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SEMIDEFINITE PROGRAMMING, HARMONIC ANALYSIS AND
CODING THEORY

CHRISTINE BACHOC

ABSTRACT. These lecture notes where presented as a course of the CIMPA
summer school in Manila, July 20-30, 2008emidefinite programming in al-
gebraic combinatoricsThis version is an update of June 2010.
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1. INTRODUCTION

In coding theory, the so-called linear programming methoitpduced by Phi-
lippe Delsarte in the seventies [16] as proved to be a veryepiolvmethod to
solve extremal problems. It was initially developed in ttemiework of association
schemes and then extended to the famil§-pbint homogeneous spaces, including
the compact real manifolds having this property (seé [18]],[[13, Chapter 9]).
Let us recall that &-point homogeneous space is a metric space on which a group
G acts transitively, leaving the distandénvariant, and such that, fgr, y) € X2,
there existg) € G such that(gx, gy) = («/,¢/) if and only if d(z,y) = d(z, /).
The Hamming spac#,, and the unit sphere of the Euclidean sp&ée! are core
examples of such spaces which play a major role in codingrghe®o such a
space is associated a sequence of orthogonal polynofdtg)s>o such that, for
allC c X,

> Pd(c,d)) = 0.
(c,c/)eC?
These inequalities can be understood as linear consti@irttse distance distribu-
tion of a code and are at the heart of the LP method.

The applications of this method to the study of codes andydesire numerous:
very good upper bounds for the number of elements of a codegiien minimal
distance can be obtained with this method, including a nurabeases where this
upper bound is tight and leads to a proof of optimality andjuaness of certain
codes, as well as to the best known asymptotic bounds [(s¢e[B305, [24], [13,
Chapter 9],[128]).

In recent years, the development of the theory of error cting codes has in-
troduced many other spaces with interesting applicatiofs.cite a few, codes
over various alphabets associated to various weights tgpnecodes, codes for the
multi antenna systems of communications involving more gia@ated manifolds
like the Grassmann spaces, have successively focuseti@tteRor these spaces
there was a need for a generalization of the classical frammeuwf the linear pro-
gramming method. This generalization was developed foresofrthese spaces,
see [44], [[45], 2], [37]. It turns out that in each of thess&s, a certain sequence
of orthogonal polynomials enters into play but unlike thassical cases, these
polynomials are multivariate.

Another step was taken when A. Schrijver in|[40] succeedeinfmrove the
classical LP bounds for binary codes with the help of semidefiprogramming.
To that end he exploiteBDP constraints on triples of pointather than on pairs,
arising from the analysis of the Terwilliger algebra of thariiming scheme. His
method was then adapted to the unit sphere [4] in the franteafathe represen-
tations of the orthogonal group. The heart of the method mvidence matrices
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Zy(z,y, z) such that for allC' C X,
Z Zi(e,d,d") = 0.

(¢, c")eC?

Another motivation for the study of SDP constraints fetuples of points can
be found in coding theory. It appears that not only functiongairs of points such
as a distance functiod(z, y) are of interest, but also functions @rtuples have
relevant meaning, e.g. in connection with the notion ofdstoding.

In these lecture notes we want to develop a general framebaskd on har-
monic analysis of compact groups for these methods. In vigiheoeffective ap-
plications to coding theory, we give detailed computatimnsiany cases. Special
attention will be paid to the cases of the Hamming space attikadinit sphere.

Section 2 develops the basic tools needed in the theory ofgeptations of fi-
nite groups, section 3 is concerned with the representattbnompact groups and
Peter Weyl theorem. Section 4 discusses the needed nofidraroonic analy-
sis: the zonal matrices are introduced and the invariantiymslefinite functions
are characterized with Bochner theorem. Section 5 is dévotexplicit computa-
tions of the zonal matrices. Section 6 shows how the detextioim of the invariant
positive definite functions leads to an upper bound for cadds given minimal
distance. Section 7 explains the connection with the dedélovasz theta num-
ber. Section 8 shows how SDP bounds can be used to strengighefassical LP
bounds, with the example of the Hamming space.

1.1. Notations: for a matrix A with complex coefficientsA* stands for the trans-
posed conjugate matrix. A squared matrix is said to be hizmit A* = A and
positive semidefinite if it is hermitian and all its eigenvas$ are non negative. This
property is denoted! > 0. We follow standard notations for sets of matrices: the
set ofn x m matrices with coefficients in a fiel is denotedK™>™; the group

of n x n invertible matrices byGl(K™); the groupU(C") of unitary matrices,
respectivelyO(R™) of orthogonal matrices is the set of matricése G1(C"), re-
spectivelyA € GI(R™) such thatd* = A~!. The spac&C™*™ is endowed with
the standard inner produ¢ti, B) = Trace(AB*) = >_, ; A; jB; j. The number
of elements of a finite seX is denotedtard(X) of | X|.

2. LINEAR REPRESENTATIONS OF FINITE GROUPS

In this section we shortly review the basic notions of graejresentation theory
that will be needed later. There are many good referencdkifotheory e.g.[[41],
or [38] which is mainly devoted to the symmetric group.

2.1. Definitions. Let G be a finite group. A (complex linear) representatiorGof
is a finite dimensional complex vector spaé¢dogether with a homomorphism

p:G— GlV)

whereGl1(V) is the general linear group &f, i.e. the set of linear invertible trans-
formations ofl/. The degree of the representatign V') is by definition equal to
the dimension of/.

Two representations af say (p, V) and (p/, V') are said to be equivalent or
isomorphic if there exists and isomorphism V' — V' such that, for aly € G,

p'(g) = up(g)u".
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For example, the choice of a basis Wfleads to a representation equivalent to
(p, V) given by(p’, C%) whered = dim (V') andy'(g) is the matrix ofp(g) in the
chosen basis. In general, a representatiofd sfich thafi” = C¢ is called a matrix
representation.

The notion of a&7-module is equivalent to the above notion of representatiah
turns out to be very convenient. &-module, or a7-space, is a finite dimensional
complex vector spac¥ such that for ally € G, v € V, gv € V is well defined
and satisfies the obvious propertiés: = v, g(hv) = (gh)v, g(v+w) = gv + gw,
g(Av) = A(gv) for g,h € G, v,w € V, A € C. In other wordsV is endowed
with a structure ofC[G]-module. One goes from one notion to the other by the
identificationgv = p(g)(v). The notion of equivalent representations corresponds
to the notion of isomorphi¢r-modules, an isomorphism @f-modules being an
isomorphism of vector spaces: V' — V' such thatu(gv) = gu(v). Note that
here the operations @ on V and V"’ are denoted alike, which may cause some
confusion.

2.2. Examples.

e The trivial representatioft: V = C andgv = v.

e Permutation representations: [Etbe a finite set on whicl’ acts (on the
left). Let Vx := ®.exCe,. A natural action ofG on Vx is given by
gex = egy, and defines a representation(ofof degreg X |. The matrices
of this representation (in the badis, }) are permutation matrices.

— The symmetric grougb,, acts onX = {1,2,...,n}. This action
defines a representation of degreef S,,.
— Forallw, 1 < w < n, S, acts onthe seX, of subsets of 1,2, ... ,n}

of cardinalw. In coding theory an element of,, is more likely
viewed as a binary word of length and Hamming weightv. The
spacesX,, are called the Johnson spaces and dengféd
e The regular representation is obtained with the specia &as= G with
the action ofG by left multiplication. In the casé& = S, it has degree
nl.. It turns out that the regular representation containbialtling blocks
of all representations daf.
e Permutation representations againGifacts transitively onX, this action
can be identified with the left action ¢f on the left coset&//H = {¢gH :
g € G} whereH = Stab(x) is the stabilizer of a base point.

— The symmetric groug,, acts transitively onX = {1,2,...,n} and
the stabilizer of one point (say) can be identified with the symmetric
groupS,,—; acting on{1,...,n — 1}.

— The action ofS,, on J}Y is also transitive and the stabilizer of one point
(say1¥0"") is the subgrougbyy, . wy X S{w41,...,n) iISOMorphic to
Sw X Sp_w-

— The Hamming spacé,, = {0, 1}" = F% affords the transitive action
of G = T x S, whereT is the group of translations = {t, : u €
H,}, t,(v) = u + v andS, permutes the coordinates. The stabilizer
of 0™ is the group of permutations,,.

o Another way to see the permutation representations is tteviag: let

-----

C(X)={f: X =>C}
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be the space of functions frofi to C. The action ofG on X extends to a
structure ofG-module onC(X) given by:

9f (@) = f(g~'x).

For the Dirac functions), (0,(z) = 1 if + = y, 0 otherwise), the ac-
tion of G is given bygd, = d,, thus this representation is isomorphic to
the permutation representation defined®y This apparently more com-
plicated presentation of permutation representationgif@advantage to
allow generalization to infinite groups acting on infinitesps as we shall
encounter later.

2.3. Irreducibility. LetV be aG-module (respectively a representatign 1) of
(). A subspacélV C V is said to bez-invariant (orG-stable, or aG-submodule,
or a subrepresentation b, 1)), if gw € W (respectivelyp(g)(w) € W) for all
geGweWw.
Example: V = Vg andW = Ceqg with e = dec eq. The restriction of the
action of G to W is the trivial representation.

A G-moduleV is said to be irreducible if it does not contain any subsgéce
W # {0}, V, invariant undeiG. Otherwise it is called reducible.
Example: The G-invariant subspaces of dimensidérare necessarily irreducible.
If G is abelian, aG-module of dimension greater thancannot be irreducible,
because endomorphisms that pairwise commute afford a conais of eigen-
vectors.

The main result is then the decomposition @fanodule into the direct sum of
irreducible submodules:

Theorem 2.1(Maschke’s theorem)Any G-moduleV # {0} is the direct sum of
irreducible G-submoduledi, ..., Wy:

(1) V=W oWa® - ®W,.

Proof. By induction, it is enough to prove that adrsubmodulell of V' affords
a supplementary subspace which is alstvariant. The main idea is to construct
a G-invariant inner product and then prove that the orthogohdl” for this inner
product makes the job.

We start with an inner produgctr, y) defined onV. There are plenty of them
sinceV is a finite dimensional complex vector space. For exampleamecboose
an arbitrary basis di’ and declare it to be orthonormal. Then we average this inner
product onG, defining:

(@,y) == (g2, gy)-

geG

Itis not difficult to check that we have defined a inner produicich isG-invariant.
It is also easy to see that

Wt={veV:(vw)=0foralwe W}
is G-invariant, thus we have the decompositionmodules:

V=wawt
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It is worth to notice that the above decomposition may nottique. It is clear
if one thinks of the extreme cage = {1} for which the irreducible subspaces are
simply the one dimensional subspace¥ofThe decomposition df into the direct
sum of subspaces of dimensibrs certainly not unique (iflim(V") > 1 of course).
But uniqueness is fully satisfied by the decomposition istiyipic subspaces. In
order to define them we take the following notation: ketbe a complete set of
pairwise non isomorphic irreducible representations/ofWe have seen that any
G-module affords & -invariant inner product so the action @fon R is expressed
by unitary matrices in a given orthonormal matrix®f According to the context
we view R either as a-module or as a homomorphisgn— R(g) € U(C™). It
will turn out that there is only a finite number of them but weédaot proved it yet.
The isotypic subspacgr of V associated té& € R is defined, with the notations

of (@), by:
(2) IR = @w,~rW;.

Theorem 2.2. Let R € R. The isotypic spacesi do not depend on the decom-
position ofV” as the direct sum af-irreducible subspaces. We have the canonical
decomposition

V = ®rerLr.
Any G-subspacelV C V such thatiW ~ R is contained inZrp and anyG-
irreducible subspace dfy is isomorphic toR. A decomposition into irreducible
subspaces dfr has the form

Ip=W1 D - & Wpy

with W, ~ R. Such a decomposition is not unique in general but the numibger
does not depend on the decomposition and is called the mitippf R in V.

Moreover, ifV is endowed with &-invariant inner product, then the isotypic
spaces are pairwise orthogonal.

Proof. We start with a lemma which points out a very important progpef irre-
ducibleG-modules.

Lemma 2.3 (Schur Lemma) Let R; and R, two irreducible G-modules and let
¢ : Ry — Ry be aG-homomorphism. Then either= 0 or ¢ is an isomorphism
of G-modules.

Proof. The subspaceker ¢ andim ¢ are G-submodules of respectivelg; and
Rs thus they are equal to eith¢d} or R;. O

We go back to the proof of the theorem. We start with the deamitipn (1)
of V' and the definition[{2) o, a priori depending on the decomposition. Let
W c V, aG-submodule isomorphic t&. We apply Lemma2]3 to the projections
pw, and conclude that eithexy, (W) = {0} or pw, (W) = W; and this last case
can only happen itV ~ W,. It proves thati¥ C Zgi and that aG-irreducible
subspace afz can only be isomorphic t&. It also proves that

Ip = Z 144
WcCcV,W~R

hence giving a characterization 8§ independent of the initial decomposition.
The numbemr must satisfydim(Zr) = mpr dim(R) so it is independent of the
decomposition of i.



SDP, HARMONIC ANALYSIS AND CODING THEORY 7

If V is equipped with & -invariant inner product, we consider orthogonal pro-
jections. Schur Lemma shows thBfy (W') = {0} or= W if W andW’ are
irreducible. Thus if they are n@t-isomorphic,)” andW’ must be orthogonal.

O

2.4. The algebra of G-endomorphisms. Let V' be aG-module. The set of-
endomorphisms o¥ is an algebra (for the laws of addition and compaosition) de-
notedEndq (V). The next theorem describes the structure of this algebra.

Theorem 2.4.1f V ~ ®rcr R™E, then

Endg (V) ~ H CmEXMR,
ReER

Proof. The proof is in three steps: we shall assume first R is irreducible, then
V ~ R™, then the general case. Schur Lemima 2.3 is the main tool here.

If Visirreducible, letp € Endg (V). SinceV is a complex vector space,has
got an eigenvalue. Theny — A 1d is aG-endomorphism with a non trivial kernel
so from Schur Lemma — A Id = 0. We have proved that

Endg(V)={A\Id,A € C} ~C.
We assume now that ~ R™ and we fix a decompositioll = Wy @ --- & W,,.
Foralll <i < j <m,letu;; : W; — W; an isomorphism o&;-modules such
that the relations
Uk,j O Uji = Uk andum- =1d
hold for all i, j, k. Lety € Endg(V'); we associate t@ an element oC™*™ in

the following way. From previous discussion of the irredhlieicase it follows that
for all 7, j there existsi; ; € C such that, for alb € W,

ij o ap(v) = aj,iuj,i(v).

The matrixA = (a; ;) is the matrix associated tp. The proof that the mapping
@ — A is an isomorphism of algebras carries without difficultied & left to the
reader.

In the general cas&] = ©rcrZr. Lety € Endg (V). Itis clear thatp(Zg) C
Ir thus

Endg(V) = ©rer Ende(Zr)
and we are done. O
It is worth to notice thaEnd (V') is a commutative algebra if and only if all the

multiplicities m  are equal to eithdror 1. In this case we say th&t is multiplicity
free. Itis also the unique case when the decomposition frgducible subspaces

(@) is unique.

2.5. Orthogonality relations. Another important result which is a consequence
of Schur lemma is the orthogonality relations between th&imeoefficients of
the elements oR:

Theorem 2.5.For R € R, letdr := dim(R). Forall R, S € R, i, 5, k,,

1
(Rij, Sky) = £5R,s5i,k5j,l-
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Proof. For A € C4rxds | |et

1

=@ > R(g)AS(g)"".
geG

This matrix satisfief?(g)A’ = A’S(g) for all g € G. In other words it defines
an homomorphism ofi-modules from(C%, S) to (C%7, R). Schur lemma shows
thatif S # R, A = 0and ifS = R, A = AId. Computing the trace of’
shows that\ = Trace(A)/dgr. TakingA = E; ; the elementary matrices, with the
property thatS(g)~! = S(g)*, leads to the announced formula. O

A/

2.6. Characters. The character of a representatin V') of G is the function
X, : G — C defined by

Xp(g) = Trace(p(g)).
As a consequence of the standard property of traces of mafficice(AB) =
Trace(BA), the character of a representation only depends on its@quie class,
and itis a complex valued function @awhich is constant on the conjugacy classes
of G (such a function is called a class function). The inner pocbad any twoy,
¥ € C(G) is defined by

(o) = ﬁ S X(9)9().

geG
We have the very important orthogonality relations betwelgaracters:

Theorem 2.6(Orthogonality relations of the first kind)Let x and x’ be respec-
tively the characters of two irreducible representatidipsV’) and (o', V') of G.

Then
1 ifp~p
A
o) = {0 otherwise.

Proof. It is a straight forward consequence of Theofflend 2.5, sinedrtice of a
representation is the sum of the diagonal elements of anyadgnt matrix repre-
sentation. O

A straightforward consequence of the above theorem is(thatyr) = mr
for all R € R. This property is a very convenient tool to study the irrebligc
decomposition of a given representatign V') of G; in particular it shows that a
representation is irreducible if and only if its charactesatisfies(y, x) = 1. In
the case of the regular representation it leads to the follpwery important result:

Theorem 2.7. [Decomposition of the regular representation]
C(G) ~ ®rer RI™W)
Proof. Compute the character of the regular representation. O

A consequence of the above theorem is the finiteness of théewof irre-
ducible representations of a given finite group, togethdn thie formula

Gl = (dim(R))?
RER
which shows e.g. completeness of a given set of irreducibiaodules.
A second consequence of the orthogonality relations isahiapresentation of
G is uniquely characterized up to isomorphism by its characte
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Theorem 2.8.
(p> V) = (p/> V/) < Xp = Xp'-

Proof. If x, = x,/, the multiplicities of an irreducible representation(@fare the
same inV andV’, henceV ~g V', O

Let us denote by?(G) the subspace of elements@fG) which are constant on
the conjugacy classes,, . .., C, of G. The dimension of?(G) is obviously the
numbers of conjugacy classes @f. We have seen that the charactggs of the
irreducible representations 6f belong toR(G) and form an orthonormal family.
It turns out that they in fact form a basis &f(G), which in other words means
that the number of irreducible representationg~af exactly equal to its number
of conjugacy classes.

Theorem 2.9.
R(G) = ®rerCxkr-

Proof. It is clear thatC(G) = C[G]de. ThusEndg(C(G)) ~ C[G]. In particular,
the center oEnd¢(C(G)) is isomorphic to the centef (C[G]) of C[G]. Itis easy

to verify that the center of [G] is the vector space spanned by the elemapts-

> _gec; g associated to each conjugacy clés®f G, thusZ(C[G]) is of dimension

s the number of conjugacy classes@f On the other hand, as a consequence of
Theoren{ 217 and Theorem 2.4, we h@ed:(C(G)) ~ []zer C4R*R where

dr = dim(R). Thus the center oEndg(C(G)) is isomorphic toCRl and we
have proved that the number Gtirreducible modules is equal to the number of
conjugacy classes @f. O

Remark 2.10. There is not in general a natural bijection between the setooi
jugacy classes aff and the set of its irreducible representations. Howevetha
special case of the symmetric grodp, such a correspondance exists. The conju-
gacy classes are naturally indexed by the partitionsf n and to every partition
of n is associated an irreducible modu$2 also called a Specht module (J28]).

2.7. Induced representation and Frobenius reciprocity. Induction is a way to
construct representations of a gratifirom representations of its subgroups. Look-
ing at the irreducible subspaces of representations thahduced from subgroups
is a very convenient way to find new irreducible represenmatiof a groug=. In-
duction is an operation on representations which is dudldaasier to understand
restriction. IfV is aG-module andH is a subgroup o, the restrictiorRes% (V)

is simply the spacé  considered as &[H|-module. IfV is an H-module, we
defineInd% (V') to be theC[G]-module

Indg(V) = (C[G] ®(C[H] V.

Here we exploit the bi-module structure @{G] (the tensor product ovet|[H]
means thaby ® v = A ® pv whenp € C[H]). A more explicit (but less intrisic)
formulation for this construction is the following: ¢ty ..., z;} be a complete
system of representatives 6%/ H, so thatG = x;H U --- Uz, H. Then

Ind%(V) = @l z;V

where the left action of~ is as follows: for alli, there isj andh € H both
depending ory such thatgx; = x;h. Thengz;v := x;(hv) wherehv € V. A
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third construction ofnd% (V) is the following:
Ind% (V) = {f : G — V such thatf (gh) = h ™' f(g)}.

The equivalence of these three formulations is a recomntkexiercise !

Example: The permutation representation@fon X = G/H is nothing else than
the induction of the trivial representation &f. In short,C(X) = Ind% 1.

Since the induction of two isomorphig-modules leads to isomorphié¢-modules
and similarly for the restriction, these operations acttendharacters thus we de-
note similarIyResg X Indg x the characters of the corresponding modules.

Lemma 2.11. Let y be a character ofi. The induced charactdmdfl x IS given
by the formula:

1 _
Ind%x(g)=@ > x(@ lgn).
zeG
x lgzeH

Proof. We take a decompositidmd¥ (V) = 2,V @- - - @,V where{zy, ...z}
are representatives 6f/ H. Sincegz;v = x;hv with the notations above(z;V') C
x;V and the blocke; V' will contribute to the trace of — gz only whenj = i,
which corresponds to the case WhEZT’Ilgaci € H. Then, the multiplication by
onz;V acts like the multiplication by, = :U;lg:vl- on V. Thus we have

md% x(g) = > x(x;'gz:)
1<i<t
xflgmiGH

=g X e

rzeG
x lgzeH

The duality between the operations of restriction and itidnds expressed in
the following important theorem:

Theorem 2.12(Frobenius reciprocity)Let H be a subgroup ofr and lety andz)
be respectively a character &f and a character of7. Then

(Ind x,¥) = (x, Resf; ).



SDP, HARMONIC ANALYSIS AND CODING THEORY 11

Proof. Let y : G — C be defined by:x(g9) = x(g) if g € H andx(g) = 0 if
g ¢ H (of coursey is not a character af). We computeInd$ x, ¥):

(Ind% x, ) K;‘jz:lnd
zeG

- e 2 (L )7

geG  zeG

|G||H|Z 2 X gw)i(o))

zeG geG

|G||H| 2 (2 X&)legs™)

Z X, RGSH ¢>
O

2.8. Examples from coding theory. In coding theory we are mostly interested in
the decomposition of (X') under the action ofr = Aut(X) for various spaces
X. We recall that the action aF on f € C(X) is given by(gf)(z) = f(g~'z).
The spac€(X) is endowed with the inner product

= 3 2 ST

zeX

which isG-invariant.

2.8.1. The binary Hamming spaceH,,: recall thatG = T'x S,,. Let, fory € H,,,

xy € C(Hy) be defined byy,(z) = (—1)*Y. The set{x,,y € H,} is exactly

the set of irreducible characters of the additive grbpand form an orthonormal

basis ofC(H,,). The computation of the action ¢f on y, shows that for € S,
OXy = Xo(y) @nd fort, € T, t,x, = (=1)"¥x,. Let, for0 < k <n,

Py := Ly wt)=k Cxy

Thus P, is a G-invariant subspace af(H,,) of dimension(}) and we have the
decomposition

3) C(H)=PyLP L - LP,

The computationx p,, xp,) = 1 Whereyp, is the character of th&-module P,
shows that these modules @reirreducible.
Now we introduce the Krawtchouk polynomials. The elemént= 3, ;.\ Xy

of C(H,,) is S,-invariant. In other wordsZ (x) only depends owt(z). We define
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the Krawtchouk polynomiak(;, for 0 < k£ < n by

(4) Kp(w):=Zp(x) = Y (—1)"Y wherewt(x) = w
wt(y)=k

- ifw)[n—w
o R
We review some properties of these polynomials:
(1) deg(Ky) =k
(2) Ki(0) = ()

(3) Orthogonality relations: forall < k <l <n

2% Y <Z)>Kk(w)Kl(w):5k,l<Z>

w=0

The last property is just a reformulation of the orthogdyadf the Z;, € P, since,
if f,f" € C(H,) areS,-invariant, andf (w) := f(x), wt(z) = w,

(7Y =50 3 F@)f @)

ZEEHn
= LS (M) )
oo = \w '
The above three properties characterize uniquely the Krawik polynomials.

LetC C H, be a binary code. Let~ be the characteristic function 6f. The
obvious inequalities hold:

(6) 0<k<n, Y. {lo,x)’>0.
wt(y)=k

Since the decomposition af- over the basig, reads

o= ) (1o, X)Xy

yeHn

the above inequalities are indeed reformulations of thenegativity of the squared
norm of the projectiongp, (1¢). They express in terms of the Krawtchouk poly-
nomials:

() 0<k<n - > Ep(dg(x,2')) >0

22n
(x,z")eC?

or equivalently in terms of the distance distribution of toeleC': if
A,(C) = (') € CF s dn(e.a') = w)]
then
0<k<n, % Zn:ko(C)Kk(w) > 0.

These inequalities are the basic inequalities involved éts&rte linear program-
ming method. We shall encounter similar inequalities iny ¢general setting.
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In the special case whefi is linear, we have

C
I )

]_ =
< C7Xy> 9

so that we recognise the identity

C
> el = f X Aue

wt(y)=k

to be the Mac Williams identity

= 10] 4 ZA

The more generaj-ary Hamming space affords similar results; it is treated in
B.3.

2.8.2. The Johnson spaced,’: the group iS5 = S,,. Here, we shall see at work

a standard way to evideneg-submodules as kernels 6--endomorphisms. For
details we refer ta [17] where theJohnson spaces are given a uniform treatment.
We introduce the applications

§:C(JY) = C(Jvh)
Feo(f):6NH@) = > [

yeJy, zCy

and
¢ CJYN = C(IY)
Fed(f) (@) = > f)

w—1

yeJn T, yCox

Both of these applications commute with the actiorzofThey satisfy the follow-
ing properties{f, ¥ (f")) = (6(f), f'), ¢ is injective and is surjective. Therefore
the subspace @(JY):

H, :=kerd

is aG-submodule of dimensiof) — (") and we have the orthogonal decom-
position

C(Jy) = Hy L (C(Jy™H)) = Hy L C(JP7).
By induction we obtain a decomposition
C(J¥)~H, L Hy 1 L--- L Hy
which can be proved to be the irreducible decompositiofi(df’) (see 5.3.11).

3. LINEAR REPRESENTATIONS OF COMPACT GROUPS

In this section we enlarge the discussion to the representdteory of compact
groups. For this section we refer {0 [12].
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3.1. Finite dimensional representations. The theory of finite dimensional repre-

sentations of finite groups extends nicely and straightéodly to compact groups.

A finite dimensional representation of a compact gréiifs a continuous homo-

morphismp : G — G1(V') whereV is a complex vector space of finite dimension.
A compact group’ affords a Haar measure, which is a regular left and right

invariant measure. We assume this measure to be normalieethe groups has

measurd. With this measure the finite sums over elements of a finitagoan be

replaced with integrals; so the crucial construction @f-&nvariant inner product

in the proof of Maschke theorem extends to compact grougs tivé formula

(z,y) = /G<9w,gy>dg.

Hence Maschke theorem remains valid for finite dimensioepitesentations. We
keep the notatiofk for a set of representatives of the finite dimensional irodula
representations af, chosen to be representations with unitary matrices. A main
difference with the finite case is th& is not finite anymore.

3.2. Peter Weyl theorem. Infinite dimensional representations immediately oc-
cur with the generalization of permutation representatidndeed, ifG acts con-
tinuously on a spacé, it is natural to consider the action 6fon the spac€(X)
of complex valued continuous functions éhgiven by(gf)(z) = f(g~'z) to be
a natural generalization of permutation representatiértgpical example of great
interest in coding theory is the action 6f = O(R™) on the unit sphere of the
Euclidean space:

Shi={zeR" : x-x=1}.
The regular representation, which is the special ¢4€&), with the left action of
G on itself, can be expected to play an important role simdahe finite case. It
is endowed with the inner product

1) = /G f(9)F(g)dg.

For R € R, the matrix coefficienty — R; ;(g) belong to unitary matrices. The-
orem[2.5 establishing the orthogonality relations betwienmatrix coefficients
of the elements oR remains valid; thus they form an orthogonal syster@ (i&).
The celebrated Peter Weyl theorem asserts that these datespam a vector space
which is dense i€ (G) for the topology of uniform convergence.

Theorem 3.1. [Peter Weyl theorem] The finite linear combinations of thections
R; ; are dense i€ (G) for the topology of uniform convergence.

Proof. We give a sketch of the proof:

(1) If Vis afinite dimensional subspace{fl”) which is stable by right trans-
lation (i.e. bygf(x) = f(zg)) andf € V, thenf is a linear combination
of a finite number of theR; ;: according to previous discussion, there is
a decompositio/ = Wy & --- & W, such thatW is irreducible. If
Wi, ~ R, there exists a basis, . .., eq,, of W}, in which the action of7
has matricesR. Explicitly,

dr
ej(hg) = Rij(g)ei(h).
=1
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Takingh = 1, we obtaine; = 2%, ¢;(1)R; ;.

(2) The idea is to approximatg € C(G) by elements of such subspaces,
constructed from the eigenspaces of a compact selfadjpiettator. We
introduce the convolution operators: et C(G),

Ty(F)(g) = (6% F)g) = /G (gh=1) £ (h)dh.

(3) SinceG is compact,f is uniformly continuous; this property allows to
choosep such that| f — T}, (f)||~ is arbitrary small.

(4) The operatofl}; is compact and can be assumed to be selfadjoint. The
spectral theorem for such operators on Hilbert spaces (ifI&)) asserts
that the eigenspacds, := {f : T,,f = Af} for A # 0 are finite dimen-
sional and that the space is the direct Hilbert sggl/,. Fort > 0, the
subspace¥; := ©V) |\, have finite dimension (i.e. there is only a finite
number of eigenvalues with [\| > ¢ > 0).

(5) The operatofl;, commutes with the action af by right translation thus
the subspaceg), are stable under this action.

(6) Let fy be the projection off on V). The finite sumsf; := ZWN I
converge tof — f, for the L?-norm whent — 0.

(7) Moreover, for allf € C(V), [T5(f)lloc < lI@lloc fll>- Thus, Ty(f:)
convergesuniformlyto 7, ( f — fo) = Ty(f). Finally, T, (f;) € V; andV; is
finite dimensional and invariant under the actiorColby right translations,
thus by (1)T4(f;) is a linear combinations of thg; ;.

O

If dp = dim(R), the vector space spanned bR, j,i = 1,...,dg} is G-
invariant and isomorphic t&. So Peter-Weyl theorem means that the decomposi-
tion of the regular decomposition is

C(G) =Lprer Ir

whereZr ~ R%r, generalizing Theorem 2.7 (one has a better understanding o
this decomposition with the action 6f x G on G given by(g, ¢')h = ghg'~*. For
this actionC(G) = ®rer R ® R* whereR* is the contragredient representation,
andR ® R* is G x G-irreducible).

Since uniform convergence is stronger thihconvergence, we also have as
a consequence of Peter Weyl theorem that the matrix coefficie; ; (suitably
rescaled) form an orthonormal basisIgf(G) in the sense of Hilbert spaces.

A slightly more general version of Peter Weyl theorem dedth the decom-
position of C(X) where X is a compact space on whick acts homogeneously.
If G, is the stabilizer of a base pointy € X, thenX can be identified with the
quotient spacé&’/G,,. The Haar measure aH gives rise to aG-invariant regular
measurg: on X andC(X) is endowed with the inner product

h= L @)@ due
1) = = [ S @uta).

The spac€(X) can be identified with the spacéG)“+o of G, -invariant (for the
right translation) functions thus(X') affords a decomposition of the form

C(X) ~Lprer R™"
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for some integersng, 0 < mpr < dg, in the sense of uniform as well d
convergence.

A more serious generalization of the above theorem dealsthét unitary rep-
resentations ofs. These are the continuous homomaorphisms fé@to the unitary
group of a Hilbert space.

Theorem 3.2. Letw : G — U(H) be a continuous homomorphism fragto
the unitary group of a Hilbert spacé&. ThenH is a direct Hilbert sum of finite
dimensional irreduciblez-modules.

Proof. The idea is to construct in H@-subspace of finite dimension and then to
iterate with the orthogonal complement of this subspaceth@bend, for a fixed

v € H, one chooseg € C(G) such thatf, f(g)(m(g9)v)dg # 0. From Peter
Weyl theorem, f can be assumed to be a finite linear combination of ffe.

In other words, there exists a finite dimensional unitaryesentationp, V') and
e1,ea € V such thatf(g) = (p(g~')e1, e2)y. The operatofl” : V — H defined

by
T(x) = /G (p(g™"), e2)y (m(g)v)dg

commutes with the actions @ and is non zero. Thus its image is a non zero
G-subspace of finite dimension éf.
O

3.3. Examples.

3.3.1. The unit sphere S™~!: itis the basic example. The orthogonal grasip=
O(R™) acts homogeneously o$"~!. The stabilizerG,,, of z; can be identified
with O(zg) ~ O(R"1). Hereu = w is the Lebesgue measure SA~1. We set
wy, = w(S™1). The irreducible decomposition 6{S" 1) is as follows:

C(S"™Y“W=Hy LH} L. . .HL...
whereH}! is isomorphic to the spadéarm;j of harmonic polynomials:

Harmp :={P € C[Xy,...,. XyJp : AP =0,A= ) —

The spacélarmy is aO(R"™)-module because the Laplace operatocommutes
with the action of the orthogonal group and it is moreovexdrrcible. Its dimen-
sion equald := (""" 1) — ("I%?). The embedding dffarm{ into C(S™ ') is
the obvious one, to the corresponding polynomial functiothen coordinates.

3.3.2. The action of stabilizers of many points: for our purposes we are inter-
ested in the decomposition of some space¥ ), X homogeneous fofz, for the
action of a subgroup! of G, typically H = G, .. ., the stabilizer ofs points. In
order to describe it, it is enough to study the decompositibthe G-irreducible
submodules of (X') under the action of{; thus we have to decompose only fi-
nite dimensional spaces. However, because the same iilbeluepresentation
of H may occur in infinitely many of thé&-isotypic subspaces, it happens that
the H-isotypic subspaces are not of finite dimension. A typicanagle is given
by X = S}, G =OR") andH = G. ~ O(R"!). Itis a classical result
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that for the restricted action td the decomposition dffarm;; into H-irreducible
subspaces is given by:
k
(8) Harmp} ~ EB Haulrm:-h1 .
i=0
Hence, each of th&/}! in (3.3.1) decomposes likewise:

where H, ~ Harm?fl. We have the following picture, where thé-isotypic

components appear to be the rows of the second decompaosition

c(s" Yy =¢ Hy L Hy L ... L Hp L..
=n Hi, L Hyy L ... L Hg L.
L oHYy L ... L HY L.

1 Hp, L

4, HARMONIC ANALYSIS OF COMPACT SPACES

We take notations for the rest of the lecture not€ds a compact space (possi-
bly finite) on which a compact group (possibly finit&)acts continuously. More-
over, X is endowed with aG-invariant Borel regular measugefor which p(X)
is finite. If X itself is finite, the topology is the discrete topology and theasure
is the counting measure. In the previous sections we haeestied the decom-
position of the permutation representatiofX ). In order to lighten the notations,
we assume thaf? has a countable number of finite dimensional irreducible rep
resentations (it is the case @ is a group of matrices over the reals since then
L?(G) is a separable Hilbert space), and weTket= {R;,k > 0}, whereRy is
the trivial representation. We léj, := dim(Ry). From Theoren3]2, we have a
decomposition

9) C(X) C L*(X) = @p>0.1<i<m;, Hri

whereH), ; C C(X), Hy; ~ Ry, 0 < my, < +oo (the casen;, = 0 means thak,
does not occur, the case, = +oo may occur ifG is not transitive onX). The
isotypic subspaces are pairwise orthogonal and dergted

T = ©;28 Hy,
We take the subspacés, ; to be also pairwise orthogonal. For &lli, we choose
an orthonormal basis;, ; 1, . .., ey i 4, Of Hy; such that in this basis the action of

g € G is expressed by the unitary matt¥,(g). The set{e ; s} is an orthonormal
basis in the Hilbert sense.

4.1. Commuting endomorphisms and zonal matrices.In this subsection we
want to give more information on the algebfad(C(X)) of commuting con-
tinuous endomorphisms @f(X). We introduce, fork € C(X?), the operators
Tk, called Hilbert-Schmidt operators:

Tic(f) X)/ny Au(y).

Itis easy to verify thalx € Endg(C(X)) if K is G-invariant, i.e. ifK (gz, gy) =
K(z,y) forall g € G, (z,y) € X2 A continuous functionk (z,y) with this
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property is also called a zonal function. It is also easy,veotth to notice that
Ty o Txr = Tk WhereK x K’ is the convolution ofX and K-

(K x K')(z,y) == /XK(ac,z)K'(z,y)d,u(z).
Let
K:={K eC(X?):K(gz,gy) = K(x,y) forallg € G, (z,y) € X?}.

The triple(IC, +, %) is aC-algebra (indeed @*-algebra, withik*(x, y) := K(y, x)).
Thus we have an embeddifg— Endq(C(X)).

AssumeV C C(X) is a finite dimensionaz-subspace such th&t = W; L

- L W,, with W; ~ R € R. By the same proof as the one of Theoren] 2.4,
Endg (V) ~ C™*™. More precisely, we have seen thatuif; : W; — W, are
G-isomorphisms, such that, ; o u;; = uy,, then an elemenp € Endg(V)
is associated to a matrid = (a;;) € C™*™ such that, for allf € V, with

sz(f) = fi, .
N=7> ajui(f)-

ij=1
Foralll <i <m,let(e;1,...,e;q4),d= dim(R), be an orthonormal basis of;
such that in this basis the action @& G is expressed by the unitary matidi(g).

We define
d
7] I y Z ez,s 6] s

Then we have:

Lemma 4.1. The above defined functios ; satisfy:
D) Ez',j is ZOﬂ&lZEZ'J(gCC, gy) = Ei,j(u’ﬂ, y)
(2) LetT; ; == Tg, ;. ThenT};(W;) = W; and T} ;(W},) = 0 for k # .
) Tij o Tjk = Tik-

Proof. (1) From the construction, we have

€i,s .gx ezt

thus

d
Eij(9,9y) = Y eis(g7)e; s (9y)
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where the second last equality holds becaki&g) is a unitary matrix.
(2) We computel’; ;(ey +):

T s(ene)(x) = —— /X (3 €500 @) en i) duy)

p(X) =
d
_ ﬁ 3 esa(a) /X i (W)era(y)duy)
s=1

I
M=

ej.s(T){ert, €is)
1

©
Il

I
B

ej,s(x)ék,iém = 5k7iej7t(x).
1

(3) Similarly one computes that
E;ijx Ep=0;1E;.

@
Il

O

The E; j(x,y) put together form a matri¥’ = E(x,y), that we call the zonal
matrix associated to th&-subspacé’:

(20) E(z,y) == (Ei,j(x’y))lgi,jgm'

At this stage is is natural to discuss the dependence of tatsxon the various
ingredients needed for its definition.

Lemma 4.2. We have

(1) E(z,y) is unchanged if another orthonormal basisi®f is chosen (i.e. if
another unitary representative of the irreducible reprasgion R is cho-
sen).

(2) E(z,y)ischanged toAE(z,y)A* for some matrix4d € G1(C™) if another
decomposition (not necessarily with orthogonal spadés} W{ @ - -- @
W) is chosen.

Proof. (1) Let(e;y,---,¢€; ) be another orthonormal basis Bf; and letU;
be unitaryd x d matrices such that
(62‘,17 . ,e;7d) = (i1, € a)U.
Since we want the representatiéhto be realized by the same matrices in
the basige; , . . ., €; ;) wheni varies, we havé/; = U; = U. Then, with
obvious notations,
E; j(z,y) =(¢;1(), ..., € a(x))(€i1(y), - -, €5 .a(y)"
=(ei1(x),...,e.q4(x))UU"(ei1(y), ..., eia(y))"
(x),...

=(ei1(x),. -, eia(@))(ein(y), - eia(y)”

=F; j(z,y).

@Qnrv=w L..- L W,= Wll Lo L ern with baSiS(ei,l,...,6i7d)
of W and(e; y,...,e; 4) of W/ in which the action ofi is by the same

3

matricesR(g), let ¢ € End(V) be defined byp(e; s) = e, ,. Clearly

2,8"
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¢ commutes with the action af; if u;; is defined byu;;(e;s) = e
then we have seen that, for some matlix= (a;;), e; , = ¢(eis) =
> i1 aji¢j,s. MoreoverA is invertible. Itis unitary if the spaced’; are
pairwise orthogonal. With the notatiod¥x) := (e; s(x)), we have

E(z,y) = E(x)E(y)* andE'(z) = A'E(z)

thus
E'(z,y) = A'B(x,y)A.
O

Going back tap € Endg(V), from Lemmd 4.1l we can take;; = 7);; and we
have the expression

6= ajiTji =T
i,j=1
We take the following notation: the space of linear comloret of elements of
the form f(z)g(y) for (f, g) € V% is denoted/(?). We have proved the following:

Proposition 4.3. Let
Ky :={K eV® :K(gx,gy) = K(x,y) forall g € G, (z,y) € X?}.
The following are isomorphisms @falgebras:

’CV — Endg(V) cmxm Endg(V)

Moreover,Endg(C(X)) is commutative iffC is commutative iffn, = 0,1 for all
k> 0.

Proof. The isomorphisms are clear from previous discussion. Fdiatt assertion,
it is enough to point out that

Endg(C(X)) = H Endq(Z).
k>0

O

Remark 4.4. Proposition[4.8 shows in particular thafy, and Endg (V') have
the same dimension. It is sometimes easy to calculate thendion ofKCy,; for
example ifX is a finite set and/ = C(X), thendim(Ky ) is exactly equal to
the number of orbits of; acting on X2. On the other hand, in this case, the
dimension of£nd (V) is the sum of the squares of the multiplicitieCipX') of
the irreducible representations @f. For the binary Hamming space treated in
2.8, the orbits of7 acting on X2 are in one to one correspondance with the
values taken by the Hamming distance, i.e. there(arg- 1) such orbits. Thus,
once we have obtained the decompositi¢#,,) = Py L --- L P,, because this
decomposition involves allready: + 1) subspaces, we can conclude readily that
these subspaces are irreducible. This reasoning appli&s tal the Johnson space
[2.8.2 and to the more generglHamming space 5l 3. A variant of this method is as
follows: if we suspect’ C C(X) to be irreducible, then it is enough to prove that
Ky has dimension. See i 5.3]1 for an illustration.
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4.2. Examples: G-symmetric spaces.

Definition 4.5. We say thatX is G-symmetric if for all(x,y) € X?2, there exists
g € G such thatgz = y andgy = z. In other words,(z,y) and (y, =) belong to
the same orbit oy acting onX?2.

A first consequence of Proposition 4.3 is tidasymmetric spaces have multi-
plicity free decompositions.

Proposition 4.6. If X is G-symmetric themn;, = 0,1 for all £ > 0 and Ex(x,y)
is real symmetric.

Proof. Forall K € K, K(z,y) = K(y,z). ThusK is commutative: indeed,
1
K"+ K)(x, :—/K'x,sz, dp(z
( )(z,y) 0 )y (z,2)K(z,y)dp(2)

1 /
— m/XK(z,x)K(%Z)dﬂ(Z)
= (K*K')(y,z) = (K x K')(z,y).

MoreoverEy(z,y) = Ex(z,y) = Ex(y, ). O

4.2.1. 2-point homogeneous spacesthese spaces are prominent example§-of
symmetric spaces.

Definition 4.7. A metric space$X, d) is said to be2-point homogeneous for the
action of G if GG is transitive onX, leaves the distancé invariant, and if, for
(z,y) € X2,

there existy) € G such that(gz, gy) = (2/, ) < d(z,y) = d(2', /).

Examples of such spaces of interest in coding theory are rrsethe Ham-
ming and Johnson spaces, endowed with the Hamming distemaége action of
respectivelyl’ x S,, and.S,,; the unit spheres™~! for the angular distancé(z, )
and the action of the orthogonal group. It is a classical ltdbat, apart from
S7—1 the projective space®*(K) for K = R, C, H, andP?(Q), are the only real
compact2-point homogeneous spaces.

There are more examples of fintgpoint homogeneous spaces, we can mention
among them the-Johnson spaces. TheJohnson spacé” (q) is the set of linear
subspaces df; of fixed dimensionu, with the action of the groufl(Fy ) and the
distanced(z,y) = dim(z + y) — dim(z Ny). We come back to this space in the
next section.

There are other symmetric spaces occurring in coding theory

4.2.2. The Grassmann spacesX = G, ,(K), K = R,C, i.e. the set ofn-
dimensional linear subspaces®f', with the homogeneous action 6f= O(R")
(respectively/ (C™)). This space i&7-symmetric but no2-point homogeneous (if
m > 2). The orbits ofG acting on pairgp,q) € X? are characterized by their
principal angles[21]. The principal angles @f q) arem angles(6,...,60,,) €
[0,7/2]™ constructed as follows: one iteratively constructs anamtiimal basis
(e1,...,en) of pand an orthonormal basiy, ..., f,,) of ¢ such that, forl <
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1 <m,

cosf; =max{|(e,f)] : e€p, f€Eq,
(G,G)Z(f,f): >
(e,ej) = (f, fj)=0for1 <j<i—1}
= |(ei, fi)l

The we have (seé [21)]):

there existg € G such thatgp, gq) = (p', )
>

(01(P, Q)5+ O0m(p, @) = (01(0', ), -, O (P, 0))-

4.2.3. The ordered Hamming space: X = (F;)" (for the sake of simplicity
we restrict here to the binary case). Let= (xi,...,z,) € X with z; € F5.
Fory € F%, the ordered weight of, denotedw, (y), is the right most non zero
coordinate ofy. The ordered weight of € X is w,(z) := Y ;" ; wy(x;) and the
ordered distance of two elemertts y) € X2 is d,(z,y) = w,(x — y). Moreover
we define the shape 6%, y):

1<i<re:=card{j : w(z;) =1}

h ,y) := (eo, €1, ...,e) where
shape(z,y) (eo, €1 er) {60 =n—(e1 4 +e).

Another expression ab, (z) is w,(z) = >, ie;.

If B is the group of upper triangular matricesGi(F%), and Bas the group of
affine transformations df, combining the translations by elementsijfwith B,
the groupG := B x S, acts transitively onX. SinceB acting onF;, leavesw,
invariant, it is clear that the action ¢f on X leaves the shapéape(x, y) invari-
ant. More precisely, the orbits @& on T} are the set§y € F; : w,(z) = i} and,
consequently, the orbits 6f acting onX? are characterized by the so-called shape
of (z,y). Since obviouslghape(x,y) = shape(y, x) itis a symmetric space. This
space shares many common features with the Grassmann ;sgspesially from
the point of view of the linear programming method (see [2], [31]).

4.2.4. The spaceX = T" under the action of G = T" x I': the action ofG is by
(7,v")x = yzy'~L. Then two pairz,y) and(z’,y’) are in the same orbit under
the action of7 iff 2y~ andx’y/~! are in the same conjugacy clasgofObviously
(z,y) and (y~!,2~1) are in the samé&'-orbit. We are not quite in the case of a
G-symmetric space however the proof of the commutativityCobf Proposition
[4.6 remains valid because the variable change z~! leaves the Haar measure
invariant.

4.3. Positive definite functions and Bochner theorem.

Definition 4.8. A positive definite continuous function of is a functionF €
C(X?) such thatF(z,y) = F(y,z) and one of the following equivalent properties
hold:

(1) Forall n, forall (z1,...,x,) € X™, forall (aq,...,a,) € C",

n
Z a; F(z,z5)a5 > 0.
ij=1
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(2) Porall a € C(X),

|, a@F (. yjatduta.y) > o
This property will be denotedl’ = 0.

The first property means in other words that, for all choiceadinite set of
points (z1,...,z,) € X", the matrix (F(z;,x;))i<ij<n iS hermitian positive
semidefinite. The equivalence of the two properties redrdts compactness of
X. Note that, ifX is finite, F' is positive definite iff the matrix indexed by, with
coefficientsF'(z, y), is positive semidefinite.

We want to characterize those functions which @knvariant. This charac-
terization is provided by Bochner in_[11] in the case when shaceX is G-
homogeneous. It is clear that the construction of previaussection provides
positive definite functions. Indeed,

Lemma 4.9.if A = 0, then(A, E) is a G-invariant positive definite function.
Proof. Let a(x) € C(X). We compute

| e@@Batidnte.n = [ 3 Aale) B g)aliidutz.)

ij=1

> Ay [ al@) Byl palidu.y)

i

<
—

I
NE
M&

A; /X Jalz)eis(@)ess(y)aly)du(e, y)

1

-
&,
Il
-

S

Aj o, 500 5

I
1M
M=~

-
<
I

—
»
Il

—_

I
B
NE

a; Ao s >0

@
Il
—
-
&
Il
-

wherew; s == [y a(x)e; s (x)du(z). O
Remark 4.10. The following properties are equivalent, foma x m matrix func-
tion E(z,y):

(1) Forall A >0, (A, E(z,y)) = 0

(2) Forall (x1,...,2,) € X", (1,...,0) € C", 37, i E(xi, w5)a; = 0.
The proof is left to the reader as an exercise (hint: use tloe tzat the cone of
positive semidefinite matrices is self dual).

To start with, we extend the notations of the previous sulsec We define
matricesE, = Ey(z,y) associated to each isotypic compongptof sizemy, xmy,
(thus possibly of infinite size) with coefficients; ; ;(x, y) defined by:

dy;
Ek%j (JU, y) = Z ek,i,s(x)ek,j,s (y)

s=1
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If Fye = (fr,i.j)1<ij<m, is hermitian, and i, - | fxi;1° < +oo, the sum

Fk7Ek § fk:,z,] k,i,j

is L2-convergent since the eIemerﬁ§i7s(m)el,j7t(y) form a complete system of
orthonormal elements af(X?). We sayF;, is positive semidefinitef(, > 0) if
> i friiAj > 0forall (A;)1<i<m, such thaty" [\;|? < +oc. Then, with the
same proof as the one of Lemimal4.9, the functibj, Ey) is positive definite if
F}, = 0. The following theorem provides a converse statement (EE. [

Theorem 4.11. F € C(X?) is aG-invariant positive definite function if and only
if

k>0
where, for allk > 0,

S / F(z,y)Ba(z,g)dulx, y) = 0,

dp(X?) Jxe

and the sum converges fofor the L? topology. If moreove€ acts homogeneously
on X, the sum(L1) itself converges uniformly.

Proof. The elementsy, ; (x)e; ;:(y) form a complete system of orthonormal ele-
ments ofC(X?). HenceF has a decomposition

Z frisigieris(@)er;i(y)

k7i787l7j7t

where the convergence of the sumZis. The conditionF' (g, gy) = F(x,vy)
translates to:
Frimtgo = fristitBrus(9) Rivi(9).
s,t
Integrating ong € G and applying the orthogonality relations of Theoreml 2.5
shows thatfy, ; .1 ;,» = 0 if & # [ oru # v. Moreover it shows thafy, ; ., «. ;.. does
not depend om.. The resulting expression @f reads:

F(z,y) = Z (ka,i,jEk,i,j(wvy))

k>0 i

and
1

d ] T TvoN F ) E INACE d s YY)y
ke S XD /X2 (@, y) i j(x, y)dp(z, y)
which is the wanted expression, Wit := (fx.i j)1<i j<m -

Now we show that}, > 0. Let, for k, s fixed, a(z) = 3, aieris(2), with
>, lail* < +oc. By density, property (2) of Definition 4.8 holds fare L?(X).
We compute like in the proof of Lemnha 4.9

mg
| a@F @ palidutes) = Y aifuiss
ij=1
thusFj, = 0.

In the case ofX beingG-homogeneous, the uniform convergence of the sum in

(d3) is proved in[[11].
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d

In order to reduce linear programs involvigginvariant positive definite func-
tions to finite dimensional semidefinite programs, we needetable to approxi-
mate such functions uniformly with finite sums of the typ€e)(1id other words by
functions built form finite dimensional subspacesC¢X ). A necessary condition
is thus that all continuous functions éhare uniformly approximated by elements
of some sequence of finite dimensional subspace¥ &f). Such subspaces are
usually provided by the polynomial functions of boundedrdeg when it makes
sense. More generally, let us assume that there exists arsag(lv;),>( of finite
dimensionalG-subspaces af(X) such thatl; C Vg, andUg>oVy is dense in
C(X) for the topology of uniform convergence. For example, Péfeyl theo-
rem provides such subspaces wh€ns I'-homogeneous, for a compact grollp
containingGG. Then we have the following result:

Theorem 4.12. Under the above assumptions, if moreoseis homogeneous un-
der a larger compact group', and if the irreducible subspacé$;, ; are chosen so
that H,;, C Vi forall 1 < i < mgy wheremgy, is the multiplicity ofRy, in Vg,
then aG-invariant positive definite functiof” € C(X?) is the uniform limit of a
sequence of positive definite functidfise V; ® V; thus of the form

(12) Fd(xay) = Z(Fd,kaEk(xay»
k>0

where Fy i, is a matrix of sizen,; (and thus the sum has a finite number of non
zero terms).

Proof. We proceed like in the proof of Peter Weyl theorem. Compatiaskoint
Hilbert-Schmidt operators ofy( X ?) are of the form

Tie(F)(e,y) = [ K (o), (2 0) F (2 Odu(z, 1)

We start to construck’ suchTx (F') = 0 and||Tx (F) — F|| is arbitrary small.
The first condition is fulfilled i’ can be expressed in the fot((z, y), (z,t)) =
Ko(z,2)Ko(y,t) where Ky (z, z) = Ko(z,x). We takegp, a continuous function
onT; if ¢}, denotes the left and right averagegaf overI'y (whereX = I'/T)),
we takeKo(z,y) = ¢y(y~16) for anyy € x, § € y). Then with a suitable choice
of ¢o, |Tk (F) — Fllss < € (thanks to uniform continuity of’, it is enough that
¢ has support contained in some prescribed open neighbodfdqdakes values
betweerD and 1, satisfiespo(v) = ¢o(y ") and [ ¢o = [T'[). Moreover,Kj is
[-invariant.

We can findd > 0 and Ly(z,y) € Vg ® Vg such thatly(z,z) = Lo(z,x) and
||Lo — Kol| Is arbitrary small. Replacing by its average od will not change
these three properties &f. Then, if L((z,y), (z,t)) := Lo(z, 2)Lo(y,t), Tr(F)
comes arbitrary close tBx (F') for || || andTr(F) € V& Vy. Now, T (F) = 0,
is invariant underZ and belongs to the finite dimensional spage? V; thus it has
the announced form from Theorém 4.11.

O

Now the main deal is to compute explicitly the matrides(x, y) for a given
spaceX. The next section gives explicit examples of such compurati
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5. EXPLICIT COMPUTATIONS OF THE MATRICESE(z,y)

We keep the same notations as in previous section. SincedtreesEy (z, y)
are G-invariant, their coefficients are functions of the orbifs(® acting onX2.
So the first task is to describe these orbits. Let us assunteéhibse orbits are
parametrized by some variables= (u;). Then we seek for explicit expressions
of the form

Ey(z,y) = Yi(u(z,y)).

The measure induces a measure on the variables that describe thess, dobit
which the coefficients of, are pairwise orthogonal. This property of orthogonal-
ity turns to be very useful, if not enough, to calculate therivas F..

The easiest case is when the spates 2-point homogeneous for the action of
G, because in this case the orbits of pairs are parametrizeal daygle variable
t := d(x,y). Moreover we have already seen that in this case, the deitiopo
of C(X) is multiplicity free so the matricegy(x, y) have a single coefficient.

5.1. 2-point homogeneous spacesVe summarize the results we have obtained
so far:

C(X) = @r>oHy
where H;. are pairwise orthogonaF-irreducible subspaces; to eagh, is associ-
ated a continuous functioRy (¢) such thatFy(x,y) = Px(d(x,y)) and

Fr0«=F=> fiP(d(z,y)) with f; > 0.
k>0

P (t) is called the zonal function associatedA. Since the subspacd$; are
pairwise orthogonal, the functiond,(¢) are pairwise orthogonal for the induced
measure. This property of orthogonality is in general ehdiogdetermine them in
a unique way. We can also notice here tRaf0) = di. This value is obtained
with the integration onX of the formulaP, (0) = "% | ex 1 o(x)ep1.5(2).

5.2. X = {1,...,q} under the action of S,. This is a very easy case, which
will play a role in the study of thg-Hamming space. Since the constant function
1 is S,-invariant, we have thé, decompositiorC(X) = C1 L L. Obviously,
the action ofS, on X2 has two orbits: the set of paif$,i), and the set of pairs
(i,7) for i # j. Thus, from Proposition 4.3 and Remark]4l4is irreducible. We
let zp := 1 and choose an orthonormal basis, ..., z,-1) of L. We want to
compute the zonal functiof';, associated td.. We have by definitior;, (z, y) =
01 2i(2)zi(y) and By, takes only two different values: one for= y and one
for z # y. We haveEr(0,0) = dim(L) = ¢ — 1 and we can comput&/,(0,1)
easily using the fact that';, (0, y) is orthogonal tox thuszgz1 Ep(0,y) =0=
Er(0,0) + (¢ — 1)EL(0,1). ThusEL(0,1) = —1.

5.3. The g-Hamming space. In the binary case we have already calculated the

functions P (t) in[2.8.1. Indeed, the irreducible subspaé¢gsafford the orthonor-
mal basis{ x., wt(z) = k}. So,

Bu(z,y) = > xe(@)x:() = Y (=17 = Ky(du(z,y))
wt(z)=k wt(z)=k

from (4). Now we treat the more gener@Hamming space. This is the space
H, , = F" whereFis afinite set withy elements denotefl = {ag,a1,...,a4-1}.
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The semidirect produdt = S’ x S, acts onH,, , and leaves the Hamming dis-
tance invariant. Here the permutation gratjpacts onf’ by ra; = a.(;) while the
permutation group,, acts onH, ; by o(z1,...,2n) = (To-1(1)s- s To—1(p))-
MoreoverG' acts onH, , 2-point homogeneously. The action 8f on C(F) is
studied in(5.2 and we take the same notations. We défire (¢1,...,d,) €
C(H,,q) Whereg; € {z,z1,...,24-1} by: ¢(z) =[]\, ¢i(z;). These elements
¢ form an orthonormal system: it is easy to see that

(¢, 0) = [ [(@iswo)-
i=1
We define the weight of by: wt(¢) := {1 <i <n:¢; # 2}|. For0 < k <mn,
let P, be the subspace generated by the set with wt(¢) = k. The dimension
of P is the number of suck, which is equal to(g — 1)*(}) and we have the
decomposition

(13) C(H)=PyLP L LP,

An elementr € S, act trivially onzy and sends; for ¢ # 0 to a linear combination
of z1,...,24—1. Thus for allg € G, g¢ is a linear combination of’s with the
same weight a® and G stabilizesP,. The action ofG on pairs of elements of
H, 4 has exactly(n + 1) orbits corresponding to the: + 1) values0,1,...,n
that the Hamming distance takes thus we can concludeithatirreducible from
Propositior. 4.8. Now we compute the zonal functiop(x, y) attached taP;. By
definition we have

Ex(r,y)= ) ¢(@)o(y)

dwt(p)=k
and we want to calculaté, such thatP;(t) = FEx(x,y) for any (z,y) with
d(z,y) = t. We setz = (aq,...,a1,a0,...,a9) Wheret coordinates ofr are
equal toa; andy = (aog,...,ap). Forallg,weleti == [{j : 1 <j<n:z; =

a; andg; # zp} and reorder the set @f € P, according ta.

" ZZ: <:> <Z - :> jl,-%%yéof[lzju(al)mulil 2j, (@0)zj, (ao)
-3 () () (@) (E soomm)

— - C) <Z:§>EL(G1,QO) Ep(ao, ag)*

-> () (32 eva-

=0
with the notations and results lof 5.2 (t) is equal to the Krawtchouck polyno-
mial K,"?(t) of parameters; andn which satisfies the following characteristic

properties:

(1) deg(K;")
(2) K;7%(0) =

e D)
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(3) Orthogonality relations: forall < k <l <mn

= wzzo () szt o) = o () a - 1"

The orthogonality relations are direct consequences obthegonality of the
subspace#,.

5.3.1. The Johnson space/”: with the notations of subsectidn 2.B.2, we have
shown the decomposition
C(J;LU)ZHwJ_Hw,1 J_J_HO

but not yet the irreducibility of7;. So far their might by severa?, ;, j = 1,...
associated td4;. The zonal functions express as functionstaf= |z N y| the
number of common ones inandy. The orthogonality relation is easy to compute:

xZXf 0yl f(lx Nyl anrd{w LNyl =i} ()
= ; (V) () sar

> <w> (”;w)ﬂw e =),

By induction onk one proves thab, ; has degree at mostin ¢. The conditions:
(1) deg(Qr) =k
(2) Qr(0) =1

@) forallo<k<i<n

g ()" " )ewn -0

determine a unique sequen@@o,Q1,...,Qw). Thus there is only oné, ; for
eachk and it is equal ta;,Qr(w — t). The polynomialg); defined above belong
to the family of Hahn polynomials.

5.3.2. The spheres™~!: the distance on the sphere is the angular distéacgy).
It appears more convenient to express the functions in thablat = = -y =
cos 0(z,y). A standard calculation shows that

/Sn_lf(acyd,u /f )1 —t2)"2 dt

for some irrelevant constanf,. The conditions:

o deg(P}) =k

o P(1)=1

o Forallk #1, [1, PR(t)PP(t)(1 — 12)"T dt =0
define a unique sequence of polynomials by standard argsniemt obtained by
Gram Schmidt orthogonalization of the bagist, ..., t*,...)), itis the sequence

of so-called Gegenbauer polynomials with parame(— 1 [43]. The decompo-
sition[3.3.1 ofc(S™~!) shows that, to each > 0 the functionP(z - y) associated
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to H}! ~ Harmj is polynomial inz - y and satisfies the above conditions except
the normalization of’; (1) thus we have,(t) = hl P (1).

5.3.3. Other 2-point homogeneous spacesas it is shown in the above exam-
ples, a sequence of orthogonal polynomials in one variabissociated to each
such space. In the case of the projective spaces, it is arseg|oé Jacobi polyno-
mials. We refer to[24],[28]/148] for their determinatiom inany cases and for the
applications to coding theory.

5.4. Other symmetric spaces.Now we turn to other cases of interest in coding
theory, where the spack is symmetric but not necessari?ypoint homogeneous.
Since the decomposition @f(X) is multiplicity free, the matrice€(z, y) still
have a single coefficient which is a member of a sequence lidgonal polynomi-
als, but this time multivariate. The first case ever studide@st to my knowledge)
is the case of the non binary Johnson spaces [44], its asstdienctions are two
variables polynomials, a mixture of Hahn and Eberlein poiyrals. We briefly
discuss a few of these cases.

5.4.1. The Grassmann spaces]2] the orbits of X2 are parametrized by the prin-
cipal angleg6s, ..., 0,,) (£2.2). The appropriate variables are fhe= cos?0;.
The decomposition of (G, ,,) underO(R™) (respectivelyU (C™)) together with
the computation of the corresponding sequence of orthdguaignomials was
performed in[[23]. We focus here on the real case. We recallttie irreducible
representations dd(R™) are (up to a power of the determinant) naturally indexed
by partitionsx = (k1,...,kn), Wherek; > --- > k, > 0 (we may omit the
last parts if they are equal ©. Following [22], let them be denoted By. For
example,VO =C1, andvn(k) = Harmy,.

The lengthY(x) of a partitions is the number of its non zero parts, and its degree
deg(k) also denoted byx| equals) ", ;.

Then, the decomposition 6%G,, ,,) is as follows:

C(Gmn) = OV

where k runs over the partitions of length at mast and 2« stands for parti-
tions with even parts. We denote B (1, ..., vyn) the zonal function associ-
ated toV,2*. It turns out that theP, are symmetric polynomials in the variables

Y1, - -, Ym, Of degregx|, with rational coefficients once they are normalized by the
condition P (1,...,1) = 1. Moreover, the setFy), < is a basis of the space
of symmetric polynomials in the variables, . . . , y.,, of degree at most equal g
which is orthogonal for the induced inner product calcwate[23],

du = \ H lyi — y;l Hy;1/2(1 —g)MEm12 gy,

ij=1 i=1
i<j

(One recognizes a special case of the orthogonal measwaaesl togeneralized

Jacobi polynomialg[25]).
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5.4.2. The ordered Hamming space:it follows from the discussion in 4.2.3 that
the variables of the zonal functions are thg,e1,...,e,). Elaborating on the
computation explained above for the Johnson space, oneeeathat in the case
of finite spaces, the weights of the induced measure are ¢ye¢he number of
elements of the orbits ok under the action oftab(e) for anye € X. Taking

e = 0™, thusStab(e) = B™ x S, and the orbit of: is the set of elements with the
same shapgfo, .. ., f,) asz. The number of such elements(is " , )22-:(—1es,
These are the weights associated to the multivariate Kramtc polynomials.

5.4.3. The spaceX = T under the action of G = I' x I': we need an ex-
plicit parametrization of the conjugacy classeg§ ofvhich is afforded by very few
groups. Famous examples (if not the only ones) are provigetidpermutation
groups and the unitary groups. In the first case the pararattm is by the de-
composition in disjoint cycles and in the second case it ithkyeigenvalues. The
decomposition of (X ) is given by Peter Weyl theorem

Cr)=> ReR
ReR

and the associated functio®%; (z, y) are the characters:

Pr(z,y) = xr(zy ™).

In both casesq,, andU (C™)) the irreducible representations are indexed by par-
titions A and there are explicit expressions fBy. In the case of the unitary
group P (zy~!) are the so-called Schur polynomials evaluated at the eijges

of xy~1.

5.5. Three cases with non trivial multiplicities. So far the computation of the
matricesEy (z, y) in cases of non trivial multiplicities has been worked ouwémy
few cases. We shall discuss three very similar cases, naimelynit sphere of
the Euclidean sphere ([4]), the Hamming spacel([46]), aedpttojective geom-
etry overF, ([7]), where the group considered is the stabilizer of onitpoln
the case of the Hamming space, this computation amounttoatmputation of
the Terwilliger algebra of the association scheme and wesnoeed initially by
A. Schrijver in [40], who treated also the non binary Hammamace[[20]. The
framework of group representations was used_in [46] to obtfaé semidefinite
matrices of([40] in terms of orthogonal polynomials. We prishere the uniform
treatment of the Hamming space and of the projective gegrirethe spirit of [17]
adopted in[[7]. We also generalize to the case of the stabitif many points in
the spherical case and enlighten the connection with thidymdefinite functions
calculated in[[34].

5.5.1. The unit sphere S"~!, with G := Stab(e, O(R")). We continue the dis-
cussion initiated if_3.312 and we follow![4]. L&t (z,y) be the zonal matrix as-
sociated to the isotypic subspd€tgrelated toHarmZ*1 and to its decomposition
described i1 3.312:

Tpy=Hpp LH oy L
We index £} with i,j > 0 so thatEy, .(z,y) is related to the spaced},

Hy oy s The orbits ofG on pairs of pointgz,y) € X? are characterized by the
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values of the three inner produets= e -z, v := e-y andt := z-y. Thus(u, v, t)
are the variables of the zonal matrices and we let;

Elzl(mv y) = Ykn(u7 v, t)
Theorem 5.1. [[4]]

(14) Ykz](u v t) - )‘k Z)VCJPTH—Qk( )P;H—Qk(v)Qz_l(uvU?t)?
where
n— . k/2 p— t—uv
(0, 1) = (1= u2)(1 — o)) 2Py 1<¢(1 — 02)),

and ), ; are some real constants.

Proof. We need an explicit construction of the spadég, ., We refer tol[1,
Ch. 9.8]. Forz € S™1, let

T =ue+V1—u%(,
whereu = z-e and( belongs to the unit sphes 2 of (Re)*. With f € Hl?*l -
C(S"2) we associate(f) € C(S" 1) defined by:

Pl (@) = (1= u®)*2 ().

Moreover, we recall thal/" is a subspace of the spaiel (S™~!) of polynomial
functions in the coordinates of degree at mbstNote that the multiplication by
(1—u?)*/2 forcesy( f) to be a polynomial function in the coordinatesiofClearly
¢ commutes with the action @. Hencep(H;' ') is a subspace dfol<;(S" 1)
which is isomorphic taHarm; ~ LIt is clear that these spaces are pairwise or-
thogonal. More generally, the sép(f)P(u) : f € HarmZ‘l,degP < z’} is a
subspace oPol<;(S™~1) which is isomorphic ta + 1 copies ofHarmk* By
induction onk andi there exist polynomial#, (u) of degreei such thati}", i -

o(Hy™ Y Pi(u) is a subspace af;’, ;. This construction proves the decomposmon
(8). Moreover, we can exploit the fact that the subspaﬂi§§ are pairwise or-
thogonal to prove an orthogonality relation between thgrmeaIsP Then this
orthogonality relation will enable us to identify the pogmials P; with Gegen-
bauer polynomials, up to the multiplication by a constaotda Let us recall that
the measures of" ! and onS™~? are related by:

dwn(z) = (1 — u®) ™32 dudw, 1 ().
Wheneveri # j we have for allf € H}*

0=- () Pi(u)o(f)Pj(u)dwn(x)

Sn—l
1

~ wn Jsor |F(OIP(1 = u?)* P, (w) Py (w)dwn ()
1

= [ OP Q) [ (1=t ) B,

from which we derive that

1 —_—
[ = B =0
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hence the polynomial®;(u) are proportional td%"“’“(u) (thus with real coef-
ficients..). We obtain an orthonormal basiséf .}, from an orthonormal basis
(f1,--, fn) of H'~* by takingey, ; s = Ar..i(fs) P/72F (u) for a suitable normal-
izing factorA,; > 0. With these basis we can computi ; :

hnfl
Ek EN .YJ y Z ek,l,s ek,]s y)

n—1
hk

= Z )xm(l — u2)k/2fs(<)PZ_n+2k(u))\k7j(1 _ v2)k/2mPf“’“(v)
s=1
hpt
= Neih P ) PR (o) (1 = u?) (1 — 0?) ™2 Z F(OT®

= Aeide PP PP () (1 - u?) (1~ v >)’“/2h” Pl g),

where we have writtep = ve ++/1 — v2¢ and where the last equality results from
the analysis of zonal functions 6~!. Since

¢-&= t—uv/\/l—u )(1 —v2),

we have completed the proof. a
5.5.2. The unit sphere S"~! with the action of G := Stab(eq, ..., es, O(R")).
We assume thafe,...,e,) is a set of orthonormal vectors. The groGp :=
Stab(ey,...,es, O(R™)) is isomorphic toO(R"~*). The orbit of a paifz,y) €
X2 underG is characterized by the data:= x - y, v := (z - ey,...,T - €5), v :=
(y-e1,...,y-es). The decompositiori [8) applied recursively shows that" 1)
decomposes as the sum @firreducible subspacel; wherek = (ko, ..., ks),

ko < k1 < --- < kg, with the properties:
Hy C H, )y C Polg,, Hy ~ Harm" 5

wherek™ = (k,_,41,...,ks). Thus, for a giverk,, the multiplicity of the iso-
typic componenl‘[lg‘O associated t(HarmZJs in Pol<, is the number of elements
of

Kq:={(k1,...,ks) : ko <k <--- <k <d}.
We construct the spacé; like in the proof of Theorei 5l1: for € S"~1, let

r=wurer + - +uses + /1 — |ul*C
whereu = (uy,...,us) and|u?> = 37 u?. Lety : Hp ™ — C(S™ 1) be
defined byo(f)(z) = (1—[ul?)*/2f(¢). Thenp(H}: ) = H, o wherekit =
(ko, ko, - - -, ko) and we set, fol = (Iy,...,1s), Hyyy = ull ... lsHkSH It is

clear thatHy,, ; ~¢ Harmk ®and that,, ; C Polgif Iy +---+ 1, < d— kg thus,
since

Kél = {l:(ll,...,ls) L >0, L+ e+ Sd—ko}
has the same number of elementdés

d
Z%W = eBle}(élykoJ.
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This sum is not orthogonal but we can still use it to calculBjg, the change
will be to AEy(x,y)A* for some invertible matrixd. The same calculation as in
Theoreni 5.1l shows that, (up to a change to saripA*):

Yiii(u,v,t) = uz_kvi_szfs(u,v,t)

7

with the notationszi—* := w2t %427 yis=* and

( t— (u-v) )
VI~ [P [oP)

With Bochner Theorerin 4.11 we recover the description of thiivariate positive
definite functions on the sphere givenlin|[34].

n—s k 2 n—s
s (v, t) = ((1— [u?)(1 - [o]2)"° P

5.5.3. The Hamming space and the projective geometryThe set of allF,-
linear subspaces @, also called the projective geometry, is denoted™y, q).
The linear grougGl(n, F,) acts onP(n,q). The orbits of this action are the sub-
sets of subspaces of fixed dimension, i.e. ghkohnson spaces. If the Hamming
spaceF3 is considered together with the action of the symmetric gr8y, the
orbits of this action are the Johnson spaces/_Ih [17] thestohapace and the
Johnson spaces are treated in a uniform way from the poiniewof of the linear
programming method, the latter being viewed;amnalogs of the former. Thus the
Johnson space corresponds to the valdel. In particular the zonal polynomials
are computed and they turn to pédahn polynomials. Here we want to follow the
same line for the determination of the zonal matri€&s, y) in both cases.

We take the following notations: i§ is a power of a prime number, we let
X =P(n,q) andG = Gl(n,F,), and, ifg = 1, we letX be the Hamming space,
identified with the set of subsets 6f, ..., n}, andG = S,, the symmetric group
with its standard action oX . Let

_ fowt(z) ifg=1
o= { dim(z) if g > 1

Forallw = 0,...,n, the spaceX,, is defined by
Xy ={z e X :|z| =w}.
These subsets of are exactly the orbits af. The distance oiX is given in every
case by the formula
(15) d(z,y) = |z| + y| — 2[z Nyl.

The restriction of the distanaéto X,, equalsd(z,y) = 2(w — |z Ny|) and it is
a well known fact thatz acts 2-points homogeneously &f,. It is not difficult to
see that the orbit of a paft:, y) under the action ofr is characterized by the triple
([, [yl, [= Nyl).

Following the notations of_ [17], the-binomial coefficient[g] expresses the
cardinality of X,,. We have

Lo n

11 :() ifg=1
Ll w—1 w

— qnfi_l
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In terms of the variable
x ifg=1
1—x x —x
— = -1 .
[z] = ¢ [1] { Z*l sty

m e ﬁ =i ) [)!

w [w—1i] [w]![n — w]!”

we have

i=0

We have the obvious decomposition into pairwise orthogG#atvariant sub-
spaces:

C(X)=0C(Xp) LC(X1) L - LC(Xp).
The decomposition of (X,,) into G-irreducible subspaces is described|in|[17].
We have
C(Xw) = HO,w 1 Hl,w Lol Hmin(w,nfw),w

where thef}, ., are pairwise isomorphic for equaland differentw. and pairwise
non isomorphic for differenk. The picture looks like:

CX)= C(Xo) L C(X1)L ... LC(Xpa)L ... LC(Xu1) LC(X,)
H070 1 H071 1 N 1 HOvL%J 1 N 1 H(],n,1 1 HO,n
H171 L J—17[1,1171
Hinj |z

where the columns represent the decompositiafy &f,, ) and the rows the isotypic
components of (X), i.e. the subspaces, := Hy, L Hypy1 L -+ L Hypps
0 < k < |5 ], with multiplicity my, = (n — 2k + 1).

Let, for all (k,7) with0 < k <i<n —k,

Yri: C(Xk) — C(Xy)
f = Yi(f) Vi (F)(Y) = 2 je)=k f()

rCy

and
6193 C(Xk) — C(Xk_l)

f = 0k (f) 1 0k(f)(2) = D ja)=k f(T)

zCx

Obviously, these transformations commute with the actio6'.oThe spacegiy, ;
are defined byH}, , = ker o, andHy, ; = ¢y, ;(Hy ). Moreover,

n n
= dim(Hyp) = |, | — .
hy, := dim(Hy 1) [k} [k—l}
We need later the following properties ©f, ;:

Lemmab5.2.1f f,g € Hy 1,

_9k] ..
(16) it = | 73|00
Moreover, -

o
(17) Vi j o ki = B ok U,
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Proof. [17, Theorem 3] prove$ (16). The relatidn(17) is straightfrd: if |2| =
Js

Gii (i) = 3 (N =3 (Y f@)

ly|=1 ly|=i  |z|=k
yCz yCz  zCy

=Y (X )= 12 ]
g e oy

— [ |matnio,

Z_
(]

Now we want to calculate the matric&% of sizem;, = (n — 2k + 1) associated
to each isotypic spach;,. We fix an orthonormal basigy, i1, - - - , €k k,h,, ) Of Hi
and we definezy, ; s == Yy i(er k). Itis clear from the definitions above that
ex,i,s can be assumed to take real values. From (16), for fixadd, they form
an orthogonal basis df}, ; with square norm equal tb;:?f] ¢"*(=k)  Normalizing
them would conjugaté’;, by a diagonal matrix, so we can omit to do it. The matrix
E}, is indexed withi, j subject tok < 4,57 < n — k. From the construction, we
haveEy ; j(x,y) = 0if |x| # i or |y| # j; since the matrix;, is zonal, we can
definePkm by

B j(w,y) = P (i — |z Nyl)
and our goal is to calculate th@, ; ;. It turns out that these functions express in
terms of the so-calleg-Hahn polynomials.

We define the;-Hahn polynomials associated to the parameteis; with 0 <
i < j < nto be the polynomial®)y(n,i,j;z) with 0 < k < min(i,n — j)
uniquely determined by the properties:

e ;. has degreé in the variable[z].
e (Qr)k is a sequence of polynomials orthogonal for the weights

0<u<i wniju)= H{ nee }quu—m)

u||j—t+u
The polynomials®),. defined in[[17] and 5.3l1 correspond up to multiplication by
hi to the parameterg:, w, w) and, with the notations of [19], according to The-
orem 2.5, again up to a multiplicative fact@y(n,,j;z) = En(i,n —i,7,i —
x;¢~1). The combinatorial meaning of the above weights is the falig:
Lemma 5.3. [19, Proposition 3.1Givenz € X;, the number of elementsc X
such thatiz Ny| = ¢ — w is equal tow(n, i, j; u).
Theorem54.Ifk<i<j<n-—k,|x| =1, |yl =7,
Frd ] g o
KilH
If |z # i or|y| # j, Eyij(x,y) = 0.
Proof. We proceed in two steps: the first stépl(18) calculdtes;(0) and the
second step_(19) obtains the orthogonality relations.

Eyij(z,y) = | X|h
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Lemma 5.5. With the above notations,

Y ),
0]

Proof. We haveP;,; j(0) = Ej; j(x,y) for all z,y with |z| =4, |[y| = j, 2 C v.
Hence

(18) Py ;. i(0) = | X|hg

1

Py ;.5(0) = Bl Z By i(z,y)
AR lol=tJul=j
xCy
= nlj Z Zekzs ekjs
|:_]:| |:Z:| ‘1;‘ |y‘ js 1
xCy

( Z ehi,s )%j,s(y)

i s=1|yl=j |o|=i
:va

hi
= ml[j] Z Z Vij(ekis)(Y)er,s(y)

il s=1 |y|=3

Since, from[(1F)

| — k | — k
Vij(er,is) = ij o Yrilerrs) = [‘Z B k] Vr,j(€kk,s) = [‘Z B }ek,j,m

k
we obtain
hi .
1 —k
Phas®) = ey [j - k] e sn(9)h ()
jitid s=1y|=j
k] < A .
= | X [(ekjisr €h,j,s) = | X |hy = imgFi =)
GG = e 5117]
from (18). O

Lemma 5.6. With the above notations,

i [n_—zk] [n52k] qk(z‘+j—2k)
(19) > w(n,i, j;u)Prj(u) P (w) = 0| X[Phy——" j_fn]
u=0 ‘

Proof. We computeX := >° . Ey; (@, y)Eri jo (Y, 2).
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hy  hy
= Z Z Z ek‘,z,s ek,j s y)el,i/,t(y)el,j’,t(z)

yeX s=1 t=1
hy  h

=3 erin@eny a2 (X ergelleni )

s=1t=1 yeX
hp M

=33 eris(@ery i (2)|X (e s i)

s=1 t=1
hy My

— 2k i
—Zzek,z,s x)ey i 4(2 )|X|[ k} M=K 6y, 1050050

s=1 t=1
n —
= 5k,l5j,i”X‘|: Pk :|qk(] Zek,z,s el,] s )
— 2k
= 0100 m{ k}qk(] ) Bz, 2).

We obtain, withj = i/, j/ = i, z = 2z € X;, taking account of; ; ;(y,z) =
Ep;j(z,y),

— 2k o
Z Eyij(x,y)Ey, j(2,y) = 5kl|X|[ b }qk@ M By iz, ).
yeX;

The above identity becomes in termsff; ;

— 2k

S Prasli~ o0 Puagli — o) = x|

yeX;

Taking account of (18) and Lemrha b.3, we obtain (19). O

] qk(jik)Pk,i,i(O)'

To finish the proof of Propositidn 5.4, it remains to provettRga; ; is a polyno-
mial of degree at most in the variabldu] = [|x N y|]. It follows from the reasons
invoked in [17] in the casé = j (see the proof of Theorem 5). O

Remark 5.7. In the case; = 1, i.e. the Hamming space, we could have followed
the same line as for the sphere in order to decompgtigé,) under the action of

G. We could have started from the decompositiog (@,,) (3) under the action

of ' :== T x S,, = Aut(H,,) and then we could have decomposed each space
Py, under the action ofy = Stab(0",I'). But we have az-isomorphism from
C(Xy) =C(JY)to P, given by:

C(Jp) = Pu
fe Y fxy
wi(y)=w

Note that the inverse isomorphism is the Fourier transform(/2Z)". So we
pass from one to the other decompositior® of/,,) through Fourier transform.
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6. AN SDPUPPER BOUND FOR CODES FROM POSITIVE DEFINITE FUNCTIONS

In this section we want to explain how the computation of thatimuousG-
invariant positive definite functions oX can be used for applications to coding
theory. In coding theory, it is of great importance to esterthe maximal number
of elements of a finite subsét of a spaceX, whereC is submitted to some con-
straints. TypicallyX is a metric space witli-invariant distancel(z,y) and the
constraints are related to the values taken by the distamgmios of elements of
C'. In the following we concentrate on the basic case wheredtye@irement is that
the distance takes non zero values at least equal to sommunmd. We denote
by D the set of all values taken ¥z, y) and we define)>; = D N [§, +o0] and

A(X,6) := max{card(C) : d(c,d)>dforallc#c,(c,c) € C?}.

We first focus on an upper bound fdi( X, §), which is obtained very obviously
from the optimal value of the following program:

Definition 6.1.
m(X,0) =inf{ t: FeC(X?),F=F, F=0
(20) Flz,z) <t -1,
F(z,y) < —1 d(z,y) > 8}

Yy
Then we obtain an upper bound fd( X, §):

Theorem 6.2.
A(X,0) <m(X,9).

Proof. For a feasible solutio#’, and forC' ¢ X with d(C') > ¢ we have

0< Y F <@E-DnCl=[Clc]-1)
(c,c)eC?

thus|C| < t. O

Now the groupZ comes into play. From a feasible solutibhone can construct
aG-invariant feasible solutio#” with the same objective value:

Fl(z,y) = /GF(gx,gy)dg

thus we can add to the conditions defining the feasible swlstofm (X, §) that F°

is G-invariant. Then we can apply Bochner characterizatiome€t-invariant pos-
itive definite functions (Theore 4.111). Moreover we hav@aeen in Theorem
[4.12 that if X is a homogeneous space, the finite sums of typk (12) areaaybitr
close for|| || to theG-invariant positive definite functions ok, so we can replace
F by an expression of the fori_(12) in the SRR X, §). Moreover, we replace
Ejx(x,y) with its expressiorYy (u(x, y)) in terms of the orbits of pairs and we take
account of the fact thak' = F. All together, with the notations of subsectionl4.3
we obtain the (finite) semidefinite programs:

m@D(X,8) =inf{ t: Fy=0,...,F=0,...
(21) 2 k>0 Fks Yk
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where the matriced’, are real symmetric, with sizey;, and f/k(u(:c,y)) =
Yi(u(z,y))+ Yk (u(z,y)). We insist that in the above program only a finite number
of integersk are to be taken account of becausg;, # 0 for a finite number of
integersk. Thus we haven(X, ) < m(@(X,s) and
lim m@(X,6) = m(X,d).
d——+o0
6.1. The 2-point homogeneous spacesWe recall that a sequence of orthogonal

functions (P )x>o is associated toX such that the5-invariant positive definite
functions have the expressions

F(z,y) =Y fiPr(d(z,y)) with fi > 0.
k>0

Then

m(X,6) =inf {1+, fk + frk>0,
1+ o1 fePe(i) <Oforalli € Dss }

We restate Theoreim 6.2 in the classical form of Delsartealipeogramming
bound:

Theorem 6.3.LetF(t) = fo+ fiPi(t)+- - -+ faPa(t). If f > 0forall 0 <k <d
and fop > 0, and if F(t) < 0forall t € D>, then

fo+rfi+--+ fa
fo '

Example: X = S7, d(z,y) = 0(x,y), d(C) = /3. This value of the minimal
angle corresponds to the kissing number problem. A very dsxing configura-
tion is well known: it is the root systerhy, also equal to the set of minimal vectors
of the Ejg lattice. It has240 elements and the inner products take the valbgs0,
+1/2. We recall that the zonal polynomials associated to thespfiere are pro-
portional to the Gegenbauer polynomid$ in the variabler - y. If P(t) obtains
the tight bound40 in Theoreni 6.8, then we must hait) < 0 for ¢t € [—1,1/2]
and P(—1) = P(+1/2) = P(0) = 0 (as part of thecomplementary slackness
conditiond. The simplest possibility i€ = (t — 1/2)t(t + 1/2)(t + 1). One
can check that
320

A(X,8) <

16 200 832 o 1216 ¢ 5120 o 2560

Y p=pP+—pd4+—p84 = P P P
3 o T I e ogr i gt T 503 T gan 6
and that »
1
P — 240.
fo

Thus the kissing number in dimensiéris equal to240. This famous proof is
due independently to Levenshtein [27] and Odlysko and ®i¢a§]. A proof of
uniqueness derives from the analysis of this bound ([103).tRke kissing number
problem, this miracle reproduces only for dimensihwith the set of shortest
vectors of the Leech lattice. For the other similar case®point homogeneous
spaces we refer t0 [28].

It is not always possible to apply the above “guess of a godgnpmial”
method. In order to obtain a more systematic way to apply fdm@.3, one
can of course restrict the degrees of the polynomials to seasonable value, but
needs also to overcome the problem that the conditiofig < 0 for ¢t € [—1,1/2]
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represent infinitely many linear inequalities. One podisjtis to sample the inter-

val and then a posteriori study the extrema of the approxachaptimal solution
found by an algorithm that solves the linear program withtéigimany unknowns
and inequalities. It is the method adopted.in/[35], wheresafmounds for the kiss-

ing number in dimension < 30 have been computed. We want to point out that
polynomial optimization methods using SDP give another teagyandle this prob-
lem. A polynomial@Q(t) € R[t] is said to be a sum of squaresjf=>""_, Q? for
someQ; € RJt]. Being a sum of squares is a SDP condition since it amounts to
ask that

Q= (1,t,... . t"YF(1,t,...,t*)* with F = 0.

Herek is an upper bound for the degrees of the polynontizlsNow we can relax
the condition thaf'(t) < O0fort € [-1,1/2]t0 F(t) = —Q(t) — Q"(¢t)(t + 1) (¢t —

1/2) with @ and@’ being sums of squares. A theorem of Putinar claims that in
fact the two conditions are equivalent (but the degree optitgnomials under the
squares are unknown).

A very nice achievement of the linear programming metho#-point homo-
geneous spaces is the derivation of an asymptotic upperdbfaunthe rate of
codes (i.e. for the quotieribg card(C')/dim(X)) obtained from the so-called
Christoffel-Darboux kernels. This method was first discedefor the Hamming
and Johnson spacés [30] and then generalized to the unieg@d¢ and to all other
2-point homogeneous spacés|[28]. It happens to be the besankapper bound
for the asymptotic range. 10 [24] an asymptotic bound iswéekifor the density of
sphere packings in Euclidean space which is also the bestrkno

6.2. Symmetric spaces.For these spaces, which are rspoint homogeneous,
there may be several distance functions of interest whiehGamvariant. For
example, the analysis of performance of codes in the Grassmspaces for the
MIMO channel [14] involves both the chordal distance:

Jism 0:(p,q

=1

and the product pseudo distance (it is not a distance in tiieasense):

== H sin ei(pv Q)
i=1

The reformulation of Theorefn 8.2 leads to a theorem of the[&B for any sym-
metric function of they; := cos§; with the Jacobi polynomial®, (yi, ..., ym)
instead of theP,. For a general symmetric space, a theorem of the [tyde 6.3 is
obtained, where the sequence of polynomigiét) is replaced by a sequence of
multivariate polynomials, and the sBY; is replaced by some compact subspace of
the domain of the variables of the zonal functions, i.e. ef dnbits of G acting

on pairs. Then one can derive explicit upper bounds,[seefptBhe permutation
codes,[[2] for the real Grassmann codgs| [37] and [14] foctmplex Grassmann
codes, [[15] for the unitary code$) [9] and [31] for the ordecedes. Moreover an
asymptotic bound is derived in![2] and [9].
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6.3. Other spaces with true SDP bounds.An example where the bound _(20)
does not boil down to an LP is provided by the spaf¢s, ¢) endowed with the
distance[(1b) for which the matricés, are computed in sectidn 5.5.3 (sgé [7]). In
this case the grou@ is the largest group that acts on the SDP.

Indeed, it is useless to restrict the symmetrization of tlegy@m [20) to some
subgroup of the largest group that preserve$X, d). However, another interest-
ing possibility is to change the restricted conditidfx, y) > ¢ in A(X,0) for the
conditions:

(22) d(z,y) > 0, d(xz,e) <7, d(y,e) <r

wheree € X is a fixed point. Then the new (X, e, r, ) is the maximal number
of elements of a code with minimal distangéén the ball B(e,r) C X. Here the
group that leaves the program invarianBiab(e, G). The corresponding bounds
for codes in spherical caps where computed_in [6] using thessions of the
zonal matrices df 5.5.1.

We end this section with some comments on these SDP boundsaWeéndeed
generalized the framework of the classical LP bounds buléigeee of understand-
ing of the newly defined bounds is far from the one of the ctad4iP bounds after
the work done since [17], see e.qg.][28]. It would be very ieséing to have a better
understanding of the best functiohsthat give the best bounds, to analyse explicit
bounds and to analyse the asymptotic range, although Ipadiats in these direc-
tions have already been obtained. The fact that one has tavitbanultivariate
polynomials introduces great difficulties when one triefottow the same lines as
for the classical one variable cases. A typical exampleasiged by the config-
uration of 183 points on the half sphere that seems numerically to be amapti
configuration for the one sided kissing number, and for winetfailed to find the
proper functionF' leading to a tight bound (se€ [7]).

7. LOVASZ THETA

In this section we want to establish a link between the progf@Q) and the
so-called Lovasz theta number. This number was introdbgddvasz in the sem-
inal paper([29] in order to compute the capacity of the pemtad his remarkable
result is the first of a long list of applications. This numizethe optimal solution
of a semidefinite program, thus is “easy to calculate”, addrefan approxima-
tion of invariants of graphs that are “hard to calculate” nc®i then many other
SDP relaxations of hard problems have been proposed in ¢ginaphy and in other
domains.

7.1. Introduction to Lov asz theta number. A graphI’ = (V, E) is a finite set’

of vertices together with a finite sét of edges, i.e.F C V2. An independence
setS is a subset o¥ such thats? N E = (. The independence numberT)

is the maximum of the number of elements of an independericeltss a hard
problem to determine the independence number of a graphcdimeection with
coding theory is as follows: a codg of a finite spaceX with minimal distance
d(C) > ¢ is an independence set of the grdplX, ) which vertex set is equal to

X and which edge set is equal & := {(z,y) € X? : d(z,y) €]0,6[}. Thus

the determination ofA(X, §) is the same as the determination of the independence
number of this graph.
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Among the many definitions of Lovasz theta, we choose onelwipéneralizes
nicely to infinite graphs. Faf C V, let1g be the characteristic function 6t Let

L 15(@) 15().

M(I’,y) = |S|

The following properties hold foi/:
(1) M € R™*" where|V| = n, andM is symmetric
2 M*=0
(3) Xpey M(z,2) =1
4) M(z,y) =0if (z,y) e £
®) X ayyeve M(z,y) = [S].

Definition 7.1. The theta number of the grafgh= (V, E) withV = {1,2,... ,n}
is
J(T) =max{ >.i;Bij: BER™" B=0

(23) >iBii=1,
Bi7j:0 (Zvj)EE}

The dual program fo# has the same optimal value and is equal to:
9(T) =min{ ¢t: B=0
(24) Bii=t-1,
Bij=-1 (i,j) ¢ E}

The complementary graph &fis denotedl’. The chromatic numbey(T) is the

minimum number of colors needed to color the vertices sortbdtvo connected
vertices receive the same color. In other words it is a mihpattition of the vertex
set with independence sets. Then the so-called Sandwioletieholds:

Theorem 7.2. B
a(l') <9(I) < x(I)

Proof. The discussion prior to the theorem proves the first inetyudtor the sec-
ond inequality, let : V' — {1,...,k} be a coloring of". Then the matrixC with
C;j = —1if (i) # ¢(j), Ci; = k — 1 andC; ; = 0 otherwise provides a feasible
solution of [24). O

7.2. Symmetrization and theg-gones. Now we assume thaft is (a subgroup of)
the automorphism grouput(I") of the graph. Then¢ acts also on the above
defined semidefinite programs. Averaging@rallows to construct &-invariant
optimal feasible solutior3’ from any optimal feasible solutio® with the same
objective value:

1
Bij = @l > Batiya-
geG

Thus one can restrict in the above programs to@himvariant matrices. Then
one can exploit the method developed in previous sectioneyder to obtain a
description of th&5-invariant B = 0 form the decomposition of the spa€él’)
under the action ofi. We illustrate the method in the case of thgoneC),. There
we haveV = G' = Z, the group of integers modulp Let (, be a fixed primitive
root of 1 in C. Letyy : Z, — C* be defined by, (z) = Cc’jx. The characters of
Zq are theyy, for 0 < k < ¢ — 1 and we have the decomposition

C(Zy) = ®I_{Cxia-
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According to Theorerh 4.11, th@-invariant positive definite functions ovi are
exactly the functiond”(x, y) of the form:

-1

g—1 q
F(z,y) = kaxk(w)Xk(y) = kadf(x_y)
k=0 k

=0
with fr > 0. The ones taking real values have the form

la/2]
F(a,y)= 3 frcos((w —y)2kn/q), fi > 0.
k=0

When one replaces ifh the expressioB3; ; = F(i, j), the SDP transforms into a
LP on the variablegy.. More precisely, we comput®_, cy2 F(z,y) = @ fo
and) . F(x,z) = ¢, fr. Thus we obtain (after a changegf; to f3):

(Cy) =max{qfo: fr>0,0<k<][q/2],

la/2)

o =1,

k=0

la/2)

Z frcos(2km/q) =0
k=0

The optimal value of this very simple linear program, is aked for f; = fo =
o+ = flg/2)-1 = 0, and equals

4(C,) { g if ¢ is even
q) = qeos(m/q) g i
Ttcos(n /) if ¢ is odd.

Note that whery is even, the independence number ofgkgone is exactly;/2. If

the independence number of a graph as simple ag-ome is not a great deal (it
is of course equal tdg/2|), a more challenging issue is to determine its capacity.
In general, the capacity/(I") of a graphl’ is defined to be

. ny1l/n

C(r) = lim o) /n,
Here the graphi™ is defined as follows: its vertex set is equalift and an edge
connects(zy, ..., zy,) and (y1,...,y,) iff forall 1 < i < n eitherz; = y; or
(zi,y;) € E. Introduced by Shannon in 1956, this number representsfinetiee
size of an alphabet used to transmit information throughctiemnel associated
to the graphl’ (where two symbols are undistinguable if they are connebied
an edge). If the capacity of a graph is in general very diffitolcalculate, the
theta number of a graph provides an upper bound for it beca(ise) = (")
(see [[29]). This upper bound is an equality for the pentagnoceson one hand
¥(Cs) = /5 from our previous computation, and on the other hand it iy éas
see thaty((C5)?) = 5 (while a(C5) = 2); this is the way taken by Lovasz in [29]
to prove thaiC'(C5s) = /5. The determination of the capacity of thegone forq
odd and greater thahis still opened.
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7.3. Relation with Delsarte bound and with m (X, §). We introduce a slightly
stronger bound fow(T") with ¢’ and its dual form:

'19/(F) = max{zi,j Bi,j . B >_‘ 07 B Z 0

(25) > Bii=1,
BZ'J:O (Z,]) GE}

9'(I) =min{ ¢t: B*0

(26) B;; <t—-1,
Bi,j S -1 (27])¢E}

SinceM (z,y) > 0, we still have thaty(T') < ¢/(T"). Again one can restrict in the
above programs to th@-invariant matrices. It was recognized independently by
McEliece, Rodemich, Rumsey, and Schrijver|[39] that Dééshound of Theorem
for A(H,,d) is equal toy’ for the graphl’(X,d), once the feasible set is re-
stricted to theAut(H,, )-invariant matrices, and similarly for the other fintgoint
homogeneous spaces. Indeed, by virtue of Thedrem 4.11, dlvices B turn to
be of the formB(z,y) = >~ fuPr(d(z,y)). This symmetrization process is
of great importance, not only because it has the great aalyartb change an SDP
to an LP, but also because it does change the complexity gfrtitdem. Indeed,
there are algorithms with polynomial complexity that do gone approximations
of the optimal value of SDP’s, thus algorithms with polynahdomplexityin the
number of verticesf I" for ¢. But the graphs arising from coding theory have in
general an exponential number of vertices, €¢.for the Hamming graph. It is
important to insist that the symmetrized theta has polyaboomplexity inn.

Now we can see that the program(X, ) (20) is a natural generalization of
9" for metric spaces under the assumptions of Section 4. We teff8] for a
more general discussion about generalized theta wherelaismatic numbers are
involved.

8. STRENGTHENING THELP BOUND FOR BINARY CODES

In this section we explain how the zonal matridég x, y) related to the binary
Hamming space computed[in 5.5.3 are exploited_in [40] in omstrengthen the
LP bound. We shall work with the primal programs so we staretall the primal
version of [20) in the case of the Hamming space.

We recall that the sequence of orthogonal functiRg)o<x<, With P, = K},
the Krawtchouk polynomials is associatedHq such thatPy(d(z,y)) = 0. As a
conseguence, we have for al> 0

> P(d(c,d)) > 0.

(c,c)eC?
We introduce the variables;, fori € [0.. . n]
(27) X = car;(C) card{(c,d) € C* : d(c,c) =i}.
They satisfy the properties:
(1) zo=1
(2 2 >0

(3) >, i Py(i) > Oforall k >0
4 z;=0ifie[l...6—1]
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(5) card(C) = >, x;.
With these properties which are linear inequalities, weainbthe following linear
program which is indeed the dual 6f{20):

sup{1+> " sx; : x>0,
1+ 3" sxiPy(i) >0foralll <k <n}
where we have taken into accourf = 1.
We recall that to every < k < | 5], we have associated a matdi,(z,y) = 0
of sizen — 2k + 1. In particular, for allC’ C H,, (see the remaik 4.10),

Z Ej(c,d) = 0.
(c,c’)eC?
These constraints are not interesting for pairs becauseatteenot stronger than
the linear inequalities coming from the Krawtchouk polynals. They are only
interesting if triples of points are involved: namely weaate to(x,y, z) € H>
the matrices
Fk(xaya Z) = Ek(x — %Y - Z)‘
We have for allC c H,, and for allz € H,,
Z Fk(C7C/,Z) >_-0
(c,c)eC?
which leads to the two positive semidefinite conditions:
{ 2(076’70”)603 Fi(e,d, ") = 0
(c,c)EC?, "¢C F (e, d, C”) =0
Theoreni 5.4, expresses the coefficient&pfz — z,y — z) in terms ofwt(x — z),
wt(y — z), wt(x — y); so witha := d(y, z), b := d(z, 2), ¢ := d(z,y), we have
for some matrice§(a, b, c),
Fy(x,y,2) = Ti(a,b,c).
We introduce the unknowns, ; . of the SDP. Let
a+b+c=0 mod?2
a+b+cec<2n
Q::{(a,b,c)E[O...n]3: c<a+b }
b<a+c
a<b+ec

Itis easy to check tha&® = {(d(y, 2),d(z, 2),d(x,y)) : (z,y,2) € H3}. Let, for
(a,b,c) € 9,

(28)

xa,b,c = m Card{(:ﬂayaz) € C3 : d(y’ Z) = a’d(x?z) = ba d(:ﬂ,y) = C}'

Note that

1 2
Z0,c,c = m card{(m,y) eC: d(l’,y) - C}

thus the old variables; (27) of the linear program are part of these new variables.
We need a last notation: let
t(a,b,c) :=card{z € Hy, : d(x,z) = bandd(y, z) = a} for d(z,y) = ¢
= (5)(2=5) wherea — b+ ¢ = 2i
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Then, if C'is a binary code with minimal distance at least equd, titve following
inequalities hold forz, p . :

(1) wo00=1

(2) Lab,c >0

() Tab,e = Tr(a),r(v),7(c) fOr all permutationr of {a, b, c}

(4) Ta,b,c < t(a7 b, C)wO,c,w Tab,c < t(b7 C, a)xO,a,af Lab,c < t(07 a, b)w(],b,b-

(5) Z%b’c Ty(a,b,c)xape = 0forall 0 < k <[]

(6) >_apeTr(a,b,c)(t(a, b, )o,cc — Tape) = 0forall0 <k < |7

(7) zape=0 if a,bore€l0,d].

(8) card(C) = >, o c,c-
Conditions (5) and (6) are equivalent Eg](28). Conditiont(Zhslates the assump-
tion thatd(C') > 6. Thus an upper bound afard(C') is obtained with the optimal
value of the program that maximizés z, .. under the constraints (1) to (7).
This upper bound is at least as good as the LP bound becausb®erogram
does contain the LP program[of B.1. Indeed, the sum of the @@ &nditions
(28) is equivalent to

Z Ei(x —z,y — z) = 0.
z€EH,

We claim that this set of conditions whén= 0,1,...,[% | is equivalent to the
set of conditionsPy(d(x,y)) = 0 for k = 0,...,n. Indeed letBy(z,y) :=
>zem, Er(r — 2,y — 2). Up to a change oBy,(z,y) to ABy(z,y)A*, we as-
sume thatF;, was constructed using the decompositior€ off,, ) first underT” :=
T x S, = Aut(H,) then underG (see Remark5l7). Clearl;, is I'-invariant.
Sincex — Ej; j(x,y) € P; andF; is al-module, alsax — By ; j(z,y) € P
and similarlyy — By ;;(z,y) € P;. But P, and P; are non isomorphid -
modules fori # j thus By ; j(x,y) = 0 for i # j. SinceP; is I'-irreducible,
Byii(z,y) = N\iPi(d(x,y)) for some); > 0 that can be computed withy, (z, x).
So we have proved that the linear program associatéf, tlike in[6.7 is contained
in the SDP program obtained from the above conditions (1¥}o Moreover it
turns out that in some explicit cases of small dimension tb@ $ound is strictly
better than the LP bound (see [40]).

A similar strengthening of the LP bound for the Johnson spaddor the spaces
of non binary codes where obtained [in[40] and! [20]. In theeaafsthe spherical
codes, for the same reasons as for the LP bound, one has twitledahe dual
program, see [4].
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