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SEMIDEFINITE PROGRAMMING, HARMONIC ANALYSIS AND
CODING THEORY

CHRISTINE BACHOC

ABSTRACT. These lecture notes where presented as a course of the CIMPA
summer school in Manila, July 20-30, 2008emidefinite programming in al-
gebraic combinatorics
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1. INTRODUCTION

In coding theory, the so-called linear programming methioipduced by Phi-
lippe Delsarte in the seventies [16] as proved to be a veryepgolvmethod to
solve extremal problems. It was initially developed in tfaiework of association
schemes and then extended to the familg-pbint homogeneous spaces, including
the compact real manifolds having this property (seé [13]],[[13, Chapter 9]).
Let us recall that &-point homogeneous space is a metric space on which a group
G acts transitively, leaving the distandénvariant, and such that, fgr, y) € X2,
there existy) € G such that(gz, gy) = (2/,%/) if and only if d(z,y) = d(2',y').
The Hamming spac#/,, and the unit sphere of the Euclidean sp&ée! are core
examples of such spaces which play a major role in codingrghe®o such a
space is associated a sequence of orthogonal polynofdtg)s>o such that, for
alC c X,

> P(d(c,d)) = 0.
(c,c)eC?
These inequalities can be understood as linear consti@irttse distance distribu-
tion of a code and are at the heart of the LP method.

The applications of this method to the study of codes andydesire numerous:
very good upper bounds for the number of elements of a codegiien minimal
distance can be obtained with this method, including a nurabeases where this
upper bound is tight and leads to a proof of optimality andjuaness of certain
codes, as well as to the best known asymptotic bounds [(s&e[805, [24], [13,
Chapter 9],[[28]).

In recent years, the development of the theory of error cting codes has in-
troduced many other spaces with interesting applicatiofis.cite a few, codes
over various alphabets associated to various weights taguracodes, codes for the
multi antenna systems of communications involving more giarated manifolds
like the Grassmann spaces, have successively focuseti@atteRor these spaces
there was a need for a generalization of the classical framiewf the linear pro-
gramming method. This generalization was developed foresofrthese spaces,
see [44],[45],[[2],[37]. It turns out that in each of thess&s, a certain sequence
of orthogonal polynomials enters into play but unlike thassical cases, these
polynomials are multivariate.

Another step was taken when A. Schrijver [inl[40] succeedennfrove the
classical LP bounds for binary codes with the help of semmdefprogramming.
To that end he exploiteBDP constraints on triples of pointather than on pairs,
arising from the analysis of the Terwilliger algebra of tharkining scheme. His
method was then adapted to the unit sphere [4] in the framewfaihe represen-
tations of the orthogonal group. The heart of the method mvidence matrices
Zy(z,y, z) such that for allC' C X,

Z Zi(c,d,d") = 0.

(c,c’,c)eC?
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Another motivation for the study of SDP constraints fetuples of points can
be found in coding theory. It appears that not only functiongairs of points such
as a distance functiod(z, y) are of interest, but also functions @nrtuples have
relevant meaning, e.g. in connection with the notion ofdstoding.

In these lecture notes we want to develop a general framehaskd on har-
monic analysis of compact groups for these methods. In vigheoeffective ap-
plications to coding theory, we give detailed computationsiany cases. Special
attention will be paid to the cases of the Hamming space atfteainit sphere.

Section 2 develops the basic tools needed in the theory céseptations of fi-
nite groups, section 3 is concerned with the representatibnompact groups and
Peter Weyl theorem. Section 4 discusses the needed nofidreroonic analy-
sis: the zonal matrices are introduced and the invariaritiposlefinite functions
are characterized with Bochner theorem. Section 5 is déuotexplicit computa-
tions of the zonal matrices. Section 6 shows how the detetiom of the invariant
positive definite functions leads to an upper bound for cadés given minimal
distance. Section 7 explains the connection with the dedélovasz theta num-
ber. Section 8 shows how SDP bounds can be used to strengighefassical LP
bounds, with the example of the Hamming space.

1.1. Notations: for a matrix A with complex coefficientsA* stands for the trans-
posed conjugate matrix. A squared matrix is said to be himit A* = A and
positive semidefinite if it is hermitian and all its eigenva$ are non negative. This
property is denoted! > 0. We follow standard notations for sets of matrices: the
set ofn x m matrices with coefficients in a fiel& is denotedk™*™; the group

of n x n invertible matrices byGl(K™); the groupU(C") of unitary matrices,
respectivelyO(R™) of orthogonal matrices is the set of matricése G1(C"), re-
spectivelyA € GI(R") such thatd* = A~!. The spac&C"*™ is endowed with
the standard inner produ¢tl, B) = Trace(AB*) = 3=, ; A; ;B; ;. The number

of elements of a finite seX is denotedtard(X) of | X|.

2. LINEAR REPRESENTATIONS OF FINITE GROUPS

In this section we shortly review the basic notions of graefresentation theory
that will be needed later. There are many good referencdkifotheory e.g.[[41],
or [38] which is mainly devoted to the symmetric group.

2.1. Definitions. Let GG be a finite group. A (complex linear) representatiorGof
is a finite dimensional complex vector spaédogether with a homomorphism

p: G — GIV)

whereGl1(V) is the general linear group &f, i.e. the set of linear invertible trans-
formations ofl/. The degree of the representatign V') is by definition equal to
the dimension of/.

Two representations af say (p, V') and (p’, V') are said to be equivalent or
isomorphic if there exists and isomorphism V' — V' such that, for aly € G,

P (9) = up(g)u™.

For example, the choice of a basis Wfleads to a representation equivalent to
(p, V) given by(p’, C%) whered = dim(V') andy/(g) is the matrix ofp(g) in the
chosen basis. In general, a representatiofd sfich thafi” = C¢ is called a matrix
representation.
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The notion of a&-module is equivalent to the above notion of representatiah
turns out to be very convenient. &-module, or a7-space, is a finite dimensional
complex vector spac¥ such that for ally € G, v € V, gv € V is well defined
and satisfies the obvious propertiés: = v, g(hv) = (gh)v, g(v+w) = gv+ gw,
g(Av) = A(gv) for g,h € G, v,w € V, A € C. In other wordsV is endowed
with a structure ofC[G]-module. One goes from one notion to the other by the
identificationgv = p(g)(v). The notion of equivalent representations corresponds
to the notion of isomorphi¢r-modules, an isomorphism @f-modules being an
isomorphism of vector spaces: V' — V' such thatu(gv) = gu(v). Note that
here the operations @ on V and V"’ are denoted alike, which may cause some
confusion.

2.2. Examples.

e The trivial representatiof: V' = C andgv = v.

e Permutation representations: Igtbe a finite set on whiclys acts (on the
left). Let Vx := ®.exCe,. A natural action ofG on Vx is given by
gex = egy, and defines a representation(ofof degreg X |. The matrices
of this representation (in the badis, }) are permutation matrices.

— The symmetric grougb,, acts onX = {1,2,...,n}. This action
defines a representation of degreef S,,.
— Forallw, 1 < w < n, S, acts onthe seX, of subsets of 1,2, ... ,n}

of cardinalw. In coding theory an element of,, is more likely
viewed as a binary word of length and Hamming weightv. The
spacesX,, are called the Johnson spaces and dengféd
e The regular representation is obtained with the specia &as= G with
the action ofG by left multiplication. In the cas€&' = S, it has degree
nl.. It turns out that the regular representation containbualtling blocks
of all representations daf.
e Permutation representations againGifacts transitively onX, this action
can be identified with the left action ¢f on the left coset&//H = {¢gH :
g € G} whereH = Stab(x) is the stabilizer of a base point.

— The symmetric groug,, acts transitively onX = {1,2,...,n} and
the stabilizer of one point (say) can be identified with the symmetric
groupS,,—; acting on{1,...,n — 1}.

— The action ofS,, on J}Y is also transitive and the stabilizer of one point
(say1¥0"") is the subgrougbyy, . wy X S{w41,...,n) iISOMoOrphic to
Sw X Sp_w-

— The Hamming spacé,, = {0, 1}" = F% affords the transitive action
of G = T x S,, whereT is the group of translation = {t,, : u €
H,}, t,(v) = v+ v andS,, permutes the coordinates. The stabilizer
of 0™ is the group of permutations,,.

e Another way to see the permutation representations is tteviag: let

-----

CX)={f: X—>C}

be the space of functions frofi to C. The action ofG on X extends to a
structure ofG-module onC(X) given by:

9f (@) := flg~ ).
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For the Dirac functions, (6,(x) = 1if x = y, 0 otherwise), the ac-
tion of G is given bygd, = d,, thus this representation is isomorphic to
the permutation representation definedXy This apparently more com-
plicated presentation of permutation representationgif®advantage to
allow generalization to infinite groups acting on infinitexsps as we shall
encounter later.

2.3. Irreducibility. LetV be aG-module (respectively a representatign1’) of
(). A subspacélV C V is said to bez-invariant (orG-stable, or aG-submodule,
or a subrepresentation b, 1)), if gw € W (respectivelyp(g)(w) € W) for all
geGweWw.

Example: V = Vg andW = Ceqg with e = dec eq. The restriction of the
action of G to W is the trivial representation.

A G-moduleV is said to be irreducible if it does not contain any subspace
W, W # {0},V, invariant undeiG. Otherwise it is called reducible. The main
result is then the decomposition ofzamodule into the direct sum of irreducible
submodules:

Theorem 2.1(Maschke’s theorem)Any G-moduleV # {0} is the direct sum of
irreducible G-submoduledVy, ..., Wy:

(1) V=W oWa® - ®W,.

Proof. By induction, it is enough to prove that adrsubmodulell of V' affords
a supplementary subspace which is alsovariant. The main idea is to construct
a G-invariant inner product and then prove that the orthogohdl” for this inner
product makes the job.

We start with an inner produgctr, y) defined onV. There are plenty of them
sinceV is a finite dimensional complex vector space. For exampleamecboose
an arbitrary basis df and declare it to be orthonormal. Then we average this inner
product onG, defining:

(@,y) = (g2, 9y).
geG
Itis not difficult to check that we have defined a inner produicich isG-invariant.
It is also easy to see that

Wt ={veV:(vw) =0foralwe W}
is G-invariant, thus we have the decompositionsmodules:
V=WaeWw
U

It is worth to notice that the above decomposition may nottique. It is clear
if one thinks of the extreme casg = {1} for which the irreducible subspaces
are simply the one dimensional subspace¥ off he decomposition of into the
direct sum of subspaces of dimensibiis certainly not unique (iflim(V) > 1
of course). But uniqueness is fully satisfied by the decoitipasinto isotypic
subspaces. In order to define them we take the following iootatet R be a
complete set of pairwise non isomorphic irreducible repméstions ofG. It turns
out that there is only a finite number of them but we have notgutdt yet. The
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isotypic subspac&r of V' associated td? € R is defined, with the notations of
(@), by:
(2) IR = ®w,~rW;.

Theorem 2.2. Let R € R. The isotypic spacesi do not depend on the decom-
position ofl” as the direct sum af-irreducible subspaces. We have the canonical
decomposition

V = ®RrerZr.
Any G-subspacel’’ C V such thatiW ~ R is contained inZz and anyG-
irreducible subspace dfy is isomorphic toR. A decomposition into irreducible
subspaces dfr has the form

Ip=W1 @ - & Wpy

with W, ~ R. Such a decomposition is not unique in general but the numibger
does not depend on the decomposition and is called the miitippf R in V.

Moreover, ifV is endowed with &-invariant inner product, then the isotypic
spaces are pairwise orthogonal.

Proof. We start with a lemma which points out a very important prgpef irre-
ducible G-modules.

Lemma 2.3 (Schur Lemma) Let R; and R, two irreducible G-modules and let
¢ : Ry — Ry be aG-homomorphism. Then either= 0 or ¢ is an isomorphism
of G-modules.

Proof. The subspaceker ¢ andim ¢ are G-submodules of respectivelig; and
R; thus they are equal to eith¢d} or R;. O

We go back to the proof of the theorem. We start with the deamitipn (1)
of V' and the definition[{2) of z, a priori depending on the decomposition. Let
W c V, aG-submodule isomorphic t&. We apply Lemma2]3 to the projections
pw, and conclude that eithexy, (W) = {0} or pw, (W) = W; and this last case
can only happen itV ~ W,. It proves thatiV C Zz and that aG-irreducible
subspace af z can only be isomorphic t&. It also proves that

Ip= Y, W
WCV,W=~R
hence giving a characterization 8f; independent of the initial decomposition.
The numbemr must satisfydim(Zr) = mpr dim(R) so it is independent of the
decomposition of g.

If V is equipped with & -invariant inner product, we consider orthogonal pro-
jections. Schur Lemma shows th&fy (W') = {0} or= W if W andW’ are
irreducible. Thus if they are ngt-isomorphic,)” andW’ must be orthogonal.

U

2.4. The algebra of G-endomorphisms. Let V' be aG-module. The set ofs-
endomorphisms o¥ is an algebra (for the laws of addition and compaosition) de-
notedEndq (V). The next theorem describes the structure of this algebra.

Theorem 2.4.If V ~ @ rcr R™E, then

Endg(V) ~ H CMRXMER,
ReR
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Proof. The proof is in three steps: we shall assume first R is irreducible, then
V ~ R™, then the general case. Schur Lemima 2.3 is the main tool here.

If V isirreducible, letp € Endg (V). SinceV is a complex vector space,has
got an eigenvalue. Theny — A 1d is aG-endomorphism with a non trivial kernel
so from Schur Lemma — A Id = 0. We have proved that

Endg(V) = {A\Id,\ € C} ~ C.

We assume now that ~ R™ and we fix a decompositioll = W1 @ --- & W,,.
Foralll <i < j <m,letu;; : W; — W; an isomorphism o&;-modules such
that the relations

Uk,j O Uji = Uk andum- =1Id
hold for all i, j, k. Lety € Endg(V); we associate t@ an element oC™*™ in
the following way. From previous discussion of the irredileicase it follows that
for all 7, j there exists; ; € C such that, for alb € W,

ij o ap(v) = aj7iu]'7i(?}).
The matrixA = (a; ;) is the matrix associated tp. The proof that the mapping
@ — A is an isomorphism of algebras carries without difficultied & left to the
reader.
In the general cas&] = ©rcrZr. Lety € Endg (V). Itis clear thatp(Zr) C
Irthus
Endg (V) = ©rer Endg(Zr)
and we are done. O

It is worth to notice thaEnd (V') is a commutative algebra if and only if all the
multiplicities m  are equal to eithdror 1. In this case we say th&t is multiplicity
free. Itis also the unique case when the decomposition ireducible subspaces
(@) is unique.

2.5. Characters. The character of a representation V') of G is the function
X, : G — C defined by

Xp(g) = Trace(p(g))-
As a consequence of the standard property of traces of mafficice(AB) =
Trace(BA), the character of a representation only depends on itsa@guise class,
and itis a complex valued function @awhich is constant on the conjugacy classes
of G (such a function is called a class function). The inner pcbad any twoy,
¥ € C(QG) is defined by

1 _
bov) =17 > x(9)(9).

geG
We have the very important orthogonality relations betwesaracters:

Theorem 2.5(Orthogonality relations of the first kind)_et x and x’ be respec-
tively the characters of two irreducible representatidipsV') and (o', V') of G.

Then
1 ifp~)p
no_
o) = {0 otherwise.

Proof. We outline a proof in the more general context of compact jggan the
next section (Theorefn 3.1). O
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A straightforward consequence of the above theorem is(thatyr) = mr
for all R € R. This property is a very convenient tool to study the irrebdiec
decomposition of a given representatign V') of G; in the case of the regular
representation it leads to the following very importanuies

Theorem 2.6. [Decomposition of the regular representation]
C(G) ~ ®rer RI™W)
Proof. Compute the character of the regular representation. O

A consequence of the above theorem is the finiteness of thdewuof irre-
ducible representations of a given finite group, togethdhn thie formula

Gl =) (dim(R))*
ReR

which shows e.g. completeness of a given set of irreducibiaodules.
A second consequence of the orthogonality relations isahiapresentation of
G is uniquely characterized up to isomorphism by its characte

Theorem 2.7.
(p’ V) = (p/’ V/) < Xp = Xp'-

Proof. If x, = x,/, the multiplicities of an irreducible representation(@fare the
same inV andV’, henceV ~q V', O

2.6. Examples from coding theory. In coding theory we are mostly interested in
the decomposition of (X') under the action of = Aut(X) for various spaces
X. We recall that the action af on f € C(X) is given by(gf)(z) = f(g~'z).
The spac€(X) is endowed with the inner product

n 1 /
=15 > f@)f(@).

zeX

which is G-invariant.

2.6.1. The Hamming spaceH,,: recall thatG = T x S,. Let, fory € H,,
Xy € C(Hy) be defined byy,(z) = (-1)*Y. The set{x,,y € H,} is exactly
the set of irreducible characters of the additive grbjpand form an orthonormal
basis ofC(H,,). The computation of the action ¢f on x, shows that for € S,
OXy = Xo(y) @nd fort, € T, t,x, = (=1)"¥x,. Let, for0 < k <n,

P =Ly wi(y)=k Cxy

Thus P, is a G-invariant subspace daf(H,,) of dimension(}) and we have the
decomposition

(3) C(H)=PyLP L LP,

The computationx p,, xp,) = 1 Whereyp, is the character of th&-module P,
shows that these modules @reirreducible.
Now we introduce the Krawtchouk polynomials. The elemént=3_, .\ Xy

of C(H,,) is S,-invariant. In other wordsZ (x) only depends owt(z). We define
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the Krawtchouk polynomiak(;, for 0 < k£ < n by

(4) Kp(w):=Zp(x) = Y (—1)"Y wherewt(x) = w
wt(y)=k

- W n—w
5 = —1) .
(5) ;( >(Z)<,H>
We review some properties of these polynomials:

(1) deg(I) = k
(2) Ki(0) = (3)

(3) Orthogonality relations: forall < k <l <n

2% Y <Z)>Kk(w)Kl(w):5k,l<Z>

w=0
The last property is just a reformulation of the orthogdyadf the Z;, € P, since,
if f,f" € C(H,) areS,-invariant, andf (w) := f(x), wt(z) = w,

(5 =50 O F@)f @)

ZEEHn

1 & S
-5 (1))
The above three properties characterize uniquely the Krawik polynomials.

LetC C H, be a binary code. Let~ be the characteristic function 6f. The
obvious inequalities hold:

(6) 0<k<n, Y. {lo,x)’>0.
wt(y)=k

Since the decomposition af- over the basig, reads

o= ) (1o, X)Xy

yeHn

the above inequalities are indeed reformulations of thenegativity of the squared
norm of the projectiongp, (1¢). They express in terms of the Krawtchouk poly-
nomials:

1

(7) 0<k<mn, 520 Z Kk(dH(x,x')) >0

(z,2")eC?
or equivalently in terms of the distance distribution of toeleC': if
A,(C) = gr(ea') € CF s dn(e.a') = w)]
then
0<k<n, % Zn:ko(C)Kk(w) > 0.

These inequalities are the basic inequalities involved éts&rte linear program-
ming method. We shall encounter similar inequalities iny ¢general setting.
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In the special case whefi s linear, we have

C]

(1o, xy) = on Lot (y)

so that we recognise the identity

> (e = o 3 Au(O)Ki(w)

wt(y)=Fk w=0
to be the Mac Williams identity

Ap(Ch) = ﬁ 3" 4, (C) Ky ().
w=0

2.6.2. The Johnson spaced,’: the group iS5 = S,,. Here, we shall see at work

a standard way to evideneg-submodules as kernels 6--endomorphisms. For
details we refer ta [17] where theJohnson spaces are given a uniform treatment.
We introduce the applications

§:C(J") — C(J¥ ™Y
frd(f) 6@ = > [

and
G C(IPh) = C(IY)
Fred(f) ()@ = > f)

yeJy Tt yCa

Both of these applications commute with the actiorzofThey satisfy the follow-
ing properties{f, (")) = (6(f), f'), ¢ is injective and is surjective. Therefore
the subspace @(JY):

H, :=kerd

is aG-submodule of dimensiof’) — (") and we have the orthogonal decom-
position

C(J3) = Hy L(C(Jy™Y) ~ Hy LC(J).
By induction we obtain a decomposition
C(J#)ZHwLHw_l LLHO

which can be proved to be the irreducible decompositiofi(df) (sed 5.1.R).

3. LINEAR REPRESENTATIONS OF COMPACT GROUPS

In this section we enlarge the discussion to the representdteory of compact
groups. For this section we refer {0 [12].
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3.1. Finite dimensional representations. The theory of finite dimensional repre-

sentations of finite groups extends nicely and straightéodly to compact groups.

A finite dimensional representation of a compact gréiifs a continuous homo-

morphismp : G — G1(V') whereV is a complex vector space of finite dimension.
A compact group’ affords a Haar measure, which is a regular left and right

invariant measure. We assume this measure to be normalieethe groups has

measurd. With this measure the finite sums over elements of a finitagoan be

replaced with integrals; so the crucial construction @f-&nvariant inner product

in the proof of Maschke theorem extends to compact grougs tivé formula

(z,y)" = /G<9w,gy>dg-

Hence Maschke theorem remains valid for finite dimensioeptasentations. We
keep the notatiofk for a set of representatives of the finite dimensional irodula
representations af, chosen to be representations with unitary matrices. A main
difference with the finite case is th& is not finite anymore.

3.2. Peter Weyl theorem. Infinite dimensional representations will immediately
occur with the generalization of permutation represemati Indeed, ifG acts
continuously on a spac¥, it is natural to consider the action 6f on the space
C(X) of complex valued continuous functions angiven by(gf)(x) = f(g 'z)

to be a natural generalization of permutation represemstiA typical example of
great interest in coding theory is the action@f= O(R™) on the unit sphere of
the Euclidean space:

Sl {zeR™ : z-z=1}.

The regular representation, which is the special ¢4§¢), with the left action of
G on itself, can be expected to play an important role simdahe finite case. It
is endowed with the inner product

%fwzéﬂmﬂﬁm

For R € R, the matrix coefficienty — R; ;(g) belong to unitary matrices. The
celebrated Peter Weyl theorem asserts that these elenfehiSpform an orthog-
onal system and span a vector space which is den€¢Gi for the topology of
uniform convergence.

Theorem 3.1. [Orthogonality relations] ForR € R, letdr := dim(R). For all
R,SeR,i,jk,l,
1

/ R; j(9)Ski(9)dg = d_(SR’Séi’kdj’l'
G R

Proof. For A € C4rxds | |et
A = | RBlg)as(o) g
G

This matrix satisfies?(g)A’ = A'S(g) for all ¢ € G. In other words it defines
an homomorphism ofi-modules from(C% , S) to (C?%, R). Schur lemma shows
thatif S # R, A’ = 0andifS = R, A = A1d. Computing the trace of/
shows that\ = Trace(A4)/dgr. TakingA = E; ; the elementary matrices gives the
result. O
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The orthogonality relations of the characters of irredigcitepresentations are
an easy consequence of the above theorem.

Theorem 3.2. [Peter Weyl theorem] The finite linear combinations of thections
R; ; are dense i€ (G) for the topology of uniform convergence.

Proof. We give a sketch of the proof:

(1) If Vis afinite dimensional subspace@{fl”) which is stable by right trans-
lation (i.e. bygf(x) = f(zg)) andf € V, thenf is a linear combination
of a finite number of theR; ;: according to previous discussion, there is
a decompositio/ = Wy & --- & W, such thatW is irreducible. If
Wi, ~ R, there exists a basis, . .., eq,, of W}, in which the action of7
has matricesz. Explicitly,

Taking/ = 1, we obtaine; = 2% ¢;(1)R; ;.

(2) The idea is to approximatg € C(G) by elements of such subspaces,
constructed from the eigenspaces of a compact selfadjpietator. We
introduce the convolution operators: € C(G),

Ty(F)(g) = (6% F)(g) = /G (gh~1) £ (h)dh.

(3) Since(G is compact,f is uniformly continuous; this property allows to
choosep such that| f — T, (f)||~ is arbitrary small.

(4) The operatofl}; is compact and can be assumed to be selfadjoint. The
spectral theorem for such operators on Hilbert spaces (I¥I&)) asserts
that the eigenspacds, := {f : T,f = Af} for A # 0 are finite dimen-
sional and that the space is the direct Hilbert sagi’,. Fort > 0, the
subspace¥; := @V |\ have finite dimension (i.e. there is only a finite
number of eigenvalues with [A| > ¢ > 0).

(5) The operatofly, commutes with the action df by right translation thus
the subspaceg), are stable under this action.

(6) Let fy be the projection of on V). The finite sumsf; := Zw>t /) are
linear combinations of thé&; ; from (1) and they converge tf — f, for
the L2-norm whent — 0.

(7) Moreover, for allf € C(V), [ITs(f)lloc < lléllsollfll2- Thus, Ty(f:)

convergesuniformlyto T, (f — fo) = Ty (f).
O

If dr = dim(R), the vector space spanned bR; ;,i = 1,...,dg} is G-
invariant and isomorphic t&. So Peter-Weyl theorem means that the decomposi-
tion of the regular decomposition is

C(G) =1lgrer Ir

whereZr ~ R%r, generalizing Theorem 2.6 (one has a better understanding o
this decomposition with the action 6f x G on G given by(g, ¢')h = ghg'~!. For

this actionC(G) = @rer R ® R* whereR* is the contragredient representation,
andR ® R* is G x G-irreducible).
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Since uniform convergence is stronger thihconvergence, we also have as
a consequence of Peter Weyl theorem that the matrix coeffscig; ; (suitable
rescaled) form an orthonormal basisigf(G) in the sense of Hilbert spaces.

A slightly more general version of Peter Weyl theorem dedth the decom-
position of C(X) where X is a compact space on which acts homogeneously.
If G, is the stabilizer of a base pointy € X, thenX can be identified with the
quotient spacé&’/G,,. The Haar measure aH gives rise to aG-invariant regular
measurg: on X andC(X) is endowed with the inner product

! _L x/—ﬂ? X
1) = s [ @) o).

The spac€(X) can be identified with the spacéG)“=o of G, -invariant (for the
right translation) functions thus(X) affords a decomposition of the form

C(X) ~Lprer R™®

for some integersny, 0 < mpr < dg, in the sense of uniform as well d
convergence.

A more serious generalization of the above theorem dealstivit unitary rep-
resentations of;. These are the continuous homomorphisms fé@to the unitary
group of a Hilbert space.

Theorem 3.3. Letw : G — U(H) be a continuous homomorphism fragto
the unitary group of a Hilbert spac&/. ThenH is a direct Hilbert sum of finite
dimensional irreduciblez-modules.

Proof. The idea is to construct in H@-subspace of finite dimension and then to
iterate with the orthogonal complement of this subspaceth@bend, for a fixed

v € H, one chooseg € C(G) such that[, f(g)(w(g9)v)dg # 0. From Peter
Weyl theorem, f can be assumed to be a finite linear combination of /fe.

In other words, there exists a finite dimensional unitaryesentationp, V) and
e1,ea € V such thatf(g) = (p(g~')e1, e2)y. The operatofl” : V — H defined

by
T(x) = /G (p(g™"), ex)y (m(g)v)dg

commutes with the actions @ and is non zero. Thus its image is a non zero
G-subspace of finite dimension &f.
O

3.3. Examples.

3.3.1. The unit sphere S™~!: itis the basic example. The orthogonal graiip=

O(R™) acts homogeneously o$"~!. The stabilizerG,,, of z; can be identified

with O(zg) ~ O(R"1). Hereu = w is the Lebesgue measure SA~1. We set

wy, = w(S™1). The irreducible decomposition 6{S" 1) is as follows:
C(S"“W=Hy LH}L.. .H}L...

whereH;’ is isomorphic to the spadéarm;’ of harmonic polynomials:

Harmp :={P € C[Xy,...,. XyJp : AP =0,A= ) —
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The spacélarmy is aO(R"™)-module because the Laplace operatocommutes
with the action of the orthogonal group and it is moreovexdrrcible. Its dimen-
sion equald := ("1 — ("1%?). The embedding dffarm{ into C(S™ ') is
the obvious one, to the corresponding polynomial functiothen coordinates.

3.3.2. The action of stabilizers of many points: for our purposes we are inter-
ested in the decomposition of some spaCeX¥ ), X homogeneous fofr, for the
action of a subgroup! of G, typically H = G, .. ., the stabilizer ofs points. In
order to describe it, it is enough to study the decompositibthe G-irreducible
submodules of (X') under the action of{; thus we have to decompose only fi-
nite dimensional spaces. However, because the same iilbeluepresentation
of H may occur in infinitely many of thé&-isotypic subspaces, it happens that
the H-isotypic subspaces are not of finite dimension. A typicanagle is given
by X = S}, G =OR") andH = G. ~ O(R"!). Itis a classical result
that for the restricted action td the decomposition dffarm;; into H-irreducible
subspaces is given by:

k
(8) Harmp! ~ EB Haulrm:-h1 .

i=0
Hence, each of th&/}! in (3.3.1) decomposes likewise:

Hy =Hgp L HY L... L Hy

where H,, ~ Harm?fl. We have the following picture, where thé-isotypic

components appear to be the rows of the second decomposition

c(s Yy =¢ Hy L Hp L ... L HP L1..
= Hyy L Hyy L ... L Hj, L.
1 HYy L ... L Hp L.

1 Hp, L

4. HARMONIC ANALYSIS OF COMPACT SPACES

We take notations for the rest of the lecture not€ds a compact space (possi-
bly finite) on which a compact group (possibly finit€)acts continuously. If the
spaceX is infinite, we moreover assume thstis homogeneous for a larger com-
pact group of whichG is a subgroup (this assumption is needed for the uniform
approximation of positive definite functions in Theorem@#hlit is unecessary for
other results). As we have seen befakg,is endowed with as-invariant Borel
regular measurg for which p(X) is finite. If X itself is finite, the topology is
the discrete topology and the measure is the counting mmasarthe previous
sections we have discussed the decomposition of the pdiarutapresentation
C(X). In order to lighten the notations, we assume tHatas a countable number
of finite dimensional irreducible representations (it is ttase ifG is a group of
matrices over the reals since th&A(G) is a separable Hilbert space), and we let
R = {Rk, k > 0}, whereRy is the trivial representation. We l€}, := dim(Ry).
We have a decomposition

9) C(X) = ®r>0,1<i<m;, Hr.i
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whereHy,; ~ Ry, 0 < my < +oo (the casen;, = 0 means that?;, does not
occur, the caser, = oo may occur ifG is not transitive onX). The isotypic
subspaces are pairwise orthogonal and denbted

T = O Hy
We take the subspacés, ; to be also pairwise orthogonal. For &lli, we choose
an orthonormal basis;, ; 1, . .., ey i 4, Of Hy; such that in this basis the action of

g € G is expressed by the unitary matd¥,(¢g). The set{e ; s} is an orthonormal
basis in the Hilbert sense.

4.1. Commuting endomorphisms and zonal matrices.In this subsection we
want to give more information on the algebfad(C(X)) of commuting con-
tinuous endomorphisms @f(X). We introduce, fork € C(X?), the operators
Tk, called Hilbert-Schmidt operatorS'

Tie(f) /Kmy duly).

Itis easy to verify thal 'k € Endg(C( ) if K is G-invariant, i.e. ifK (gz, gy) =
K(x,y) forall g € G, (z,y) € X2 A continuous functionk (z,y) with this
property is also called a zonal function. It is also easy,vioitth to notice that
Tk o Txr = Tk WhereK * K’ is the convolution ofK andK”:

(K x K')(z,y) == /XK(ac,z)K'(z,y)d,u(z).
Let
K:={KeC(X?):K(gr,gy) = K(z,y)forallg € G, (z,y) € X%}

The triple(IC, +, %) is aC-algebra (indeed @*-algebra, withik*(x, y) := K(y, x)).
Thus we have an embedding— Endg(C(X)).

Assumel” C C(X) is a finite dimensiona{z-subspace such th&t = W; L

- L W,, with W; ~ R € R. By the same proof as the one of Theorlem 2.4,
Endg(V) ~ C™*™. More precisely, we have seen thatyif; : W; — W, are
G-isomorphisms, such that ; o u;; = ug,, then an elemenp € Endg(V)
is associated to a matrid = (a; ;) € C™*™ such that, for allf € V, with

sz(f) = fis
5= ajiugilfi)-
ij=1
Foralll <i<m,let(e;1,...,e.q),d= dim(R), be an orthonormal basis of;
such that in this basis the action @& G is expressed by the unitary matidi(g).

We define
7] .%' y Z €i, s ej s

Then we have:

Lemma 4.1. The above defined functios ; satisfy:
D) Ez',j is ZOﬂ&l:EZ'J(gCC, gy) = Ei,j(u’ﬂ, y)
(2) LetT; ; == Tg, ;. ThenT} ;(W;) = W; and T} ;(W},) = 0 for k # .
) Tij o Tjk = Tik-
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Proof. (1) From the construction, we have

d
ei,s(gz) = Z Rs(g9)eir(x)
t=1

thus

d
Eij(g,9y) = Y eis(g7)e; s (gy)

where the second last equality holds becakiég) is a unitary matrix.
(2) We computel’; ;(ey+):

d

T i(end)(@) = ﬁ /X (3 €55 (2o ens(v)dun(y)

s=1

= i sl / i (W)era(y)duy)

d
= Z ej,s(x)(sk,iét,s = 5k7iej7t(x).

(3) Similarly one computes that
Ei,j * El,k = 6]‘71Ez‘7k.
O

The E; j(x,y) put together form a matri¥ = E(x,y), that we call the zonal
matrix associated to th&-subspacé’:

(10) E(.%',y) = (Ei,j(way))lgid‘gm'
At this stage is is natural to discuss the dependence of tatsxon the various
ingredients needed for its definition.

Lemma 4.2. We have

(1) E(z,y) is unchanged if another orthonormal basisi®f is chosen (i.e. if
another unitary representative of the irreducible reprasgion R is cho-
sen).
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(2) E(z,y)ischanged toAE(z,y)A* for some matrixAd € G1(C™) if another
decomposition (not necessarily with orthogonal spadés} W{ @ --- @
W/ is chosen.

Proof. (1) Let (¢! €1 .,e;,d) be another orthonormal basis @f; and letU;
be unitaryd x d matrices such that
(6271""’ zd) (611""aei,d)Ui-
Since we want the representatiéhto be realized by the same matrices in
the basige; |, .. ., e; ;) wheni varies, we hav&/; = U; = U. Then, with
obvious notations,
E; j(z,y) =(e;1(), ..., € a(x))(€i1(y), - -, € .a(y)"

a(
=(e ,1($) G@d(lﬂ)l]lf (611( )s - -aead(y))*
=(€i1(2), ... €ia(x))(€in(y), ... €a(y)”

Qnrv=w L..- 1L W,= Wll Lo L W?Sm with baSiS(ei,l,...,6i7d)
of W; and(e; 4, ..., € 4) of W in which the action of= is by the same

matricesR(g), let ¢ € End(V) be defined byp(e;s) = e;,. Clearly
¢ commutes with the action af; if u;; is defined byu;;(e;s) = e
then we have seen that, for some matlix= (a;;), ¢; ; = ¢(eis) =
> i1 aji¢j,s. MoreoverA is invertible. Itis unitary if the spaced’; are
pairwise orthogonal. With the notatiod¥x) := (e; s(x)), we have
E(z,y) = E(z)E(y)* andE'(z) = A'E(x)
thus
E'(z,y) = A'E(z,y)A.
0

Going back tap € Endg(V), from Lemmd 4.1l we can take;; = 7);; and we

have the expression
6= aiTji =T
ij=1
We have proved the following:
Proposition 4.3. Let Ky := {K € C(X?) : K(gz,gy) = K(z,y)andz —
K(z,y),y — K(z,y) € V}. The following are isomorphisms Gfalgebras:

Ky — Endg(V) Ccmxm - — Endg(V)
K —Tg A — T(A )

Moreover,Endg(C(X)) is commutative iffC is commutative iffn, = 0,1 for all
k> 0.

Proof. The isomorphisms are clear from previous discussion. Fdiatt assertion,
it is enough to point out that

Endg(C(X)) = [ [ Ende(Zx)-
k>0
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4.2. Examples: G-symmetric spaces.

Definition 4.4. We say thatX is G-symmetric if for all(x,y) € X?2, there exists
g € G such thatgz = y andgy = z. In other words,(z,y) and (y, =) belong to
the same orbit oy acting onX?2.

A first consequence of Proposition 4.3 is tidasymmetric spaces have multi-
plicity free decompositions.

Proposition 4.5. If X is G-symmetric themn;, = 0,1 for all £ > 0 and Ex(x,y)
is real symmetric.

Proof. Forall K € K, K(z,y) = K(y,z). ThusK is commutative: indeed,
1
K+ K)(x, :—/K'x,sz, dp(z
( )(z,y) ) )y (z,2)K (2, y)dp(2)

1 /
— m/XK(z,x)K(%Z)dM(Z)
= (K* K')(y,z) = (K x K')(z,y).

MoreoverEy(z,y) = Ex(z,y) = Ex(y, ). O

4.2.1. 2-point homogeneous spacesthese spaces are prominent example§-of
symmetric spaces.

Definition 4.6. A metric space$X,d) is said to be2-point homogeneous for the
action of G if G is transitive onX, leaves the distancé invariant, and if, for
(z,y) € X2,

there existy) € G such that(gz, gy) = (2/,y) < d(z,y) = d(«’, ).

Examples of such spaces of interest in coding theory are rrsethe Ham-
ming and Johnson spaces, endowed with the Hamming distemaége action of
respectivelyl’ x S,, andS,,; the unit spheres™~! for the angular distancé(z, )
and the action of the orthogonal group. It is a classical ltdbat, apart from
S™—1, the projective space®*(K) for K = R, C, H, andP?(Q), are the only real
compact2-point homogeneous spaces.

There are more examples of fintgpoint homogeneous spaces, we can mention
among them the-Johnson spaces. TheJohnson spacé” (q) is the set of linear
subspaces df; of fixed dimensionu, with the action of the groufl(Fy ) and the
distanced(z,y) = dim(z + y) — dim(z Ny). We come back to this space in the
next section.

There are other symmetric spaces occurring in coding theory

4.2.2. The Grassmann spacesX = G, ,(K), K = R,C, i.e. the set ofn-
dimensional linear subspaces®f', with the homogeneous action 6f= O(R")
(respectively/ (C™)). This space i&7-symmetric but no2-point homogeneous (if
m > 2). The orbits ofG acting on pairgp,q) € X? are characterized by their
principal angles[21]. The principal angles @f q) arem angles(6,...,60,,) €
[0,7/2]™ constructed as follows: one iteratively constructs anamtiimal basis
(e1,...,en) Of pand an orthonormal basig, ..., f,) of ¢ such that, forl <
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< m,

cosf; =max{|(e,f)] : e€p, f€Eq,
(G,G)Z(f,f): s
(e,ej) = (f, fj)=0for1 <j<i—1}
= |(ei, fi)l

The we have (seé [21)]):

there existg € G such thatgp, gq) = (p', )
>

(01(P,q)s -+ O0m(p, @) = (01(0', ), -, O (P, 0))-

4.2.3. The ordered Hamming space: X = (F;)" (for the sake of simplicity
we restrict here to the binary case). Let= (xi,...,z,) € X with z; € F5.
Fory € F%, the ordered weight of, denotedw, (y), is the right most non zero
coordinate ofy. The ordered weight of € X is w,(z) := Y ;" ; wy(x;) and the
ordered distance of two elemertts y) € X2 is d,(z,y) = w,(x — y). Moreover
we define the shape 6%, y):

1<i<re:=card{j : w(z;) =1}

h ,y) := (eo, €1, ...,e) where
shape(z,y) (eo, €1 er) {60 =n—(e1 4 +e).

Another expression ab, (z) is w,(z) = >, i€;.

If B is the group of upper triangular matricesGi(F%), and Bas the group of
affine transformations df, combining the translations by elementsijfwith B,
the groupG := B x S, acts transitively onX. SinceB acting onF;, leavesw,
invariant, it is clear that the action ¢f on X leaves the shapéape(x, y) invari-
ant. More precisely, the orbits @& on T} are the set§y € F; : w,(z) = i} and,
consequently, the orbits 6f acting onX? are characterized by the so-called shape
of (z,y). Since obviouslghape(x,y) = shape(y, x) itis a symmetric space. This
space shares many common features with the Grassmann ;sgspesially from
the point of view of the linear programming method (see [2], [31]).

4.2.4. The spaceX = T" under the action of G = T" x I': the action ofG is by
(7,v")x = yzy'~L. Then two pairz,y) and(z’,y’) are in the same orbit under
the action of7 iff xy~! andx’y/~! are in the same conjugacy clasgofObviously
(z,y) and (y~!,2~1) are in the samé&'-orbit. We are not quite in the case of a
G-symmetric space however the proof of the commutativityCodf Proposition
4.3 remains valid because the variable change z~! leaves the Haar measure
invariant.

4.3. Positive definite functions and Bochner theorem.

Definition 4.7. A positive definite continuous function of is a functionF' €

C(X?) such thatF (z,y) = F(y,z) and one of the following equivalent properties
hold:

(1) Forall n, forall (z1,...,x,) € X*, forall (aq,...,a,) € C",

n
Z o F(xi,zj)o; > 0.
ij=1
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(2) Porall a € C(X),

|, a@F @ pawute.) =0
This property will be denotedl’ = 0.

The first property means in other words that, for all choiceadinite set of
points (x1,...,x,) € X", the matrix (F(x;,x;))i<i j<n iS hermitian positive
semidefinite. The equivalence of the two properties redtdts compactness of
X. Note that, ifX is finite, F' is positive definite iff the matrix indexed h¥, with
coefficientsF'(z, y), is positive semidefinite.

We want to characterize those functions which @k énvariant. This charac-
terization is provided by Bochner in_[11] in the case when shaceX is G-
homogeneous. It is clear that the construction of previaseaction provides
positive definite functions. Indeed,

Lemma 4.8.if A = 0, then(A, E) is a G-invariant positive definite function.

Proof. Let a(x) € C(X). We compute

ij=1

/XQ a(2)(4, E)a(y)du(z, y) = /XQ > aija(@)Eij(z,y)aly)du(z, y)

d

Remark 4.9. The following properties are equivalent, fomax m matrix function
E(z,y):

(1) Forall A= 0, (A, E(z,y)) = 0

() Forall (z1,...,2,) € X", (o1,...,a) € C", 37, @G E (3, 5)a; = 0.
The proof is left to the reader as an exercise (hint: use tloe tzat the cone of
positive semidefinite matrices is self dual).

To start with, we extend the notations of the previous suilmec We define
matricesEl, = Fy(x,y) associated to each isotypic compongpntof sizemn, x my,
(thus possibly of infinite size) with coefficients;, ; ;(x, y) defined by:

dg,
Ek.i; (z,y) = Z ek,i,s(x)ek,j,s(y)'

s=1
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If Fy, = (fr.ij)1<ij<m, is hermitian, and i, . | fri ;|* < +oo, the sum

Fk,Ek ka}lek?Zj

is L?-convergent since the elements; ;(x)e; ;+(y) form a complete system of
orthonormal elements af(X?). We sayF;, is positive semidefinitef(, > 0) if
> XiFy.ijA; > 0forall (A;)1<i<m, such thaf)” |\;|* < +oco. Then, with the
same proof as the one of Lemimal4.8, the functibj, Ey) is positive definite if
F}, = 0. The following theorem provides a converse statement (EE. [

Theorem 4.10. F € C(X?) is aG-invariant positive definite function if and only
if
(11) F(z,y) =Y (Fy, Ex(z,y))

k>0

where, for allk > 0, F;, = 0, and the convergence 5. Moreover,F is the uni-
form limit of a sequence of functions of the foffdl) with a finite number of terms
in the summation and finite matricég > 0. If moreoverG acts homogeneously
on X, the above sum itself converges uniformly.

Proof. The elements;, ; (x)e; ;:(y) form a complete system of orthonormal ele-
ments ofC(X?). HenceF has a decomposition

> Frisigicris(@)er v).

k7/[:7s7l7j7t

The conditionF'(gz, gy) = F(z,y) translates to:
Frintio = D it Bk s (9) Riue(9)-

s,t
Integrating ong € G and applying the orthogonality relations of Theoreml 3.1
shows thatfy, ; .1 j.» = 0if & # [ oru # v. Moreover it shows thaf;, ; ., x ;. does
not depend om.. The resulting expression @f reads:

F(x,y) Z (mejEk,m(ﬁﬂ y))

k>0 ]

which is the wanted expression, Wit := (fx.i j)1<i j<m-

Now we show thatF), = 0. Let, for k, s fixed, a(x) = >, asep i s(x), with
>, lail> < +oc. By density, property (2) of Definition 4.7 holds fare L?(X).
We compute like in the proof of Lemnhia 4.8

mi
[ a@IF @ patdute.s) = Y @fria;
X2 ij=1
thusFj, = 0.

The fact thatF’ is the uniform limit of finite sums of the same form is a conse-
guence of the proof of Peter Weyl theorem Xifis homogeneous for the grouijp
andX =T'/T'y, then||F — F'|| < € for someF’ := T,(F*) whereF* is a finite
truncation of the Fourier expansidn {11) Bf ThusF* = 0; one can take® > 0
then alsoF” > 0. Then from Peter Weyl theorem agaiti is contained in a finite
dimensional subspace 6{I'?) which is invariant by left and right translations by
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I'2. Symmetrisation by the diagonal embedding-h I'2 on the left and byT)?
on the right transformg” into a G-invariant positive definite function af(X?)
which remains in the same finite dimensional subspace thadite sum of the
form (I1). However, the convergence of the sum itself is eagbnse of.?, not a
priori in the sens of uniform convergence, unléss- T, see([11].

O

Now the main deal is to compute explicitly the matrides(x, y) for a given
spaceX. The next section gives explicit examples of such compurati

5. EXPLICIT COMPUTATIONS OF THE MATRICESE(z,y)

We keep the same notations as in previous section. SincedtrecesEy (z, y)
are G-invariant, their coefficients are functions of the orbifs(® acting onX2.
So the first task is to describe these orbits. Let us assundhthse orbits are
parametrized by some variables= (u;). Then we seek for explicit expressions
of the form

Eiy(z,y) = Yi(u(z,y)).

The measurg induces a measure on the variables that describe thessg, dobit
which the coefficients of;, are pairwise orthogonal. This property of orthogonal-
ity turns to be very useful, if not enough, to calculate therioas F..

The easiest case is when the spates 2-point homogeneous for the action of
G, because in this case the orbits of pairs are parametrizeal diygle variable
t := d(x,y). Moreover we have already seen that in this case, the deitiopo
of C(X) is multiplicity free so the matriceB(z,y) have a single coefficient.

5.1. 2-point homogeneous spacesVe summarize the results we have obtained
so far:

C(X) = @kZQHk

where H;, are pairwise orthogonak-irreducible subspaces; to eaéh, is associ-
ated a continuous functioRy(t) such thatEy (z,y) = Pr(d(z,y)) and

Fr0«F=> fiP(d(z,y)) with f; > 0.
k>0
It is called the zonal function associatedAq. Since the subspacd$, are pair-
wise orthogonal, the functionB (¢) are pairwise orthogonal for the induced mea-

sure. This property of orthogonality is in general enouglldtermine them in a
unique way. We can also notice here t#t0) = dji. This value is obtained with

the integration onX of the formulaP(0) = g’;l er1,s(x)er1,s(x).

5.1.1. The Hamming space: We have in fact already calculated the functions
Pi(t) in[26.3. Indeed, the irreducible subspadgsafford the orthonormal ba-
sis{x.,wt(z) = k}. So,

Bi(z,y) = Y. x:(x:=() = > ()7 = Kyi(du(x,y))

wt(z)=k wt(z)=k

from (4).
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5.1.2. The Johnson space/: with the notations of subsectidn 2.6.2, we have
shown the decomposition

C(Jg)ZHwLHw_lL---LHO

but not yet the irreducibility of7;. So far their might by severd?, ;, j = 1,...
associated td4;. The zonal functions express as functionst at= |z N y| the
number of common ones inandy. The orthogonality relation is easy to compute:

n

Y fleny)f(enyl) = card{y : |[zny| =i} f(i) (i)

reX =0

- % () (207w
> ()" ") rw-aFw=.

By induction onk one proves thab, ; has degree at mostin ¢. The conditions:

(1) deg(Qr) =k
(2) Qr(w) =1

(3) forallo<k<i<n

i (?) <n P w) Qr()Qu(i) =0

determine a unique sequen@@, @1, ..., Q). Thus there is only oné, ; for
eachk and it is equal td, Q. (w — z). The polynomialg); defined above belong
to the family of Hahn polynomials.

5.1.3. The sphereS™~!: the distance on the sphere is the angular distéficey).
It appears more convenient to express the functions in thablat = = -y =
cos 0(z,y). A standard calculation shows that

/Snlf(x y)du(y /f (1-2)"2 dt

for some irrelevant constanf,. The conditions:

o deg(P]) =k

e P(1)=1

e Forallk #1, [, Pr(t)PR(t)(1 — t2)"T dt = 0
define a unique sequence of polynomials by standard argsniemt obtained by
Gram Schmidt orthogonalization of the bagist, ... ,t*,...)), itis the sequence
of so-called Gegenbauer polynomials with parame(— 1 [43]. The decompo-
sition[3.3.1 ofC(S™~!) shows that, to each > 0 the functionP, (z - y) associated
to H;! ~ Harmj is polynomial inz - y and satisfies the above conditions except
the normalization of; (1) thus we haveP;(t) = h} P (t).

5.1.4. Other 2-point homogeneous spacesas it is shown in the above exam-
ples, a sequence of orthogonal polynomials in one variabissociated to each
such space. In the case of the projective spaces, it is arseg|joé Jacobi polyno-
mials. We refer to [24]/128])148] for their determinatiom imany cases and for the
applications to coding theory.
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5.2. Other symmetric spaces.Now we turn to other cases of interest in coding
theory, where the spack is symmetric but not necessaritypoint homogeneous.
Since the decomposition ¢f(X) is multiplicity free, the matrice€y,(z, y) still
have a single coefficient which is a member of a sequence lodgonal polynomi-
als, but this time multivariate. The first case ever studide@st to my knowledge)
is the case of the non binary Johnson spaces [44], its asstdienctions are two
variables polynomials, a mixture of Hahn and Eberlein poiyrals. We briefly
discuss a few of these cases.

5.2.1. The Grassmann spacesi2] the orbits of X2 are parametrized by the prin-
cipal anglegy, ...,0,,) @2.2). The appropriate variables are fae= cos? ;.
The decomposition of (G, ,,) underO(R™) (respectivelyU (C™)) together with
the computation of the corresponding sequence of orthdgmignomials was
performed in[[23]. We focus here on the real case. We recallttie irreducible
representations dd(R™) are (up to a power of the determinant) naturally indexed
by partitionsx = (k1,...,kn), Wherek; > --- > k, > 0 (we may omit the
last parts if they are equal t). Following [22], let them be denoted By". For
example,Vo =C1, andvék) = Harmy,.

The length?(x) of a partitionx is the number of its non zero parts, and its degree
deg(x) also denoted byx| equalsy ;" | ;.

Then, the decomposition 6%G,,, ,,) is as follows:

C(Gmm) =~ @Vnzn

where k runs over the partitions of length at mast and 2« stands for parti-
tions with even parts. We denote B (y1, ..., vyn) the zonal function associ-
ated toV,2*. It turns out that theP,, are symmetric polynomials in the variables

Y1, - -, Ym, Of degregx|, with rational coefficients once they are normalized by the
condition P.(1,...,1) = 1. Moreover, the setP;) . <\ is a basis of the space
of symmetric polynomials in the variables, . . . , y,,, of degree at most equal g
which is orthogonal for the induced inner product calcuwate[23],

o e -1/2 n/2—m—

dp =\ TT lvi = w5l TLw 20 = w)/2m =12y,
ij=1 i=1
i<j

(One recognizes a special case of the orthogonal measwaatesl togeneralized

Jacobi polynomialg[25]).

5.2.2. The ordered Hamming space:it follows from the discussion in 4.2.3 that
the variables of the zonal functions are thg,e1,...,e,). Elaborating on the
computation explained above for the Johnson space, oneeeathat in the case
of finite spaces, the weights of the induced measure are giyehe number of
elements of the orbits ok under the action oftab(e) for anye € X. Taking

e = 0™, thusStab(e) = B™ x S, and the orbit of: is the set of elements with the
same shapgfo, .. ., f,) asz. The number of such elements(is " , )22-:(—1es,
These are the weights associated to the multivariate Krautc polynomials.
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5.2.3. The spaceX = T under the action of G = I' x I': we need an ex-
plicit parametrization of the conjugacy classeg§ ofvhich is afforded by very few
groups. Famous examples (if not the only ones) are provigetidopermutation
groups and the unitary groups. In the first case the pararattm is by the de-
composition in disjoint cycles and in the second case it ithkyeigenvalues. The
decomposition of (X ) is given by Peter Weyl theorem

cr)=> ReR
RER
and the associated functio®%; (z, y) are the characters:

Pr(z,y) = xr(zy ™).
In both casesq,, andU (C™)) the irreducible representations are indexed by par-
titions A and there are explicit expressions fBX. In the case of the unitary
group P (zy~!) are the so-called Schur polynomials evaluated at the eidjges
of xy~1.

5.3. Three cases with non trivial multiplicities. So far the computation of the
matricesEy (x, y) in cases of non trivial multiplicities has been worked ougeémy
few cases. We shall discuss three very similar cases, namelynit sphere of
the Euclidean sphere ([4]), the Hamming spacel([46]), aredpttojective geom-
etry overF, ([7]), where the group considered is the stabilizer of onitpoln
the case of the Hamming space, this computation amounttoatmputation of
the Terwilliger algebra of the association scheme and wesnoeed initially by
A. Schrijver in [40], who treated also the non binary Hammamzace [20]. The
framework of group representations was used_in [46] to obtia¢ semidefinite
matrices of[[40] in terms of orthogonal polynomials. We gir@shere the uniform
treatment of the Hamming space and of the projective gegnrethe spirit of [17]
adopted in[[V]. We also generalize to the case of the stabitfz many points in
the spherical case and enlighten the connection with thidydefinite functions
calculated in[[34].

5.3.1. The unit sphere S"~!, with G := Stab(e, O(R™)). We continue the dis-
cussion initiated i 3.3]2 and we follow![4]. L&t} (z,y) be the zonal matrix as-

sociated to the isotypic subspdtgrelated toHarmg‘1 and to its decomposition
described in 3.3]2:

Ik:HﬁkLHﬁkH ...
We index £ with 4,j > 0 so thatEy; ;(z,y) is related to the spacel}’; .,
Hi e The orbits ofG on pairs of pointgz,y) € X? are characterized by the
values of the three inner produets= e -z, v := e-y andt := z - y. Thus(u, v, t)
are the variables of the zonal matrices and we let:

El(z,y) =Y (u,v,t).
Theorem 5.1. [[4]]
(12) Ykrfz,J (u’ v, t) = )‘k,i)‘k,jpin+2k(u)P]n+2k (U)inl (U, v, t)’

where

Zﬁl(U,U,t) = ((1_u2)(1 _UQ))k/QPé@,l( t—uv )

VA== )
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and ), ; are some real constants.

Proof. We need an explicit construction of the spaa‘é@;_l”. We refer to [[1,
Ch. 9.8]. Forz € S™71, let

T =ue+\V1—u2(,

whereu = x-e and( belongs to the unit sphet® 2 of (Re)*. With f € H,?‘l -
C(S™2) we associate(f) € C(S™ 1) defined by:

o(f) (@) = (1—u®)*2f(Q).

Moreover, we recall thall}? is a subspace of the spael; (5"~ 1) of polynomial
functions in the coordinates of degree at mbstNote that the multiplication by
(1—u?)*/? forcesy(f) to be a polynomial function in the coordinatesiofClearly

¢ commutes with the action @f. Hencep(H; ') is a subspace dPol<; (S~ 1)
which is isomorphic toHarmZ”. It is clear that these spaces are pairwise or-
thogonal. More generally, the sép(f)P(u) : f € Harm} ', deg P < i} is a
subspace oPol<;(S™~1) which is isomorphic ta + 1 copies OfHarmZ_l. By
induction onk ands there exist polynomial#’ (v) of degreei such thatH};;}ri =

@(H] 1) P;(u) is a subspace afl’, ;. This construction proves the decomposition
(8). Moreover, we can exploit the fact that the subspafd,‘§§ ! are pairwise or-
thogonal to prove an orthogonality relation between thgmpaiials P;. Then this
orthogonality relation will enable us to identify the pobmials P, with Gegen-
bauer polynomials, up to the multiplication by a constaotda Let us recall that

the measures of"~! and onS™ 2 are related by:
dwn(z) = (1 — u®) "2 dudw, 1 ().

Wheneveri # j we have for allf € H}'*

0= [ elNPRNP e (a)
= o QR0 = P ) Py ) (2)
1 1 -
— - [ HOP o) [ (1= IR P urd
Wn Jgn—2 -1

from which we derive that

1 _
/1(1 - uz)kJr("*?’)/QPi(u)Pj(u)du = 0;

hence the polynomial®;(u) are proportional tCPi"Jer(u) (thus with real coef-

ficients..). We obtain an orthonormal basisfﬂ)ﬁii from an orthonormal basis

(f1,--, fn) of H'~* by takingey, ; s = Ar..i(f5) P/72F(u) for a suitable normal-
izing factorA,; > 0. With these basis we can computg ; :
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hnfl
Ek Ji,7 .YJ y Z ek,l,s ek,]s y)

Ryt
= Z )\k,z(l - u2)k/2f8(C)PZn+2k(u))‘k,](1 o U2)k/2mpjn+2k(v)
s=1
R 1
= Meideg PR u) PR (0) (1 - u?)(1 - 0?)) 2 Z £OF©

= Neidg PP () PP (0) (1 — u?)(1 — v >>’“/2h" PrlC-g),

where we have writtep = ve ++/1 — v2£ and where the last equality results from
the analysis of zonal functions 6~!. Since

¢ €= (t—uv)/yV(1—u)(1-2?),

we have completed the proof. O
5.3.2. The unit sphere S"~! with the action of G := Stab(ey, ..., es, O(R")).
We assume thafe,...,e,) is a set of orthonormal vectors. The groGp :=
Stab(ey,...,es, O(R™)) is isomorphic toO(R™*). The orbit of a paifz,y) €
X2 underG is characterized by the data:= x - y, v := (z - ey,...,T - €5), v :=
(y-e1,...,y-es). The decompositiori {8) applied recursively shows that" 1)
decomposes as the sum @firreducible subspacel; wherek = (ko, ..., ks),

ko < k1 < --- < kg, with the properties:
HE C Hk(r) C Polks, Hk ~ Harm" s

wherek™) = (k_,11,...,ks). Thus, for a giverk,, the multiplicity of the iso-
typic component[d associated tdlarm; ~* in Pol<, is the number of elements
of

Kq:={(k1,...,ks) : ko <k <--- < ks <dj}.
We construct the spacé; like in the proof of Theorei 5l1: for € S"~1, let

r=wurer + - +uses + /1 — |ul*C
whereu = (u,...,us) andul> = 337 uf. Letp : H) ™ — C(S"') be
defined by (f)(z) = (1—[uf?)¥/2f(¢). Thenp(H}: ) = Hks+1 whereki T =
(ko, ko, ..., ko) and we set, fol = (I, ...,1s), Hyy := ull ... lsHk8+l. It is
clear thatHy,, ; ~¢ Harmk ®and thatH}, ; C Polgif Iy +---+1s < d— ko thus,
since
K(Ii = {l:(ll,...,ls) : ll >0, l1—|——|—ls Sd—k‘o}
has the same number of elementdias
Ty = Grexc Hoyt

This sum is not orthogonal but we can still use it to calculBjg, the change
will be to AE(x,y)A* for some invertible matrixd. The same calculation as in
Theoreni 5.1l shows that, (up to a change to saripA*):

Yiii(u,v,t) = uz_kvi_szfs(u,v,t)
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7

with the notationszi—* := w2 ~*y27%F  yis=* and

QU (u0,) = (1= [u)(1 — [v]?)*/>Pp—s

( t— (u-v) )
VA= [u) (1~ [vP)

With Bochner Theorerin 4.10 we recover the description of thiivariate positive
definite functions on the sphere given(in|[34].

5.3.3. The Hamming space and the projective geometryThe set of allF,-
linear subspaces @}, also called the projective geometry, is denoted™gyt, q).
The linear grougGl(n, F,) acts onP(n, q). The orbits of this action are the sub-
sets of subspaces of fixed dimension, i.e. ghlohnson spaces. If the Hamming
spacelF; is considered together with the action of the symmetric gr&y, the
orbits of this action are the Johnson spaces/_In [17] thestohepace and thg
Johnson spaces are treated in a uniform way from the poinieof of the linear
programming method, the latter being viewed;emnalogs of the former. Thus the
Johnson space corresponds to the valael. In particular the zonal polynomials
are computed and they turn to pédahn polynomials. Here we want to follow the
same line for the determination of the zonal matri€&s, y) in both cases.

We take the following notations: if is a power of a prime number, we let
X =P(n,q) andG = Gl(n,F,), and, if¢ = 1, we letX be the Hamming space,
identified with the set of subsets ¢f,...,n}, andG = S,, the symmetric group
with its standard action oX . Let

[ wt(z) ifg=1
o] := { dim(z) if ¢ > 1

Forallw = 0,...,n, the spaceX,, is defined by
Xy ={z € X :|z| =w}.
These subsets df are exactly the orbits @f. The distance oKX is given in every
case by the formula
(13) d(z,y) = |z + |y| — 2[z N yl.

The restriction of the distanaéto X, equalsd(z,y) = 2(w — |z Ny|) and it is
a well known fact thatz acts 2-points homogeneously &f,. It is not difficult to
see that the orbit of a paft:, y) under the action ofr is characterized by the triple
(], [yl, [= Nyl).

Following the notations of [17], the-binomial coefficient|” ] expresses the
cardinality of X,. We have

n—1 .
Hn—z.: (n) =1
Ll w—1 w

-
w n— - an—t_1
15— ifg>1
~ o gt =1
=0

. x ifg=1
_ 11—z _ —x _
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we have
w—1 .
n] _ wpeo) TT =8 ey [P
LU] 1 H) [w — 1] ? [w]![n — w]!”

We have the obvious decomposition into pairwise orthogéhatvariant sub-
spaces:

C(X)=C(Xp) LC(X1) L - LC(Xp).
The decomposition of (X,,) into G-irreducible subspaces is described|in|[17].
We have
C(Xw) = HO,w 1 Hl,w Ll Hmin(w,n—w),w

where theH}, ,, are pairwise isomorphic for equaland differentw. and pairwise
non isomorphic for differenk. The picture looks like:

C(X)= C(Xo)L C(X1)L ... L C(XL%J) 1 ... 1C(Xn-1) LC(Xy)
H070 L H071 L . 1 HOvL%J 1 N L HO,n—l 1 HO,n
H171 L 1 Hl,n—l
Hin |z

where the columns represent the decompositiafy &f,, ) and the rows the isotypic
components of (X), i.e. the subspaces, := Hy, L Hypy1 L - L Hypps
0 < k < |5 ], with multiplicity my, = (n — 2k + 1).

Let, for all (k,7) with0 < k <i<n —k,

Yri: C(Xg) — C(Xi)
f = () ki (F)(Y) = Dja=k f(2)

zCy

and
o+ C(Xk) — C(Xp-1)
f = Ok(f) 2 0k(f)(2) = Xja)=k f(2)

zCx
Obviously, these transformations commute with the actio6'0oThe spacegd;, ;
are defined by}, ;, = ker 6, andHy, ; = ¢y, ;(Hy 1,). Moreover,

n n
:=dim(Hg ) = — .
hy, := dim(Hy, 1) [k} [k—l}
We need later the following properties ¢f. ;:

Lemmab5.2.1f f,g € Hy 1,

(14) it = | 73|00

Moreover,

ik
(15) Vi j o ki = B _ k} U,
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Proof. [17, Theorem 3] prove$ (14). The relatidn(15) is straightfrd: if |2| =
Js

Gii (iR = 3 (N =3 (Y f@)

ly|=2 ly|=i  |z|=k
yCz yCz  z2Cy

-S (X )= |17 ]
g e oy

— [ |matnio.

Z_
(]

Now we want to calculate the matric&% of sizem;, = (n— 2k + 1) associated
to each isotypic spach;,. We fix an orthonormal basigy, i1, - - - , €k k,h,, ) Of Hi
and we definezy, ; s == Yy i(er k). Itis clear from the definitions above that
ex,i.s can be assumed to take real values. From (14), for fixadds, they form
an orthogonal basis df}, ; with square norm equal tb;:?f] ¢"(=k)  Normalizing
them would conjugaté’;, by a diagonal matrix, so we can omit to do it. The matrix
E}, is indexed withi, j subject tok < 4,57 < n — k. From the construction, we
haveEy ; j(x,y) = 0if |x| # i or |y| # j; since the matrix;, is zonal, we can
definePkm by

By j(w,y) = P (i — |z Nyl)
and our goal is to calculate th@, ; ;. It turns out that these functions express in
terms of the so-calleg-Hahn polynomials.

We define the;-Hahn polynomials associated to the parameteis; with 0 <
i < j < nto be the polynomial®)y(n,i,j;z) with 0 < k < min(i,n — j)
uniquely determined by the properties:

e (i has degreé in the variable[z].
e (Qr)k is a sequence of polynomials orthogonal for the weights

0<u<i wniju)= H{ nee }quu—wu)

u||j—t+u
The polynomials)),. defined in[[17] and 5.112 correspond up to multiplication by
hi to the parameterg:, w, w) and, with the notations of [19], according to The-
orem 2.5, again up to a multiplicative fact@y(n,,j;z) = En(i,n —i,7,i —
x;¢~1). The combinatorial meaning of the above weights is the falig:
Lemma 5.3. [19, Proposition 3.1Givenz € X;, the number of elementsc X
such thatiz Ny| = ¢ — w is equal tow(n, i, j; u).
Theorem54.Ifk<i<j<n-—k,|x| =14 |yl =7,
Frd ] g e
KilH
If |z| # i or|y| # j, Eyij(x,y) = 0.
Proof. We proceed in two steps: the first stépl(16) calculdtes;(0) and the
second step (17) obtains the orthogonality relations.

Eyij(z,y) = | X|hy
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Lemma 5.5. With the above notations,
J—k] [n—2k
[i—k} [j‘—k ] qk(j_k)
nj rj :
[711]

Proof. We haveP;,; j(0) = Ej; j(x,y) for all z,y with |z| =4, |[y| = j, 2 C v.
Hence

(16) Py ;.i(0) = | X|hy

1

Py ;.5(0) = Bl Z By i(z,y)
AR lol=tJul=j
xCy
= nlj Z Zekzs ekjs
|:_]:| |:Z:| ‘1;‘ |y‘ js 1
xCy

( Z ehi,s )%j,s(y)

i s=1|yl=j |o|=i
:va

hi
= ml[j] Z Z Vij(ekis)(Y)er,js(y)

il s=1 |y|=3

Since, from[(1b)

 — k j — k
Vij(eris) = ij o Yrilerrs) = [‘Z B k] Vr,j(€kk,s) = [‘Z B }ek,j,m

k
we obtain
hy .
1 —k
Phas®) = ey | estensaw
il =1 y=
4] & o o
= X [(ekjisr €hij,s) = | X |y i== gl =)
16 = r [5117]
from (14). O

Lemma 5.6. With the above notations,

i [n_—zk] [n52k] qk(z‘+j—2k)
A7) D w(n,i, j;u) P ()P j(u) = G X[*hy = : j_fn]
u=0 ‘

Proof. We computeX := >° . Ey; (@, y)Eri jo (Y, 2).




32 CHRISTINE BACHOC

hy  hy
= Z Z Z ek‘,z,s ek,] s y)el,i/,t(y)el,j’,t(z)

yeX s=1 t=1
hy  h

=3 erna@eny a2 (X ergelleni )

s=1t=1 yeX
hp M

=33 eris(@ery o (2)|X (e s i)

s=1 t=1
hy My

— 2k i
—Zzek,z,s x)ey i 4(2 )|X|[ k} M=K 6y, 105.00s.4

s=1 t=1

n —
= 5k,l5j,i”X‘ |: Pk :|qk(] Z ek,z,s el,] s )

— 2%k
_5,”5]2;)(\{ k}qk(] ) Bz, 2).

We obtain, withj = i/, j/ = i, z = 2z € X;, taking account of; ; ;(y,z) =
Ey;j(z,y),

— 2k o
Z Eyij(x,y)Ey, j(2,y) = 5kl|X|[ b }qk@ M) Bz, ).
yeX;

The above identity becomes in termsff; ;

— 2k

S Prasli~ o0y Puagli — o) = x|

yeX;

Taking account of (16) and Lemrha k.3, we obtain (17). O

] VPP, 4(0).

To finish the proof of Propositidn 5.4, it remains to provetthga; ; is a polyno-
mial of degree at most in the variabldu] = [|x N y|]. It follows from the reasons
invoked in [17] in the casé = j (see the proof of Theorem 5). O

Remark 5.7. In the case; = 1, i.e. the Hamming space, we could have followed
the same line as for the sphere in order to decompgtigé, ) under the action of

G. We could have started from the decompositiof (@,,) (3) under the action

of ' :== T x S,, = Aut(H,,) and then we could have decomposed each space
Py, under the action ofy = Stab(0",I'). But we have az-isomorphism from
C(Xy) =C(JY)to P, given by:

C(Jy) — Py
fe Y fxy

wit(y)=w

Note that the inverse isomorphism is the Fourier transform(/2Z)". So we
pass from one to the other decompositior® of/,,) through Fourier transform.
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6. AN SDPUPPER BOUND FOR CODES FROM POSITIVE DEFINITE FUNCTIONS

In this section we want to explain how the computation of thatimuousG-
invariant positive definite functions oX can be used for applications to coding
theory. In coding theory, it is of great importance to esterthe maximal number
of elements of a finite subsét of a spaceX, whereC' is submitted to some con-
straints. TypicallyX is a metric space witli-invariant distancel(z,y) and the
constraints are related to the values taken by the distamgmios of elements of
C'. In the following we concentrate on the basic case wheredty@irement is that
the distance takes non zero values at least equal to sommunmd. We denote
by D the set of all values taken ¥z, y) and we defineD>; = D N [§, +o0[ and

A(X,6) := max{card(C) : d(c,d) > éforallc# ¢, (c,d) € C?}.
We first focus on an upper bound fdi( X, §), which is obtained very obviously
from the optimal value of the following program:
Definition 6.1.
m(X,8) =inf{ t: FeC(X?),F=F F=0
(18) F(x,z

Then we obtain an upper bound fd( X, §):
Theorem 6.2.
A(X,0) <m(X,9).
Proof. For a feasible solutiod’, and forC' ¢ X with d(C) > § we have

0< Y F <@E-DCl=[Clc]-1)
(c,c’)eC?
thus|C| < t. O

Now the group(z comes into play. From a feasible solutibione can construct
aG-invariant feasible solutioi” with the same objective value:

Fl(z,y) = /GF(gx,gy)dg

thus we can add to the conditions defining the feasible swlsitofm (X, §) that F°
is G-invariant. Then we can apply Bochner characterizatiome€t-invariant pos-
itive definite functions (Theorein 4.10). Moreover we hav@aeen in Theorem
[4.10 that the finite sums
(19) F(z,y) =Y (Fy, Ex(z,1))

finite
with Fj, = 0 are arbitrary close folf ||~ to theG-invariant positive definite func-
tions on X, so we can replacé’ by an expression of the forrh (19) in the SDP
m(X, ). Moreover, we replac& (z, y) with its expressiorty (u(z, y)) in terms
of the orbits of pairs and we take account of the fact fiat F. All together, we
obtain the (finite) semidefinite programs:

mD(X,6) =inf{ ¢: FO =0, Fy zo
Zk O<Fk7Yk( (x,y)) <-1 d(x,y) > 5}
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where the matrices), are real symmetric, with size bounded by some unbounded
function of d, and Yy (u(x,y)) = Yi(u(z,y)) + Yi(u(z,y)). Thus we have
m(X,0) < m?(X,s) and
li @ (X,6) = m(X,0).
Jm miP(X,0) = m(X,9)
6.1. The 2-point homogeneous spacesNe recall that a sequence of orthogonal

functions (Py)x>o is associated tdX such that theZ-invariant positive definite
functions have the expressions

F(z,y) =Y fiPr(d(z,y)) with fi > 0.
k>0

Then

m(X"S):inf{1+Zk21fk © >0,
1+ Y sy fuPi(i) <Oforalli € Dxs }

We restate Theorefn_ 6.2 in the classical form of Delsarteafipeogramming
bound:

Theorem 6.3.LetF'(t) = fo+ fiPi(t)+- - -+ faPa(t). If f > 0forall 0 <k <d
and fop > 0, and if F(t) < 0forall t € D>, then

fo+rfi+--+ fa
fo .

Example: X = S7, d(x,y) = 0(x,y), d(C) = /3. This value of the minimal
angle corresponds to the kissing number problem. A very dasxing configura-
tion is well known: it is the root systerhy, also equal to the set of minimal vectors
of the Ejx lattice. It has240 elements and the inner products take the valbgs0,
+1/2. We recall that the zonal polynomials associated to thespfiere are pro-
portional to the Gegenbauer polynomid$ in the variabler - y. If P(t) obtains
the tight bound40 in Theoreni 6.8, then we must hait) < 0 for ¢t € [—1,1/2]
and P(—1) = P(+1/2) = P(0) = 0 (as part of thecomplementary slackness
conditiond. The simplest possibility i€ = (t — 1/2)t(t + 1/2)(t + 1). One
can check that

A(X,8) <

320 16 200 832 1216 5120 2560
—P:P8 _P8 _P8 _P8 P8 P8 8
3 0T Tt Gy 2 Togyts o 1 T 30375 T qear
and that

P)
0
Thus the kissing number in dimensigéris equal to240. This famous proof is
due independently to Levenshtein [27] and Odlysko and ®i¢a§]. A proof of
uniqueness derives from the analysis of this bound ([103).tRke kissing number
problem, this miracle reproduces only for dimensibhwith the set of shortest
vectors of the Leech lattice. For the other similar case®point homogeneous
spaces we refer t0 [28].

It is not always possible to apply the above “guess of a godgnpmial”
method. In order to obtain a more systematic way to apply fdm@.3, one
can of course restrict the degrees of the polynomials to seasonable value, but
needs also to overcome the problem that the conditiofis < 0 for ¢t € [—1,1/2]

= 240.



SDP, HARMONIC ANALYSIS AND CODING THEORY 35

represent infinitely many linear inequalities. One podisjtis to sample the inter-

val and then a posteriori study the extrema of the approxachaptimal solution
found by an algorithm that solves the linear program withtéigimany unknowns
and inequalities. It is the method adopted.in/[35], wheresafmounds for the kiss-

ing number in dimension < 30 have been computed. We want to point out that
polynomial optimization methods using SDP give another tegyandle this prob-
lem. A polynomial@Q(t) € R[t] is said to be a sum of squaresj}f=>""_, Q? for
someQ; € RJt]. Being a sum of squares is a SDP condition since it amounts to
ask that

Q= (1,t,... . t"YF(1,t,...,t*)* with F = 0.

Herek is an upper bound for the degrees of the polynontizlsNow we can relax
the condition thaf'(t) < O0fort € [-1,1/2]t0 F(t) = —Q(t) — Q"(¢)(t + 1) (¢t —

1/2) with @ and@’ being sums of squares. A theorem of Putinar claims that in
fact the two conditions are equivalent (but the degree optitgnomials under the
squares are unknown).

A very nice achievement of the linear programming metho#-point homo-
geneous spaces is the derivation of an asymptotic upperdbfaunthe rate of
codes (i.e. for the quotierbg card(C')/dim(X)) obtained from the so-called
Christoffel-Darboux kernels. This method was first discedefor the Hamming
and Johnson spacés [30] and then generalized to the unieg@d¢ and to all other
2-point homogeneous spacés|[28]. It happens to be the besamnkapper bound
for the asymptotic range. 10 [24] an asymptotic bound iswéekifor the density of
sphere packings in Euclidean space which is also the bestrkno

6.2. Symmetric spaces.For these spaces, which are r?spoint homogeneous,
there may be several distance functions of interest whiehGamvariant. For
example, the analysis of performance of codes in the Grassmpaces for the
MIMO channel [14] involves both the chordal distance:

Jism 0:(p,q

i=1

and the product pseudo distance (it is not a distance in tiieasense):

== H sin ei(pv Q)
i=1

The reformulation of Theorefn 8.2 leads to a theorem of the[&B for any sym-
metric function of they; := cos§; with the Jacobi polynomial®, (yi, ..., ym)
instead of theP,. For a general symmetric space, a theorem of the [tyde 6.3 is
obtained, where the sequence of polynomigiét) is replaced by a sequence of
multivariate polynomials, and the sBY; is replaced by some compact subspace of
the domain of the variables of the zonal functions, i.e. ef dnbits of G acting

on pairs. Then one can derive explicit upper bounds,[seefptBhe permutation
codes,[[2] for the real Grassmann codgs| [37] and [14] foctmplex Grassmann
codes, [[15] for the unitary code$) [9] and [31] for the ordecedes. Moreover an
asymptotic bound is derived in![2] and [9].
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6.3. Other spaces with true SDP bounds.An example where the bound (18)
does not boil down to an LP is provided by the spaP¢s, ) endowed with the
distance[(IB) for which the matricés, are computed in sectidn 5.8.3 (sg& [7]). In
this case the grou@ is the largest group that acts on the SDP.

Indeed, it is useless to restrict the symmetrization of tlegy@m [18) to some
subgroup of the largest group that preserve$X, d). However, another interest-
ing possibility is to change the restricted conditidfx, y) > ¢ in A(X,0) for the
conditions:

(22) d(z,y) > 0, d(xz,e) <7, d(y,e) <r

wheree € X is a fixed point. Then the new (X, e, r, ) is the maximal number
of elements of a code with minimal distangéén the ball B(e,r) C X. Here the
group that leaves the program invarianBiab(e, G). The corresponding bounds
for codes in spherical caps where computed_in [6] using thessions of the
zonal matrices df 5.311.

We end this section with some comments on these SDP boundsaWendeed
generalized the framework of the classical LP bounds buléigeee of understand-
ing of the newly defined bounds is far from the one of the ctad4iP bounds after
the work done since [17], see e.qg.][28]. It would be very ieséing to have a better
understanding of the best functiohsthat give the best bounds, to analyse explicit
bounds and to analyse the asymptotic range, although Ipadiats in these direc-
tions have already been obtained. The fact that one has tavitbanultivariate
polynomials introduces great difficulties when one triefottow the same lines as
for the classical one variable cases. A typical exampleasiged by the config-
uration of 183 points on the half sphere that seems numerically to be amapti
configuration for the one sided kissing number, and for winetfailed to find the
proper functionF' leading to a tight bound (se€ [7]).

7. LOVASZ THETA

In this section we want to establish a link between the progf8) and the
so-called Lovasz theta number. This number was introdbgddvasz in the sem-
inal paper([29] in order to compute the capacity of the pemtad his remarkable
result is the first of a long list of applications. This numizethe optimal solution
of a semidefinite program, thus is “easy to calculate”, addrefan approxima-
tion of invariants of graphs that are “hard to calculate” nc®i then many other
SDP relaxations of hard problems have been proposed in ¢ginaphy and in other
domains.

7.1. Introduction to Lov asz theta number. A graphI’ = (V, E) is a finite set’

of vertices together with a finite sét of edges, i.e.F C V2. An independence
setS is a subset o¥ such thats? N E = (. The independence numberT’)

is the maximum of the number of elements of an independericeltss a hard
problem to determine the independence number of a graphcdimeection with
coding theory is as follows: a codg of a finite spaceX with minimal distance
d(C) > ¢ is an independence set of the grdplX, ) which vertex set is equal to

X and which edge set is equal & := {(z,y) € X? : d(z,y) €]0,6[}. Thus

the determination ofA( X, §) is the same as the determination of the independence
number of this graph.
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Among the many definitions of Lovasz theta, we choose onelwipéneralizes
nicely to infinite graphs. Fa$ C V, let1g be the characteristic function 6t Let

L 15(@) 15().

M(I’,y) = |S|

The following properties hold foi/:
(1) M € R™*" where|V| = n, andM is symmetric
2 M*=0
(3) Xpey M(z,2) =1
4) M(z,y) =0if (z,y) e £
®) X ayyeve M(z,y) = [S].

Definition 7.1. The theta number of the gragh= (V, E) withV = {1,2,... ,n}
is

O() =max{),;Bij: BeR™" B=0

(22) >.iBii=1,
Bij=0 (i,j) € E}

The dual program fo# has the same optimal value and is equal to:
9T) =min{ t: B=0
(23) Bii=1-1,
Bij=-1 (i,j) ¢ B}

The complementary graph &fis denotedl’. The chromatic numbey(T) is the
minimum number of colors needed to color the vertices sortbdtvo connected
vertices receive the same color. In other words it is a mihpattition of the vertex
set with independence sets. Then the so-called Sandwioletieholds:

Theorem 7.2. B
o(I') < I(I7) < x(I')

Proof. The discussion prior to the theorem proves the first inetyudtor the sec-
ond inequality, let:: V' — {1,...,k} be a coloring ofC. Then the matrixC with
C;j = —1if c(i) # ¢(j), Ci; = k — 1 andC; ; = 0 otherwise provides a feasible
solution of [23). O

7.2. Symmetrization and theg-gones. Now we assume thaf is (a subgroup of)
the automorphism grouput(T") of the graph. Then(: acts also on the above
defined semidefinite programs. Averaging@rallows to construct &-invariant
optimal feasible solutior3’ from any optimal feasible solutio® with the same
objective value:

1
Bii=1q > Byigti)-
gelG

Thus one can restrict in the above programs to@hmvariant matrices. Then
one can exploit the method developed in previous sectionerder to obtain a
description of theG-invariant B = 0 form the decomposition of the spa€él’)
under the action ofs. We illustrate the method in the case of thgoneC,,. There
we haveV = G = Z, the cyclic group of ordey. Let(, be a fixed primitive root
of 1in C. Letyy, : Z, — C* be defined by, (z) = ¢*. The characters df, are
the x for 0 < k < ¢ — 1 and we have the decomposition

C(Zq) = @z;éCXk-
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According to Theorerh 4.10, th@-invariant positive definite functions ovi are
exactly the functiond”(x, y) of the form:

q—1 g—1
F(z,y) = kaxk(w)Xk(y) = Z fr(ha=y)
k=0 k=0

with f, > 0. The ones taking real values have the form
la/2]
F(z,y) = Y frcos((x —y)kn/q), fr>0.
k=0
When one replaces ifh the expressioB3; ; = F(i, j), the SDP transforms into a
LP on the variables;. More precisely, we computg(xay)evg F(z,y) = ¢*fo
and) .y F(z,r) = q)_; fr. Thus we obtain (after a changeqgfy to f3):

9(Cq) =max{qfo: fr>0,0<k<]|q/2],
la/2]

Z fk = 1’

k=0

la/2]

> frcos(km/q) =0
k=0

This very simple linear program has the solution

SO — d if ¢is even
(Cq) = Leosem) if g = 2p+ 1.

Note that whery is even, the independence number ofdtgone is exactly;/2. If

the independence number of a graph as simple ag-tome is not a great deal (it
is of course equal tdg/2]), a more challenging issue is to determine its capacity.
In general, the capacity/(I") of a graphl’ is defined to be

C(r) = lim a(r™)V",

Here the graphi™ is defined as follows: its vertex set is equalif6 and an edge
connects(zy, ..., zy,) and (y1,...,y,) iff forall 1 < i < n eitherz; = y; or
(z4,vy;) € E. Introduced by Shannon in 1956, this number representsfinetiee
size of an alphabet used to transmit information throughctiemnel associated
to the graphl’ (where two symbols are undistinguable if they are connebied
an edge). If the capacity of a graph is in general very diffitolcalculate, the
theta number of a graph provides an upper bound for it beca(ise) = ¢(I")™
(see [[29]). This upper bound is an equality for the pentagnoeson one hand
9¥(Cs) = /5 from our previous computation, and on the other hand it iy éas
see thaty((C5)?) = 5 (while a(C5) = 2); this is the way taken by Lovasz in [29]
to prove thaiC'(C5) = /5. The determination of the capacity of thegone forq
odd and greater thahis still opened.

7.3. Relation with Delsarte bound and with m (X, §). We introduce a slightly
stronger bound foev(T") with ¥ and its dual form:

V'(T) =max{),;Bij: B=0, B>0
(24) >iBii=1,
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9'(I) =min{ ¢t: B*0
(25) B;; <t—-1,
Bij < -1 (i,j) ¢ E}

SinceM (z,y) > 0, we still have thaty(T") < ¢/(T"). Again one can restrict in the
above programs to th@-invariant matrices. It was recognized independently by
McEliece, Rodemich, Rumsey, and Schrijver|[39] that Dééshound of Theorem
for A(H,,d) is equal toy’ for the graphl’(X,d), once the feasible set is re-
stricted to theAut(H,, )-invariant matrices, and similarly for the other fintgoint
homogeneous spaces. Indeed, by virtue of Thedrem 4.10, dlvices B turn to

be of the formB(z,y) = >~ fuPr(d(z,y)). This symmetrization process is
of great importance, not only because it has the great aalyartb change an SDP
to an LP, but also because it does change the complexity gfrtitdem. Indeed,
there are algorithms with polynomial complexity that do gore approximations
of the optimal value of SDP’s, thus algorithms with polynahdomplexityin the
number of verticesf I" for ¢. But the graphs arising from coding theory have in
general an exponential number of vertices, €¢.for the Hamming graph. It is
important to insist that the symmetrized theta has polyaboamplexity inn.

Now we can see that the program(X, ) (18) is a natural generalization of
9" for metric spaces under the assumptions of Se¢tion 4. We teff8] for a
more general discussion about generalized theta wherelaismatic numbers are
involved.

8. STRENGTHENING THELP BOUND FOR BINARY CODES

In this section we explain how the zonal matridég x, y) related to the binary
Hamming space computed[in 5.8.3 are exploited_in [40] in omstrengthen the
LP bound. We shall work with the primal programs so we staretall the primal
version of [18) in the case of the Hamming space.

We recall that the sequence of orthogonal functi@Rg)o<x<, With P, = K},
the Krawtchouk polynomials is associatedHq such thatPy(d(z,y)) = 0. As a
conseguence, we have for al> 0

> P(d(c,d)) = 0.

(c,c)eC?

We introduce the variables;, fori € [0...n]

R 1 / 2 . AN
(26) X = card(C) card{(c,c’) € C* : d(c,c¢) = i}.
They satisfy the properties:
(1) zo=1
(2) z; >0

(3) >, xPp(i) > 0forallk >0

4) z; =0ifie[l...6 1]

(5) card(C) = >, x;.
With these properties which are linear inequalities, weainbthe following linear
program which is indeed the dual 6f{18):
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sup{1+> " sa; : x>0,
14+ >0 sxiP(i) > 0foralll <k <n}
where we have taken into accourf = 1.
We recall that to every < k < | 5], we have associated a matdi,(z,y) = 0
of sizen — 2k + 1. In particular, for allC C H,, (see the remaik 4.9),

Z Ey(c,d) = 0.
(c,c’)eC?
These constraints are not interesting for pairs becauseatteenot stronger than
the linear inequalities coming from the Krawtchouk polynals. They are only
interesting if triples of points are involved: namely weaate to(x,y, z) € H>
the matrices
Fy(z,y,2) = Ex(x — z,y — 2).
We have for allC C H,,, and for allz € H,,

Z Fk(C,Cl,Z) =0

(c,ceC?
which leads to the two positive semidefinite conditions:
@27) > (et emecs File, ) = 0
Z(c,c’)eCQ, c'¢C Fi(c, d, CI/) =0

Theoreni 5.4, expresses the coefficientEpfz — z, y— z) in terms of ofwt(x —z),
wt(y — z), wt(x — y); so witha := d(y, z), b := d(z, 2), ¢ := d(z,y), we have
for some matrice§(a, b, ¢),
Fk(.%', Y, Z) = Tk(a’7 b7 C)'

We introduce the unknowns, ; . of the SDP. Let

a+b+c=0 mod?2

a+b+c<2n

Q::{(a,b,c)e[O...n]3: c<a+b }

b<a+c

a<b+ec
Itis easy to check tha&® = {(d(y, 2),d(z, 2),d(x,y)) : (z,y,2) € H3}. Let, for
(a,b,c) € 9,

1 3
R card(C) card{(z,y,2) € C° : d(y,z) = a,d(z,2z) = b,d(z,y) = c}.

Note that

_ 1 2 _
Z0o,c,c = card(C) card{(:c,y) eC”: d(:ﬂ,y) - C}

thus the hold variables; (26) of the linear program are part of these new variables.
We need a last notation: let
t(a,b,c) :=card{z € Hy, : d(x,z) = bandd(y, z) = a} for d(z,y) = ¢
= () (2=¢) wherea — b+ ¢ = 2i
Then, if C'is a binary code with minimal distance at least equd, titve following
inequalities hold forr, .

(1) zo 0 =1
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(2) Tap,e = Tr(a),r(v),7(c) fOr all permutationr of {a, b, c}

(3) Za,b,c < t(a7 b, C)wO,c,w Tab,c < t(b7 C, a)xO,a,af Lab,c < t(C, a, b)wO,b,b-

A >apeTila,b,c)zgpe = 0forall0 <k < |3]

(5) Za,b,c Ty(a,b,c)(t(a,b, c)xocc — Tap,) = 0forall0 <k < | 5]

(6) zape=0 if a,bore€l0,d].

(7) card(C) = > . xo,c,c-
Conditions (4) and (5) are equivalent Eg](27). Conditiont(éhslates the assump-
tion thatd(C') > ¢. Thus an upper bound efard(C') is obtained with the optimal
value of the program that maximizés .z .. under the constraints (1) to (6).
This upper bound is at least as good as the LP bound becauSbtgrogram
does contain the LP program[of B.1. Indeed, the sum of the @@ &nditions
(21) is equivalent to

Z Ei(x —z,y —z) = 0.

z€Hy,
We claim that this set of conditions whén= 0,1,...,[% | is equivalent to the
set of conditionsPy(d(x,y)) = 0 for k = 0,...,n. Indeed letB(z,y) :=
> en, Ee(r — 2,y — 2). Up to a change oBy(r,y) to ABy(x,y)A*, we as-
sume thatF;, was constructed using the decompositior€ off,, ) first underT” :=
T x S, = Aut(H,) then undelG (see Remark5l7). Clearl;, is I'-invariant.
Sincex — Ej; j(x,y) € P; andP; is al-module, alsax — By ; j(z,y) € P
and similarlyy — By ;(x,y) € P;. But P, and P; are non isomorphid-
modules fori # j thus By ; j(x,y) = 0 for i # j. SinceP; is I'-irreducible,
By ii(z,y) = N\iPi(d(x,y)) for some); > 0 that can be computed withy, (z, x).
So we have proved that the linear program associatéf, tlike in[6.7 is contained
in the SDP program obtained from the above conditions (16}o Moreover it
turns out that in some explicit cases of small dimension tb@ $ound is strictly
better than the LP bound (see [40]).

A similar strengthening of the LP bound for the Johnson spadgor the spaces
of non binary codes where obtained [in[40] and! [20]. In theeaafsthe spherical
codes, for the same reasons as for the LP bound, one has twitledahe dual
program, see [4].
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