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Introduction

Let n be a positive integer and (Y i ) i∈{1,...,n} be n independent random variables. For any t > 0, we wish to determine the smallest p n (t) satisfying

P n i=1 Y i ≥ t ≤ p n (t). (1) 
To reach this aim, numerous inequalities exist: Markov's inequality, Tchebychev's inequality, Chernoff's inequality, Berry-Esseen's inequality, Bernstein's inequality, Mac-Diarmid's inequality, Fuk-Nagaev's inequality, . . . See, e.g., [START_REF] Chung | Concentration inequalities and martingale inequalities -a survey[END_REF][START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF][START_REF] Petrov | Limit Theorems of Probability Theory[END_REF][START_REF] Pollard | Convergence of Stochastic Processes[END_REF] and the references therein for details.

In this note, we investigate p n (t) in a non-standard case, as we merely suppose that sup i∈{1,...,n} E |Y i | δ exists for some δ ∈ [START_REF] Chung | Concentration inequalities and martingale inequalities -a survey[END_REF][START_REF] Fuk | Probability inequalities for sums of independent random variables[END_REF]. That is, we have no information on the existence of the variance and thus most of the common inequalities cannot be applied. We determine two bounds: the first one is a direct consequence of Markov's inequality and von Bahr-Esseen's inequality (see Lemma 1 below), and the second one, which is more technical and original, offers a suitable alternative. Considering the Pareto distribution, we compare the quality of these bounds via a numerical study.

The note is organized as follows. Section 2 presents the result and the proof. Section 3 provides an application.

Results

Theorem 1. Let n be a positive integer and (Y i ) i∈{1,...,n} be n independent random variables such that, for any i ∈ {1, . . . , n},

-E(Y i ) = 0, -E |Y i | δ exists for some δ ∈ [1,
2) (we have no a priori information on the existence of a moment of order 2 or it does not exist).

Then, for any t > 0, we have the two following bounds.

Bound 1:

P n i=1 Y i ≥ t ≤ (2 -n -1 )t -δ n i=1 E |Y i | δ .
Bound 2:

P n i=1 Y i ≥ t ≤ min y>0 g n (t, y),
where

g n (t, y) = exp - t 2 8 n i=1 E Y 2 i 1 {|Yi|<y} + ty/3 + 2 2δ (2 -n -1 )t -δ n i=1 E |Y i | δ 1 {|Yi|≥y} .
The proof of Bound 1 uses Markov's inequality and von Bahr-Esseen's inequality, whereas the proof of Bound 2 is more technical (truncation techniques, Markov's inequality, Bernstein's inequality, von Bahr-Esseen's inequality,. . . ).

Proof of Theorem 1. We prove Bounds 1 and 2 in turns.

Proof of Bound 1. We need the following version of the von Bahr-Esseen inequality (see [START_REF] Bahr | Inequalities for the rth Absolute Moment of a Sum of Random Variables, 1 ≤ r ≤ 2[END_REF]).

Lemma 1. (von Bahr-Esseen's inequality) Let n be a positive integer, p ∈ [1, 2) and (X i ) i∈{1,...,n} be n independent random variables such that, for any

i ∈ {1, . . . , n}, E(X i ) = 0 and E (|X i | p ) < ∞. Then E n i=1 X i p ≤ (2 -n -1 ) n i=1 E (|X i | p ) .
Using Markov's inequality and von Bahr-Esseen's inequality (see Lemma 1), we obtain

P n i=1 Y i ≥ t ≤ t -δ E   n i=1 Y i δ   ≤ (2 -n -1 )t -δ n i=1 E |Y i | δ .
Bound 1 is proved.

Proof of Bound 2. For any random event A, let 1 A be the indicator function on A. Set

V = n i=1 Y i 1 {|Yi|≥y} -E Y i 1 {|Yi|≥y} and W = n i=1 Y i 1 {|Yi|<y} -E Y i 1 {|Yi|<y} . Since E Y i 1 {|Yi|≥y} + E Y i 1 {|Yi|<y} = E(Y i ) = 0, we have V + W = n i=1 Y i . Using {V + W ≥ t} ⊆ {V ≥ t/2} ∪ {W ≥ t/2}, we obtain P n i=1 Y i ≥ t = P(V + W ≥ t) ≤ P V ≥ t 2 ∪ W ≥ t 2 ≤ A + B, (2) 
where

A = P V ≥ t 2 = P n i=1 Y i 1 {|Yi|≥y} -E Y i 1 {|Yi|≥y} ≥ t 2
and

B = P W ≥ t 2 = P n i=1 Y i 1 {|Yi|<y} -E Y i 1 {|Yi|<y} ≥ t 2 .
We treat bound A and B in turn.

Upper bound for A. For any i ∈ {1, . . . , n}, set

X i = Y i 1 {|Yi|≥y} -E Y i 1 {|Yi|≥y} .
We have E(X i ) = 0. It follows from Markov's inequality and von Bahr-Esseen's inequality (see Lemma 1) applied with the independent variables (X i ) i∈{1,...,n} that

A ≤ 2 δ t -δ E   n i=1 X i δ   ≤ 2 δ (2 -n -1 )t -δ n i=1 E |X i | δ . (3) 
Using the elementary inequality |x + y| a ≤ 2 a-1 (|x| a + |y| a ), (x, y) ∈ R 2 , a ≥ 1, and Jensen's inequality with the convex function ϕ(x) = |x| δ , x ∈ R, we obtain

E |X i | δ ≤ 2 δ-1 E |Y i | δ 1 {|Yi|≥y} + E Y i 1 {|Yi|≥y} δ ≤ 2 δ-1 E |Y i | δ 1 {|Yi|≥y} + E |Y i | δ 1 {|Yi|≥y} = 2 δ E |Y i | δ 1 {|Yi|≥y} . (4) 
Thus, from (3) and (4) follows

A ≤ 2 2δ (2 -n -1 )t -δ n i=1 E |Y i | δ 1 {|Yi|≥y} . (5) 
The upper bound for B. We will utilize one of Bernstein's inequalities (see, for instance, [START_REF] Petrov | Limit Theorems of Probability Theory[END_REF]), presented in the following.

Lemma 2. (Bernstein's inequality) Let n be a positive integer and (X i ) i∈{1,...,n} be n independent random variables such that, for any i ∈ {1, . . . , n}, E(X i ) = 0 and |X i | ≤ M < ∞. Then we have

P n i=1 X i ≥ λ ≤ exp - λ 2 2 ( n i=1 E(X 2 i ) + λM /3)
, for any λ > 0.

For any i ∈ {1, . . . , n}, set

X i = Y i 1 {|Yi|<y} -E Y i 1 {|Yi|<y} .
We have E(X i ) = 0 and

|X i | ≤ |Y i |1 {|Yi|<y} + E |Y i |1 {|Yi|<y} ≤ 2y.
Therefore, Bernstein's inequality (see Lemma 2) applied with the independent variables (X i ) i∈{1,...,n} and the parameters λ = t/2 and M = 2y gives

B ≤ exp - t 2 8 ( n i=1 E (X 2 i ) + ty/3) . Since E X 2 i = V Y i 1 {|Yi|<y} ≤ E Y 2 i 1 {|Yi|<y} for any i ∈ {1, . . . , n}, we have B ≤ exp - t 2 8 n i=1 E Y 2 i 1 {|Yi|<y} + ty/3 . (6) 
Combining ( 2), ( 5) and ( 6), we obtain the inequality

P n i=1 Y i ≥ t ≤ exp - t 2 8 n i=1 E Y 2 i 1 {|Yi|<y} + ty/3 + 2 2δ (2 -n -1 )t -δ n i=1 E |Y i | δ 1 {|Yi|≥y} .
Since y > 0 is arbitrary, we obtain the desired inequality.
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Remark. For any t > 0, contrary to Bound 1, Bound 2 is always inferior to 1. Indeed, due to the dominated convergence theorem, we have lim y→∞

E |Y i | δ 1 {|Yi|≥y} = 0 and, since lim y→∞ n i=1 E Y 2 i 1 {|Yi|<y} + ty/3 = ∞, P n i=1 Y i ≥ t ≤ min y>0 g n (t, y) ≤ lim y→∞ g n (t, y) = 1.
3 Application

Design of the study

Let (Y i ) i∈{1,...,n} be n i.i.d. random variables having the symmetric Pareto distribution with parameter s i.e. Y 1 has the probability density function

f (x) = ((s -1)/2)|x| -s , if |x| ≥ 1, 0 otherwise. If s ∈ (1 + δ, 3) with δ ∈ [1, 2), then E(Y 1 ) = 0, E |Y 1 | δ = s -1 s -δ -1 , E |Y 1 | δ 1 {|Y1|≥y} = s -1 s -δ -1 min(y -s+δ+1 , 1), E Y 2 1 1 {|Y1|<y} = s -1 3 -s max(y 3-s , 1) -1 and E Y 2 1
does not exist. For t > 0 then holds by Theorem 1:

Bound 1:

P n i=1 Y i ≥ t ≤ (2 -n -1 )t -δ n s -1 s -δ -1 . (7) Bound 2: 
P n i=1 Y i ≥ t ≤ min y>0 g n (t, y), (8) 
where

g n (t, y) = exp - t 2 8 (n(s -1) (max(y 3-s , 1) -1) /(3 -s) + ty/3) + 2 2δ (2 -n -1 )t -δ n s -1 s -δ -1
min(y -s+δ+1 , 1).

Numerical results

In what follows, we present numerical results for the bounds (7) and (8). We consider two examples: first, a large value of n (5000), secondly a small value of n (50). For the sake of simplicity, we take s = 3 -10 -10 . Following the philosophy of reproducible research, the programs are made available freely for download at the address http://www.math.unicaen.fr/∼chesneau/concentration2final.r

This code contains the scripts to reproduce Figures 1 and2, and it requires at least R [START_REF]R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing[END_REF] to run properly. It is visible that Bound 2 is (clearly) lower than Bound 1 for values of δ lying closer to 1, whereas Bound 1 should be preferred when δ approaches two. Subsequently, Figure 2 deals with the case of small n, more precisely the value is n = 50. The results correspond to those of n = 5000, although the switch from Bound 2 to Bound 1 for increasing δ should be carried out earlier. However, for practical purposes, this case may only be of limited interest.
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 11 Figure 1: Empirical boundary values for large n This figure displays the values of Bound 1 and 2 for varying values of t and δ. For all four panels, n equals 5000. The horizontal gray line represents bound value of 1.
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 2 Figure 2: Empirical boundary values for small n This figure displays the values of Bound 1 and 2 for varying values of t and δ. For all four panels, n equals 50. The horizontal gray line represents a bound value of 1.