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Abstract

We are concerned with the numerical study of a simple one-dimensional Schrödinger
operator −1

2
∂xx +αq(x) with α ∈ R, q(x) = cos(x)+ε cos(kx), ε > 0 and k being ir-

rational. This governs the quantum wave function of an independent electron within
a crystalline lattice perturbed by some impurities whose dissemination induces long-
range order only, which is rendered by means of the quasi-periodic potential q. We
study numerically what happens for various values of k and ε; it turns out that for
k > 1 and ε ≪ 1, that is to say, in case more than one impurity shows up inside
an elementary cell of the original lattice, “impurity bands” appear and seem to be
k-periodic. When ε grows bigger than one, the opposite case occurs.

Key words: Quasi-periodic potential, impurity band, quasi-Bloch wave, metallic
impurity conduction.
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1 Introduction and modeling

This Note is devoted to the numerical investigation of the following eigenvalue problem:

1

2
∂xxψ +

(

E − αq(x)
)

ψ = 0, q(x) = cos(x) + ε cos(kx); x ∈ R. (1)

For α ∈ R and ε = 0, (1) is known as the 2π-periodic Mathieu (or Hill) equation. Floquet-
Bloch theory thus applies to ensure the existence of so–called “Bloch wave solutions” read-
ing exp(iκ(E)x)z(κ, x) and indexed by the quasi-momentum κ which belongs to the first
Brillouin zone. This is also one of the simplest models for the 1-D modeling of an inde-
pendent electron moving inside a static and infinite lattice of ionic cores; the lows of the
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potential render the potential wells in the vincinity of the positively charged atomic nuclei.
Solving this eigenvalue problem is an important stepping stone toward semiclassical WKB
approximation because it allows to apply Peierls’ substitution; see [1,15,12,22]. For weak
and slowly-varying external potentials, this line of thinking still works, including the self-
consistent Poisson interaction 1 , because both tunneling effects and band coupling remain
negligible, [13,14].

However, when one wishes to consider defects in the lattice, the resulting perturbations in
the potential cease to remain slowly-varying: for instance, a special case of phonon modeling
has been studied in [10]. For this model, the band structure has been seen to be deeply mod-
ified, but still, consistency between the resulting Schrödinger equation and its semiclassical
WKB approximation has been observed numerically.

Besides phonons, a situation of particular interest turns out to be the inclusion of impurities
inside an otherwise perfectly periodic lattice; in semiconductor theory, this process is called
doping, [25]. Here we consider (1) as the most elementary model for the Hamiltonian of
independent electrons permeating a doped material. Weak doping corresponds to low values
of k and strong interaction between electrons and nuclei is rendered through a big α. The
value of ε may be interpreted as the type of impurity disseminated inside the sample; it
somehow controls the strength of the alien ion’s effect onto the charge carriers.

Unfortunately, the classic Bloch decomposition isn’t applicable any more for (1) as the equa-
tion is only quasi-periodic. Indeed, periodicity is a special case of short-range order, leading
generally to absolutely continuous spectrum (the well-known “band structure”) and ex-
tended eigenstates; quasi-periodicity, though not being completely disordered, displays only
long-range order thus allows for singular Cantor-type spectrum and critical (very peaked)
eigenstates, some of which can be seen in [11]. What we aim at here are the variations
in the spectrum of (1) as k and ε vary; for very low k’s, very few impurities show up in
the medium, hence owing to common belief, the original Mathieu band structure should
be visible modulo very small changes, see §3.1. When k is increased but remain below one,
there is less than one impurity inside the Wigner-Seitz cell of the underlying lattice; recent
theoretical results (partially recalled in §2) indicate that for α = O(1), one should expect
a singular Cantor-type spectrum possibly with gaps, see §3.2. The opposite situation is of
course k > 1 for which the resulting doping turns out to be very strong; impurity bands
then appear inside the band gaps of the unperturbed problem as seen in §3.3 and in practice
correspond to meta-stable states, [18,23].

2 One-dimensional quasi-periodic Schrödinger operators

2.1 A glimpse on theoretical results

Definition 1 Let q(x) be a smooth function R → R; q is said to be quasi-periodic if there
exist d ∈ N rationally independent constants ~ω = (ω1, ..., ωd) ∈ Rd and a continuous function
Q : Rd → R 2π–periodic in each of its arguments such that:

∀x ∈ R, q(x) = Q(~ω x)
def
= Q(ω1x, ..., ωdx).

The d constants ~ω are called the basic frequencies of q and Q is the (non unique) lift of q.

When dealing with quasi-periodic functions, we shall always use capital letters for the cor-
responding lifts. The study of quantum particles submitted an incommensurate potential
started with [22] and electrons moving inside a magnetic field. Let v(x) stand for a generic

1 Hartree equation permits to go beyond the “independent electron” idealization.
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quasi-periodic function, i.e. v(x) = V (~ω x) with ~ω ∈ Rd, d ≥ 2. The theory mainly focused
onto the general eigenvalue problem:

1

2
∂xxψ(x) +

(

E − αv(x)
)

ψ(x) = 0, x ∈ R.

It states that both eigenfunctions ψ(x) and eigenvalues E strongly depend on α. For large
α, eigenfunctions are known to decay exponentially, this phenomenon is referred to as
Anderson localization, see e.g. [8]. But for small α/E, the existence of quasi-Bloch waves,
that is to say eigenfunctions of the form,

Ψκ(x) = exp(iκ(E)x)z(κ, x), z(κ, x) = Z(~ω x), (2)

has been established by means of KAM techniques: consult [5,21,26,7]. To get control on
the recurrent small divisors, it is necessary to assume that ~ω is Diophantine, i.e. there exist
positive constants C0, τ for which,

∀~ν 6= ~0 ∈ Zd, | < ~ω, ~ν >Rd | ≥ C0|~ν|
−τ , |κ(E)+ < ~ω, ~ν >Rd | ≥ C0|~ν|

−τ . (3)

Recently, some interest has been put onto perturbed Hill’s equations, of which (1) is an
elementary case; results are available in [2,9]. We notice that, besides Diophantine condi-
tions, no particular hypotheses are drawn onto ~ω; this is one of the purposes of this paper
to present a case with d = 2 where the basic frequencies have a critical importance on the
structure of the spectrum.

2.2 The incommensurate perturbed Mathieu potential

The behavior of (1) in the special case ε = 1, α ≪ 1 has been studied theoretically in [8,26],
numerically in [4,16,30] and experimentally in [28] (see also [27]). From [26,7,9], we know
that, provided the following Diophantine condition (3) holds,

∀m,n 6= 0 ∈ Z2, |m + nk| ≥
C0

n2
,

for ε small enough and/or E big, “quasi-Bloch waves” Ψκ(x) = exp(iκx)z(κ, x) do exist
and the corresponding modulations z(κ, .) and q share the same kind of quasi-periodicity:

q(x) =
∑

n,m

Q̂n,m exp(i(n + mk)x), z(κ, x) =
∑

n,m

Ẑn,m(κ) exp(i(n + mk)x). (4)

We shall study numerically the case where k = qπ with q ∈ Q; this doesn’t exactly enter
the preceding framework as, despite being irrational, π isn’t an algebric number thus it
isn’t known if the corresponding frequencies can be Diophantine. The best which seems to
have been proven 2 is: |π − p

q
| ≥ q−42; for completeness, we recall the continued fraction

approximation of π together with its graphical representation on Fig.1:

π ≃ [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, 6,

99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, 3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, 2, 1, 6, 1, 1,

5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, 45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2, 1, 3, 1, 2, 1].

However, it seems also interesting to check numerically whether or not the results based on
Diophantine frequencies can extend to irrational numbers possibly better approximated by
rational numbers. In order to study numerically the slightly more general problem (1) with

2 see http://mathforum.org/library/drmath/view/69162.html
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Fig. 1. Graphical representation of the continued fraction approximation of π.

respect to both α, k and ε, it is easy to extend the spectral algorithm proposed by Steve
Surace in [26]:

(n + mk + κ)2Ẑn,m + α
(

Ẑn−1,m + Ẑn+1,m + εẐn,m−1 + εẐn,m+1

)

= 2EκẐn,m. (5)

Due to CPU time, we restricted our computations to n,m ∈ {−20, 20}, which leads to
diagonaling a 412 × 412 penta-diagonal matrix for every value of κ. We always took α = 1.

3 Numerical results and discussion

Hereafter, we shall always consider Figure 1 in [12] as the reference for the band structure
of (1) with α = 1 and ε = 0, i.e. of the classical Mathieu equation. We recall that in this
case, bands are to be visualized for κ ∈ [− 1

2
, 1

2
], the first Brillouin zone.

3.1 Increasing k: from adiabatic decoupling to disorder

In this case, we took ε = 0.15 and let k vary while remaining inside the interval [1/300, 1/10].
The numerical results are displayed on Fig. 2 for κ inside the Brillouin zone of the original
problem. One sees at once that the lower k, the better the spectrum looks like the Mathieu’s
bands. Indeed, states located deep down the well are nearly flat and a conduction band is
visible near the the edge of the potential. We believe that the “thickness” of the bands
has to do with the degeneracy of the (big) matrix coming from (5) as many eigenvalues are
very close to each other and this may influence the numerical diagonalization algorithm; the
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higher ε, the thicker these bands. However, if the structure is almost perfect for k ≃ 1/300,
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Fig. 2. Spectrum for ε = 0.15 with k = π

1000
, π

250
, π

50
(left to right). Lowest homoge-

neous Mathieu-Hill’s (ε = 0) bands are shown on the left for comparison.

it surely evolves toward a different picture as k increases. Indeed, the bands already began
to flatten for k ≃ 1/100, meaning that localized states begin to be numerous. Finally, for
k ≃ 0.1, nearly all the bands have become flat, except for the conduction band which
displays an intriguing structure. Fig. 2 (especially the left spectrum) tells us that in case
the perturbation potential is really slowly-varying, then Peierls substitution is completely
effective and the electron’s dynamics are driven by usual energy bands (as studied in [13]).
Band gaps keep on being present in the spectrum for all the considered values.

3.2 Weak disorder: Cantor spectrum for various values of ε

Here we took k =
√

5−1

2
≃ 0.62, the golden mean and we want to investigate the stability of

the band gaps as ε varies. First of all, we see that all the original bands have collapsed into
a complicated “Cantor-type structure” as a consequence of the band nesting phenomenon,
see [16], to which critical eigenstates 3 should be associated. Then, band gaps are stable;
they roughly agree with former computations for the simpler model ε = 1, α ≪ 1 given
in [30]. Indeed, the increase of ε only thickens the “Cantor areas” and restricts a bit these
forbidden zones; this is reminiscent of the Peierls distorsion in which phonons open small
gaps inside the conduction band. It looks also like being a smooth process as it has been
shown in [2] using the concepts of “resonance tongues” and “instability pockets”. The upper
part of the spectrum is rather messy so we didn’t display it; see however [11].

3 Extended states are associated to periodic problems (ε = 0). Localized states are
usually associated to random operators; they have a finite L2(R) norm and decay
exponentially for large |x|, see [4,8]. Critical states are in between as they are usually
made of periodically-repeated spikes; see [17] and §4 in [11] for an illustration.
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Fig. 3. Spectrum with k =
√

5−1

2
and ε = 0.02, 0.05, 0.2 (left to right).

3.3 Strong disorder: k-periodic impurity bands for k > 1

Here, we focus on the case for which k = π
3

> 1 and let ε vary. Gaps completely disappeared
at the benefit of new “impurity bands”; physically, this is a consequence of the excessive
overlapping of the wave functions associated to the impurity atoms. In the opposite cases
corresponding to Figs. 2 and 3, impurity wave functions were meant to stay far enough to
each other to prevent band creation. In case k > 1 however, they got closer than the states

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. Spectrum with k = π

3
and ε = 0.05, 0.15, 0.35 (left to right).

created by the original Mathieu potential. Moreover, they are quite stable as can be seen
on Fig. 4, despite the “thickness” of the collapsed bands still growing with ε. These new
bands look like being k-periodic as the original Brillouin zone is now too narrow to include
them; see also [11] for a similar observation with a different type of perturbation. In [11],
we observed that impurity bands appear to be parabolic: a plausible interpretation is that
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electrons perceive somehow the average of the corresponding very oscillating potential (like
the so–called Jellium metal model [6]) thus display a parabolic dispersion relation. The
effect of the disordered medium reduces to the effective mass.

3.4 What happens if ε > 1 ?
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Fig. 5. Spectrum with k = π

3
and ε = 0.85, 5, 10, 20 (left to right): only localized

states separated by gaps are expected to survive.

One may imagine that for ε big enough, the collapsed bands will become so thick that no
space will be left for the impurity ones and the resulting sample will be an insulator. This
is only partly true, in the sense that in case ε becomes greater than one, the “perturbation”
ε cos(kx) becomes the main potential and thus the term cos(x) reduces to a lower-frequency
perturbation. One can apply the transformation x → kx inside problem (1) with α = 1 in
order to derive:

k2

2
∂xxψ +

(

E − ε cos(x) − cos(x/k)
)

ψ = 0; x ∈ R.

For values of k close to one, the factor in front of the second derivative won’t be important;
however, one sees at once that in case ε > 1, impurity bands should appear in the opposite
case, that is to say for k < 1; this is reminiscent of the mobility edge phenomenon. So
the picture goes as follows: singular spectrum grows in size for 0.2 ≤ ε < 1, then for ε > 1,
we gradually move back to the situation described in Fig. 3 or 4; we display on Fig. 5 the
spectrum resulting from “big” values of ε, but in order to ease the comparison, we divided
all eigenvalues by 1 + ε. The thickness of the singular parts decreases slowly and we believe
that the bands remaining inside the gaps result from truncation errors; observe in particular
the similarity between the spectrum on the right of Fig. 2 and the one on the left of Fig. 5.

For completeness, we display on Fig. 6 what happens for increasing values of ε in case

k =
√

5−1

2
; the results suggest that some bands emerge between the singular parts of the

spectrum which size gradually shrinks (like in the preceding Fig. 5). For ε < 1, we observe
other bands high in the spectrum; this isn’t in contradiction with our ideas since standard
KAM results (see especially [7,9]) ensure that higher parts of the spectrum generally contain
extended states. Notice also that in this case, the “perturbing potential” is still endowed with

a Diophantine frequency since 1

k
=

√

5+1

2
, the inverse of the golden mean, has a continued

fraction representation going like 1 + [1, 1, 1, 1...].
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Fig. 6. Spectrum with k =
√

5−1

2
and ε = 0.85, 10, 20, 50 (left to right): extended

states can be expected to develop as ε grows.

4 Conclusion

We presented some computational results obtained out of a simple spectral algorithm (5)
which nevertheless has been studied rigorously in [26] in a related context. We observed that
for very dilute perturbations, the original band structure survives, but it quickly rearranges
itself as the parameter k grows. Metallic conduction can be hoped for, but it should decay
with k. For k slightly below one, that is, the frequency of the underlying lattice, the spectrum
is singular continuous and thus, eigenstates are likely to be critical. The resulting material
will therefore be an insulator. Amazingly, for k > 1, intricate “impurity bands” show up
inside an otherwise singular spectrum; hence assuming that electrons might be trapped
in these bands, frictionless conduction remains possible. It seems to be quite a known
result that certain forms of disorder lead to the formation of impurity bands responsible for
metallic impurity conduction in the sense of [20], see also [3,25,29]. This is also used
for the design of semiconductor LASERs, where the stimulated emission of radiation stems
from an inverted population of electrons decaying from an excited band onto a meta-stable
one.
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