (θ 1 , . . . , θ m ) ∈ [0, π/2] m constructed as follows: one iteratively constructs an orthonormal basis (e 1 , . . . , e m ) of p and an orthonormal basis (f 1 , . . . , f m ) of q such that, for 1 ≤ i ≤ m,

cos θ i = max{|(e, f )| : e ∈ p, f ∈ q, (e, e) = (f, f ) = 1, (e, e j ) = (f, f j ) = 0 for 1 ≤ j ≤ i -1} = |(e i , f i )|
The we have (see [START_REF] Golub | Matrix computations[END_REF]): there exists g ∈ G such that (gp, gq) = (p ′ , q ′ ) ⇐⇒ (θ 1 (p, q), . . . , θ m (p, q)) = (θ 1 (p ′ , q ′ ), . . . , θ m (p ′ , q ′ )).

The ordered Hamming space: X = (F r

2 ) n (for the sake of simplicity we restrict here to the binary case). Let x = (x 1 , . . . , x n ) ∈ X with x i ∈ F r 2 . For y ∈ F r 2 , the ordered weight of y, denoted w r (y), is the right most non zero coordinate of y. The ordered weight of x ∈ X is w r (x) := n i=1 w r (x i ) and the ordered distance of two elements (x, y) ∈ X 2 is d r (x, y) = w r (xy). Moreover we define the shape of (x, y): shape(x, y) := (e 0 , e 1 , . . . , e r ) where

1 ≤ i ≤ r, e i := card{j : w r (x j ) = i} e 0 := n -(e 1 + • • • + e r ).
Another expression of w r (x) is w r (x) = i ie i . If B is the group of upper triangular matrices in Gl(F r 2 ), and B aff the group of affine transformations of F r 2 combining the translations by elements of F r 2 with B, the group G := B n aff ⋊ S n acts transitively on X. Since B acting on F r 2 leaves w r invariant, it is clear that the action of G on X leaves the shape shape(x, y) invariant. More precisely, the orbits of B on F r 2 are the sets {y ∈ F r 2 : w r (x) = i} and, consequently, the orbits of G acting on X 2 are characterized by the so-called shape of (x, y). Since obviously shape(x, y) = shape(y, x) it is a symmetric space. This space shares many common features with the Grassmann spaces, especially from the point of view of the linear programming method (see [START_REF] Bachoc | Linear programming bounds for codes in Grassmannian spaces[END_REF], [START_REF] Barg | Bounds on ordered codes and orthogonal arrays[END_REF], [START_REF] Martin | Association schemes for ordered orthogonal arrays and (T, M, S)nets[END_REF]). 4.2.4. The space X = Γ under the action of G = Γ × Γ: the action of G is by (γ, γ ′ )x = γxγ ′-1 . Then two pairs (x, y) and (x ′ , y ′ ) are in the same orbit under the action of G iff xy -1 and x ′ y ′-1 are in the same conjugacy class of Γ. Obviously (x, y) and (y -1 , x -1 ) are in the same G-orbit. We are not quite in the case of a G-symmetric space however the proof of the commutativity of K of Proposition 4.6 remains valid because the variable change x → x -1 leaves the Haar measure invariant. (1) For all n, for all (x 1 , . . . , x n ) ∈ X n , for all (α 1 , . . . , α n ) ∈ C n , n i,j=1 α i F (x i , x j )α j ≥ 0.

(2) For all α ∈ C(X), X 2 α(x)F (x, y)α(y)dµ(x, y) ≥ 0. This property will be denoted F 0.

The first property means in other words that, for all choice of a finite set of points (x 1 , . . . , x n ) ∈ X n , the matrix (F (x i , x j )) 1≤i,j≤n is hermitian positive semidefinite. The equivalence of the two properties results from compactness of X. Note that, if X is finite, F is positive definite iff the matrix indexed by X, with coefficients F (x, y), is positive semidefinite.

We want to characterize those functions which are G-invariant. This characterization is provided by Bochner in [START_REF] Bochner | Hilbert distances and positive definite functions[END_REF] in the case when the space X is Ghomogeneous. It is clear that the construction of previous subsection provides positive definite functions. Indeed, Lemma 4.9. if A 0, then A, E is a G-invariant positive definite function.

Proof. Let α(x) ∈ C(X). We compute (1) For all A 0, A, E(x, y)

X 2 α(x) A, E α(y)dµ(x, y) = X 2 m i,j=1 A i,j α(x)E i,j (x, y)α(y)dµ(x, y) = m i,j=1 A i,j X 2 α(x)E i,j (x, y)α(y)dµ(x, y) = m i,j=1 d s=1 A i,j X 2 α(x)e i,
0 (2) For all (x 1 , . . . , x n ) ∈ X n , (α 1 , . . . , α n ) ∈ C n , i,j α i E(x i , x j )α j 0.

The proof is left to the reader as an exercise (hint: use the fact that the cone of positive semidefinite matrices is self dual).

To start with, we extend the notations of the previous subsection. We define matrices E k = E k (x, y) associated to each isotypic component I k , of size m k ×m k (thus possibly of infinite size) with coefficients E k,i,j (x, y) defined by:

E k,i,j (x, y) := d k s=1
e k,i,s (x)e k,j,s (y).

If F k = (f k,i,j ) 1≤i,j≤m k is hermitian, and if i,j |f k,i,j | 2 < +∞, the sum

F k , E k := i,j f k,i,j E k,i,j
is L 2 -convergent since the elements e k,i,s (x)e l,j,t (y) form a complete system of orthonormal elements of C(X 2 ). We say

F k is positive semidefinite (F k 0) if i,j λ i f k,i,j λ j ≥ 0 for all (λ i ) 1≤i≤m k such that |λ i | 2 < +∞.
Then, with the same proof as the one of Lemma 4.9, the function F k , E k is positive definite if F k 0. The following theorem provides a converse statement (see [START_REF] Bochner | Hilbert distances and positive definite functions[END_REF]). 

(11) F (x, y) = k≥0 F k , E k (x, y)
where, for all k ≥ 0,

F k = 1 d k µ(X 2 ) X 2 F (x, y)E k (x, y)dµ(x, y) 0,
and the sum converges to F for the L 2 topology. If moreover G acts homogeneously on X, the sum (11) itself converges uniformly.

Proof. The elements e k,i,s (x)e l,j,t (y) form a complete system of orthonormal elements of C(X 2 ). Hence F has a decomposition F (x, y) = k,i,s,l,j,t f k,i,s,l,j,t e k,i,s (x)e l,j,t (y)

where the convergence of the sum is L 2 . The condition F (gx, gy) = F (x, y) translates to:

f k,i,u,l,j,v = s,t f k,i,s,l,j,t R k,u,s (g)R l,v,t (g).
Integrating on g ∈ G and applying the orthogonality relations of Theorem 2.5 shows that f k,i,u,l,j,v = 0 if k = l or u = v. Moreover it shows that f k,i,u,k,j,u does not depend on u. The resulting expression of F reads:

F (x, y) = k≥0 i,j f k,i,j E k,i,j (x, y) and d k f k,i,j = 1 µ(X 2 ) X 2 F (x, y)E k,i,j (x, y)dµ(x, y),
which is the wanted expression, with F k := (f k,i,j ) 1≤i,j≤m k . Now we show that F k 0. Let, for k, s fixed, α(x) = i α i e k,i,s (x), with i |α i | 2 < +∞. By density, property (2) of Definition 4.8 holds for α ∈ L 2 (X). We compute like in the proof of Lemma 4.9

X 2 α(x)F (x, y)α(y)dµ(x, y) = m k i,j=1 α i f k,i,j α j thus F k 0.
In the case of X being G-homogeneous, the uniform convergence of the sum in ( 11) is proved in [START_REF] Bochner | Hilbert distances and positive definite functions[END_REF].

In order to reduce linear programs involving G-invariant positive definite functions to finite dimensional semidefinite programs, we need to be able to approximate such functions uniformly with finite sums of the type [START_REF] Bochner | Hilbert distances and positive definite functions[END_REF], in other words by functions built form finite dimensional subspaces of C(X). A necessary condition is thus that all continuous functions on X are uniformly approximated by elements of some sequence of finite dimensional subspaces of C(X). Such subspaces are usually provided by the polynomial functions of bounded degree, when it makes sense. More generally, let us assume that there exists a sequence (V d ) d≥0 of finite dimensional G-subspaces of C(X) such that V d ⊂ V d+1 , and ∪ d≥0 V d is dense in C(X) for the topology of uniform convergence. For example, Peter-Weyl theorem provides such subspaces when X is Γ-homogeneous, for a compact group Γ containing G. Then we have the following result: Theorem 4.12. Under the above assumptions, if moreover X is homogeneous under a larger compact group Γ, and if the irreducible subspaces H k,i are chosen so that

H k,i ⊂ V d for all 1 ≤ i ≤ m d,k where m d,k is the multiplicity of R k in V d , then a G-invariant positive definite function F ∈ C(X 2 ) is the uniform limit of a sequence of positive definite functions F d ∈ V d ⊗ V d thus of the form (12) F d (x, y) = k≥0 F d,k , E k (x, y)
where F d,k is a matrix of size m d,k (and thus the sum has a finite number of non zero terms).

Proof. We proceed like in the proof of Peter Weyl theorem. Compact self-adjoint Hilbert-Schmidt operators on C(X 2 ) are of the form

T K (F )(x, y) = X 2
K((x, y), (z, t))F (z, t)dµ(z, t).

We start to construct K such T K (F ) 0 and T K (F ) -F ∞ is arbitrary small. The first condition is fulfilled if K can be expressed in the form K((x, y), (z, t)) = K 0 (x, z)K 0 (y, t) where K 0 (x, z) = K 0 (z, x). We take φ 0 a continuous function on Γ; if φ ′ 0 denotes the left and right average of φ 0 over Γ 0 (where X = Γ/Γ 0 ), we take K 0 (x, y) = φ ′ 0 (γ -1 δ) for any γ ∈ x, δ ∈ y). Then with a suitable choice of φ 0 , T K (F ) -F ∞ ≤ ǫ (thanks to uniform continuity of F , it is enough that φ 0 has support contained in some prescribed open neighborhood of 1, takes values between 0 and 1, satisfies φ 0 (γ) = φ 0 (γ -1 ) and

Γ φ 0 = |Γ 0 |). Moreover, K 0 is Γ-invariant.
We can find d ≥ 0 and L 0 (x, y) ∈ V d ⊗ V d such that L 0 (x, z) = L 0 (z, x) and L 0 -K 0 ∞ is arbitrary small. Replacing L 0 by its average on G will not change these three properties of L 0 . Then, if L((x, y), (z, t)) := L 0 (x, z)L 0 (y, t), T L (F ) comes arbitrary close to T K (F ) for ∞ and T L (F ) ∈ V d ⊗ V d . Now, T L (F ) 0, is invariant under G and belongs to the finite dimensional space V d ⊗ V d thus it has the announced form from Theorem 4.11. Now the main deal is to compute explicitly the matrices E k (x, y) for a given space X. The next section gives explicit examples of such computation.

EXPLICIT COMPUTATIONS OF THE MATRICES E k (x, y)

We keep the same notations as in previous section. Since the matrices E k (x, y) are G-invariant, their coefficients are functions of the orbits of G acting on X 2 . So the first task is to describe these orbits. Let us assume that these orbits are parametrized by some variables u = (u i ). Then we seek for explicit expressions of the form

E k (x, y) = Y k (u(x, y)).
The measure µ induces a measure on the variables that describe these orbits, for which the coefficients of E k are pairwise orthogonal. This property of orthogonality turns to be very useful, if not enough, to calculate the matrices E k .

The easiest case is when the space X is 2-point homogeneous for the action of G, because in this case the orbits of pairs are parametrized by a single variable t := d(x, y). Moreover we have already seen that in this case, the decomposition of C(X) is multiplicity free so the matrices E k (x, y) have a single coefficient. 5.1. 2-point homogeneous spaces. We summarize the results we have obtained so far:

C(X) = ⊕ k≥0 H k
where H k are pairwise orthogonal G-irreducible subspaces; to each H k is associated a continuous function P k (t) such that E k (x, y) = P k (d(x, y)) and

F 0 ⇐⇒ F = k≥0 f k P k (d(x, y)) with f k ≥ 0.
P k (t) is called the zonal function associated to H k . Since the subspaces H k are pairwise orthogonal, the functions P k (t) are pairwise orthogonal for the induced measure. This property of orthogonality is in general enough to determine them in a unique way. We can also notice here that P k (0) = d k . This value is obtained with the integration on X of the formula P k (0) = d k s=1 e k,1,s (x)e k,1,s (x). 5.2. X = {1, . . . , q} under the action of S q . This is a very easy case, which will play a role in the study of the q-Hamming space. Since the constant function 1 is S q -invariant, we have the S q decomposition C(X) = C 1 ⊥ L. Obviously, the action of S q on X 2 has two orbits: the set of pairs (i, i), and the set of pairs (i, j) for i = j. Thus, from Proposition 4.3 and Remark 4.4, L is irreducible. We let z 0 := 1 and choose an orthonormal basis (z 1 , . . . , z q-1 ) of L. We want to compute the zonal function E L associated to L. We have by definition E L (x, y) = q-1 i=1 z i (x)z i (y) and E L takes only two different values: one for x = y and one for x = y. We have E L (0, 0) = dim(L) = q -1 and we can compute E L (0, 1) easily using the fact that E L (0, y) is orthogonal to z 0 thus q y=1 E L (0, y) = 0 = E L (0, 0) + (q -1)E L (0, 1). Thus E L (0, 1) = -1.

5.3.

The q-Hamming space. In the binary case we have already calculated the functions P k (t) in 2.8.1. Indeed, the irreducible subspaces P k afford the orthonormal basis {χ z , wt(z) = k}. So,

E k (x, y) = wt(z)=k χ z (x)χ z (y) = wt(z)=k (-1) z•(x+y) = K k (d H (x, y))
from ( 4). Now we treat the more general q-Hamming space. This is the space H n,q = F n where F is a finite set with q elements denoted F = {a 0 , a 1 , . . . , a q-1 }.

The semidirect product G = S n q ⋊ S n acts on H n,q and leaves the Hamming distance invariant. Here the permutation group S q acts on F by τ a i = a τ (i) while the permutation group S n acts on H n,q by σ(x 1 , . . . , x n ) = (x σ -1 (1) , . . . , x σ -1 (n) ). Moreover G acts on H n,q 2-point homogeneously. The action of S q on C(F ) is studied in 5.2 and we take the same notations. We define φ = (φ 1 , . . . , φ n ) ∈ C(H n,q ) where φ i ∈ {z 0 , z 1 , . . . , z q-1 } by: φ(x) = n i=1 φ i (x i ). These elements φ form an orthonormal system: it is easy to see that

φ, ψ = n i=1 φ i , ψ i .
We define the weight of φ by: wt(φ) := |{1 ≤ i ≤ n : φ i = z 0 }|. For 0 ≤ k ≤ n, let P k be the subspace generated by the set of φ with wt(φ) = k. The dimension of P k is the number of such φ, which is equal to (q -1) k n k and we have the decomposition ( 13)

C(H n ) = P 0 ⊥ P 1 ⊥ • • • ⊥ P n .
An element τ ∈ S q act trivially on z 0 and sends z i for i = 0 to a linear combination of z 1 , . . . , z q-1 . Thus for all g ∈ G, gφ is a linear combination of ψ's with the same weight as φ and G stabilizes P k . The action of G on pairs of elements of H n,q has exactly (n + 1) orbits corresponding to the (n + 1) values 0, 1, . . . , n that the Hamming distance takes thus we can conclude that P k is irreducible from Proposition 4.3. Now we compute the zonal function E k (x, y) attached to P k . By definition we have

E k (x, y) = φ,wt(φ)=k φ(x)φ(y)
and we want to calculate P k such that P k (t) = E k (x, y) for any (x, y) with d(x, y) = t. We set x = (a 1 , . . . , a 1 , a 0 , . . . , a 0 ) where t coordinates of x are equal to a 1 and y = (a 0 , . . . , a 0 ). For all φ, we let i := |{j : 1 ≤ j ≤ n : x j = a 1 and φ j = z 0 } and reorder the set of φ ∈ P k according to i.

P k (t) = k i=0 t i n -t k -i j 1 ,...,j k =0 i u=1 z ju (a 1 )z ju (a 0 ) k u=i+1 z ju (a 0 )z ju (a 0 ) = k i=0 t i n -t k -i q-1 s=1 z s (a 1 )z s (a 0 ) i q-1 s=1 z s (a 0 )z s (a 0 ) k-i = k i=0 t i n -t k -i E L (a 1 , a 0 ) i E L (a 0 , a 0 ) k-i = k i=0 t i n -t k -i (-1) i (q -1) k-i
with the notations and results of 5.2. P k (t) is equal to the Krawtchouck polynomial K n,q k (t) of parameters q and n which satisfies the following characteristic properties:

(1) deg(K n,q k ) = k (2) K n,q k (0) = (q -1) k n k (3) Orthogonality relations: for all 0 ≤ k ≤ l ≤ n 1 q n n w=0 n w K n,q k (w)K n,q l (w) = δ k,l n k (q -1) k .
The orthogonality relations are direct consequences of the orthogonality of the subspaces P k .

5.3.1. The Johnson space J w n : with the notations of subsection 2.8.2, we have shown the decomposition

C(J w n ) ≃ H w ⊥ H w-1 ⊥ • • • ⊥ H 0
but not yet the irreducibility of H i . So far their might by several P i,j , j = 1, . . . associated to H i . The zonal functions express as functions of t := |x ∩ y| the number of common ones in x and y. The orthogonality relation is easy to compute:

x∈X f (|x ∩ y|)f ′ (|x ∩ y|) = n i=0 card{x : |x ∩ y| = i}f (i)f ′ (i) = w i=0 w i n -w w -i f (i)f ′ (i) = w i=0 w i n -w i f (w -i)f ′ (w -i).
By induction on k one proves that P k,j has degree at most k in t. The conditions:

(1)

deg(Q k ) = k (2) Q k (0) = 1 (3) for all 0 ≤ k < l ≤ n w i=0 w i n -w i Q k (i)Q l (i) = 0 determine a unique sequence (Q 0 , Q 1 , . . . , Q w ).
Thus there is only one P k,j for each k and it is equal to h k Q k (wt). The polynomials Q k defined above belong to the family of Hahn polynomials.

5.3.2.

The sphere S n-1 : the distance on the sphere is the angular distance θ(x, y).

It appears more convenient to express the functions in the variable t = x • y = cos θ(x, y). A standard calculation shows that

S n-1 f (x • y)dµ(y) = c n 1 -1 f (t)(1 -t 2 ) n-3 2 dt
for some irrelevant constant c n . The conditions:

• deg(P n k ) = k • P n k (1) = 1 • For all k = l, 1 -1 P n k (t)P n l (t)(1 -t 2 )
n-3

2 dt = 0 define a unique sequence of polynomials by standard arguments (i.e. obtained by Gram Schmidt orthogonalization of the basis (1, t, . . . , t k , . . . )), it is the sequence of so-called Gegenbauer polynomials with parameter n/2 -1 [START_REF] Szegö | Orthogonal polynomials[END_REF]. The decomposition 3.3.1 of C(S n-1 ) shows that, to each k ≥ 0 the function P k (x • y) associated to H n k ≃ Harm n k is polynomial in x • y and satisfies the above conditions except the normalization of P k (1) thus we have P k (t) = h n k P n k (t).

5.3.3.

Other 2-point homogeneous spaces: as it is shown in the above examples, a sequence of orthogonal polynomials in one variable is associated to each such space. In the case of the projective spaces, it is a sequence of Jacobi polynomials. We refer to [START_REF] Kabatiansky | Bounds for packings on a sphere and in space[END_REF], [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF], [START_REF] Vilenkin | Representation of Lie Groups and Special Functions[END_REF] for their determination in many cases and for the applications to coding theory.

5.4.

Other symmetric spaces. Now we turn to other cases of interest in coding theory, where the space X is symmetric but not necessarily 2-point homogeneous.

Since the decomposition of C(X) is multiplicity free, the matrices E k (x, y) still have a single coefficient which is a member of a sequence of orthogonal polynomials, but this time multivariate. The first case ever studied (at least to my knowledge) is the case of the non binary Johnson spaces [START_REF] Tarnanen | On the nonbinary Johnson scheme[END_REF], its associated functions are two variables polynomials, a mixture of Hahn and Eberlein polynomials. We briefly discuss a few of these cases.

5.4.1.

The Grassmann spaces: [START_REF] Bachoc | Linear programming bounds for codes in Grassmannian spaces[END_REF] the orbits of X 2 are parametrized by the principal angles (θ 1 , . . . , θ m ) (4.2.2). The appropriate variables are the

y i := cos 2 θ i . The decomposition of C(G m,n ) under O(R n ) (respectively U (C n ))
together with the computation of the corresponding sequence of orthogonal polynomials was performed in [START_REF] James | Generalized Jacobi polynomials as spherical functions of the Grassmann manifold[END_REF]. We focus here on the real case. We recall that the irreducible representations of O(R n ) are (up to a power of the determinant) naturally indexed by partitions κ = (κ 1 , . . . , κ n ), where κ 1 ≥ • • • ≥ κ n ≥ 0 (we may omit the last parts if they are equal to 0). Following [START_REF] Goodman | Representations and invariants of the classical groups[END_REF], let them be denoted by V κ n . For example, V ()

n = C 1, and V (k) n = Harm k .
The length ℓ(κ) of a partition κ is the number of its non zero parts, and its degree deg(κ) also denoted by |κ| equals n i=1 κ i . Then, the decomposition of C(G m,n ) is as follows:

C(G m,n ) ≃ ⊕V 2κ n
where κ runs over the partitions of length at most m and 2κ stands for partitions with even parts. We denote by P κ (y 1 , . . . , y m ) the zonal function associated to V 2κ n . It turns out that the P κ are symmetric polynomials in the m variables y 1 , . . . , y m , of degree |κ|, with rational coefficients once they are normalized by the condition P κ (1, . . . , 1) = 1. Moreover, the set (P κ ) |κ|≤k is a basis of the space of symmetric polynomials in the variables y 1 , . . . , y m of degree at most equal to k, which is orthogonal for the induced inner product calculated in [START_REF] James | Generalized Jacobi polynomials as spherical functions of the Grassmann manifold[END_REF],

dµ = λ m i,j=1 i<j |y i -y j | m i=1 y -1/2 i (1 -y i ) n/2-m-1/2 dy i
(One recognizes a special case of the orthogonal measure associated to generalized Jacobi polynomials ([25]). 5.4.2. The ordered Hamming space: it follows from the discussion in 4.2.3 that the variables of the zonal functions are the (e 0 , e 1 , . . . , e r ). Elaborating on the computation explained above for the Johnson space, one can see that in the case of finite spaces, the weights of the induced measure are given by the number of elements of the orbits of X under the action of Stab(e) for any e ∈ X. Taking e = 0 rn , thus Stab(e) = B n ⋊ S n , and the orbit of x is the set of elements with the same shape (f 0 , . . . , f r ) as x. The number of such elements is n f 0 ...fr 2 i (i-1)e i . These are the weights associated to the multivariate Krawtchouk polynomials. 5.4.3. The space X = Γ under the action of G = Γ × Γ: we need an explicit parametrization of the conjugacy classes of Γ, which is afforded by very few groups. Famous examples (if not the only ones) are provided by the permutation groups and the unitary groups. In the first case the parametrization is by the decomposition in disjoint cycles and in the second case it is by the eigenvalues. The decomposition of C(X) is given by Peter Weyl theorem

C(Γ) = R∈R R ⊗ R *
and the associated functions P R (x, y) are the characters:

P R (x, y) = χ R (xy -1 ).
In both cases (S n and U (C n )) the irreducible representations are indexed by partitions λ and there are explicit expressions for P λ . In the case of the unitary group P λ (xy -1 ) are the so-called Schur polynomials evaluated at the eigenvalues of xy -1 . 5.5. Three cases with non trivial multiplicities. So far the computation of the matrices E k (x, y) in cases of non trivial multiplicities has been worked out in very few cases. We shall discuss three very similar cases, namely the unit sphere of the Euclidean sphere ( [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF]), the Hamming space ( [START_REF] Vallentin | Lecture notes: Semidefinite programs and harmonic analysis[END_REF]), and the projective geometry over F q ([7]), where the group considered is the stabilizer of one point. In the case of the Hamming space, this computation amounts to the computation of the Terwilliger algebra of the association scheme and was performed initially by A. Schrijver in [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF], who treated also the non binary Hamming space [START_REF] Gijswijt | New upper bounds for nonbinary codes[END_REF]. The framework of group representations was used in [START_REF] Vallentin | Lecture notes: Semidefinite programs and harmonic analysis[END_REF] to obtain the semidefinite matrices of [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF] in terms of orthogonal polynomials. We present here the uniform treatment of the Hamming space and of the projective geometry in the spirit of [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] adopted in [START_REF] Bachoc | More semidefinite programming bounds[END_REF]. We also generalize to the case of the stabilizer of many points in the spherical case and enlighten the connection with the positive definite functions calculated in [START_REF] Musin | Multivariate positive definite functions on spheres[END_REF]. 5.5.1. The unit sphere S n-1 , with G := Stab(e, O(R n )). We continue the discussion initiated in 3.3.2 and we follow [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF]. Let E n k (x, y) be the zonal matrix associated to the isotypic subspace I k related to Harm n-1 k and to its decomposition described in 3.3.2:

I k = H n k,k ⊥ H n k,k+1 ⊥ . . . We index E n k with i, j ≥ 0 so that E n k,i,j (x, y) is related to the spaces H n k,k+i , H n k,k+j .
The orbits of G on pairs of points (x, y) ∈ X 2 are characterized by the values of the three inner products u := e • x, v := e • y and t := x • y. Thus (u, v, t) are the variables of the zonal matrices and we let:

E n k (x, y) = Y n k (u, v, t). Theorem 5.1. [[4]] (14) Y n k,i,j (u, v, t) = λ k,i λ k,j P n+2k i (u)P n+2k j (v)Q n-1 k (u, v, t),
where

Q n-1 k (u, v, t) := (1 -u 2 )(1 -v 2 ) k/2 P n-1 k t -uv (1 -u 2 )(1 -v 2 ) ,
and λ k,i are some real constants.

Proof. We need an explicit construction of the spaces H n-1 k,k+i . We refer to [1, Ch. 9.8]. For x ∈ S n-1 , let

x = ue + 1 -u 2 ζ,
where u = x•e and ζ belongs to the unit sphere S n-2 of (Re

) ⊥ . With f ∈ H n-1 k ⊂ C(S n-2 ) we associate ϕ(f ) ∈ C(S n-1 ) defined by: ϕ(f )(x) = (1 -u 2 ) k/2 f (ζ).
Moreover, we recall that H n k is a subspace of the space Pol ≤k (S n-1 ) of polynomial functions in the coordinates of degree at most k. Note that the multiplication by (1-u 2 ) k/2 forces ϕ(f ) to be a polynomial function in the coordinates of x. Clearly ϕ commutes with the action of G. Hence ϕ(H n-1 k ) is a subspace of Pol ≤k (S n-1 ) which is isomorphic to Harm n-1 k . It is clear that these spaces are pairwise orthogonal. More generally, the set {ϕ(f )P (u) :

f ∈ Harm n-1 k , deg P ≤ i} is a subspace of Pol ≤k+i (S n-1 ) which is isomorphic to i + 1 copies of Harm n-1 k
. By induction on k and i there exist polynomials P i (u) of degree i such that H n-1 k,k+i := ϕ(H n-1 k )P i (u) is a subspace of H n k+i . This construction proves the decomposition [START_REF] Bachoc | Lower bounds for measurable chromatic numbers[END_REF]. Moreover, we can exploit the fact that the subspaces H n-1 k,l are pairwise orthogonal to prove an orthogonality relation between the polynomials P i . Then this orthogonality relation will enable us to identify the polynomials P i with Gegenbauer polynomials, up to the multiplication by a constant factor. Let us recall that the measures on S n-1 and on S n-2 are related by:

dω n (x) = (1 -u 2 ) (n-3)/2 dudω n-1 (ζ). Whenever i = j we have for all f ∈ H n-1 k 0 = 1 ω n S n-1 ϕ(f )P i (u)ϕ(f )P j (u)dω n (x) = 1 ω n S n-1 |f (ζ)| 2 (1 -u 2 ) k P i (u)P j (u)dω n (x) = 1 ω n S n-2 |f (ζ)| 2 dω n-1 (ζ) 1 -1
(1u 2 ) k+(n-3)/2 P i (u)P j (u)du, from which we derive that

1 -1
(1u 2 ) k+(n-3)/2 P i (u)P j (u)du = 0;

hence the polynomials P i (u) are proportional to P n+2k i (u) (thus with real coefficients..). We obtain an orthonormal basis of H n-1 k,k+i from an orthonormal basis (f 1 , . . . , f h ) of H n-1 k by taking e k,i,s = λ k,i ϕ(f s )P n+2k i (u) for a suitable normalizing factor λ k,i > 0. With these basis we can compute E n k,i,j :

E n k,i,j (x, y) = h n-1 k s=1 e k,i,s (x)e k,j,s (y) = h n-1 k s=1 λ k,i (1 -u 2 ) k/2 f s (ζ)P n+2k i (u)λ k,j (1 -v 2 ) k/2 f s (ξ)P n+2k j (v) = λ k,i λ k,j P n+2k i (u)P n+2k j (v) (1 -u 2 )(1 -v 2 ) k/2 h n-1 k s=1 f s (ζ)f s (ξ) = λ k,i λ k,j P n+2k i (u)P n+2k j (v) (1 -u 2 )(1 -v 2 ) k/2 h n-1 k P n-1 k (ζ • ξ),
where we have written y = ve + √ 1v 2 ξ and where the last equality results from the analysis of zonal functions of S n-1 . Since

ζ • ξ = (t -uv)/ (1 -u 2 )(1 -v 2 ),
we have completed the proof. 5.5.2. The unit sphere S n-1 with the action of G := Stab(e 1 , . . . , e s , O(R n )). We assume that (e 1 , . . . , e s ) is a set of orthonormal vectors. The group G := Stab(e 1 , . . . , e s , O(R n )) is isomorphic to O(R n-s ). The orbit of a pair (x, y) ∈ X 2 under G is characterized by the data: t := x • y, u := (x • e 1 , . . . , x • e s ), v := (y • e 1 , . . . , y • e s ). The decomposition [START_REF] Bachoc | Lower bounds for measurable chromatic numbers[END_REF] applied recursively shows that C(S n-1 ) decomposes as the sum of G-irreducible subspaces H k where k = (k 0 , . . . , k s ),

k 0 ≤ k 1 ≤ • • • ≤ k s ,
with the properties:

H k ⊂ H k (r) ⊂ Pol ks , H k ≃ Harm n-s k 0
where k (r) = (k s-r+1 , . . . , k s ). Thus, for a given k 0 , the multiplicity of the isotypic component

I d k 0 associated to Harm n-s k 0 in Pol ≤d is the number of elements of K d := {(k 1 , . . . , k s ) : k 0 ≤ k 1 ≤ • • • ≤ k s ≤ d}.
We construct the spaces H k like in the proof of Theorem 5.1: for x ∈ S n-1 , let

x = u 1 e 1 + • • • + u s e s + 1 -|u| 2 ζ
where u = (u 1 , . . . , u s ) and

|u| 2 = s i=1 u 2 i . Let ϕ : H n-s k 0 → C(S n-1 ) be defined by ϕ(f )(x) = (1 -|u| 2 ) k 0 /2 f (ζ). Then ϕ(H n-s k 0 ) = H k s+1 0
where k s+1 0 = (k 0 , k 0 , . . . , k 0 ) and we set, for l = (l 1 , . . . , l s ),

H k 0 ,l := u l 1 1 . . . u ls s H k s+1 0 . It is clear that H k 0 ,l ≃ G Harm n-s k 0 and that H k 0 ,l ⊂ Pol d if l 1 + • • • + l s ≤ d -k 0 thus, since K ′ d := {l = (l 1 , . . . , l s ) : l i ≥ 0, l 1 + • • • + l s ≤ d -k 0 } has the same number of elements as K d , I d k 0 = ⊕ l∈K ′ d H k 0 ,l .
In terms of the variable

[x] = q 1-x x 1 =    x if q = 1 q -x -1 q -1 -1 if q > 1 , we have n w = q w(n-w) w-1 i=0 [n -i] [w -i] = q w(n-w) [n]! [w]![n -w]! .
We have the obvious decomposition into pairwise orthogonal G-invariant subspaces:

C(X) = C(X 0 ) ⊥ C(X 1 ) ⊥ • • • ⊥ C(X n ).
The decomposition of C(X w ) into G-irreducible subspaces is described in [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]. We have

C(X w ) = H 0,w ⊥ H 1,w ⊥ • • • ⊥ H min(w,n-w),w
where the H k,w are pairwise isomorphic for equal k and different w. and pairwise non isomorphic for different k. The picture looks like:

C(X) = C(X 0 ) ⊥ C(X 1 ) ⊥ . . . ⊥ C(X ⌊ n 2 ⌋ ) ⊥ . . . ⊥ C(X n-1 ) ⊥ C(X n ) H 0,0 ⊥ H 0,1 ⊥ . . . ⊥ H 0,⌊ n 2 ⌋ ⊥ . . . ⊥ H 0,n-1 ⊥ H 0,n H 1,1 ⊥ . . . ⊥ H 1,n-1 . . . . . . H ⌊ n 2 ⌋,⌊ n 2 ⌋
where the columns represent the decomposition of C(X w ) and the rows the isotypic components of C(X), i.e. the subspaces

I k := H k,k ⊥ H k,k+1 ⊥ • • • ⊥ H k,n-k , 0 ≤ k ≤ ⌊ n 2 ⌋, with multiplicity m k = (n -2k + 1). Let, for all (k, i) with 0 ≤ k ≤ i ≤ n -k, ψ k,i : C(X k ) → C(X i ) f → ψ k,i (f ) : ψ k,i (f )(y) = |x|=k x⊂y f (x) and δ k : C(X k ) → C(X k-1 ) f → δ k (f ) : δ k (f )(z) = |x|=k z⊂x f (x)
Obviously, these transformations commute with the action of G. The spaces H k,i are defined by: H k,k = ker δ k and H k,i = ψ k,i (H k,k ). Moreover,

h k := dim(H k,k ) = n k - n k -1 .
We need later the following properties of ψ k,i :

Lemma 5.2. If f, g ∈ H k,k , (16) ψ k,i (f ), ψ k,i (g) = n -2k i -k q k(i-k) f, g . Moreover, ( 17 
) ψ i,j • ψ k,i = j -k i -k ψ k,j
Proof. [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF]Theorem 3] proves [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF]. The relation ( 17) is straightforward:

if |z| = j, ψ i,j (ψ k,i (f ))(z) = |y|=i y⊂z ψ k,i (f )(y) = |y|=i y⊂z |x|=k x⊂y f (x) = |x|=k x⊂z |y|=i x⊂y⊂z 1 f (x) = |x|=k x⊂z j -k i -k f (x) = j -k i -k ψ k,j (f )(z).
Now we want to calculate the matrices E k of size m k = (n -2k + 1) associated to each isotypic space I k . We fix an orthonormal basis (e k,k,1 , . . . , e k,k,h k ) of H k,k and we define e k,i,s := ψ k,i (e k,k,s ). It is clear from the definitions above that e k,i,s can be assumed to take real values. From ( 16), for fixed k and i, they form an orthogonal basis of H k,i with square norm equal to n-2k i-k q k(i-k) . Normalizing them would conjugate E k by a diagonal matrix, so we can omit to do it. The matrix E k is indexed with i, j subject to k ≤ i, j ≤ nk. From the construction, we have E k,i,j (x, y) = 0 if |x| = i or |y| = j; since the matrix E k is zonal, we can define P k,i,j by E k,i,j (x, y) = P k,i,j (i -|x ∩ y|) and our goal is to calculate the P k,i,j . It turns out that these functions express in terms of the so-called q-Hahn polynomials.

We define the q-Hahn polynomials associated to the parameters n, i, j with 0 ≤ i ≤ j ≤ n to be the polynomials Q k (n, i, j; x) with 0 ≤ k ≤ min(i, nj) uniquely determined by the properties:

• Q k has degree k in the variable [x].

• (Q k ) k is a sequence of polynomials orthogonal for the weights [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] and 5.3.1 correspond up to multiplication by h k to the parameters (n, w, w) and, with the notations of [START_REF] Duffin | Infinite Programs, in: Linear inequalities and related systems[END_REF], according to Theorem 2.5, again up to a multiplicative factor, Q k (n, i, j; x) = E m (i, ni, j, ix; q -1 ). The combinatorial meaning of the above weights is the following:

0 ≤ u ≤ i w(n, i, j; u) = i u n -i j -i + u q u(j-i+u) • Q k (0) = 1 The polynomials Q k defined in
Lemma 5.3. [19, Proposition 3.1] Given x ∈ X i , the number of elements y ∈ X j such that |x ∩ y| = i -u is equal to w(n, i, j; u). Theorem 5.4. If k ≤ i ≤ j ≤ n -k, |x| = i, |y| = j, E k,i,j (x, y) = |X|h k j-k i-k n-2k j-k n j j i q k(j-k) Q k (n, i, j; i -|x ∩ y|) If |x| = i or |y| = j, E k,i,j (x, y) = 0.
Proof. We proceed in two steps: the first step [START_REF] Delsarte | Spherical codes and designs[END_REF] calculates P k,i,j (0) and the second step [START_REF] Duffin | Infinite Programs, in: Linear inequalities and related systems[END_REF] obtains the orthogonality relations. Lemma 5.5. With the above notations, [START_REF] Delsarte | Spherical codes and designs[END_REF] P k,i,j (0

) = |X|h k j-k i-k n-2k j-k n j j i q k(j-k) .
Proof. We have P k,i,j (0) = E k,i,j (x, y) for all x, y with |x| = i, |y| = j, x ⊂ y. Hence 

P k,i,j (0) = 1 n j j i |x|=i,
ψ i,j (e k,i,s ) = ψ i,j • ψ k,i (e k,k,s ) = j -k i -k ψ k,j (e k,k,s ) = j -k i -k e k,j,s ,
we obtain

P k,i,j (0) = 1 n j j i h k s=1 |y|=j j -k i -k e k,j,s (y)e k,j,s (y) = j-k i-k n j j i h k s=1 |X| e k,j,s , e k,j,s = |X|h k j-k i-k n-2k j-k n j j i q k(j-k)
from [START_REF] Delsarte | An algebraic approach to the association schemes of coding theory[END_REF]. Lemma 5.6. With the above notations, [START_REF] Duffin | Infinite Programs, in: Linear inequalities and related systems[END_REF] i u=0 w(n, i, j; u)P k,i,j (u)P l,i,j (u

) = δ k,l |X| 2 h k n-2k i-k n-2k j-k q k(i+j-2k) n i .
Proof. We compute Σ := y∈X E k,i,j (x, y)E l,i ′ ,j ′ (y, z). e k,i,s (x)e l,j ′ ,t (z)|X| e k,j,s , e l,i ′ ,t

= h k s=1 h l t=1 e k,i,s (x)e l,j ′ ,t (z)|X| n -2k j -k q k(j-k) δ k,l δ j,i ′ δ s,t = δ k,l δ j,i ′ |X| n -2k j -k q k(j-k) h k s=1 e k,i,s (x)e l,j ′ ,s (z) = δ k,l δ j,i ′ |X| n -2k j -k q k(j-k) E k,i,j ′ (x, z).
We obtain, with j = i ′ , j ′ = i, x = z ∈ X i , taking account of E l,j,i (y, x) = E l,i,j (x, y),

y∈X j E k,i,j (x, y)E l,i,j (x, y) = δ k,l |X| n -2k j -k q k(j-k) E k,i,i (x, x).
The above identity becomes in terms of P k,i,j y∈X j P k,i,j (i -|x ∩ y|)P l,i,j (i -|x ∩ y|) = δ k,l |X| n -2k jk q k(j-k) P k,i,i (0).

Taking account of (18) and Lemma 5.3, we obtain [START_REF] Duffin | Infinite Programs, in: Linear inequalities and related systems[END_REF].

To finish the proof of Proposition 5.4, it remains to prove that P k,i,j is a polynomial of degree at most k in the variable [u] = [|x ∩ y|]. It follows from the reasons invoked in [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] in the case i = j (see the proof of Theorem 5).

Remark 5.7. In the case q = 1, i.e. the Hamming space, we could have followed the same line as for the sphere in order to decompose C(H n ) under the action of G. We could have started from the decomposition of C(H n ) (3) under the action of Γ := T ⋊ S n = Aut(H n ) and then we could have decomposed each space P k under the action of G = Stab(0 n , Γ). But we have a G-isomorphism from C(X w ) = C(J w n ) to P w given by:

C(J w n ) → P w f → wt(y)=w f (y)χ y
Note that the inverse isomorphism is the Fourier transform on (Z/2Z) n . So we pass from one to the other decomposition of C(H n ) through Fourier transform.

AN SDP UPPER BOUND FOR CODES FROM POSITIVE DEFINITE FUNCTIONS

In this section we want to explain how the computation of the continuous Ginvariant positive definite functions on X can be used for applications to coding theory. In coding theory, it is of great importance to estimate the maximal number of elements of a finite subset C of a space X, where C is submitted to some constraints. Typically X is a metric space with G-invariant distance d(x, y) and the constraints are related to the values taken by the distance on pairs of elements of C. In the following we concentrate on the basic case where the requirement is that the distance takes non zero values at least equal to some minimum δ. We denote by D the set of all values taken by d(x, y) and we define

D ≥δ = D ∩ [δ, +∞[ and A(X, δ) := max{card(C) : d(c, c ′ ) ≥ δ for all c = c ′ , (c, c ′ ) ∈ C 2 }.
We first focus on an upper bound for A(X, δ), which is obtained very obviously from the optimal value of the following program:

Definition 6.1. (20) m(X, δ) = inf t : F ∈ C(X 2 ), F = F, F 0 F (x, x) ≤ t -1, F (x, y) ≤ -1 d(x, y) ≥ δ
Then we obtain an upper bound for A(X, δ):

Theorem 6.2. A(X, δ) ≤ m(X, δ).
Proof. For a feasible solution F , and for C ⊂ X with d(C) ≥ δ we have

0 ≤ (c,c ′ )∈C 2 F (c, c ′ ) ≤ (t -1)|C| -|C|(|C| -1)
thus |C| ≤ t.

Now the group G comes into play. From a feasible solution F one can construct a G-invariant feasible solution F ′ with the same objective value:

F ′ (x, y) = G F (gx, gy)dg
thus we can add to the conditions defining the feasible solutions of m(X, δ) that F is G-invariant. Then we can apply Bochner characterization of the G-invariant positive definite functions (Theorem 4.11). Moreover we have also seen in Theorem 4.12 that if X is a homogeneous space, the finite sums of type [START_REF] Bump | Lie Groups[END_REF] are arbitrary close for ∞ to the G-invariant positive definite functions on X, so we can replace F by an expression of the form [START_REF] Bump | Lie Groups[END_REF] in the SDP m(X, δ). Moreover, we replace E k (x, y) with its expression Y k (u(x, y)) in terms of the orbits of pairs and we take account of the fact that F = F . All together, with the notations of subsection 4.3 we obtain the (finite) semidefinite programs:

(21) m (d) (X, δ) = inf t : F 0 0, . . . , F k 0, . . . k≥0 F k , Ỹk (u(x, x)) ≤ t -1, k≥0 F k , Ỹk (u(x, y)) ≤ -1 d(x, y) ≥ δ
where the matrices F k are real symmetric, with size m d,k , and Ỹk (u(x, y)) = Y k (u(x, y))+Y k (u(x, y)). We insist that in the above program only a finite number of integers k are to be taken account of because m d,k = 0 for a finite number of integers k. Thus we have m(X, δ) ≤ m (d) (X, δ) and lim d→+∞ m (d) (X, δ) = m(X, δ).

6.1. The 2-point homogeneous spaces. We recall that a sequence of orthogonal functions (P k ) k≥0 is associated to X such that the G-invariant positive definite functions have the expressions

F (x, y) = k≥0 f k P k (d(x, y)) with f k ≥ 0. Then m(X, δ) = inf { 1 + k≥1 f k : f k ≥ 0, 1 + k≥1 f k P k (i) ≤ 0 for all i ∈ D ≥δ }
We restate Theorem 6.2 in the classical form of Delsarte linear programming bound:

Theorem 6.3. Let F (t) = f 0 +f 1 P 1 (t)+• • •+f d P d (t). If f k ≥ 0 for all 0 ≤ k ≤ d and f 0 > 0, and if F (t) ≤ 0 for all t ∈ D ≥δ , then A(X, δ) ≤ f 0 + f 1 + • • • + f d f 0 .
Example: X = S 7 , d(x, y) = θ(x, y), d(C) = π/3. This value of the minimal angle corresponds to the kissing number problem. A very good kissing configuration is well known: it is the root system E 8 , also equal to the set of minimal vectors of the E 8 lattice. It has 240 elements and the inner products take the values ±1, 0, ±1/2. We recall that the zonal polynomials associated to the unit sphere are proportional to the Gegenbauer polynomials P n k in the variable x • y. If P (t) obtains the tight bound 240 in Theorem 6.3, then we must have P (t) ≤ 0 for t ∈ [-1, 1/2] and P (-1) = P (±1/2) = P (0) = 0 (as part of the complementary slackness conditions). The simplest possibility is P = (t -1/2)t 2 (t + 1/2) Thus the kissing number in dimension 8 is equal to 240. This famous proof is due independently to Levenshtein [START_REF] Levenshtein | On bounds for packing in n-dimensional Euclidean space[END_REF] and Odlysko and Sloane [START_REF] Odlyzko | New bounds on the number of unit spheres that can touch a unit sphere in n dimensions[END_REF]. A proof of uniqueness derives from the analysis of this bound ( [START_REF] Bannai | Uniqueness of certain spherical codes[END_REF]). For the kissing number problem, this miracle reproduces only for dimension 24 with the set of shortest vectors of the Leech lattice. For the other similar cases in 2-point homogeneous spaces we refer to [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF].

It is not always possible to apply the above "guess of a good polynomial" method. In order to obtain a more systematic way to apply Theorem 6.3, one can of course restrict the degrees of the polynomials to some reasonable value, but needs also to overcome the problem that the conditions F (t) ≤ 0 for t ∈ [-1, 1/2] represent infinitely many linear inequalities. One possibility is to sample the interval and then a posteriori study the extrema of the approximated optimal solution found by an algorithm that solves the linear program with finitely many unknowns and inequalities. It is the method adopted in [START_REF] Odlyzko | New bounds on the number of unit spheres that can touch a unit sphere in n dimensions[END_REF], where upper bounds for the kissing number in dimension n ≤ 30 have been computed. We want to point out that polynomial optimization methods using SDP give another way to handle this problem. A polynomial

Q(t) ∈ R[t] is said to be a sum of squares if Q = r i=1 Q 2 i for some Q i ∈ R[t]
. Being a sum of squares is a SDP condition since it amounts to ask that

Q = (1, t, . . . , t k )F (1, t, . . . , t k ) * with F 0.
Here k is an upper bound for the degrees of the polynomials Q i . Now we can relax the condition that

F (t) ≤ 0 for t ∈ [-1, 1/2] to F (t) = -Q(t) -Q ′ (t)(t + 1)(t - 1/2
) with Q and Q ′ being sums of squares. A theorem of Putinar claims that in fact the two conditions are equivalent (but the degree of the polynomials under the squares are unknown).

A very nice achievement of the linear programming method in 2-point homogeneous spaces is the derivation of an asymptotic upper bound for the rate of codes (i.e. for the quotient log card(C)/ dim(X)) obtained from the so-called Christoffel-Darboux kernels. This method was first discovered for the Hamming and Johnson spaces [START_REF] Mceliece | New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities[END_REF] and then generalized to the unit sphere [START_REF] Kabatiansky | Bounds for packings on a sphere and in space[END_REF] and to all other 2-point homogeneous spaces [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF]. It happens to be the best known upper bound for the asymptotic range. In [START_REF] Kabatiansky | Bounds for packings on a sphere and in space[END_REF] an asymptotic bound is derived for the density of sphere packings in Euclidean space which is also the best known. 6.2. Symmetric spaces. For these spaces, which are not 2-point homogeneous, there may be several distance functions of interest which are G-invariant. For example, the analysis of performance of codes in the Grassmann spaces for the MIMO channel [START_REF]Creignou Mathématiques pour les télécommunications multi-antennes[END_REF] involves both the chordal distance:

d c (p, q) := m i=1 sin 2 θ i (p, q)
and the product pseudo distance (it is not a distance in the metric sense):

d p (p, q) := m i=1 sin θ i (p, q).
The reformulation of Theorem 6.2 leads to a theorem of the type 6.3 for any symmetric function of the y i := cos θ i with the Jacobi polynomials P µ (y 1 , . . . , y m ) instead of the P k . For a general symmetric space, a theorem of the type 6.3 is obtained, where the sequence of polynomials P k (t) is replaced by a sequence of multivariate polynomials, and the set D δ is replaced by some compact subspace of the domain of the variables of the zonal functions, i.e. of the orbits of G acting on pairs. Then one can derive explicit upper bounds, see [START_REF] Tarnanen | Upper bounds on permutation codes via linear programming[END_REF] for the permutation codes, [START_REF] Bachoc | Linear programming bounds for codes in Grassmannian spaces[END_REF] for the real Grassmann codes, [START_REF] Roy | Bounds for codes and designs in complex subspaces[END_REF] and [START_REF]Creignou Mathématiques pour les télécommunications multi-antennes[END_REF] for the complex Grassmann codes, [START_REF] Creignou | Linear programming bounds for unitary space time codes[END_REF] for the unitary codes, [START_REF] Barg | Bounds on ordered codes and orthogonal arrays[END_REF] and [START_REF] Martin | Association schemes for ordered orthogonal arrays and (T, M, S)nets[END_REF] for the ordered codes. Moreover an asymptotic bound is derived in [START_REF] Bachoc | Linear programming bounds for codes in Grassmannian spaces[END_REF] and [START_REF] Barg | Bounds on ordered codes and orthogonal arrays[END_REF]. 6.3. Other spaces with true SDP bounds. An example where the bound [START_REF] Gijswijt | New upper bounds for nonbinary codes[END_REF] does not boil down to an LP is provided by the spaces P(n, q) endowed with the distance [START_REF] Creignou | Linear programming bounds for unitary space time codes[END_REF] for which the matrices E k are computed in section 5.5.3 (see [START_REF] Bachoc | More semidefinite programming bounds[END_REF]). In this case the group G is the largest group that acts on the SDP. Indeed, it is useless to restrict the symmetrization of the program [START_REF] Gijswijt | New upper bounds for nonbinary codes[END_REF] to some subgroup of the largest group G that preserves (X, d). However, another interesting possibility is to change the restricted condition d(x, y) ≥ δ in A(X, δ) for the conditions:

(22) d(x, y) ≥ δ, d(x, e) ≤ r, d(y, e) ≤ r
where e ∈ X is a fixed point. Then the new A(X, e, r, δ) is the maximal number of elements of a code with minimal distance δ in the ball B(e, r) ⊂ X. Here the group that leaves the program invariant is Stab(e, G). The corresponding bounds for codes in spherical caps where computed in [START_REF] Bachoc | Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps, special issue in the honor of Eichii Bannai[END_REF] using the expressions of the zonal matrices of 5.5.1.

We end this section with some comments on these SDP bounds. We have indeed generalized the framework of the classical LP bounds but the degree of understanding of the newly defined bounds is far from the one of the classical LP bounds after the work done since [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF], see e.g. [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF]. It would be very interesting to have a better understanding of the best functions F that give the best bounds, to analyse explicit bounds and to analyse the asymptotic range, although partial results in these directions have already been obtained. The fact that one has to deal with multivariate polynomials introduces great difficulties when one tries to follow the same lines as for the classical one variable cases. A typical example is provided by the configuration of 183 points on the half sphere that seems numerically to be an optimal configuration for the one sided kissing number, and for which we failed to find the proper function F leading to a tight bound (see [START_REF] Bachoc | More semidefinite programming bounds[END_REF]).

LOV ÁSZ THETA

In this section we want to establish a link between the program (20) and the so-called Lovász theta number. This number was introduced by Lovász in the seminal paper [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] in order to compute the capacity of the pentagon. This remarkable result is the first of a long list of applications. This number is the optimal solution of a semidefinite program, thus is "easy to calculate", and offers an approximation of invariants of graphs that are "hard to calculate". Since then many other SDP relaxations of hard problems have been proposed in graph theory and in other domains.

Introduction to Lovász theta number.

A graph Γ = (V, E) is a finite set V of vertices together with a finite set E of edges, i.e. E ⊂ V 2 . An independence set S is a subset of V such that S 2 ∩ E = ∅. The independence number α(Γ) is the maximum of the number of elements of an independence set. It is a hard problem to determine the independence number of a graph. The connection with coding theory is as follows: a code C of a finite space X with minimal distance d(C) ≥ δ is an independence set of the graph Γ(X, δ) which vertex set is equal to X and which edge set is equal to E δ := {(x, y) ∈ X 2 : d(x, y) ∈]0, δ[}. Thus the determination of A(X, δ) is the same as the determination of the independence number of this graph.

According to Theorem 4.11, the G-invariant positive definite functions on V are exactly the functions F (x, y) of the form:

F (x, y) = q-1 k=0 f k χ k (x)χ k (y) = q-1 k=0 f k ζ k(x-y)
q with f k ≥ 0. The ones taking real values have the form F (x, y) = ⌊q/2⌋ k=0 f k cos((xy)2kπ/q), f k ≥ 0.

When one replaces in ϑ the expression B i,j = F (i, j), the SDP transforms into a LP on the variables f k . More precisely, we compute (x,y)∈V 2 F (x, y) = q 2 f 0 and x∈V F (x, x) = q k f k . Thus we obtain (after a change of qf k to f k ):

ϑ(C q ) = max qf 0 : f k ≥ 0, 0 ≤ k ≤ ⌊q/2⌋, ⌊q/2⌋ k=0 f k = 1, ⌊q/2⌋ k=0 f k cos(2kπ/q) = 0
The optimal value of this very simple linear program, is obtained for f 1 = f 2 = • • • = f ⌊q/2⌋-1 = 0, and equals ϑ(C q ) = q 2 if q is even q cos(π/q) 1+cos(π/q) if q is odd .

Note that when q is even, the independence number of the q-gone is exactly q/2. If the independence number of a graph as simple as the q-gone is not a great deal (it is of course equal to ⌊q/2⌋), a more challenging issue is to determine its capacity. In general, the capacity C(Γ) of a graph Γ is defined to be

C(Γ) = lim n→+∞ α(Γ n ) 1/n .
Here the graph Γ n is defined as follows: its vertex set is equal to V n and an edge connects (x 1 , . . . , x n ) and (y 1 , . . . , y n ) iff for all 1 ≤ i ≤ n either x i = y i or (x i , y i ) ∈ E. Introduced by Shannon in 1956, this number represents the effective size of an alphabet used to transmit information through the channel associated to the graph Γ (where two symbols are undistinguable if they are connected by an edge). If the capacity of a graph is in general very difficult to calculate, the theta number of a graph provides an upper bound for it because ϑ(Γ n ) = ϑ(Γ) n (see [START_REF] Lovász | On the Shannon capacity of a graph[END_REF]). This upper bound is an equality for the pentagon since on one hand ϑ(C 5 ) = √ 5 from our previous computation, and on the other hand it is easy to see that α((C 5 ) 2 ) = 5 (while α(C 5 ) = 2); this is the way taken by Lovász in [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] to prove that C(C 5 ) = √ 5. The determination of the capacity of the q-gone for q odd and greater than 5 is still opened. 7.3. Relation with Delsarte bound and with m(X, δ). We introduce a slightly stronger bound for α(Γ) with ϑ ′ and its dual form: [START_REF] Lassalle | Polynômes de Jacobi généralisés[END_REF] ϑ ′ (Γ) = max i,j B i,j : B 0, B ≥ 0 i B i,i = 1, B i,j = 0 (i, j) ∈ E (26) ϑ ′ (Γ) = min t : B 0 B i,i ≤ t -1, B i,j ≤ -1 (i, j) / ∈ E Since M (x, y) ≥ 0, we still have that α(Γ) ≤ ϑ ′ (Γ). Again one can restrict in the above programs to the G-invariant matrices. It was recognized independently by McEliece, Rodemich, Rumsey, and Schrijver [START_REF] Schrijver | A comparaison of the Delsarte and Lovász bound[END_REF] that Delsarte bound of Theorem 6.3 for A(H n , δ) is equal to ϑ ′ for the graph Γ(X, δ), once the feasible set is restricted to the Aut(H n )-invariant matrices, and similarly for the other finite 2-point homogeneous spaces. Indeed, by virtue of Theorem 4.11, the matrices B turn to be of the form B(x, y) = k≥0 f k P k (d(x, y)). This symmetrization process is of great importance, not only because it has the great advantage to change an SDP to an LP, but also because it does change the complexity of the problem. Indeed, there are algorithms with polynomial complexity that do compute approximations of the optimal value of SDP's, thus algorithms with polynomial complexity in the number of vertices of Γ for ϑ. But the graphs arising from coding theory have in general an exponential number of vertices, e.g. 2 n for the Hamming graph. It is important to insist that the symmetrized theta has polynomial complexity in n. Now we can see that the program m(X, δ) (20) is a natural generalization of ϑ ′ for metric spaces under the assumptions of Section 4. We refer to [START_REF] Bachoc | Lower bounds for measurable chromatic numbers[END_REF] for a more general discussion about generalized theta where also chromatic numbers are involved.

STRENGTHENING THE LP BOUND FOR BINARY CODES

In this section we explain how the zonal matrices E k (x, y) related to the binary Hamming space computed in 5.5.3 are exploited in [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF] in order to strengthen the LP bound. We shall work with the primal programs so we start to recall the primal version of [START_REF] Gijswijt | New upper bounds for nonbinary codes[END_REF] in the case of the Hamming space.

We recall that the sequence of orthogonal functions (P k ) 0≤k≤n with P k = K k the Krawtchouk polynomials is associated to H n such that P k (d(x, y)) 0. As a consequence, we have for all k ≥ 0 (c,c ′ )∈C 2 They satisfy the properties:

(1) x 0 = 1 (2) x i ≥ 0 (3) i x i P k (i) ≥ 0 for all k ≥ 0 (4)

x i = 0 if i ∈ [1 . . . δ -1]
(5) card(C) = i x i . With these properties which are linear inequalities, we obtain the following linear program which is indeed the dual of (20):

sup { 1 + n i=δ x i : x i ≥ 0, 1 + n i=δ x i P k (i) ≥ 0 for all 1 ≤ k ≤ n } where we have taken into account P 0 = 1.

We recall that to every 0 ≤ k ≤ ⌊ n 2 ⌋, we have associated a matrix E k (x, y) 0 of size n -2k + 1. In particular, for all C ⊂ H n (see the remark 4.10), 

  g∈G e g . The restriction of the action of G to W is the trivial representation.
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 27 [Decomposition of the regular representation]

  s (x) X e i,s (y)e k,t (y)dµ(y) = d s=1 e j,s (x) e k,t , e i,s = d s=1 e j,s (x)δ k,i δ t,s = δ k,i e j,t (x).
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 21247 point homogeneous spaces: these spaces are prominent examples of Gsymmetric spaces. A metric spaces (X, d) is said to be 2-point homogeneous for the action of G if G is transitive on X, leaves the distance d invariant, and if, for (x, y) ∈ X 2 , there exists g ∈ G such that (gx, gy) = (x ′ , y ′ ) ⇐⇒ d(x, y) = d(x ′ , y ′ ).
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 3 Positive definite functions and Bochner theorem. Definition 4.8. A positive definite continuous function on X is a function F ∈ C(X 2 ) such that F (x, y) = F (y, x) and one of the following equivalent properties hold:

  s (x)e j,s (y)α(y)dµ(x, y) α i,s A i,j α j,s ≥ 0 where α i,s := X α(x)e i,s (x)dµ(x).

Remark 4 . 10 .

 410 The following properties are equivalent, for a m × m matrix function E(x, y):
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 411 F ∈ C(X 2 ) is a G-invariantpositive definite function if and only if

  i,s (x)e k,j,s (y)e l,i ′ ,t (y)e l,j ′ ,t (z) i,s (x)e l,j ′ ,t (z) y∈X e k,j,s (y)e l,i ′ ,t (y)

P

  k (d(c, c ′ )) ≥ 0. We introduce the variables x i , for i ∈ [0 . . . n] c ′ ) ∈ C 2 : d(c, c ′ ) = i}.

(c,c ′ )∈C 2 E

 2 k (c, c ′ ) 0.These constraints are not interesting for pairs because they are not stronger than the linear inequalities coming from the Krawtchouk polynomials. They are only interesting if triples of points are involved: namely we associate to (x, y, z) ∈ H 3 n the matrices F k (x, y, z) := E k (xz, yz). We have for all C ⊂ H n , and for all z ∈ H n , (c,c ′ )∈C2 

F

  k (c, c ′ , z) 0 which leads to the two positive semidefinite conditions:[START_REF] Levenshtein | Universal bounds for codes and designs[END_REF] (c,c′ ,c ′′ )∈C 3 F k (c, c ′ , c ′′ ) 0 (c,c ′ )∈C 2 , c ′′ / ∈C F k (c, c ′ , c ′′ ) 0 Theorem 5.[START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF], expresses the coefficients of E k (xz, yz) in terms of wt(xz), wt(yz), wt(xy); so with a := d(y, z), b := d(x, z), c := d(x, y), we have for some matrices T k (a, b, c),F k (x, y, z) = T k (a, b, c).We introduce the unknowns x a,b,c of the SDP. LetΩ := (a, b, c) ∈ [0 . . . n] 3 : a + b + c ≡ 0 mod 2 a + b + c ≤ 2n c ≤ a + b b ≤ a + c a ≤ b + c It is easy to check that Ω = {(d(y, z), d(x, z), d(x, y)) : (x, y, z) ∈ H 3 n }. Let, for (a, b, c) ∈ Ω, x a,b,c := 1 card(C) card{(x, y, z) ∈ C 3 : d(y, z) = a, d(x, z) = b, d(x, y) = c}. Note that x 0,c,c = 1 card(C) card{(x,y) ∈ C 2 : d(x, y) = c} thus the old variables x i (27) of the linear program are part of these new variables. We need a last notation: let t(a, b, c) := card{z ∈ H n : d(x, z) = b and d(y, z) = a} for d(x, y) = c = c i n-c a-i where ab + c = 2i

This sum is not orthogonal but we can still use it to calculate E k 0 , the change will be to AE k (x, y)A * for some invertible matrix A. The same calculation as in Theorem 5.1 shows that, (up to a change to some AY k A * ):

with the notations:

With Bochner Theorem 4.11 we recover the description of the multivariate positive definite functions on the sphere given in [START_REF] Musin | Multivariate positive definite functions on spheres[END_REF].

5.5.3. The Hamming space and the projective geometry. The set of all F qlinear subspaces of F n q , also called the projective geometry, is denoted by P(n, q). The linear group Gl(n, F q ) acts on P(n, q). The orbits of this action are the subsets of subspaces of fixed dimension, i.e. the q-Johnson spaces. If the Hamming space F n 2 is considered together with the action of the symmetric group S n , the orbits of this action are the Johnson spaces. In [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF] the Johnson space and the q-Johnson spaces are treated in a uniform way from the point of view of the linear programming method, the latter being viewed as q-analogs of the former. Thus the Johnson space corresponds to the value q = 1. In particular the zonal polynomials are computed and they turn to be q-Hahn polynomials. Here we want to follow the same line for the determination of the zonal matrices E(x, y) in both cases.

We take the following notations: if q is a power of a prime number, we let X = P(n, q) and G = Gl(n, F q ), and, if q = 1, we let X be the Hamming space, identified with the set of subsets of {1, . . . , n}, and G = S n the symmetric group with its standard action on X. Let

For all w = 0, . . . , n, the space X w is defined by

These subsets of X are exactly the orbits of G. The distance on X is given in every case by the formula

The restriction of the distance d to X w equals d(x, y) = 2(w -|x ∩ y|) and it is a well known fact that G acts 2-points homogeneously on X w . It is not difficult to see that the orbit of a pair (x, y) under the action of G is characterized by the triple

Following the notations of [START_REF] Delsarte | Hahn polynomials, discrete harmonics and t-designs[END_REF], the q-binomial coefficient n w expresses the cardinality of X w . We have

Among the many definitions of Lovász theta, we choose one which generalizes nicely to infinite graphs. For S ⊂ V , let 1 S be the characteristic function of S. Let

The following properties hold for M :

(1) M ∈ R n×n , where |V | = n, and M is symmetric

The dual program for ϑ has the same optimal value and is equal to:

The complementary graph of Γ is denoted Γ. The chromatic number χ(Γ) is the minimum number of colors needed to color the vertices so that no two connected vertices receive the same color. In other words it is a minimal partition of the vertex set with independence sets. Then the so-called Sandwich theorem holds:

Proof. The discussion prior to the theorem proves the first inequality. For the second inequality, let c : V → {1, . . . , k} be a coloring of Γ. Then the matrix C with C i,j = -1 if c(i) = c(j), C i,i = k -1 and C i,j = 0 otherwise provides a feasible solution of (24).

7.2. Symmetrization and the q-gones. Now we assume that G is (a subgroup of) the automorphism group Aut(Γ) of the graph. Then, G acts also on the above defined semidefinite programs. Averaging on G allows to construct a G-invariant optimal feasible solution B ′ from any optimal feasible solution B with the same objective value:

.

Thus one can restrict in the above programs to the G-invariant matrices. Then one can exploit the method developed in previous sections, in order to obtain a description of the G-invariant B 0 form the decomposition of the space C(V ) under the action of G. We illustrate the method in the case of the q-gone C q . There we have V = G = Z q the group of integers modulo q. Let ζ q be a fixed primitive root of 1 in C. Let χ k : Z q → C * be defined by χ k (x) = ζ kx q . The characters of Z q are the χ k for 0 ≤ k ≤ q -1 and we have the decomposition

Then, if C is a binary code with minimal distance at least equal to δ, the following inequalities hold for x a,b,c :

(1) x 0,0,0 = 1 5) and ( 6) are equivalent to [START_REF] Levenshtein | Universal bounds for codes and designs[END_REF]. Condition [START_REF] Bachoc | More semidefinite programming bounds[END_REF] translates the assumption that d(C) ≥ δ. Thus an upper bound on card(C) is obtained with the optimal value of the program that maximizes c x 0,c,c under the constraints (1) to [START_REF] Bachoc | More semidefinite programming bounds[END_REF]. This upper bound is at least as good as the LP bound because the SDP program does contain the LP program of 6.1. Indeed, the sum of the two SDP conditions ( 28) is equivalent to

We claim that this set of conditions when k = 0, 1, . . . , ⌊ n 2 ⌋ is equivalent to the set of conditions P k (d(x, y))

Up to a change of B k (x, y) to AB k (x, y)A * , we assume that E k was constructed using the decomposition of C(H n ) first under Γ := T ⋊ S n = Aut(H n ) then under G (see Remark 5.7). Clearly B k is Γ-invariant. Since x → E k,i,j (x, y) ∈ P i and P i is a Γ-module, also x → B k,i,j (x, y) ∈ P i and similarly y → B k,i,j (x, y) ∈ P j . But P i and P j are non isomorphic Γmodules for i = j thus B k,i,j (x, y) = 0 for i = j. Since P i is Γ-irreducible, B k,i,i (x, y) = λ i P i (d(x, y)) for some λ i > 0 that can be computed with B k (x, x). So we have proved that the linear program associated to H n like in 6.1 is contained in the SDP program obtained from the above conditions (1) to [START_REF] Bachoc | More semidefinite programming bounds[END_REF]. Moreover it turns out that in some explicit cases of small dimension the SDP bound is strictly better than the LP bound (see [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF]).

A similar strengthening of the LP bound for the Johnson space and for the spaces of non binary codes where obtained in [START_REF] Schrijver | New code upper bounds from the Terwilliger algebra and semidefinite programming[END_REF] and [START_REF] Gijswijt | New upper bounds for nonbinary codes[END_REF]. In the case of the spherical codes, for the same reasons as for the LP bound, one has to deal with the dual program, see [START_REF] Bachoc | New upper bounds for kissing numbers from semidefinite programming[END_REF].