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SEMIDEFINITE PROGRAMMING, HARMONIC ANALYSIS AND
CODING THEORY

CHRISTINE BACHOC

ABSTRACT. These lecture notes where presented as a course of the CIMPA
summer school in Manila, July 20-30, 2009,Semidefinite programming in al-
gebraic combinatorics.
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1. INTRODUCTION

In coding theory, the so-called linear programming method,introduced by Phi-
lippe Delsarte in the seventies [16] as proved to be a very powerful method to
solve extremal problems. It was initially developed in the framework of association
schemes and then extended to the family of2-point homogeneous spaces, including
the compact real manifolds having this property (see [18], [24], [13, Chapter 9]).
Let us recall that a2-point homogeneous space is a metric space on which a group
G acts transitively, leaving the distanced invariant, and such that, for(x, y) ∈ X2,
there existsg ∈ G such that(gx, gy) = (x′, y′) if and only if d(x, y) = d(x′, y′).
The Hamming spaceHn and the unit sphere of the Euclidean spaceSn−1 are core
examples of such spaces which play a major role in coding theory. To such a
space is associated a sequence of orthogonal polynomials(Pk)k≥0 such that, for
all C ⊂ X,

∑

(c,c′)∈C2

Pk(d(c, c
′)) ≥ 0.

These inequalities can be understood as linear constraintson the distance distribu-
tion of a code and are at the heart of the LP method.

The applications of this method to the study of codes and designs are numerous:
very good upper bounds for the number of elements of a code with given minimal
distance can be obtained with this method, including a number of cases where this
upper bound is tight and leads to a proof of optimality and uniqueness of certain
codes, as well as to the best known asymptotic bounds (see [16], [30], [24], [13,
Chapter 9], [28]).

In recent years, the development of the theory of error correcting codes has in-
troduced many other spaces with interesting applications.To cite a few, codes
over various alphabets associated to various weights, quantum codes, codes for the
multi antenna systems of communications involving more complicated manifolds
like the Grassmann spaces, have successively focused attention. For these spaces
there was a need for a generalization of the classical framework of the linear pro-
gramming method. This generalization was developed for some of these spaces,
see [44], [45], [2], [37]. It turns out that in each of these cases, a certain sequence
of orthogonal polynomials enters into play but unlike the classical cases, these
polynomials are multivariate.

Another step was taken when A. Schrijver in [40] succeeded toimprove the
classical LP bounds for binary codes with the help of semidefinite programming.
To that end he exploitedSDP constraints on triples of pointsrather than on pairs,
arising from the analysis of the Terwilliger algebra of the Hamming scheme. His
method was then adapted to the unit sphere [4] in the framework of the represen-
tations of the orthogonal group. The heart of the method is toevidence matrices
Zk(x, y, z) such that for allC ⊂ X,

∑

(c,c′,c′′)∈C3

Zk(c, c
′, c′′) � 0.
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Another motivation for the study of SDP constraints onk-tuples of points can
be found in coding theory. It appears that not only functionson pairs of points such
as a distance functiond(x, y) are of interest, but also functions onk-tuples have
relevant meaning, e.g. in connection with the notion of listdecoding.

In these lecture notes we want to develop a general frameworkbased on har-
monic analysis of compact groups for these methods. In view of the effective ap-
plications to coding theory, we give detailed computationsin many cases. Special
attention will be paid to the cases of the Hamming space and ofthe unit sphere.

Section 2 develops the basic tools needed in the theory of representations of fi-
nite groups, section 3 is concerned with the representations of compact groups and
Peter Weyl theorem. Section 4 discusses the needed notions of harmonic analy-
sis: the zonal matrices are introduced and the invariant positive definite functions
are characterized with Bochner theorem. Section 5 is devoted to explicit computa-
tions of the zonal matrices. Section 6 shows how the determination of the invariant
positive definite functions leads to an upper bound for codeswith given minimal
distance. Section 7 explains the connection with the so-called Lovász theta num-
ber. Section 8 shows how SDP bounds can be used to strengthen the classical LP
bounds, with the example of the Hamming space.

1.1. Notations: for a matrixA with complex coefficients,A∗ stands for the trans-
posed conjugate matrix. A squared matrix is said to be hermitian if A∗ = A and
positive semidefinite if it is hermitian and all its eigenvalues are non negative. This
property is denotedA � 0. We follow standard notations for sets of matrices: the
set ofn ×m matrices with coefficients in a fieldK is denotedKn×m; the group
of n × n invertible matrices byGl(Kn); the groupU(Cn) of unitary matrices,
respectivelyO(Rn) of orthogonal matrices is the set of matricesA ∈ Gl(Cn), re-
spectivelyA ∈ Gl(Rn) such thatA∗ = A−1. The spaceCn×m is endowed with
the standard inner product〈A,B〉 = Trace(AB∗) =

∑

i,j Ai,jBi,j. The number
of elements of a finite setX is denotedcard(X) of |X|.

2. LINEAR REPRESENTATIONS OF FINITE GROUPS

In this section we shortly review the basic notions of group representation theory
that will be needed later. There are many good references forthis theory e.g. [41],
or [38] which is mainly devoted to the symmetric group.

2.1. Definitions. LetG be a finite group. A (complex linear) representation ofG
is a finite dimensional complex vector spaceV together with a homomorphismρ:

ρ : G→ Gl(V )

whereGl(V ) is the general linear group ofV , i.e. the set of linear invertible trans-
formations ofV . The degree of the representation(ρ, V ) is by definition equal to
the dimension ofV .

Two representations ofG say (ρ, V ) and (ρ′, V ′) are said to be equivalent or
isomorphic if there exists and isomorphismu : V → V ′ such that, for allg ∈ G,

ρ′(g) = uρ(g)u−1.

For example, the choice of a basis ofV leads to a representation equivalent to
(ρ, V ) given by(ρ′,Cd) whered = dim(V ) andρ′(g) is the matrix ofρ(g) in the
chosen basis. In general, a representation ofG such thatV = C

d is called a matrix
representation.
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The notion of aG-module is equivalent to the above notion of representationand
turns out to be very convenient. AG-module, or aG-space, is a finite dimensional
complex vector spaceV such that for allg ∈ G, v ∈ V , gv ∈ V is well defined
and satisfies the obvious properties:1v = v, g(hv) = (gh)v, g(v+w) = gv+gw,
g(λv) = λ(gv) for g, h ∈ G, v,w ∈ V , λ ∈ C. In other words,V is endowed
with a structure ofC[G]-module. One goes from one notion to the other by the
identificationgv = ρ(g)(v). The notion of equivalent representations corresponds
to the notion of isomorphicG-modules, an isomorphism ofG-modules being an
isomorphism of vector spacesu : V → V ′ such thatu(gv) = gu(v). Note that
here the operations ofG on V andV ′ are denoted alike, which may cause some
confusion.

2.2. Examples.

• The trivial representation1: V = C andgv = v.
• Permutation representations: letX be a finite set on whichG acts (on the

left). Let VX := ⊕x∈XCex. A natural action ofG on VX is given by
gex = egx, and defines a representation ofG, of degree|X|. The matrices
of this representation (in the basis{ex}) are permutation matrices.

– The symmetric groupSn acts onX = {1, 2, . . . , n}. This action
defines a representation of degreen of Sn.

– For allw, 1 ≤ w ≤ n,Sn acts on the setXw of subsets of{1, 2, . . . , n}
of cardinalw. In coding theory an element ofXw is more likely
viewed as a binary word of lengthn and Hamming weightw. The
spacesXw are called the Johnson spaces and denotedJw

n .
• The regular representation is obtained with the special caseX = G with

the action ofG by left multiplication. In the caseG = Sn it has degree
n!.. It turns out that the regular representation contains allbuilding blocks
of all representations ofG.

• Permutation representations again: ifG acts transitively onX, this action
can be identified with the left action ofG on the left cosetsG/H = {gH :
g ∈ G} whereH = Stab(x0) is the stabilizer of a base point.

– The symmetric groupSn acts transitively onX = {1, 2, . . . , n} and
the stabilizer of one point (sayn) can be identified with the symmetric
groupSn−1 acting on{1, . . . , n− 1}.

– The action ofSn onJw
n is also transitive and the stabilizer of one point

(say1w0n−w) is the subgroupS{1,...,w} × S{w+1,...,n} isomorphic to
Sw × Sn−w.

– The Hamming spaceHn = {0, 1}n = F
n
2 affords the transitive action

of G = T ⋊ Sn whereT is the group of translationsT = {tu : u ∈
Hn}, tu(v) = u + v andSn permutes the coordinates. The stabilizer
of 0n is the group of permutationsSn.

• Another way to see the permutation representations is the following: let

C(X) := {f : X → C}

be the space of functions fromX to C. The action ofG onX extends to a
structure ofG-module onC(X) given by:

gf(x) := f(g−1x).
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For the Dirac functionsδy (δy(x) = 1 if x = y, 0 otherwise), the ac-
tion of G is given bygδy = δgy thus this representation is isomorphic to
the permutation representation defined byX. This apparently more com-
plicated presentation of permutation representations hasthe advantage to
allow generalization to infinite groups acting on infinite spaces as we shall
encounter later.

2.3. Irreducibility. LetV be aG-module (respectively a representation(ρ, V ) of
G). A subspaceW ⊂ V is said to beG-invariant (orG-stable, or aG-submodule,
or a subrepresentation of(ρ, V )), if gw ∈ W (respectivelyρ(g)(w) ∈ W ) for all
g ∈ G, w ∈W .
Example: V = VG andW = CeG with eG =

∑

g∈G eg. The restriction of the
action ofG toW is the trivial representation.

A G-moduleV is said to be irreducible if it does not contain any subspace
W , W 6= {0}, V , invariant underG. Otherwise it is called reducible. The main
result is then the decomposition of aG-module into the direct sum of irreducible
submodules:

Theorem 2.1(Maschke’s theorem). AnyG-moduleV 6= {0} is the direct sum of
irreducibleG-submodulesW1, . . . ,Wk:

(1) V = W1 ⊕W2 ⊕ · · · ⊕Wk.

Proof. By induction, it is enough to prove that anyG-submoduleW of V affords
a supplementary subspace which is alsoG-invariant. The main idea is to construct
aG-invariant inner product and then prove that the orthogonalof W for this inner
product makes the job.

We start with an inner product〈x, y〉 defined onV . There are plenty of them
sinceV is a finite dimensional complex vector space. For example we can choose
an arbitrary basis ofV and declare it to be orthonormal. Then we average this inner
product onG, defining:

〈x, y〉′ :=
∑

g∈G

〈gx, gy〉.

It is not difficult to check that we have defined a inner productwhich isG-invariant.
It is also easy to see that

W⊥ := {v ∈ V : 〈v,w〉′ = 0 for all w ∈W}
isG-invariant, thus we have the decomposition ofG-modules:

V = W ⊕W⊥

�

It is worth to notice that the above decomposition may not be unique. It is clear
if one thinks of the extreme caseG = {1} for which the irreducible subspaces
are simply the one dimensional subspaces ofV . The decomposition ofV into the
direct sum of subspaces of dimension1 is certainly not unique (ifdim(V ) > 1
of course). But uniqueness is fully satisfied by the decomposition into isotypic
subspaces. In order to define them we take the following notation: let R be a
complete set of pairwise non isomorphic irreducible representations ofG. It turns
out that there is only a finite number of them but we have not proved it yet. The
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isotypic subspaceIR of V associated toR ∈ R is defined, with the notations of
(1), by:

(2) IR := ⊕Wi≃RWi.

Theorem 2.2. LetR ∈ R. The isotypic spacesIR do not depend on the decom-
position ofV as the direct sum ofG-irreducible subspaces. We have the canonical
decomposition

V = ⊕R∈RIR.

Any G-subspaceW ⊂ V such thatW ≃ R is contained inIR and anyG-
irreducible subspace ofIR is isomorphic toR. A decomposition into irreducible
subspaces ofIR has the form

IR = W1 ⊕ · · · ⊕WmR

withWi ≃ R. Such a decomposition is not unique in general but the numbermR

does not depend on the decomposition and is called the multiplicity of R in V .
Moreover, ifV is endowed with aG-invariant inner product, then the isotypic

spaces are pairwise orthogonal.

Proof. We start with a lemma which points out a very important property of irre-
ducibleG-modules.

Lemma 2.3 (Schur Lemma). LetR1 andR2 two irreducibleG-modules and let
ϕ : R1 → R2 be aG-homomorphism. Then eitherϕ = 0 or ϕ is an isomorphism
ofG-modules.

Proof. The subspaceskerϕ and imϕ areG-submodules of respectivelyR1 and
R2 thus they are equal to either{0} orRi. �

We go back to the proof of the theorem. We start with the decomposition (1)
of V and the definition (2) ofIR, a priori depending on the decomposition. Let
W ⊂ V , aG-submodule isomorphic toR. We apply Lemma 2.3 to the projections
pWi

and conclude that eitherpWi
(W ) = {0} or pWi

(W ) = Wi and this last case
can only happen ifW ≃ Wi. It proves thatW ⊂ IR and that aG-irreducible
subspace ofIR can only be isomorphic toR. It also proves that

IR =
∑

W⊂V,W≃R

W

hence giving a characterization ofIR independent of the initial decomposition.
The numbermR must satisfydim(IR) = mR dim(R) so it is independent of the
decomposition ofIR.

If V is equipped with aG-invariant inner product, we consider orthogonal pro-
jections. Schur Lemma shows thatPW (W ′) = {0} or = W if W andW ′ are
irreducible. Thus if they are notG-isomorphic,W andW ′ must be orthogonal.

�

2.4. The algebra ofG-endomorphisms. Let V be aG-module. The set ofG-
endomorphisms ofV is an algebra (for the laws of addition and composition) de-
notedEndG(V ). The next theorem describes the structure of this algebra.

Theorem 2.4. If V ≃ ⊕R∈RR
mR , then

EndG(V ) ≃
∏

R∈R

C
mR×mR .
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Proof. The proof is in three steps: we shall assume firstV = R is irreducible, then
V ≃ Rm, then the general case. Schur Lemma 2.3 is the main tool here.

If V is irreducible, letϕ ∈ EndG(V ). SinceV is a complex vector space,ϕ has
got an eigenvalueλ. Thenϕ− λ Id is aG-endomorphism with a non trivial kernel
so from Schur Lemmaϕ− λ Id = 0. We have proved that

EndG(V ) = {λ Id, λ ∈ C} ≃ C.

We assume now thatV ≃ Rm and we fix a decompositionV = W1 ⊕ · · · ⊕Wm.
For all 1 ≤ i ≤ j ≤ m, let uj,i : Wi → Wj an isomorphism ofG-modules such
that the relations

uk,j ◦ uj,i = uk,i andui,i = Id

hold for all i, j, k. Let ϕ ∈ EndG(V ); we associate toϕ an element ofCm×m in
the following way. From previous discussion of the irreducible case it follows that
for all i, j there existsai,j ∈ C such that, for allv ∈Wi,

pWj
◦ ϕ(v) = aj,iuj,i(v).

The matrixA = (ai,j) is the matrix associated toϕ. The proof that the mapping
ϕ 7→ A is an isomorphism of algebras carries without difficulties and is left to the
reader.

In the general case,V = ⊕R∈RIR. Letϕ ∈ EndG(V ). It is clear thatϕ(IR) ⊂
IR thus

EndG(V ) = ⊕R∈R EndG(IR)

and we are done. �

It is worth to notice thatEndG(V ) is a commutative algebra if and only if all the
multiplicitiesmR are equal to either0 or1. In this case we say thatV is multiplicity
free. It is also the unique case when the decomposition into irreducible subspaces
(1) is unique.

2.5. Characters. The character of a representation(ρ, V ) of G is the function
χρ : G→ C defined by

χρ(g) = Trace(ρ(g)).

As a consequence of the standard property of traces of matrices Trace(AB) =
Trace(BA), the character of a representation only depends on its equivalence class,
and it is a complex valued function onGwhich is constant on the conjugacy classes
of G (such a function is called a class function). The inner product of any twoχ,
ψ ∈ C(G) is defined by

〈χ,ψ〉 :=
1

|G|
∑

g∈G

χ(g)ψ(g).

We have the very important orthogonality relations betweencharacters:

Theorem 2.5(Orthogonality relations of the first kind). Let χ andχ′ be respec-
tively the characters of two irreducible representations(ρ, V ) and (ρ′, V ′) of G.
Then

〈χ, χ′〉 =

{

1 if ρ ≃ ρ′

0 otherwise.

Proof. We outline a proof in the more general context of compact groups in the
next section (Theorem 3.1). �
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A straightforward consequence of the above theorem is that〈χρ, χR〉 = mR

for all R ∈ R. This property is a very convenient tool to study the irreducible
decomposition of a given representation(ρ, V ) of G; in the case of the regular
representation it leads to the following very important result:

Theorem 2.6. [Decomposition of the regular representation]

C(G) ≃ ⊕R∈RR
dim(R)

Proof. Compute the character of the regular representation. �

A consequence of the above theorem is the finiteness of the number of irre-
ducible representations of a given finite group, together with the formula

|G| =
∑

R∈R

(dim(R))2

which shows e.g. completeness of a given set of irreducibleG-modules.
A second consequence of the orthogonality relations is thata representation of

G is uniquely characterized up to isomorphism by its character.

Theorem 2.7.
(ρ, V ) ≃ (ρ′, V ′) ⇐⇒ χρ = χρ′ .

Proof. If χρ = χρ′ , the multiplicities of an irreducible representation ofG are the
same inV andV ′, henceV ≃G V ′. �

2.6. Examples from coding theory. In coding theory we are mostly interested in
the decomposition ofC(X) under the action ofG = Aut(X) for various spaces
X. We recall that the action ofG on f ∈ C(X) is given by(gf)(x) = f(g−1x).
The spaceC(X) is endowed with the inner product

〈f, f ′〉 =
1

|X|
∑

x∈X

f(x)f ′(x).

which isG-invariant.

2.6.1. The Hamming spaceHn: recall thatG = T ⋊ Sn. Let, for y ∈ Hn,
χy ∈ C(Hn) be defined byχy(x) = (−1)x·y. The set{χy, y ∈ Hn} is exactly
the set of irreducible characters of the additive groupF

n
2 , and form an orthonormal

basis ofC(Hn). The computation of the action ofG onχy shows that forσ ∈ Sn,
σχy = χσ(y) and fortu ∈ T , tuχy = (−1)u·yχy. Let, for0 ≤ k ≤ n,

Pk :=⊥y,wt(y)=k Cχy

ThusPk is aG-invariant subspace ofC(Hn) of dimension
(

n
k

)

and we have the
decomposition

(3) C(Hn) = P0 ⊥ P1 ⊥ · · · ⊥ Pn.

The computation〈χPk
, χPk

〉 = 1 whereχPk
is the character of theG-modulePk

shows that these modules areG-irreducible.
Now we introduce the Krawtchouk polynomials. The elementZk :=

∑

wt(y)=k χy

of C(Hn) isSn-invariant. In other words,Zk(x) only depends onwt(x). We define
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the Krawtchouk polynomialKk for 0 ≤ k ≤ n by

Kk(w) : = Zk(x) =
∑

wt(y)=k

(−1)x·y wherewt(x) = w(4)

=
w

∑

i=0

(−1)i
(

w

i

)(

n− w

k − i

)

.(5)

We review some properties of these polynomials:

(1) deg(Kk) = k
(2) Kk(0) =

(n
k

)

(3) Orthogonality relations: for all0 ≤ k ≤ l ≤ n

1

2n

n
∑

w=0

(

n

w

)

Kk(w)Kl(w) = δk,l

(

n

k

)

The last property is just a reformulation of the orthogonality of theZk ∈ Pk, since,
if f, f ′ ∈ C(Hn) areSn-invariant, andf̃(w) := f(x), wt(x) = w,

〈f, f ′〉 =
1

2n

∑

x∈Hn

f(x)f ′(x)

=
1

2n

n
∑

w=0

(

n

w

)

f̃(w)f̃ ′(w).

The above three properties characterize uniquely the Krawtchouk polynomials.
LetC ⊂ Hn be a binary code. Let1C be the characteristic function ofC. The

obvious inequalities hold:

(6) 0 ≤ k ≤ n,
∑

wt(y)=k

〈1C , χy〉2 ≥ 0.

Since the decomposition of1C over the basisχy reads

1C =
∑

y∈Hn

〈1C , χy〉χy.

the above inequalities are indeed reformulations of the nonnegativity of the squared
norm of the projectionspPk

(1C). They express in terms of the Krawtchouk poly-
nomials:

(7) 0 ≤ k ≤ n,
1

22n

∑

(x,x′)∈C2

Kk(dH(x, x′)) ≥ 0

or equivalently in terms of the distance distribution of thecodeC: if

Aw(C) :=
1

|C| |{(x, x
′) ∈ C2 : dH(x, x′) = w}|

then

0 ≤ k ≤ n,
|C|
22n

n
∑

w=0

Aw(C)Kk(w) ≥ 0.

These inequalities are the basic inequalities involved in Delsarte linear program-
ming method. We shall encounter similar inequalities in a very general setting.
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In the special case whenC is linear, we have

〈1C , χy〉 =
|C|
2n

1C⊥(y)

so that we recognise the identity

∑

wt(y)=k

〈1C , χy〉2 =
|C|
22n

n
∑

w=0

Aw(C)Kk(w)

to be the Mac Williams identity

Ak(C
⊥) =

1

|C|

n
∑

w=0

Aw(C)Kk(w).

2.6.2. The Johnson spacesJw
n : the group isG = Sn. Here, we shall see at work

a standard way to evidenceG-submodules as kernels ofG-endomorphisms. For
details we refer to [17] where theq-Johnson spaces are given a uniform treatment.
We introduce the applications

δ : C(Jw
n ) → C(Jw−1

n )

f 7→ δ(f) : δ(f)(x) :=
∑

y∈Jw
n , x⊂y

f(y)

and

ψ : C(Jw−1
n ) → C(Jw

n )

f 7→ ψ(f) : ψ(f)(x) :=
∑

y∈Jw−1
n , y⊂x

f(y)

Both of these applications commute with the action ofG. They satisfy the follow-
ing properties:〈f, ψ(f ′)〉 = 〈δ(f), f ′〉,ψ is injective andδ is surjective. Therefore
the subspace ofC(Jw

n ):

Hw := ker δ

is aG-submodule of dimension
(n
w

)

−
( n
w−1

)

and we have the orthogonal decom-
position

C(Jw
n ) = Hw ⊥ ψ(C(Jw−1

n )) ≃ Hw ⊥ C(Jw−1
n ).

By induction we obtain a decomposition

C(Jw
n ) ≃ Hw ⊥ Hw−1 ⊥ · · · ⊥ H0

which can be proved to be the irreducible decomposition ofC(Jw
n ) (see 5.1.2).

3. LINEAR REPRESENTATIONS OF COMPACT GROUPS

In this section we enlarge the discussion to the representation theory of compact
groups. For this section we refer to [12].
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3.1. Finite dimensional representations.The theory of finite dimensional repre-
sentations of finite groups extends nicely and straightforwardly to compact groups.
A finite dimensional representation of a compact groupG is a continuous homo-
morphismρ : G→ Gl(V ) whereV is a complex vector space of finite dimension.

A compact groupG affords a Haar measure, which is a regular left and right
invariant measure. We assume this measure to be normalized,i.e. the groupG has
measure1. With this measure the finite sums over elements of a finite group can be
replaced with integrals; so the crucial construction of aG-invariant inner product
in the proof of Maschke theorem extends to compact groups with the formula

〈x, y〉′ :=

∫

G
〈gx, gy〉dg.

Hence Maschke theorem remains valid for finite dimensional representations. We
keep the notationR for a set of representatives of the finite dimensional irreducible
representations ofG, chosen to be representations with unitary matrices. A main
difference with the finite case is thatR is not finite anymore.

3.2. Peter Weyl theorem. Infinite dimensional representations will immediately
occur with the generalization of permutation representations. Indeed, ifG acts
continuously on a spaceX, it is natural to consider the action ofG on the space
C(X) of complex valued continuous functions onX given by(gf)(x) = f(g−1x)
to be a natural generalization of permutation representations. A typical example of
great interest in coding theory is the action ofG = O(Rn) on the unit sphere of
the Euclidean space:

Sn−1 := {x ∈ R
n : x · x = 1}.

The regular representation, which is the special caseC(G), with the left action of
G on itself, can be expected to play an important role similar to the finite case. It
is endowed with the inner product

〈f, f ′〉 :=

∫

G
f(g)f ′(g)dg.

ForR ∈ R, the matrix coefficientsg → Ri,j(g) belong to unitary matrices. The
celebrated Peter Weyl theorem asserts that these elements of C(G) form an orthog-
onal system and span a vector space which is dense inC(G) for the topology of
uniform convergence.

Theorem 3.1. [Orthogonality relations] ForR ∈ R, let dR := dim(R). For all
R,S ∈ R, i, j, k, l,

∫

G
Ri,j(g)Sk,l(g)dg =

1

dR
δR,Sδi,kδj,l.

Proof. ForA ∈ C
dR×dS , let

A′ =

∫

G
R(g)AS(g)−1dg.

This matrix satisfiesR(g)A′ = A′S(g) for all g ∈ G. In other words it defines
an homomorphism ofG-modules from(CdS , S) to (CdR , R). Schur lemma shows
that if S 6= R, A′ = 0 and if S = R, A′ = λ Id. Computing the trace ofA′

shows thatλ = Trace(A)/dR. TakingA = Ei,j the elementary matrices gives the
result. �



12 CHRISTINE BACHOC

The orthogonality relations of the characters of irreducible representations are
an easy consequence of the above theorem.

Theorem 3.2. [Peter Weyl theorem] The finite linear combinations of the functions
Ri,j are dense inC(G) for the topology of uniform convergence.

Proof. We give a sketch of the proof:

(1) If V is a finite dimensional subspace ofC(V ) which is stable by right trans-
lation (i.e. bygf(x) = f(xg)) andf ∈ V , thenf is a linear combination
of a finite number of theRi,j: according to previous discussion, there is
a decompositionV = W1 ⊕ · · · ⊕ Wn such thatWk is irreducible. If
Wk ≃ R, there exists a basise1, . . . , edR

of Wk in which the action ofG
has matricesR. Explicitly,

ej(hg) =

dR
∑

i=1

Ri,j(g)ei(h).

Takingh = 1, we obtainej =
∑dR

i=1 ei(1)Ri,j .
(2) The idea is to approximatef ∈ C(G) by elements of such subspaces,

constructed from the eigenspaces of a compact selfadjoint operator. We
introduce the convolution operators: letφ ∈ C(G),

Tφ(f)(g) = (φ ∗ f)(g) =

∫

G
φ(gh−1)f(h)dh.

(3) SinceG is compact,f is uniformly continuous; this property allows to
chooseφ such that‖f − Tφ(f)‖∞ is arbitrary small.

(4) The operatorTφ is compact and can be assumed to be selfadjoint. The
spectral theorem for such operators on Hilbert spaces (hereL2(G)) asserts
that the eigenspacesVλ := {f : Tφf = λf} for λ 6= 0 are finite dimen-
sional and that the space is the direct Hilbert sum⊕λVλ. For t > 0, the
subspacesVt := ⊕Vλ, |λ|>t have finite dimension (i.e. there is only a finite
number of eigenvaluesλ with |λ| > t > 0).

(5) The operatorTφ commutes with the action ofG by right translation thus
the subspacesVλ are stable under this action.

(6) Let fλ be the projection off on Vλ. The finite sumsft :=
∑

|λ|>t fλ are
linear combinations of theRi.j from (1) and they converge tof − f0 for
theL2-norm whent→ 0.

(7) Moreover, for allf ∈ C(V ), ‖Tφ(f)‖∞ ≤ ‖φ‖∞‖f‖2. Thus,Tφ(ft)
convergesuniformly to Tφ(f − f0) = Tφ(f).

�

If dR = dim(R), the vector space spanned by{Ri,j , i = 1, . . . , dR} is G-
invariant and isomorphic toR. So Peter-Weyl theorem means that the decomposi-
tion of the regular decomposition is

C(G) =⊥R∈R IR

whereIR ≃ RdR , generalizing Theorem 2.6 (one has a better understanding of
this decomposition with the action ofG×G onG given by(g, g′)h = ghg′−1. For
this actionC(G) = ⊕R∈RR ⊗ R∗ whereR∗ is the contragredient representation,
andR⊗R∗ isG×G-irreducible).
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Since uniform convergence is stronger thanL2 convergence, we also have as
a consequence of Peter Weyl theorem that the matrix coefficients Ri,j (suitable
rescaled) form an orthonormal basis ofL2(G) in the sense of Hilbert spaces.

A slightly more general version of Peter Weyl theorem deals with the decom-
position ofC(X) whereX is a compact space on whichG acts homogeneously.
If Gx0 is the stabilizer of a base pointx0 ∈ X, thenX can be identified with the
quotient spaceG/Gx0 . The Haar measure onG gives rise to aG-invariant regular
measureµ onX andC(X) is endowed with the inner product

〈f, f ′〉 :=
1

µ(X)

∫

X
f(x)f ′(x)dµ(x).

The spaceC(X) can be identified with the spaceC(G)Gx0 ofGx0-invariant (for the
right translation) functions thusC(X) affords a decomposition of the form

C(X) ≃⊥R∈R RmR

for some integersmR, 0 ≤ mR ≤ dR, in the sense of uniform as well asL2

convergence.
A more serious generalization of the above theorem deals with the unitary rep-

resentations ofG. These are the continuous homomorphisms fromG to the unitary
group of a Hilbert space.

Theorem 3.3. Let π : G → U(H) be a continuous homomorphism fromG to
the unitary group of a Hilbert spaceH. ThenH is a direct Hilbert sum of finite
dimensional irreducibleG-modules.

Proof. The idea is to construct in H aG-subspace of finite dimension and then to
iterate with the orthogonal complement of this subspace. Tothat end, for a fixed
v ∈ H, one choosesf ∈ C(G) such that

∫

G f(g)(π(g)v)dg 6= 0. From Peter
Weyl theorem,f can be assumed to be a finite linear combination of theRi,j.
In other words, there exists a finite dimensional unitary representation(ρ, V ) and
e1, e2 ∈ V such thatf(g) = 〈ρ(g−1)e1, e2〉V . The operatorT : V → H defined
by

T (x) =

∫

G
〈ρ(g−1)x, e2〉V (π(g)v)dg

commutes with the actions ofG and is non zero. Thus its image is a non zero
G-subspace of finite dimension ofH.

�

3.3. Examples.

3.3.1. The unit sphereSn−1: it is the basic example. The orthogonal groupG =
O(Rn) acts homogeneously onSn−1. The stabilizerGx0 of x0 can be identified
with O(x⊥0 ) ≃ O(Rn−1). Hereµ = ω is the Lebesgue measure onSn−1. We set
ωn := ω(Sn−1). The irreducible decomposition ofC(Sn−1) is as follows:

C(Sn−1) = Hn
0 ⊥ Hn

1 ⊥ . . . Hn
k ⊥ . . .

whereHn
k is isomorphic to the spaceHarmn

k of harmonic polynomials:

Harmn
k := {P ∈ C[X1, . . . ,Xn]k : ∆P = 0,∆ =

n
∑

i=1

∂2

∂x2
i

}
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The spaceHarmn
k is aO(Rn)-module because the Laplace operator∆ commutes

with the action of the orthogonal group and it is moreover irreducible. Its dimen-
sion equalshn

k :=
(

n+k−1
k

)

−
(

n+k−3
k−2

)

. The embedding ofHarmn
k into C(Sn−1) is

the obvious one, to the corresponding polynomial function in then coordinates.

3.3.2. The action of stabilizers of many points: for our purposes we are inter-
ested in the decomposition of some spacesC(X), X homogeneous forG, for the
action of a subgroupH of G, typicallyH = Gx1,...,xs the stabilizer ofs points. In
order to describe it, it is enough to study the decompositionof theG-irreducible
submodules ofC(X) under the action ofH; thus we have to decompose only fi-
nite dimensional spaces. However, because the same irreducible representation
of H may occur in infinitely many of theG-isotypic subspaces, it happens that
theH-isotypic subspaces are not of finite dimension. A typical example is given
by X = Sn−1, G = O(Rn) andH = Ge ≃ O(Rn−1). It is a classical result
that for the restricted action toH the decomposition ofHarmn

k intoH-irreducible
subspaces is given by:

(8) Harmn
k ≃

k
⊕

i=0

Harmn−1
i .

Hence, each of theHn
k in (3.3.1) decomposes likewise:

Hn
k = Hn

0,k ⊥ Hn
1,k ⊥ . . . ⊥ Hn

k,k

whereHn
i,k ≃ Harmn−1

i . We have the following picture, where theH-isotypic
components appear to be the rows of the second decomposition.

C(Sn−1) =G Hn
0 ⊥ Hn

1 ⊥ . . . ⊥ Hn
k ⊥ . . .

=H Hn
0,0 ⊥ Hn

0,1 ⊥ . . . ⊥ Hn
0,k ⊥ . . .

⊥ Hn
1,1 ⊥ . . . ⊥ Hn

1,k ⊥ . . .

· · · · · · · · · · · · · · · · · · · · · · · ·
⊥ Hn

k,k ⊥ . . .

4. HARMONIC ANALYSIS OF COMPACT SPACES

We take notations for the rest of the lecture notes.X is a compact space (possi-
bly finite) on which a compact group (possibly finite)G acts continuously. If the
spaceX is infinite, we moreover assume thatX is homogeneous for a larger com-
pact group of whichG is a subgroup (this assumption is needed for the uniform
approximation of positive definite functions in Theorem 4.10 but is unecessary for
other results). As we have seen before,X is endowed with aG-invariant Borel
regular measureµ for which µ(X) is finite. If X itself is finite, the topology is
the discrete topology and the measure is the counting measure. In the previous
sections we have discussed the decomposition of the permutation representation
C(X). In order to lighten the notations, we assume thatG has a countable number
of finite dimensional irreducible representations (it is the case ifG is a group of
matrices over the reals since thenL2(G) is a separable Hilbert space), and we let
R = {Rk, k ≥ 0}, whereR0 is the trivial representation. We letdk := dim(Rk).
We have a decomposition

(9) C(X) = ⊕k≥0,1≤i≤mk
Hk,i
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whereHk,i ≃ Rk, 0 ≤ mk ≤ +∞ (the casemk = 0 means thatRk does not
occur, the casemk = +∞ may occur ifG is not transitive onX). The isotypic
subspaces are pairwise orthogonal and denotedIk:

Ik = ⊕mk

i=1Hk,i

We take the subspacesHk,i to be also pairwise orthogonal. For allk, i, we choose
an orthonormal basisek,i,1, . . . , ek,i,dk

of Hk,i such that in this basis the action of
g ∈ G is expressed by the unitary matrixRk(g). The set{ek,i,s} is an orthonormal
basis in the Hilbert sense.

4.1. Commuting endomorphisms and zonal matrices.In this subsection we
want to give more information on the algebraEndG(C(X)) of commuting con-
tinuous endomorphisms ofC(X). We introduce, forK ∈ C(X2), the operators
TK , called Hilbert-Schmidt operators:

TK(f)(x) =
1

µ(X)

∫

X
K(x, y)f(y)dµ(y).

It is easy to verify thatTK ∈ EndG(C(X)) if K isG-invariant, i.e. ifK(gx, gy) =
K(x, y) for all g ∈ G, (x, y) ∈ X2. A continuous functionK(x, y) with this
property is also called a zonal function. It is also easy, butworth to notice that
TK ◦ TK ′ = TK∗K ′ whereK ∗K ′ is the convolution ofK andK ′:

(K ∗K ′)(x, y) :=

∫

X
K(x, z)K ′(z, y)dµ(z).

Let

K := {K ∈ C(X2) : K(gx, gy) = K(x, y) for all g ∈ G, (x, y) ∈ X2}
The triple(K,+, ∗) is aC-algebra (indeed aC∗-algebra, withK∗(x, y) := K(y, x)).
Thus we have an embeddingK → EndG(C(X)).

AssumeV ⊂ C(X) is a finite dimensionalG-subspace such thatV = W1 ⊥
· · · ⊥ Wm with Wi ≃ R ∈ R. By the same proof as the one of Theorem 2.4,
EndG(V ) ≃ C

m×m. More precisely, we have seen that, ifuj,i : Wi → Wj are
G-isomorphisms, such thatuk,j ◦ uj,i = uk,i, then an elementφ ∈ EndG(V )
is associated to a matrixA = (ai,j) ∈ C

m×m such that, for allf ∈ V , with
pWi

(f) = fi,

φ(f) =
m

∑

i,j=1

aj,iuj,i(fi).

For all1 ≤ i ≤ m, let (ei,1, . . . , ei,d), d = dim(R), be an orthonormal basis ofWi

such that in this basis the action ofg ∈ G is expressed by the unitary matrixR(g).
We define

Ei,j(x, y) :=
d

∑

s=1

ei,s(x)ej,s(y).

Then we have:

Lemma 4.1. The above defined functionsEi,j satisfy:

(1) Ei,j is zonal:Ei,j(gx, gy) = Ei,j(x, y).
(2) LetTi,j := TEi,j

. ThenTj,i(Wi) = Wj andTj,i(Wk) = 0 for k 6= i.
(3) Ti,j ◦ Tj,k = Ti,k.
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Proof. (1) From the construction, we have

ei,s(gx) =
d

∑

t=1

Rs,t(g)ei,t(x)

thus

Ei,j(gx, gy) =

d
∑

s=1

ei,s(gx)ej,s(gy)

=

d
∑

s=1

d
∑

k,l=1

Rs,k(g)Rs,l(g)ei,k(x)ej,l(y)

=
d

∑

k,l=1

(

d
∑

s=1

Rs,k(g)Rs,l(g)
)

ei,k(x)ej,l(y)

=

d
∑

k

ei,k(x)ej,k(y) = Ei,j(x, y)

where the second last equality holds becauseR(g) is a unitary matrix.
(2) We computeTj,i(ek,t):

Tj,i(ek,t)(x) =
1

µ(X)

∫

X

(

d
∑

s=1

ej,s(x)ei,s(y)
)

ek,t(y)dµ(y)

=
1

µ(X)

d
∑

s=1

ej,s(x)

∫

X
ei,s(y)ek,t(y)dµ(y)

=
d

∑

s=1

ej,s(x)〈ek,t, ei,s〉

=
d

∑

s=1

ej,s(x)δk,iδt,s = δk,iej,t(x).

(3) Similarly one computes that

Ei,j ∗ El,k = δj,lEi,k.

�

TheEi,j(x, y) put together form a matrixE = E(x, y), that we call the zonal
matrix associated to theG-subspaceV :

(10) E(x, y) :=
(

Ei,j(x, y)
)

1≤i,j≤m
.

At this stage is is natural to discuss the dependence of this matrix on the various
ingredients needed for its definition.

Lemma 4.2. We have

(1) E(x, y) is unchanged if another orthonormal basis ofWi is chosen (i.e. if
another unitary representative of the irreducible representationR is cho-
sen).
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(2) E(x, y) is changed toAE(x, y)A∗ for some matrixA ∈ Gl(Cm) if another
decomposition (not necessarily with orthogonal spaces)V = W ′

1 ⊕ · · · ⊕
W ′

m is chosen.

Proof. (1) Let (e′i,1, . . . , e
′
i,d) be another orthonormal basis ofWi and letUi

be unitaryd× d matrices such that

(e′i,1, . . . , e
′
i,d) = (ei,1, . . . , ei,d)Ui.

Since we want the representationR to be realized by the same matrices in
the basis(e′i,1, . . . , e

′
i,d) wheni varies, we haveUi = Uj = U . Then, with

obvious notations,

E′
i,j(x, y) =(e′i,1(x), . . . , e

′
i,d(x))(e

′
i,1(y), . . . , e

′
i,d(y))

∗

=(ei,1(x), . . . , ei,d(x))UU
∗(ei,1(y), . . . , ei,d(y))

∗

=(ei,1(x), . . . , ei,d(x))(ei,1(y), . . . , ei,d(y))
∗

=Ei,j(x, y).

(2) If V = W1 ⊥ · · · ⊥ Wm = W ′
1 ⊥ · · · ⊥ W ′

m with basis(ei,1, . . . , ei,d)
of Wi and(e′i,1, . . . , e

′
i,d) of W ′

i in which the action ofG is by the same
matricesR(g), let φ ∈ End(V ) be defined byφ(ei,s) = e′i,s. Clearly
φ commutes with the action ofG; if uj,i is defined byuj,i(ei,s) = ej,s
then we have seen that, for some matrixA = (ai,j), e′i,s = φ(ei,s) =
∑m

j=1 aj,iej,s. MoreoverA is invertible. It is unitary if the spacesW ′
i are

pairwise orthogonal. With the notationsE(x) := (ei,s(x)), we have

E(x, y) = E(x)E(y)∗ andE′(x) = AtE(x)

thus
E′(x, y) = AtE(x, y)A.

�

Going back toφ ∈ EndG(V ), from Lemma 4.1 we can takeuj,i = Tj,i and we
have the expression

φ =
m

∑

i,j=1

aj,iTj,i = T〈A,E〉.

We have proved the following:

Proposition 4.3. Let KV := {K ∈ C(X2) : K(gx, gy) = K(x, y) andx →
K(x, y), y → K(x, y) ∈ V }. The following are isomorphisms ofC-algebras:

KV → EndG(V ) C
m×m → EndG(V )

K 7→ TK A 7→ T〈A,E〉.

Moreover,EndG(C(X)) is commutative iffK is commutative iffmk = 0, 1 for all
k ≥ 0.

Proof. The isomorphisms are clear from previous discussion. For the last assertion,
it is enough to point out that

EndG(C(X)) =
∏

k≥0

EndG(Ik).

�
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4.2. Examples:G-symmetric spaces.

Definition 4.4. We say thatX is G-symmetric if for all(x, y) ∈ X2, there exists
g ∈ G such thatgx = y andgy = x. In other words,(x, y) and (y, x) belong to
the same orbit ofG acting onX2.

A first consequence of Proposition 4.3 is thatG-symmetric spaces have multi-
plicity free decompositions.

Proposition 4.5. If X isG-symmetric thenmk = 0, 1 for all k ≥ 0 andEk(x, y)
is real symmetric.

Proof. For allK ∈ K,K(x, y) = K(y, x). ThusK is commutative: indeed,

(K ′ ∗K)(x, y) =
1

µ(X)

∫

X
K ′(x, z)K(z, y)dµ(z)

=
1

µ(X)

∫

X
K ′(z, x)K(y, z)dµ(z)

= (K ∗K ′)(y, x) = (K ∗K ′)(x, y).

MoreoverEk(x, y) = Ek(x, y) = Ek(y, x). �

4.2.1. 2-point homogeneous spaces:these spaces are prominent examples ofG-
symmetric spaces.

Definition 4.6. A metric spaces(X, d) is said to be2-point homogeneous for the
action ofG if G is transitive onX, leaves the distanced invariant, and if, for
(x, y) ∈ X2,

there existsg ∈ G such that(gx, gy) = (x′, y′) ⇐⇒ d(x, y) = d(x′, y′).

Examples of such spaces of interest in coding theory are numerous: the Ham-
ming and Johnson spaces, endowed with the Hamming distance,for the action of
respectivelyT ⋊ Sn andSn; the unit sphereSn−1 for the angular distanceθ(x, y)
and the action of the orthogonal group. It is a classical result that, apart from
Sn−1, the projective spacesPn(K) for K = R,C,H, andP

2(O), are the only real
compact2-point homogeneous spaces.

There are more examples of finite2-point homogeneous spaces, we can mention
among them theq-Johnson spaces. Theq-Johnson spaceJw

n (q) is the set of linear
subspaces ofFn

q of fixed dimensionw, with the action of the groupGl(Fn
q ) and the

distanced(x, y) = dim(x + y) − dim(x ∩ y). We come back to this space in the
next section.

There are other symmetric spaces occurring in coding theory:

4.2.2. The Grassmann spaces:X = Gm,n(K), K = R,C, i.e. the set ofm-
dimensional linear subspaces ofKn, with the homogeneous action ofG = O(Rn)
(respectivelyU(Cn)). This space isG-symmetric but not2-point homogeneous (if
m ≥ 2). The orbits ofG acting on pairs(p, q) ∈ X2 are characterized by their
principal angles [21]. The principal angles of(p, q) arem angles(θ1, . . . , θm) ∈
[0, π/2]m constructed as follows: one iteratively constructs an orthonormal basis
(e1, . . . , em) of p and an orthonormal basis(f1, . . . , fm) of q such that, for1 ≤
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i ≤ m,

cos θi = max{|(e, f)| : e ∈ p, f ∈ q,
(e, e) = (f, f) = 1,
(e, ej) = (f, fj) = 0 for 1 ≤ j ≤ i− 1}

= |(ei, fi)|
The we have (see [21]):

there existsg ∈ G such that(gp, gq) = (p′, q′)
⇐⇒

(θ1(p, q), . . . , θm(p, q)) = (θ1(p
′, q′), . . . , θm(p′, q′)).

4.2.3. The ordered Hamming space:X = (Fr
2)

n (for the sake of simplicity
we restrict here to the binary case). Letx = (x1, . . . , xn) ∈ X with xi ∈ F

r
2.

For y ∈ F
r
2, the ordered weight ofy, denotedwr(y), is the right most non zero

coordinate ofy. The ordered weight ofx ∈ X is wr(x) :=
∑n

i=1wr(xi) and the
ordered distance of two elements(x, y) ∈ X2 is dr(x, y) = wr(x− y). Moreover
we define the shape of(x, y):

shape(x, y) := (e0, e1, . . . , er) where

{

1 ≤ i ≤ r, ei := card{j : wr(xj) = i}
e0 := n− (e1 + · · · + er).

Another expression ofwr(x) iswr(x) =
∑

i iei.
If B is the group of upper triangular matrices inGl(Fr

2), andBaff the group of
affine transformations ofFr

2 combining the translations by elements ofF
r
2 with B,

the groupG := Bn
aff ⋊ Sn acts transitively onX. SinceB acting onF

r
2 leaveswr

invariant, it is clear that the action ofG onX leaves the shapeshape(x, y) invari-
ant. More precisely, the orbits ofB on F

r
2 are the sets{y ∈ F

r
2 : wr(x) = i} and,

consequently, the orbits ofG acting onX2 are characterized by the so-called shape
of (x, y). Since obviouslyshape(x, y) = shape(y, x) it is a symmetric space. This
space shares many common features with the Grassmann spaces, especially from
the point of view of the linear programming method (see [2], [9], [31]).

4.2.4. The spaceX = Γ under the action ofG = Γ × Γ: the action ofG is by
(γ, γ′)x = γxγ′−1. Then two pairs(x, y) and(x′, y′) are in the same orbit under
the action ofG iff xy−1 andx′y′−1 are in the same conjugacy class ofΓ. Obviously
(x, y) and(y−1, x−1) are in the sameG-orbit. We are not quite in the case of a
G-symmetric space however the proof of the commutativity ofK of Proposition
4.5 remains valid because the variable changex → x−1 leaves the Haar measure
invariant.

4.3. Positive definite functions and Bochner theorem.

Definition 4.7. A positive definite continuous function onX is a functionF ∈
C(X2) such thatF (x, y) = F (y, x) and one of the following equivalent properties
hold:

(1) For all n, for all (x1, . . . , xn) ∈ Xn, for all (α1, . . . , αn) ∈ C
n,

n
∑

i,j=1

αiF (xi, xj)αj ≥ 0.



20 CHRISTINE BACHOC

(2) For all α ∈ C(X),
∫

X2

α(x)F (x, y)α(y)dµ(x, y) ≥ 0.

This property will be denotedF � 0.

The first property means in other words that, for all choice ofa finite set of
points (x1, . . . , xn) ∈ Xn, the matrix(F (xi, xj))1≤i,j≤n is hermitian positive
semidefinite. The equivalence of the two properties resultsfrom compactness of
X. Note that, ifX is finite,F is positive definite iff the matrix indexed byX, with
coefficientsF (x, y), is positive semidefinite.

We want to characterize those functions which areG-invariant. This charac-
terization is provided by Bochner in [11] in the case when thespaceX is G-
homogeneous. It is clear that the construction of previous subsection provides
positive definite functions. Indeed,

Lemma 4.8. if A � 0, then〈A,E〉 is aG-invariant positive definite function.

Proof. Let α(x) ∈ C(X). We compute
∫

X2

α(x)〈A,E〉α(y)dµ(x, y) =

∫

X2

m
∑

i,j=1

ai,jα(x)Ei,j(x, y)α(y)dµ(x, y)

=

m
∑

i,j=1

ai,j

∫

X2

α(x)Ei,j(x, y)α(y)dµ(x, y)

=

m
∑

i,j=1

d
∑

s=1

ai,j

∫

X2

α(x)ei,s(x)ej,s(y)α(y)dµ(x, y)

=
m

∑

i,j=1

d
∑

s=1

ai,j〈α, ei,s〉〈α, ej,s〉

=
d

∑

s=1

m
∑

i,j=1

〈α, ei,s〉ai,j〈α, ej,s〉 ≥ 0.

�

Remark 4.9. The following properties are equivalent, for am×mmatrix function
E(x, y):

(1) For all A � 0, 〈A,E(x, y)〉 � 0
(2) For all (x1, . . . , xn) ∈ Xn, (α1, . . . , αn) ∈ C

n,
∑

i,j αiE(xi, xj)αj � 0.

The proof is left to the reader as an exercise (hint: use the fact that the cone of
positive semidefinite matrices is self dual).

To start with, we extend the notations of the previous subsection. We define
matricesEk = Ek(x, y) associated to each isotypic componentIk, of sizemk×mk

(thus possibly of infinite size) with coefficientsEk,i,j(x, y) defined by:

Ek,i,j(x, y) :=

dk
∑

s=1

ek,i,s(x)ek,j,s(y).
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If Fk = (fk,i,j)1≤i,j≤mk
is hermitian, and if

∑

i,j |fk,i,j|2 < +∞, the sum

〈Fk, Ek〉 :=
∑

i,j

fk,i,jEk,i,j

is L2-convergent since the elementsek,i,s(x)el,j,t(y) form a complete system of
orthonormal elements ofC(X2). We sayFk is positive semidefinite (Fk � 0) if
∑

i,j λiFk,i,jλj ≥ 0 for all (λi)1≤i≤mk
such that

∑ |λi|2 < +∞. Then, with the

same proof as the one of Lemma 4.8, the function〈Fk, Ek〉 is positive definite if
Fk � 0. The following theorem provides a converse statement (see [11]).

Theorem 4.10.F ∈ C(X2) is aG-invariant positive definite function if and only
if

(11) F (x, y) =
∑

k≥0

〈Fk, Ek(x, y)〉

where, for allk ≥ 0, Fk � 0, and the convergence isL2. Moreover,F is the uni-
form limit of a sequence of functions of the form(11)with a finite number of terms
in the summation and finite matricesFk � 0. If moreoverG acts homogeneously
onX, the above sum itself converges uniformly.

Proof. The elementsek,i,s(x)el,j,t(y) form a complete system of orthonormal ele-
ments ofC(X2). HenceF has a decomposition

F (x, y) =
∑

k,i,s,l,j,t

fk,i,s,l,j,tek,i,s(x)el,j,t(y).

The conditionF (gx, gy) = F (x, y) translates to:

fk,i,u,l,j,v =
∑

s,t

fk,i,s,l,j,tRk,u,s(g)Rl,v,t(g).

Integrating ong ∈ G and applying the orthogonality relations of Theorem 3.1
shows thatfk,i,u,l,j,v = 0 if k 6= l or u 6= v. Moreover it shows thatfk,i,u,k,j,u does
not depend onu. The resulting expression ofF reads:

F (x, y) =
∑

k≥0

(

∑

i,j

fk,i,jEk,i,j(x, y)
)

which is the wanted expression, withFk := (fk,i,j)1≤i,j≤mk
.

Now we show thatFk � 0. Let, for k, s fixed, α(x) =
∑

i αiek,i,s(x), with
∑

i |αi|2 < +∞. By density, property (2) of Definition 4.7 holds forα ∈ L2(X).
We compute like in the proof of Lemma 4.8

∫

X2

α(x)F (x, y)α(y)dµ(x, y) =

mk
∑

i,j=1

αifk,i,jαj

thusFk � 0.
The fact thatF is the uniform limit of finite sums of the same form is a conse-

quence of the proof of Peter Weyl theorem. IfX is homogeneous for the groupΓ,
andX = Γ/Γ0, then‖F − F ′‖∞ < ǫ for someF ′ := Tφ(F s) whereF s is a finite
truncation of the Fourier expansion (11) ofF . ThusF s � 0; one can takeφ > 0
then alsoF ′ � 0. Then from Peter Weyl theorem againF ′ is contained in a finite
dimensional subspace ofC(Γ2) which is invariant by left and right translations by
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Γ2. Symmetrisation by the diagonal embedding ofG in Γ2 on the left and by(Γ0)
2

on the right transformsF ′ into aG-invariant positive definite function ofC(X2)
which remains in the same finite dimensional subspace thus isa finite sum of the
form (11). However, the convergence of the sum itself is in the sense ofL2, not a
priori in the sens of uniform convergence, unlessG = Γ, see [11].

�

Now the main deal is to compute explicitly the matricesEk(x, y) for a given
spaceX. The next section gives explicit examples of such computation.

5. EXPLICIT COMPUTATIONS OF THE MATRICESEk(x, y)

We keep the same notations as in previous section. Since the matricesEk(x, y)
areG-invariant, their coefficients are functions of the orbits of G acting onX2.
So the first task is to describe these orbits. Let us assume that these orbits are
parametrized by some variablesu = (ui). Then we seek for explicit expressions
of the form

Ek(x, y) = Yk(u(x, y)).

The measureµ induces a measure on the variables that describe these orbits, for
which the coefficients ofEk are pairwise orthogonal. This property of orthogonal-
ity turns to be very useful, if not enough, to calculate the matricesEk.

The easiest case is when the spaceX is 2-point homogeneous for the action of
G, because in this case the orbits of pairs are parametrized bya single variable
t := d(x, y). Moreover we have already seen that in this case, the decomposition
of C(X) is multiplicity free so the matricesEk(x, y) have a single coefficient.

5.1. 2-point homogeneous spaces.We summarize the results we have obtained
so far:

C(X) = ⊕k≥0Hk

whereHk are pairwise orthogonalG-irreducible subspaces; to eachHk is associ-
ated a continuous functionPk(t) such thatEk(x, y) = Pk(d(x, y)) and

F � 0 ⇐⇒ F =
∑

k≥0

fkPk(d(x, y)) with fk ≥ 0.

It is called the zonal function associated toHk. Since the subspacesHk are pair-
wise orthogonal, the functionsPk(t) are pairwise orthogonal for the induced mea-
sure. This property of orthogonality is in general enough todetermine them in a
unique way. We can also notice here thatPk(0) = dk. This value is obtained with
the integration onX of the formulaPk(0) =

∑dk

s=1 ek,1,s(x)ek,1,s(x).

5.1.1. The Hamming space: We have in fact already calculated the functions
Pk(t) in 2.6.1. Indeed, the irreducible subspacesPk afford the orthonormal ba-
sis{χz, wt(z) = k}. So,

Ek(x, y) =
∑

wt(z)=k

χz(x)χz(y) =
∑

wt(z)=k

(−1)z·(x+y) = Kk(dH(x, y))

from (4).
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5.1.2. The Johnson spaceJw
n : with the notations of subsection 2.6.2, we have

shown the decomposition

C(Jw
n ) ≃ Hw ⊥ Hw−1 ⊥ · · · ⊥ H0

but not yet the irreducibility ofHi. So far their might by severalPi,j , j = 1, . . .
associated toHi. The zonal functions express as functions oft := |x ∩ y| the
number of common ones inx andy. The orthogonality relation is easy to compute:

∑

x∈X

f(|x ∩ y|)f ′(|x ∩ y|) =

n
∑

i=0

card{y : |x ∩ y| = i}f(i)f ′(i)

=

w
∑

i=0

(

w

i

)(

n− w

w − i

)

f(i)f ′(i)

=
w

∑

i=0

(

w

i

)(

n− w

i

)

f(w − i)f ′(w − i).

By induction onk one proves thatPk,j has degree at mostk in t. The conditions:

(1) deg(Qk) = k
(2) Qk(w) = 1
(3) for all 0 ≤ k < l ≤ n

w
∑

i=0

(

w

i

)(

n− w

i

)

Qk(i)Ql(i) = 0

determine a unique sequence(Q0, Q1, . . . , Qw). Thus there is only onePk,j for
eachk and it is equal tohkQk(w− x). The polynomialsQk defined above belong
to the family of Hahn polynomials.

5.1.3. The sphereSn−1: the distance on the sphere is the angular distanceθ(x, y).
It appears more convenient to express the functions in the variable t = x · y =
cos θ(x, y). A standard calculation shows that

∫

Sn−1

f(x · y)dµ(y) = cn

∫ 1

−1
f(t)(1 − t2)

n−3
2 dt

for some irrelevant constantcn. The conditions:

• deg(Pn
k ) = k

• Pn
k (1) = 1

• For allk 6= l,
∫ 1
−1 P

n
k (t)Pn

l (t)(1 − t2)
n−3

2 dt = 0

define a unique sequence of polynomials by standard arguments (i.e. obtained by
Gram Schmidt orthogonalization of the basis(1, t, . . . , tk, . . . )), it is the sequence
of so-called Gegenbauer polynomials with parametern/2− 1 [43]. The decompo-
sition 3.3.1 ofC(Sn−1) shows that, to eachk ≥ 0 the functionPk(x · y) associated
to Hn

k ≃ Harmn
k is polynomial inx · y and satisfies the above conditions except

the normalization ofPk(1) thus we havePk(t) = hn
kP

n
k (t).

5.1.4. Other 2-point homogeneous spaces:as it is shown in the above exam-
ples, a sequence of orthogonal polynomials in one variable is associated to each
such space. In the case of the projective spaces, it is a sequence of Jacobi polyno-
mials. We refer to [24], [28], [48] for their determination in many cases and for the
applications to coding theory.
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5.2. Other symmetric spaces.Now we turn to other cases of interest in coding
theory, where the spaceX is symmetric but not necessarily2-point homogeneous.
Since the decomposition ofC(X) is multiplicity free, the matricesEk(x, y) still
have a single coefficient which is a member of a sequence of orthogonal polynomi-
als, but this time multivariate. The first case ever studied (at least to my knowledge)
is the case of the non binary Johnson spaces [44], its associated functions are two
variables polynomials, a mixture of Hahn and Eberlein polynomials. We briefly
discuss a few of these cases.

5.2.1. The Grassmann spaces:[2] the orbits ofX2 are parametrized by the prin-
cipal angles(θ1, . . . , θm) (4.2.2). The appropriate variables are theyi := cos2 θi.
The decomposition ofC(Gm,n) underO(Rn) (respectivelyU(Cn)) together with
the computation of the corresponding sequence of orthogonal polynomials was
performed in [23]. We focus here on the real case. We recall that the irreducible
representations ofO(Rn) are (up to a power of the determinant) naturally indexed
by partitionsκ = (κ1, . . . , κn), whereκ1 ≥ · · · ≥ κn ≥ 0 (we may omit the
last parts if they are equal to0). Following [22], let them be denoted byV κ

n . For

example,V ()
n = C1, andV (k)

n = Harmk.
The lengthℓ(κ) of a partitionκ is the number of its non zero parts, and its degree

deg(κ) also denoted by|κ| equals
∑n

i=1 κi.

Then, the decomposition ofC(Gm,n) is as follows:

C(Gm,n) ≃ ⊕V 2κ
n

whereκ runs over the partitions of length at mostm and 2κ stands for parti-
tions with even parts. We denote byPκ(y1, . . . , ym) the zonal function associ-
ated toV 2κ

n . It turns out that thePκ are symmetric polynomials in them variables
y1, . . . , ym, of degree|κ|, with rational coefficients once they are normalized by the
conditionPκ(1, . . . , 1) = 1. Moreover, the set(Pκ)|κ|≤k is a basis of the space
of symmetric polynomials in the variablesy1, . . . , ym of degree at most equal tok,
which is orthogonal for the induced inner product calculated in [23],

dµ = λ

m
∏

i,j=1
i<j

|yi − yj|
m
∏

i=1

y
−1/2
i (1 − yi)

n/2−m−1/2dyi

(One recognizes a special case of the orthogonal measure associated togeneralized
Jacobi polynomials([25]).

5.2.2. The ordered Hamming space: it follows from the discussion in 4.2.3 that
the variables of the zonal functions are the(e0, e1, . . . , er). Elaborating on the
computation explained above for the Johnson space, one can see that in the case
of finite spaces, the weights of the induced measure are givenby the number of
elements of the orbits ofX under the action ofStab(e) for any e ∈ X. Taking
e = 0rn, thusStab(e) = Bn

⋊Sn, and the orbit ofx is the set of elements with the
same shape(f0, . . . , fr) asx. The number of such elements is

(

n
f0...fr

)

2
P

i(i−1)ei .
These are the weights associated to the multivariate Krawtchouk polynomials.



SDP, HARMONIC ANALYSIS AND CODING THEORY 25

5.2.3. The spaceX = Γ under the action of G = Γ × Γ: we need an ex-
plicit parametrization of the conjugacy classes ofΓ, which is afforded by very few
groups. Famous examples (if not the only ones) are provided by the permutation
groups and the unitary groups. In the first case the parametrization is by the de-
composition in disjoint cycles and in the second case it is bythe eigenvalues. The
decomposition ofC(X) is given by Peter Weyl theorem

C(Γ) =
∑

R∈R

R⊗R∗

and the associated functionsPR(x, y) are the characters:

PR(x, y) = χR(xy−1).

In both cases (Sn andU(Cn)) the irreducible representations are indexed by par-
titions λ and there are explicit expressions forPλ. In the case of the unitary
groupPλ(xy−1) are the so-called Schur polynomials evaluated at the eigenvalues
of xy−1.

5.3. Three cases with non trivial multiplicities. So far the computation of the
matricesEk(x, y) in cases of non trivial multiplicities has been worked out invery
few cases. We shall discuss three very similar cases, namelythe unit sphere of
the Euclidean sphere ([4]), the Hamming space ([46]), and the projective geom-
etry overFq ([7]), where the group considered is the stabilizer of one point. In
the case of the Hamming space, this computation amounts to the computation of
the Terwilliger algebra of the association scheme and was performed initially by
A. Schrijver in [40], who treated also the non binary Hammingspace [20]. The
framework of group representations was used in [46] to obtain the semidefinite
matrices of [40] in terms of orthogonal polynomials. We present here the uniform
treatment of the Hamming space and of the projective geometry in the spirit of [17]
adopted in [7]. We also generalize to the case of the stabilizer of many points in
the spherical case and enlighten the connection with the positive definite functions
calculated in [34].

5.3.1. The unit sphereSn−1, with G := Stab(e,O(Rn)). We continue the dis-
cussion initiated in 3.3.2 and we follow [4]. LetEn

k (x, y) be the zonal matrix as-
sociated to the isotypic subspaceIk related toHarmn−1

k and to its decomposition
described in 3.3.2:

Ik = Hn
k,k ⊥ Hn

k,k+1 ⊥ . . .

We indexEn
k with i, j ≥ 0 so thatEn

k,i,j(x, y) is related to the spacesHn
k,k+i,

Hn
k,k+j. The orbits ofG on pairs of points(x, y) ∈ X2 are characterized by the

values of the three inner productsu := e ·x, v := e ·y andt := x ·y. Thus(u, v, t)
are the variables of the zonal matrices and we let:

En
k (x, y) = Y n

k (u, v, t).

Theorem 5.1. [ [4]]

(12) Y n
k,i,j(u, v, t) = λk,iλk,jP

n+2k
i (u)Pn+2k

j (v)Qn−1
k (u, v, t),

where

Qn−1
k (u, v, t) :=

(

(1 − u2)(1 − v2)
)k/2

Pn−1
k

( t− uv
√

(1 − u2)(1 − v2)

)

,
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andλk,i are some real constants.

Proof. We need an explicit construction of the spacesHn−1
k,k+i. We refer to [1,

Ch. 9.8]. Forx ∈ Sn−1, let

x = ue+
√

1 − u2ζ,

whereu = x·e andζ belongs to the unit sphereSn−2 of (Re)⊥. With f ∈ Hn−1
k ⊂

C(Sn−2) we associateϕ(f) ∈ C(Sn−1) defined by:

ϕ(f)(x) = (1 − u2)k/2f(ζ).

Moreover, we recall thatHn
k is a subspace of the spacePol≤k(S

n−1) of polynomial
functions in the coordinates of degree at mostk. Note that the multiplication by
(1−u2)k/2 forcesϕ(f) to be a polynomial function in the coordinates ofx. Clearly
ϕ commutes with the action ofG. Henceϕ(Hn−1

k ) is a subspace ofPol≤k(S
n−1)

which is isomorphic toHarmn−1
k . It is clear that these spaces are pairwise or-

thogonal. More generally, the set{ϕ(f)P (u) : f ∈ Harmn−1
k ,degP ≤ i} is a

subspace ofPol≤k+i(S
n−1) which is isomorphic toi+ 1 copies ofHarmn−1

k . By
induction onk andi there exist polynomialsPi(u) of degreei such thatHn−1

k,k+i :=

ϕ(Hn−1
k )Pi(u) is a subspace ofHn

k+i. This construction proves the decomposition
(8). Moreover, we can exploit the fact that the subspacesHn−1

k,l are pairwise or-
thogonal to prove an orthogonality relation between the polynomialsPi. Then this
orthogonality relation will enable us to identify the polynomialsPi with Gegen-
bauer polynomials, up to the multiplication by a constant factor. Let us recall that
the measures onSn−1 and onSn−2 are related by:

dωn(x) = (1 − u2)(n−3)/2dudωn−1(ζ).

Wheneveri 6= j we have for allf ∈ Hn−1
k

0 =
1

ωn

∫

Sn−1

ϕ(f)Pi(u)ϕ(f)Pj(u)dωn(x)

=
1

ωn

∫

Sn−1

|f(ζ)|2(1 − u2)kPi(u)Pj(u)dωn(x)

=
1

ωn

∫

Sn−2

|f(ζ)|2dωn−1(ζ)

∫ 1

−1
(1 − u2)k+(n−3)/2Pi(u)Pj(u)du,

from which we derive that

∫ 1

−1
(1 − u2)k+(n−3)/2Pi(u)Pj(u)du = 0;

hence the polynomialsPi(u) are proportional toPn+2k
i (u) (thus with real coef-

ficients..). We obtain an orthonormal basis ofHn−1
k,k+i from an orthonormal basis

(f1, . . . , fh) of Hn−1
k by takingek,i,s = λk,iϕ(fs)P

n+2k
i (u) for a suitable normal-

izing factorλk,i > 0. With these basis we can computeEn
k,i,j:
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En
k,i,j(x, y) =

hn−1
k
∑

s=1

ek,i,s(x)ek,j,s(y)

=

hn−1
k
∑

s=1

λk,i(1 − u2)k/2fs(ζ)P
n+2k
i (u)λk,j(1 − v2)k/2fs(ξ)P

n+2k
j (v)

= λk,iλk,jP
n+2k
i (u)Pn+2k

j (v)
(

(1 − u2)(1 − v2)
)k/2

hn−1
k
∑

s=1

fs(ζ)fs(ξ)

= λk,iλk,jP
n+2k
i (u)Pn+2k

j (v)
(

(1 − u2)(1 − v2)
)k/2

hn−1
k Pn−1

k (ζ · ξ),
where we have writteny = ve+

√
1 − v2ξ and where the last equality results from

the analysis of zonal functions ofSn−1. Since

ζ · ξ = (t− uv)/
√

(1 − u2)(1 − v2),

we have completed the proof. �

5.3.2. The unit sphereSn−1 with the action of G := Stab(e1, . . . , es, O(Rn)).
We assume that(e1, . . . , es) is a set of orthonormal vectors. The groupG :=
Stab(e1, . . . , es, O(Rn)) is isomorphic toO(Rn−s). The orbit of a pair(x, y) ∈
X2 underG is characterized by the data:t := x · y, u := (x · e1, . . . , x · es), v :=
(y · e1, . . . , y · es). The decomposition (8) applied recursively shows thatC(Sn−1)
decomposes as the sum ofG-irreducible subspacesHk wherek = (k0, . . . , ks),
k0 ≤ k1 ≤ · · · ≤ ks, with the properties:

Hk ⊂ Hk(r) ⊂ Polks
, Hk ≃ Harmn−s

k0

wherek(r) = (ks−r+1, . . . , ks). Thus, for a givenk0, the multiplicity of the iso-
typic componentId

k0
associated toHarmn−s

k0
in Pol≤d is the number of elements

of
Kd := {(k1, . . . , ks) : k0 ≤ k1 ≤ · · · ≤ ks ≤ d}.

We construct the spacesHk like in the proof of Theorem 5.1: forx ∈ Sn−1, let

x = u1e1 + · · · + uses +
√

1 − |u|2ζ
whereu = (u1, . . . , us) and |u|2 =

∑s
i=1 u

2
i . Let ϕ : Hn−s

k0
→ C(Sn−1) be

defined byϕ(f)(x) = (1−|u|2)k0/2f(ζ). Thenϕ(Hn−s
k0

) = Hks+1
0

whereks+1
0 =

(k0, k0, . . . , k0) and we set, forl = (l1, . . . , ls), Hk0,l := ul1
1 . . . u

ls
s Hks+1

0
. It is

clear thatHk0,l ≃G Harmn−s
k0

and thatHk0,l ⊂ Pold if l1 + · · ·+ ls ≤ d− k0 thus,
since

K ′
d := {l = (l1, . . . , ls) : li ≥ 0, l1 + · · · + ls ≤ d− k0}

has the same number of elements asKd,

Id
k0

= ⊕l∈K ′

d
Hk0,l.

This sum is not orthogonal but we can still use it to calculateEk0, the change
will be to AEk(x, y)A

∗ for some invertible matrixA. The same calculation as in
Theorem 5.1 shows that, (up to a change to someAYkA

∗):

Yk,i,j(u, v, t) = ui−kvj−kQn−s
k (u, v, t)
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with the notations:ui−k := ui1−k
1 ui2−k

2 . . . uis−k
s and

Qn−s
k (u, v, t) =

(

(1 − |u|2)(1 − |v|2
)k/2

Pn−s
k

( t− (u · v)
√

(1 − |u|2)(1 − |v|2)

)

.

With Bochner Theorem 4.10 we recover the description of the multivariate positive
definite functions on the sphere given in [34].

5.3.3. The Hamming space and the projective geometry.The set of allFq-
linear subspaces ofFn

q , also called the projective geometry, is denoted byP(n, q).
The linear groupGl(n,Fq) acts onP(n, q). The orbits of this action are the sub-
sets of subspaces of fixed dimension, i.e. theq-Johnson spaces. If the Hamming
spaceF

n
2 is considered together with the action of the symmetric group Sn, the

orbits of this action are the Johnson spaces. In [17] the Johnson space and theq-
Johnson spaces are treated in a uniform way from the point of view of the linear
programming method, the latter being viewed asq-analogs of the former. Thus the
Johnson space corresponds to the valueq = 1. In particular the zonal polynomials
are computed and they turn to beq-Hahn polynomials. Here we want to follow the
same line for the determination of the zonal matricesE(x, y) in both cases.

We take the following notations: ifq is a power of a prime number, we let
X = P(n, q) andG = Gl(n,Fq), and, ifq = 1, we letX be the Hamming space,
identified with the set of subsets of{1, . . . , n}, andG = Sn the symmetric group
with its standard action onX. Let

|x| :=
{ wt(x) if q = 1

dim(x) if q > 1

For allw = 0, . . . , n, the spaceXw is defined by

Xw = {x ∈ X : |x| = w}.
These subsets ofX are exactly the orbits ofG. The distance onX is given in every
case by the formula

(13) d(x, y) = |x| + |y| − 2|x ∩ y|.
The restriction of the distanced to Xw equalsd(x, y) = 2(w − |x ∩ y|) and it is
a well known fact thatG acts 2-points homogeneously onXw. It is not difficult to
see that the orbit of a pair(x, y) under the action ofG is characterized by the triple
(|x|, |y|, |x ∩ y|).

Following the notations of [17], theq-binomial coefficient
[n
w

]

expresses the
cardinality ofXw. We have

[

n

w

]

=























n−1
∏

i=0

n− i

w − i
=

(

n

w

)

if q = 1

n−1
∏

i=0

qn−i − 1

qw−i − 1
if q > 1

In terms of the variable

[x] = q1−x

[

x

1

]

=







x if q = 1
q−x − 1

q−1 − 1
if q > 1

,
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we have
[

n

w

]

= qw(n−w)
w−1
∏

i=0

[n− i]

[w − i]
= qw(n−w) [n]!

[w]![n − w]!
.

We have the obvious decomposition into pairwise orthogonalG-invariant sub-
spaces:

C(X) = C(X0) ⊥ C(X1) ⊥ · · · ⊥ C(Xn).

The decomposition ofC(Xw) into G-irreducible subspaces is described in [17].
We have

C(Xw) = H0,w ⊥ H1,w ⊥ · · · ⊥ Hmin(w,n−w),w

where theHk,w are pairwise isomorphic for equalk and differentw. and pairwise
non isomorphic for differentk. The picture looks like:

C(X) = C(X0) ⊥ C(X1) ⊥ . . . ⊥ C(X⌊n
2
⌋) ⊥ . . . ⊥ C(Xn−1) ⊥ C(Xn)

H0,0 ⊥ H0,1 ⊥ . . . ⊥ H0,⌊n
2
⌋ ⊥ . . . ⊥ H0,n−1 ⊥ H0,n

H1,1 ⊥ . . . ⊥ H1,n−1

. . .
...

H⌊n
2
⌋,⌊n

2
⌋

where the columns represent the decomposition ofC(Xw) and the rows the isotypic
components ofC(X), i.e. the subspacesIk := Hk,k ⊥ Hk,k+1 ⊥ · · · ⊥ Hk,n−k,
0 ≤ k ≤ ⌊n

2 ⌋, with multiplicity mk = (n− 2k + 1).
Let, for all (k, i) with 0 ≤ k ≤ i ≤ n− k,

ψk,i : C(Xk) → C(Xi)
f 7→ ψk,i(f) : ψk,i(f)(y) =

∑

|x|=k
x⊂y

f(x)

and
δk : C(Xk) → C(Xk−1)

f 7→ δk(f) : δk(f)(z) =
∑

|x|=k
z⊂x

f(x)

Obviously, these transformations commute with the action of G. The spacesHk,i

are defined by:Hk,k = ker δk andHk,i = ψk,i(Hk,k). Moreover,

hk := dim(Hk,k) =

[

n

k

]

−
[

n

k − 1

]

.

We need later the following properties ofψk,i:

Lemma 5.2. If f, g ∈ Hk,k,

(14) 〈ψk,i(f), ψk,i(g)〉 =

[

n− 2k

i− k

]

qk(i−k)〈f, g〉.

Moreover,

(15) ψi,j ◦ ψk,i =

[

j − k

i− k

]

ψk,j
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Proof. [17, Theorem 3] proves (14). The relation (15) is straightforward: if |z| =
j,

ψi,j(ψk,i(f))(z) =
∑

|y|=i
y⊂z

ψk,i(f)(y) =
∑

|y|=i
y⊂z

(

∑

|x|=k
x⊂y

f(x)
)

=
∑

|x|=k
x⊂z

(

∑

|y|=i
x⊂y⊂z

1
)

f(x) =
∑

|x|=k
x⊂z

[

j − k

i− k

]

f(x)

=

[

j − k

i− k

]

ψk,j(f)(z).

�

Now we want to calculate the matricesEk of sizemk = (n−2k+1) associated
to each isotypic spaceIk. We fix an orthonormal basis(ek,k,1, . . . , ek,k,hk

) ofHk,k

and we defineek,i,s := ψk,i(ek,k,s). It is clear from the definitions above that
ek,i,s can be assumed to take real values. From (14), for fixedk andi, they form
an orthogonal basis ofHk,i with square norm equal to

[n−2k
i−k

]

qk(i−k). Normalizing
them would conjugateEk by a diagonal matrix, so we can omit to do it. The matrix
Ek is indexed withi, j subject tok ≤ i, j ≤ n − k. From the construction, we
haveEk,i,j(x, y) = 0 if |x| 6= i or |y| 6= j; since the matrixEk is zonal, we can
definePk,i,j by

Ek,i,j(x, y) = Pk,i,j(i− |x ∩ y|)
and our goal is to calculate thePk,i,j. It turns out that these functions express in
terms of the so-calledq-Hahn polynomials.

We define theq-Hahn polynomials associated to the parametersn, i, j with 0 ≤
i ≤ j ≤ n to be the polynomialsQk(n, i, j;x) with 0 ≤ k ≤ min(i, n − j)
uniquely determined by the properties:

• Qk has degreek in the variable[x].
• (Qk)k is a sequence of polynomials orthogonal for the weights

0 ≤ u ≤ i w(n, i, j;u) =

[

i

u

][

n− i

j − i+ u

]

qu(j−i+u)

• Qk(0) = 1

The polynomialsQk defined in [17] and 5.1.2 correspond up to multiplication by
hk to the parameters(n,w,w) and, with the notations of [19], according to The-
orem 2.5, again up to a multiplicative factor,Qk(n, i, j;x) = Em(i, n − i, j, i −
x; q−1). The combinatorial meaning of the above weights is the following:

Lemma 5.3. [19, Proposition 3.1]Givenx ∈ Xi, the number of elementsy ∈ Xj

such that|x ∩ y| = i− u is equal tow(n, i, j;u).

Theorem 5.4. If k ≤ i ≤ j ≤ n− k, |x| = i, |y| = j,

Ek,i,j(x, y) = |X|hk

[j−k
i−k

][n−2k
j−k

]

[n
j

][j
i

] qk(j−k)Qk(n, i, j; i − |x ∩ y|)

If |x| 6= i or |y| 6= j, Ek,i,j(x, y) = 0.

Proof. We proceed in two steps: the first step (16) calculatesPk,i,j(0) and the
second step (17) obtains the orthogonality relations.
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Lemma 5.5. With the above notations,

(16) Pk,i,j(0) = |X|hk

[j−k
i−k

][n−2k
j−k

]

[n
j

][j
i

] qk(j−k).

Proof. We havePk,i,j(0) = Ek,i,j(x, y) for all x, y with |x| = i, |y| = j, x ⊂ y.
Hence

Pk,i,j(0) =
1

[n
j

][j
i

]

∑

|x|=i,|y|=j
x⊂y

Ek,i,j(x, y)

=
1

[n
j

][j
i

]

∑

|x|=i,|y|=j
x⊂y

hk
∑

s=1

ek,i,s(x)ek,j,s(y)

=
1

[

n
j

][

j
i

]

hk
∑

s=1

∑

|y|=j

(

∑

|x|=i
x⊂y

ek,i,s(x)
)

ek,j,s(y)

=
1

[n
j

][j
i

]

hk
∑

s=1

∑

|y|=j

ψi,j(ek,i,s)(y)ek,j,s(y)

Since, from (15)

ψi,j(ek,i,s) = ψi,j ◦ ψk,i(ek,k,s) =

[

j − k

i− k

]

ψk,j(ek,k,s) =

[

j − k

i− k

]

ek,j,s,

we obtain

Pk,i,j(0) =
1

[

n
j

][

j
i

]

hk
∑

s=1

∑

|y|=j

[

j − k

i− k

]

ek,j,s(y)ek,j,s(y)

=

[j−k
i−k

]

[n
j

][j
i

]

hk
∑

s=1

|X|〈ek,j,s, ek,j,s〉 = |X|hk

[j−k
i−k

][n−2k
j−k

]

[n
j

][j
i

] qk(j−k)

from (14). �

Lemma 5.6. With the above notations,

(17)
i

∑

u=0

w(n, i, j;u)Pk,i,j(u)Pl,i,j(u) = δk,l|X|2hk

[

n−2k
i−k

][

n−2k
j−k

]

qk(i+j−2k)

[

n
i

] .

Proof. We computeΣ :=
∑

y∈X Ek,i,j(x, y)El,i′,j′(y, z).
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Σ =
∑

y∈X

hk
∑

s=1

hl
∑

t=1

ek,i,s(x)ek,j,s(y)el,i′,t(y)el,j′,t(z)

=

hk
∑

s=1

hl
∑

t=1

ek,i,s(x)el,j′,t(z)
(

∑

y∈X

ek,j,s(y)el,i′,t(y)
)

=

hk
∑

s=1

hl
∑

t=1

ek,i,s(x)el,j′,t(z)|X|〈ek,j,s, el,i′,t〉

=

hk
∑

s=1

hl
∑

t=1

ek,i,s(x)el,j′,t(z)|X|
[

n− 2k

j − k

]

qk(j−k)δk,lδj,i′δs,t

= δk,lδj,i′ |X|
[

n− 2k

j − k

]

qk(j−k)
hk
∑

s=1

ek,i,s(x)el,j′,s(z)

= δk,lδj,i′ |X|
[

n− 2k

j − k

]

qk(j−k)Ek,i,j′(x, z).

We obtain, withj = i′, j′ = i, x = z ∈ Xi, taking account ofEl,j,i(y, x) =
El,i,j(x, y),

∑

y∈Xj

Ek,i,j(x, y)El,i,j(x, y) = δk,l|X|
[

n− 2k

j − k

]

qk(j−k)Ek,i,i(x, x).

The above identity becomes in terms ofPk,i,j

∑

y∈Xj

Pk,i,j(i− |x ∩ y|)Pl,i,j(i− |x ∩ y|) = δk,l|X|
[

n− 2k

j − k

]

qk(j−k)Pk,i,i(0).

Taking account of (16) and Lemma 5.3, we obtain (17). �

To finish the proof of Proposition 5.4, it remains to prove that Pk,i,j is a polyno-
mial of degree at mostk in the variable[u] = [|x∩ y|]. It follows from the reasons
invoked in [17] in the casei = j (see the proof of Theorem 5). �

Remark 5.7. In the caseq = 1, i.e. the Hamming space, we could have followed
the same line as for the sphere in order to decomposeC(Hn) under the action of
G. We could have started from the decomposition ofC(Hn) (3) under the action
of Γ := T ⋊ Sn = Aut(Hn) and then we could have decomposed each space
Pk under the action ofG = Stab(0n,Γ). But we have aG-isomorphism from
C(Xw) = C(Jw

n ) to Pw given by:

C(Jw
n ) → Pw

f 7→
∑

wt(y)=w

f(y)χy

Note that the inverse isomorphism is the Fourier transform on (Z/2Z)n. So we
pass from one to the other decomposition ofC(Hn) through Fourier transform.
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6. AN SDPUPPER BOUND FOR CODES FROM POSITIVE DEFINITE FUNCTIONS

In this section we want to explain how the computation of the continuousG-
invariant positive definite functions onX can be used for applications to coding
theory. In coding theory, it is of great importance to estimate the maximal number
of elements of a finite subsetC of a spaceX, whereC is submitted to some con-
straints. TypicallyX is a metric space withG-invariant distanced(x, y) and the
constraints are related to the values taken by the distance on pairs of elements of
C. In the following we concentrate on the basic case where the requirement is that
the distance takes non zero values at least equal to some minimum δ. We denote
byD the set of all values taken byd(x, y) and we defineD≥δ = D ∩ [δ,+∞[ and

A(X, δ) := max{card(C) : d(c, c′) ≥ δ for all c 6= c′, (c, c′) ∈ C2}.
We first focus on an upper bound forA(X, δ), which is obtained very obviously
from the optimal value of the following program:

Definition 6.1.

(18)
m(X, δ) = inf

{

t : F ∈ C(X2), F = F, F � 0
F (x, x) ≤ t− 1,
F (x, y) ≤ −1 d(x, y) ≥ δ

}

Then we obtain an upper bound forA(X, δ):

Theorem 6.2.
A(X, δ) ≤ m(X, δ).

Proof. For a feasible solutionF , and forC ⊂ X with d(C) ≥ δ we have

0 ≤
∑

(c,c′)∈C2

F (c, c′) ≤ (t− 1)|C| − |C|(|C| − 1)

thus|C| ≤ t. �

Now the groupG comes into play. From a feasible solutionF one can construct
aG-invariant feasible solutionF ′ with the same objective value:

F ′(x, y) =

∫

G
F (gx, gy)dg

thus we can add to the conditions defining the feasible solutions ofm(X, δ) thatF
isG-invariant. Then we can apply Bochner characterization of theG-invariant pos-
itive definite functions (Theorem 4.10). Moreover we have also seen in Theorem
4.10 that the finite sums

(19) F (x, y) =
∑

finite

〈Fk, Ek(x, y)〉

with Fk � 0 are arbitrary close for‖ ‖∞ to theG-invariant positive definite func-
tions onX, so we can replaceF by an expression of the form (19) in the SDP
m(X, δ). Moreover, we replaceEk(x, y) with its expressionYk(u(x, y)) in terms
of the orbits of pairs and we take account of the fact thatF = F . All together, we
obtain the (finite) semidefinite programs:

(20)
m(d)(X, δ) = inf

{

t : F0 � 0, . . . , Fd � 0
∑d

k=0〈Fk, Ỹk(u(x, x)) ≤ t− 1,
∑d

k=0〈Fk, Ỹk(u(x, y)) ≤ −1 d(x, y) ≥ δ
}
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where the matricesFk are real symmetric, with size bounded by some unbounded
function of d, and Ỹk(u(x, y)) = Yk(u(x, y)) + Yk(u(x, y)). Thus we have
m(X, δ) ≤ m(d)(X, δ) and

lim
d→+∞

m(d)(X, δ) = m(X, δ).

6.1. The 2-point homogeneous spaces.We recall that a sequence of orthogonal
functions (Pk)k≥0 is associated toX such that theG-invariant positive definite
functions have the expressions

F (x, y) =
∑

k≥0

fkPk(d(x, y)) with fk ≥ 0.

Then

m(X, δ) = inf { 1 +
∑

k≥1 fk : fk ≥ 0,

1 +
∑

k≥1 fkPk(i) ≤ 0 for all i ∈ D≥δ }
We restate Theorem 6.2 in the classical form of Delsarte linear programming

bound:

Theorem 6.3.LetF (t) = f0+f1P1(t)+· · ·+fdPd(t). If fk ≥ 0 for all 0 ≤ k ≤ d
andf0 > 0, and ifF (t) ≤ 0 for all t ∈ D≥δ, then

A(X, δ) ≤ f0 + f1 + · · · + fd

f0
.

Example: X = S7, d(x, y) = θ(x, y), d(C) = π/3. This value of the minimal
angle corresponds to the kissing number problem. A very goodkissing configura-
tion is well known: it is the root systemE8, also equal to the set of minimal vectors
of theE8 lattice. It has240 elements and the inner products take the values±1, 0,
±1/2. We recall that the zonal polynomials associated to the unitsphere are pro-
portional to the Gegenbauer polynomialsPn

k in the variablex · y. If P (t) obtains
the tight bound240 in Theorem 6.3, then we must haveP (t) ≤ 0 for t ∈ [−1, 1/2]
andP (−1) = P (±1/2) = P (0) = 0 (as part of thecomplementary slackness
conditions). The simplest possibility isP = (t − 1/2)t2(t + 1/2)2(t + 1). One
can check that

320

3
P = P 8

0 +
16

7
P 8

1 +
200

63
P 8

2 +
832

231
P 8

3 +
1216

429
P 8

4 +
5120

3003
P 8

5 +
2560

4641
P 8

6

and that
P (1)

f0
= 240.

Thus the kissing number in dimension8 is equal to240. This famous proof is
due independently to Levenshtein [27] and Odlysko and Sloane [35]. A proof of
uniqueness derives from the analysis of this bound ([10]). For the kissing number
problem, this miracle reproduces only for dimension24 with the set of shortest
vectors of the Leech lattice. For the other similar cases in2-point homogeneous
spaces we refer to [28].

It is not always possible to apply the above “guess of a good polynomial”
method. In order to obtain a more systematic way to apply Theorem 6.3, one
can of course restrict the degrees of the polynomials to somereasonable value, but
needs also to overcome the problem that the conditionsF (t) ≤ 0 for t ∈ [−1, 1/2]
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represent infinitely many linear inequalities. One possibility is to sample the inter-
val and then a posteriori study the extrema of the approximated optimal solution
found by an algorithm that solves the linear program with finitely many unknowns
and inequalities. It is the method adopted in [35], where upper bounds for the kiss-
ing number in dimensionn ≤ 30 have been computed. We want to point out that
polynomial optimization methods using SDP give another wayto handle this prob-
lem. A polynomialQ(t) ∈ R[t] is said to be a sum of squares ifQ =

∑r
i=1Q

2
i for

someQi ∈ R[t]. Being a sum of squares is a SDP condition since it amounts to
ask that

Q = (1, t, . . . , tk)F (1, t, . . . , tk)∗ with F � 0.

Herek is an upper bound for the degrees of the polynomialsQi. Now we can relax
the condition thatF (t) ≤ 0 for t ∈ [−1, 1/2] toF (t) = −Q(t)−Q′(t)(t+ 1)(t−
1/2) with Q andQ′ being sums of squares. A theorem of Putinar claims that in
fact the two conditions are equivalent (but the degree of thepolynomials under the
squares are unknown).

A very nice achievement of the linear programming method in2-point homo-
geneous spaces is the derivation of an asymptotic upper bound for the rate of
codes (i.e. for the quotientlog card(C)/dim(X)) obtained from the so-called
Christoffel-Darboux kernels. This method was first discovered for the Hamming
and Johnson spaces [30] and then generalized to the unit sphere [24] and to all other
2-point homogeneous spaces [28]. It happens to be the best known upper bound
for the asymptotic range. In [24] an asymptotic bound is derived for the density of
sphere packings in Euclidean space which is also the best known.

6.2. Symmetric spaces.For these spaces, which are not2-point homogeneous,
there may be several distance functions of interest which are G-invariant. For
example, the analysis of performance of codes in the Grassmann spaces for the
MIMO channel [14] involves both the chordal distance:

dc(p, q) :=

√

√

√

√

m
∑

i=1

sin2 θi(p, q)

and the product pseudo distance (it is not a distance in the metric sense):

dp(p, q) :=

m
∏

i=1

sin θi(p, q).

The reformulation of Theorem 6.2 leads to a theorem of the type 6.3 for any sym-
metric function of theyi := cos θi with the Jacobi polynomialsPµ(y1, . . . , ym)
instead of thePk. For a general symmetric space, a theorem of the type 6.3 is
obtained, where the sequence of polynomialsPk(t) is replaced by a sequence of
multivariate polynomials, and the setDδ is replaced by some compact subspace of
the domain of the variables of the zonal functions, i.e. of the orbits ofG acting
on pairs. Then one can derive explicit upper bounds, see [45]for the permutation
codes, [2] for the real Grassmann codes, [37] and [14] for thecomplex Grassmann
codes, [15] for the unitary codes, [9] and [31] for the ordered codes. Moreover an
asymptotic bound is derived in [2] and [9].
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6.3. Other spaces with true SDP bounds.An example where the bound (18)
does not boil down to an LP is provided by the spacesP(n, q) endowed with the
distance (13) for which the matricesEk are computed in section 5.3.3 (see [7]). In
this case the groupG is the largest group that acts on the SDP.

Indeed, it is useless to restrict the symmetrization of the program (18) to some
subgroup of the largest groupG that preserves(X, d). However, another interest-
ing possibility is to change the restricted conditiond(x, y) ≥ δ in A(X, δ) for the
conditions:

(21) d(x, y) ≥ δ, d(x, e) ≤ r, d(y, e) ≤ r

wheree ∈ X is a fixed point. Then the newA(X, e, r, δ) is the maximal number
of elements of a code with minimal distanceδ in the ballB(e, r) ⊂ X. Here the
group that leaves the program invariant isStab(e,G). The corresponding bounds
for codes in spherical caps where computed in [6] using the expressions of the
zonal matrices of 5.3.1.

We end this section with some comments on these SDP bounds. Wehave indeed
generalized the framework of the classical LP bounds but thedegree of understand-
ing of the newly defined bounds is far from the one of the classical LP bounds after
the work done since [17], see e.g. [28]. It would be very interesting to have a better
understanding of the best functionsF that give the best bounds, to analyse explicit
bounds and to analyse the asymptotic range, although partial results in these direc-
tions have already been obtained. The fact that one has to deal with multivariate
polynomials introduces great difficulties when one tries tofollow the same lines as
for the classical one variable cases. A typical example is provided by the config-
uration of183 points on the half sphere that seems numerically to be an optimal
configuration for the one sided kissing number, and for whichwe failed to find the
proper functionF leading to a tight bound (see [7]).

7. LOVÁSZ THETA

In this section we want to establish a link between the program (18) and the
so-called Lovász theta number. This number was introducedby Lovász in the sem-
inal paper [29] in order to compute the capacity of the pentagon. This remarkable
result is the first of a long list of applications. This numberis the optimal solution
of a semidefinite program, thus is “easy to calculate”, and offers an approxima-
tion of invariants of graphs that are “hard to calculate”. Since then many other
SDP relaxations of hard problems have been proposed in graphtheory and in other
domains.

7.1. Introduction to Lov ász theta number. A graphΓ = (V,E) is a finite setV
of vertices together with a finite setE of edges, i.e.E ⊂ V 2. An independence
setS is a subset ofV such thatS2 ∩ E = ∅. The independence numberα(Γ)
is the maximum of the number of elements of an independence set. It is a hard
problem to determine the independence number of a graph. Theconnection with
coding theory is as follows: a codeC of a finite spaceX with minimal distance
d(C) ≥ δ is an independence set of the graphΓ(X, δ) which vertex set is equal to
X and which edge set is equal toEδ := {(x, y) ∈ X2 : d(x, y) ∈]0, δ[}. Thus
the determination ofA(X, δ) is the same as the determination of the independence
number of this graph.
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Among the many definitions of Lovász theta, we choose one which generalizes
nicely to infinite graphs. ForS ⊂ V , let1S be the characteristic function ofS. Let

M(x, y) :=
1

|S| 1S(x)1S(y).

The following properties hold forM :

(1) M ∈ R
n×n, where|V | = n, andM is symmetric

(2) M � 0
(3)

∑

x∈V M(x, x) = 1
(4) M(x, y) = 0 if (x, y) ∈ E
(5)

∑

(x,y)∈V 2 M(x, y) = |S|.
Definition 7.1. The theta number of the graphΓ = (V,E) withV = {1, 2, . . . , n}
is

(22)
ϑ(Γ) = max

{
∑

i,j Bi,j : B ∈ R
n×n, B � 0

∑

iBi,i = 1,
Bi,j = 0 (i, j) ∈ E

}

The dual program forϑ has the same optimal value and is equal to:

(23)
ϑ(Γ) = min

{

t : B � 0
Bi,i = t− 1,
Bi,j = −1 (i, j) /∈ E

}

The complementary graph ofΓ is denotedΓ. The chromatic numberχ(Γ) is the
minimum number of colors needed to color the vertices so thatno two connected
vertices receive the same color. In other words it is a minimal partition of the vertex
set with independence sets. Then the so-called Sandwich theorem holds:

Theorem 7.2.
α(Γ) ≤ ϑ(Γ) ≤ χ(Γ)

Proof. The discussion prior to the theorem proves the first inequality. For the sec-
ond inequality, letc : V → {1, . . . , k} be a coloring ofΓ. Then the matrixC with
Ci,j = −1 if c(i) 6= c(j), Ci,i = k − 1 andCi,j = 0 otherwise provides a feasible
solution of (23). �

7.2. Symmetrization and theq-gones. Now we assume thatG is (a subgroup of)
the automorphism groupAut(Γ) of the graph. Then,G acts also on the above
defined semidefinite programs. Averaging onG allows to construct aG-invariant
optimal feasible solutionB′ from any optimal feasible solutionB with the same
objective value:

B′
i,j :=

1

|G|
∑

g∈G

Bg(i),g(j).

Thus one can restrict in the above programs to theG-invariant matrices. Then
one can exploit the method developed in previous sections, in order to obtain a
description of theG-invariantB � 0 form the decomposition of the spaceC(V )
under the action ofG. We illustrate the method in the case of theq-goneCq. There
we haveV = G = Zq the cyclic group of orderq. Let ζq be a fixed primitive root
of 1 in C. Letχk : Zq → C

∗ be defined byχk(x) = ζkx
q . The characters ofZq are

theχk for 0 ≤ k ≤ q − 1 and we have the decomposition

C(Zq) = ⊕q−1
k=0Cχk.
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According to Theorem 4.10, theG-invariant positive definite functions onV are
exactly the functionsF (x, y) of the form:

F (x, y) =

q−1
∑

k=0

fkχk(x)χk(y) =

q−1
∑

k=0

fkζ
k(x−y)
q

with fk ≥ 0. The ones taking real values have the form

F (x, y) =

⌊q/2⌋
∑

k=0

fk cos((x− y)kπ/q), fk ≥ 0.

When one replaces inϑ the expressionBi,j = F (i, j), the SDP transforms into a
LP on the variablesfk. More precisely, we compute

∑

(x,y)∈V 2 F (x, y) = q2f0

and
∑

x∈V F (x, x) = q
∑

k fk. Thus we obtain (after a change ofqfk to fk):

ϑ(Cq) = max
{

qf0 : fk ≥ 0, 0 ≤ k ≤ ⌊q/2⌋,
⌊q/2⌋
∑

k=0

fk = 1,

⌊q/2⌋
∑

k=0

fk cos(kπ/q) = 0

This very simple linear program has the solution

ϑ(Cq) =

{

q
2 if q is even
−q cos(pπ/q)
1−cos(pπ/q) if q = 2p + 1.

Note that whenq is even, the independence number of theq-gone is exactlyq/2. If
the independence number of a graph as simple as theq-gone is not a great deal (it
is of course equal to⌊q/2⌋), a more challenging issue is to determine its capacity.
In general, the capacityC(Γ) of a graphΓ is defined to be

C(Γ) = lim
n→+∞

α(Γn)1/n.

Here the graphΓn is defined as follows: its vertex set is equal toV n and an edge
connects(x1, . . . , xn) and (y1, . . . , yn) iff for all 1 ≤ i ≤ n eitherxi = yi or
(xi, yi) ∈ E. Introduced by Shannon in 1956, this number represents the effective
size of an alphabet used to transmit information through thechannel associated
to the graphΓ (where two symbols are undistinguable if they are connectedby
an edge). If the capacity of a graph is in general very difficult to calculate, the
theta number of a graph provides an upper bound for it becauseϑ(Γn) = ϑ(Γ)n

(see [29]). This upper bound is an equality for the pentagon since on one hand
ϑ(C5) =

√
5 from our previous computation, and on the other hand it is easy to

see thatα((C5)
2) = 5 (while α(C5) = 2); this is the way taken by Lovász in [29]

to prove thatC(C5) =
√

5. The determination of the capacity of theq-gone forq
odd and greater than5 is still opened.

7.3. Relation with Delsarte bound and withm(X, δ). We introduce a slightly
stronger bound forα(Γ) with ϑ′ and its dual form:

(24)
ϑ′(Γ) = max

{
∑

i,j Bi,j : B � 0, B ≥ 0
∑

iBi,i = 1,
Bi,j = 0 (i, j) ∈ E

}
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(25)
ϑ′(Γ) = min

{

t : B � 0
Bi,i ≤ t− 1,
Bi,j ≤ −1 (i, j) /∈ E

}

SinceM(x, y) ≥ 0, we still have thatα(Γ) ≤ ϑ′(Γ). Again one can restrict in the
above programs to theG-invariant matrices. It was recognized independently by
McEliece, Rodemich, Rumsey, and Schrijver [39] that Delsarte bound of Theorem
6.3 forA(Hn, δ) is equal toϑ′ for the graphΓ(X, δ), once the feasible set is re-
stricted to theAut(Hn)-invariant matrices, and similarly for the other finite2-point
homogeneous spaces. Indeed, by virtue of Theorem 4.10, the matricesB turn to
be of the formB(x, y) =

∑

k≥0 fkPk(d(x, y)). This symmetrization process is
of great importance, not only because it has the great advantage to change an SDP
to an LP, but also because it does change the complexity of theproblem. Indeed,
there are algorithms with polynomial complexity that do compute approximations
of the optimal value of SDP’s, thus algorithms with polynomial complexityin the
number of verticesof Γ for ϑ. But the graphs arising from coding theory have in
general an exponential number of vertices, e.g.2n for the Hamming graph. It is
important to insist that the symmetrized theta has polynomial complexity inn.

Now we can see that the programm(X, δ) (18) is a natural generalization of
ϑ′ for metric spaces under the assumptions of Section 4. We refer to [8] for a
more general discussion about generalized theta where alsochromatic numbers are
involved.

8. STRENGTHENING THELP BOUND FOR BINARY CODES

In this section we explain how the zonal matricesEk(x, y) related to the binary
Hamming space computed in 5.3.3 are exploited in [40] in order to strengthen the
LP bound. We shall work with the primal programs so we start torecall the primal
version of (18) in the case of the Hamming space.

We recall that the sequence of orthogonal functions(Pk)0≤k≤n with Pk = Kk

the Krawtchouk polynomials is associated toHn such thatPk(d(x, y)) � 0. As a
consequence, we have for allk ≥ 0

∑

(c,c′)∈C2

Pk(d(c, c
′)) ≥ 0.

We introduce the variablesxi, for i ∈ [0 . . . n]

(26) xi :=
1

card(C)
card{(c, c′) ∈ C2 : d(c, c′) = i}.

They satisfy the properties:

(1) x0 = 1
(2) xi ≥ 0
(3)

∑

i xiPk(i) ≥ 0 for all k ≥ 0
(4) xi = 0 if i ∈ [1 . . . δ − 1]
(5) card(C) =

∑

i xi.

With these properties which are linear inequalities, we obtain the following linear
program which is indeed the dual of (18):
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sup { 1 +
∑n

i=δ xi : xi ≥ 0,
1 +

∑n
i=δ xiPk(i) ≥ 0 for all 1 ≤ k ≤ n }

where we have taken into accountP0 = 1.
We recall that to every0 ≤ k ≤ ⌊n

2 ⌋, we have associated a matrixEk(x, y) � 0
of sizen− 2k + 1. In particular, for allC ⊂ Hn (see the remark 4.9),

∑

(c,c′)∈C2

Ek(c, c
′) � 0.

These constraints are not interesting for pairs because they are not stronger than
the linear inequalities coming from the Krawtchouk polynomials. They are only
interesting if triples of points are involved: namely we associate to(x, y, z) ∈ H3

n

the matrices
Fk(x, y, z) := Ek(x− z, y − z).

We have for allC ⊂ Hn, and for allz ∈ Hn,
∑

(c,c′)∈C2

Fk(c, c′, z) � 0

which leads to the two positive semidefinite conditions:

(27)

{
∑

(c,c′,c′′)∈C3 Fk(c, c
′, c′′) � 0

∑

(c,c′)∈C2, c′′ /∈C Fk(c, c
′, c′′) � 0

Theorem 5.4, expresses the coefficients ofEk(x−z, y−z) in terms of ofwt(x−z),
wt(y − z), wt(x − y); so witha := d(y, z), b := d(x, z), c := d(x, y), we have
for some matricesTk(a, b, c),

Fk(x, y, z) = Tk(a, b, c).

We introduce the unknownsxa,b,c of the SDP. Let

Ω :=
{

(a, b, c) ∈ [0 . . . n]3 :

a+ b+ c ≡ 0 mod 2
a+ b+ c ≤ 2n
c ≤ a+ b
b ≤ a+ c
a ≤ b+ c

}

It is easy to check thatΩ = {(d(y, z), d(x, z), d(x, y)) : (x, y, z) ∈ H3
n}. Let, for

(a, b, c) ∈ Ω,

xa,b,c :=
1

card(C)
card{(x, y, z) ∈ C3 : d(y, z) = a, d(x, z) = b, d(x, y) = c}.

Note that

x0,c,c =
1

card(C)
card{(x, y) ∈ C2 : d(x, y) = c}

thus the hold variablesxi (26) of the linear program are part of these new variables.
We need a last notation: let

t(a, b, c) := card{z ∈ Hn : d(x, z) = b andd(y, z) = a} for d(x, y) = c
=

(c
i

)(n−c
a−i

)

wherea− b+ c = 2i

Then, ifC is a binary code with minimal distance at least equal toδ, the following
inequalities hold forxa,b,c :

(1) x0,0,0 = 1
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(2) xa,b,c = xτ(a),τ(b),τ(c) for all permutationτ of {a, b, c}
(3) xa,b,c ≤ t(a, b, c)x0,c,c, xa,b,c ≤ t(b, c, a)x0,a,a, xa,b,c ≤ t(c, a, b)x0,b,b.
(4)

∑

a,b,c Tk(a, b, c)xa,b,c � 0 for all 0 ≤ k ≤ ⌊n
2 ⌋

(5)
∑

a,b,c Tk(a, b, c)(t(a, b, c)x0,c,c − xa,b,c) � 0 for all 0 ≤ k ≤ ⌊n
2 ⌋

(6) xa,b,c = 0 if a, b or c ∈]0, δ[.
(7) card(C) =

∑

c x0,c,c.

Conditions (4) and (5) are equivalent to (27). Condition (6)translates the assump-
tion thatd(C) ≥ δ. Thus an upper bound oncard(C) is obtained with the optimal
value of the program that maximizes

∑

c x0,c,c under the constraints (1) to (6).
This upper bound is at least as good as the LP bound because theSDP program
does contain the LP program of 6.1. Indeed, the sum of the two SDP conditions
(27) is equivalent to

∑

z∈Hn

Ek(x− z, y − z) � 0.

We claim that this set of conditions whenk = 0, 1, . . . , ⌊n
2 ⌋ is equivalent to the

set of conditionsPk(d(x, y)) � 0 for k = 0, . . . , n. Indeed letBk(x, y) :=
∑

z∈Hn
Ek(x − z, y − z). Up to a change ofBk(x, y) to ABk(x, y)A

∗, we as-
sume thatEk was constructed using the decomposition ofC(Hn) first underΓ :=
T ⋊ Sn = Aut(Hn) then underG (see Remark 5.7). ClearlyBk is Γ-invariant.
Sincex → Ek,i,j(x, y) ∈ Pi andPi is aΓ-module, alsox → Bk,i,j(x, y) ∈ Pi

and similarly y → Bk,i,j(x, y) ∈ Pj . But Pi andPj are non isomorphicΓ-
modules fori 6= j thusBk,i,j(x, y) = 0 for i 6= j. SincePi is Γ-irreducible,
Bk,i,i(x, y) = λiPi(d(x, y)) for someλi > 0 that can be computed withBk(x, x).
So we have proved that the linear program associated toHn like in 6.1 is contained
in the SDP program obtained from the above conditions (1) to (6). Moreover it
turns out that in some explicit cases of small dimension the SDP bound is strictly
better than the LP bound (see [40]).

A similar strengthening of the LP bound for the Johnson spaceand for the spaces
of non binary codes where obtained in [40] and [20]. In the case of the spherical
codes, for the same reasons as for the LP bound, one has to dealwith the dual
program, see [4].
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351,COURS DE LAL IB ÉRATION, 33405 TALENCE FRANCE

E-mail address: bachoc@math.u-bordeaux1.fr


	1. Introduction
	1.1. Notations:

	2. Linear representations of finite groups
	2.1. Definitions
	2.2. Examples
	2.3. Irreducibility
	2.4. The algebra of G-endomorphisms
	2.5. Characters
	2.6. Examples from coding theory

	3. Linear representations of compact groups
	3.1. Finite dimensional representations
	3.2. Peter Weyl theorem
	3.3. Examples

	4. Harmonic analysis of compact spaces
	4.1. Commuting endomorphisms and zonal matrices.
	4.2. Examples: G-symmetric spaces.
	4.3. Positive definite functions and Bochner theorem

	5. Explicit computations of the matrices Ek(x,y)
	5.1. 2-point homogeneous spaces.
	5.2. Other symmetric spaces
	5.3. Three cases with non trivial multiplicities

	6. An SDP upper bound for codes from positive definite functions
	6.1. The 2-point homogeneous spaces
	6.2. Symmetric spaces
	6.3. Other spaces with true SDP bounds

	7. Lovász theta
	7.1. Introduction to Lovász theta number
	7.2. Symmetrization and the q-gones
	7.3. Relation with Delsarte bound and with m(X,)

	8. Strengthening the LP bound for binary codes
	References

