
HAL Id: hal-00419731
https://hal.science/hal-00419731v1

Submitted on 24 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Decay of Positive Waves for n× n Hyperbolic Systems of
Balance Laws

Paola Goatin, Laurent Gosse

To cite this version:
Paola Goatin, Laurent Gosse. Decay of Positive Waves for n×n Hyperbolic Systems of Balance Laws.
Proceedings of the American Mathematical Society, 2004, 132, pp.1627-1637. �10.1090/S0002-9939-
04-07315-0�. �hal-00419731�

https://hal.science/hal-00419731v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


DECAY OF POSITIVE WAVES FOR n × n HYPERBOLIC

SYSTEMS OF BALANCE LAWS

PAOLA GOATIN AND LAURENT GOSSE

Abstract. We prove Olĕınik-type decay estimates for entropy solutions of
n × n strictly hyperbolic systems of balance laws built out of a wave-front
tracking procedure inside which the source term is treated as a nonconservative
product localized on a discrete lattice.

1. Introduction

A classical result proved by Olĕınik [18] for strictly convex scalar conservation
laws in one space dimension shows that the density of positive waves decays in time
like O(1/t), see also [14]. More precisely, if we consider the scalar equation

(1.1) ut + f(u)x = 0, u(t = 0, .) = uo ∈ L∞(IR),

with f ′′(u) ≥ κ > 0, we have that every entropy-admissible solution satisfies

(1.2) u(t, y) − u(t, x) ≤
y − x

κt
for all t > 0, x < y.

and therefore has locally bounded variation (see also [8], Theorem 11.2.2). Con-
versely, if u = u(t, x) is a weak solution satisfying (1.2), then u is entropy admissible.

The same estimate as in (1.2) has been recovered for the Riemann coordinates
of a particular 2×2 system [4] and for n×n genuinely nonlinear systems belonging
to the Temple class [7]. However, one cannot expect such a result to remain valid
for general n × n systems, even assuming all characteristic fields being genuinely
nonlinear. Indeed, interactions among existing shocks may generate rarefactions as
time increases. Decay estimates must therefore take into account for the generation
of new positive waves due to interactions. Results in this direction were proved by
Liu [17] in the case of approximate solutions constructed by Glimm’s scheme, [9],
and by Bressan and Colombo [5] for exact solutions obtained as limits of front
tracking appoximations for n × n homogeneous systems, [19]. This in turn yields
uniqueness of solutions satisfying the Olĕınik entropy condition [6, 7, 10]. From the
point of view of practical applications, such one-sided estimates are very useful for
instance in the context of multiphase Geometric Optics computations, [12], or local
error estimates, [20] and asymptotic behaviour of entropy solutions.

In this paper we are interested in extending Olĕınik-type estimates on positive
waves to quasilinear systems of balance laws. More precisely, we shall deal with the
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Cauchy problem for the following n × n system of equations

(1.3) ut + f(u)x = g(x, u), x ∈ IR, t > 0,

endowed with a (suitably small) initial data uo ∈ L1 ∩BV(IR; IRn). Here u(t, x) ∈
IRn is the unknown function, f : Ω → IRn is a smooth C2 vector field defined on
an open neighborhood Ω of the origin in IRn. We will assume that the system
(1.3) is strictly hyperbolic, with each characteristic field either genuinely nonlinear
or linearly degenerate in the sense of Lax [15]. Moreover we assume the following
Caratheodory-type conditions for the source term g:

(P1) g : IR × Ω → IRn is measurable w.r.t. x, for any u ∈ Ω, and is C2 w.r.t. u,
for any x ∈ IR;

(P2) ‖g(x, ·)‖C2 is bounded over Ω, uniformly in x ∈ IR;
(P3) there exists a function ω ∈ L1(IR) ∩ L∞(IR) such that |g(x, u)| ≤ ω(x),

‖∇ug(x, u)‖ ≤ ω(x) for all (x, u) ∈ IR × Ω.

In addition, we require that a non-resonance condition holds, that is, the character-
istic speeds are bounded away from zero: for some p ∈ {1, . . . , n} and some c > 0
one has

(1.4)

{

λi(u) ≤ −c if i ≤ p,

λi(u) ≥ c if i > p,

for all u ∈ Ω, where λi(u) denote the eigenvalues of the Jacobian matrix Df(u).
Under these assumptions, it was proved in [1] that there exists a family of entropy

weak solutions to (1.3) continuously depending on the initial data. More precisely,
if the L1-norm of ω is small enough, there exist a closed domain D ⊂ L1(IR; IRn)
of functions with sufficiently small total variation, a constant L and a unique semi-
group P : [0, +∞) ×D → D with the properties:

(i) For all u, v ∈ D and t, s ≥ 0 one has ‖Psu−Ptv‖L1 ≤ L
(

|t−s|+‖u−v‖L1

)

.
(ii) For all uo ∈ D the function u(t, ·) = Ptuo is a weak entropy solution of the

Cauchy problem (1.3), u(t = 0, .) = uo.

Under the above assumptions we aim at showing that, for genuinely nonlinear
characteristic fields, an Olĕınik type estimate on the decay of positive waves holds,
which takes into account not only new waves generated by interactions but even
the contribution of the source term. A careful statement of these results requires
some notations, [3, 5, 6].

As usual, let A(u) = Df(u) be the Jacobian matrix of f , and call λi(u), li(u),
ri(u) respectively the eigenvalues and the left and right eigenvctors of A(u). Let u :
IR → Ω have bounded variation in x and satisfy (1.3) with g ≡ 0. The distributional
derivative µ

.
= Dxu is a vector measure. For i = 1, . . . , n we can now define µi as

∫

φdµi =

∫

φl̃i · Dxu, φ ∈ C0
c ,

where l̃i(x) = li(u(x)) at points where u is continuous, while l̃i(xα) is some vector
which satisfies

|l̃i(xα) − li(u(xα))| = O(1) · |u(xα+) − u(xα−)|

l̃i(xα) ·
(

u(xα+) − u(xα−)
)

= σi
α,

where with σi
α we denote the strength of the i-th wave generated by the resolution

of the corresponding discontinuity in xα.
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We denote by µi+, µi− the positive and negative parts of µ, then we have

µi = µi+ − µi−, |µi| = µi+ + µi−.

The total strength of waves in u is defined as

(1.5) V(u)
.
=

n
∑

i=1

Vi(u), Vi(u)
.
= |µi|(IR),

while the interaction potential is defined in terms of product measures on IR2:
(1.6)

Q(u)
.
=
∑

i<j

(

|µj | × |µi|
)(

{(x, y) : x < y}
)

+
∑

i∈GN

(

µi− × |µi|
)(

{(x, y) : x 6= y}
)

,

where GN denotes the set of genuinely nonlinear families.
Now we are ready to state our main result in the case g 6≡ 0:

Theorem 1.1. (Decay of positive waves) Let the system (1.3) be strictly hyper-
bolic and let the i-th characteristic field be genuinely non-linear. Then there exists a
constant C depending solely on f such that for every 0 ≤ s < t and every solution u
with small total variation obtained as limit of wave-front tracking approximations,
the measure µi+

t of i-waves in u(t, ·) satisfies

(1.7) µi+
t (J) ≤ C ·

(

meas(J)

t − s
+ Q(s) − Q(t) + V(uo) · ‖ω‖L1

)

for every Borel set J ⊂ IR.

Of course, we tacitly assume (P1)–(P3) and (1.4) throughout all the text.

2. Wave-front tracking with zero-waves

In this section we briefly recall the construction of wave-front tracking approxi-
mations as stated in [1]. We start with the definition of the h-Riemann solver. For
small h > 0 we introduce the map

Φh(xo, u)
.
= f−1

[

f(u) +

∫ h

0

g(xo + s, u)ds

]

(note that f is invertible due to (1.4)), that approximates the flow of the stationary
equation associated to (1.3). Consider now the Riemann problem with initial states

(2.1) u(0, x) =

{

ul if x < xo,
ur if x > xo.

To locally render the source term’s effects, a stationary discontinuity is introduced
along the line x = xo, that is, a wave whose speed is equal to zero; it will be referred
to as a zero-wave. An h-Riemann solver for (1.3) − (2.1) has been defined in [1]
as a self-similar function u(t, x) = Rh((x − xo)/t; ul, ur) as follows:

(a) there exist two states u−, u+ which satisfy u+ = Φh(xo, u
−);

(b) u(t, x) coincides, on the set {t ≥ 0, x < xo}, with the solution to the
homogeneous Riemann problem with initial values ul, u− and, on the set
{t ≥ 0, x > xo}, with the solution to the homogeneous Riemann problem
with initial values u+, ur;

(c) the Riemann problem between ul and u− is solved only by waves with
negative speed (i.e. of the families 1, . . . , p);
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(d) the Riemann problem between u+ and ur is solved only by waves with
positive speed (i.e. of the families p + 1, . . . , n).

This clearly shares a lot of common features with the nonconservative Riemann
problems studied in [16]. Let now ǫ, h > 0 be given: an ǫ, h-approximate solution
of (1.3) is constructed as follows. First of all, the source term is localized by means
of a Dirac comb along zero-waves located on the lattice x = jh, j ∈ (− 1

hǫ
, 1

hǫ
)∩ZZ:

(2.2) ut + f(u)x = h
∑

j

g(x, u).δ(x − jh),

where δ stands for the Dirac measure concentrated on x = 0.
Given the initial data uo, we deduce a piecewise constant approximation u(0, ·)

without increasing its BV-norm and u(t, x) is constructed, for small t, by applying
the h-Riemann solver at every point x = jh, and by solving the remaining discon-
tinuities in u(0, ·) using a classical homogeneous Riemann solver (rarefaction waves
are discretized following [3]: for a fixed small parameter ν, each rarefaction of size
σ is divided, at its starting time, into m =

[

σ
ν

]

+ 1 wave fronts of size σ/m ≤ ν).
At every interaction point, a new Riemann problem arises. Notice that because

of their null speed, zero-waves cannot interact among each other. In order to keep
finite the total number of wave-fronts, two distinct procedures are used for solving a
Riemann problem: an accurate method, which possibly creates several new fronts,
and a simplified method , which minimizes the number of new wave-fronts. For a
detailed description, as well as the proof of the stability of the algorithm, we refer
the reader to [1, 3].

The approximate solution can have four types of jumps: shocks (or contact
discontinuities), rarefaction fronts, non-physical waves and zero-waves: J = S ∪
R ∪ NP ∪ Z. A priori bounds on the functions uǫ,h are obtained by modifying
slightly the Glimm’s functionals [9] in order to keep track of the zero-waves,

(2.3) V (t) =
∑

α∈J

|σα| =
∑

α∈S∪R∪NP∪Z

|σα|,

(2.4) Q(u(t)) =
∑

α,β∈Ã

|σασβ | ≤ V (t)2,

measuring respectively the total wave strengths and the interaction potential in
u(t, ·). In particular, if α ∈ Z then the strength of the wave located in xα = jαh
can be measured by means of

(2.5) σα =

∫ h

0

ω(jαh + s)ds.

In (2.4) we have denoted by Ã an extended set of approaching waves. As usual we
call kα the family of the front located at xα, with size σα. More precisely, a couple
of wave-fronts of families kα, kβ , located at xα < xβ , belongs to Ã in any of the
following cases:

– if none of the two is a zero-wave, either kα > kβ , or else kα = kβ and at
least one of them is a genuinely nonlinear shock, [9];

– if α is a zero-wave and β is a physical one, kβ ≤ p;
– if β is a zero-wave and α is a physical one, kα > p.
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Notice that for some C > 1 there holds

1

C

[

‖ω‖L1(I) + Tot.Var.u(t, ·)
]

≤ V (t) ≤ C
[

‖ω‖L1(I) + Tot.Var.u(t, ·)
]

,

where the interval I is defined by

I
.
=
⋃

α∈Z

[jαh, (jα + 1)h] =
⋃

j∈(− 1
ǫh

, 1
ǫh )∩ZZ

[jh, (j + 1)h].

Passing to the limit as ǫ → 0, h > 0 fixed, one has:

(i) the total variation of uǫ,h(t, ·) remains uniformly bounded;
(ii) the maximum size of rarefaction fronts approaches zero;
(iii) the total strength of all non-physical waves approaches zero.

By (i), Helly’s theorem guarantees the existence of a subsequence strongly con-
vergent in L1

loc. By (ii) and (iii), this limit provides a weak solution to (2.2) in
agreement with nonconservative theories, [16]. At this stage, we can extract again
a subsequence uhi which converges to some function u in L1

loc and solves (1.3) in
the usual weak distributional sense.

In the sequel, we will need a semicontinuity property of Glimm’s functionals.
For h > 0 fixed, let the total strength of waves Vh and the interaction potential
Qh be as in [1], Section 4.1, that is, they are defined as in (1.5)-(1.6), but including
the zero-waves. We have

(2.6) Vh(u) = V(u) + ‖ω‖L1 ,

(2.7) Q(u) ≤ Qh ≤ Q(u) + ‖ω‖L1 · V(u).

Proceeding as in [3] we recover the lower semicontinuity of the functionals Qh and
Υh(u)=̇Vh(u) + CoQh(u), Co > 0, on a domain D of the form

D=̇
{

u ∈ L1 ∩ BV(IR; IRn),Υh(u) ≤ γ
}

, γ small enough,

(see [3], Theorem 10.1):

Theorem 2.1. (Lower semicontinuity of the Glimm functionals) There
exists a choice of the constants Co, γ > 0 such that, if Υh(u) = Vh(u)+CoQh(u) <
γ, then for any sequence of functions uν ∈ D, uν → u in L1 as ν → ∞, one has

Qh(u) ≤ lim inf
ν→∞

Qh(uν),(2.8)

Υh(u) ≤ lim inf
ν→∞

Υh(uν).(2.9)

Moreover, for every finite union of open intervals J = I1 ∪ . . . ∪ IS there holds:

(2.10) µi±(J) + CoQh(u) ≤ lim inf
ν→∞

(

µi±
ν (J) + CoQh(uν)

)

, i = 1, . . . , n.

3. Proof of Theorem 1.1

I. By Lipschitz continuous dependence of the trajectories it is not restrictive
to assume s = 0, t = T . We will consider a particular converging sequence uν,h of
ǫν , h-approximate solutions with the following properties:

(i) each rarefaction front xα travels with the characteristic speed of the state
on the right:

ẋα = λkα
(u(xα+));
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(ii) each shock xα travels with a speed strictly contained between the right and
the left characteristic speeds:

λkα
(u(xα+)) < ẋα < λkα

(u(xα−));

(iii) calling Nν the number of jumps in uν,h
o = uν,h(0, ·), as ν → ∞ one has

(3.1) ǫν → 0 ǫνNν → 0;

(iv) the interaction potential satisfies

(3.2) Qh(uν,h(0, ·)) → Qh(uo) as ν → ∞.

Such a sequence can be constructed as explained in [3], proof of Lemma 10.2 (p.205).
Let u = u(t, x) be a piecewise constant ǫ, h-approximate solution constructed

via front-tracking approximation (we shall drop the ǫ, h superscripts since there is
no ambiguity). As usual, by (generalized) i-characteristic we mean an absolutely
continuous curve x = x(t) such that, [8],

ẋ(t) ∈ [λi(u(t, x+)), λi(u(t, x−))] a.e. t ≥ 0

By t 7→ yi(t; x̄) we denote the minimal i-characteristic passing through x̄ at time T .
Because of (1.4) the presence of zero-waves does not affect the usual construction.

Let now I
.
= [a, b[ be any half-open interval, and define

I(t)
.
= [yi(t; a), yi(t; b)[

.
= [a(t), b(t)[.

We seek an estimate of the amount of positive i-waves in the the approximate
solution u(T, ·) contained in I. We recall that kα stands for the family of the front
located at xα, with size σα. For a genuinely nonlinear family, the size of the jump
can be measured like

(3.3) σα
.
= λkα

(u(xα+)) − λkα
(u(xα−)),

while the size of a zero-wave is still given by (2.5). Define

m(t)
.
= b(t) − a(t).

By (3.3) and the Lipschitz continuity of the map u 7→ λi(u) we deduce that

ṁ(t) = λi

(

u(t, b(t))
)

− λi

(

u(t, a(t))
)

= M(t) + O(1)(ǫ + K(t))(3.4)

for a.e. t. The Landau symbol stands for a quantity whose modulus is uniformly
bounded. We see that

M(t)
.
=

∑

kα=i,xα∈I(t)

σα = µi
t

(

I(t)
)

is the total amount of (signed) i-waves in u(t, ·) contained in I(t), while

K(t)
.
=

∑

kα 6=i,xα∈I(t)

|σα| =
∑

k 6=i

∣

∣µk
t

∣

∣

(

I(t)
)

+

∫

I(t)

ω(x).dx

stands for the total strength of waves of families 6= i inside I(t), zero-waves included.
To estimate the contribution of the term K(t) in (3.4) we introduce

Φ(t)
.
=
∑

kα 6=i

φkα
(t, xα(t)) · |σα| ≤ Vh(u(t)),
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where

φj(t, x)
.
=







1 if x < a(t)
b(t)−x

m(t) if x ∈ [a(t), b(t)[

0 if x ≥ b(t)

or

φj(t, x)
.
=







0 if x < a(t)
x−a(t)
m(t) if x ∈ [a(t), b(t)[

1 if x ≥ b(t)

in the cases j < i or j > i respectively. Roughly speaking, Φ(t) represents the
cumulated strength of the waves which do not approach the interval I(t). By strict
hyperbolicity, we can expect it to grow with time. Observe that Φ is piecewise
Lipschitz continuous with a finite number of discontinuities occurring at interaction
times, where it may decrease at most of:

(3.5) Φ(τ+) − Φ(τ−) = O(1)[Q(u(τ−)) − Q(u(τ+))].

Following [3], we assume that there holds for some co > 0,

(3.6) |λi(u) − λi(v)| ≤ co, |λi(u) − λkα
(v)| ≥ 2co,

for every couple of states u, v and every kα 6= i. Outside interaction times Φ is
non-decreasing; indeed, we have

Φ̇(t) =
∑

kα 6=i

|σα| ·
d

dt
φkα

(t, xα(t))

=
∑

kα<i,xα∈I(t)

|σα| ·

(

ḃ − ẋα

m
−

(b − xα)ṁ

m2

)

+
∑

kα>i,xα∈I(t)

|σα| ·

(

ẋα − ȧ

m
−

(xα − a)ṁ

m2

)

≥
∑

kα 6=i

|σα| ·
co

m(t)

thanks to the system’s strict hyperbolicity and the non-resonance condition (1.4).
In particular, observe that co ≤ c in (3.6). The above estimate yields the bound
valid for all but finitely many times t:

(3.7) K(t) ≤
1

co

Φ̇(t)m(t).

We notice again, as in [1, 2], that there’s a need for a completely different theory
in order to tackle resonant cases, see also [13].

Concerning the term M(t), observe that it can change only when an interaction
occurs within the interval [a(t), b(t)]. In this case, one has

M(τ+) − M(τ−) = O(1)[Q(u(τ−)) − Q(u(τ+))].

This yields an estimate of the form

(3.8) M(T )− M(t) = O(1)
∑

τ∈T

[Q(u(τ−)) − Q(u(τ+))]
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where the summation extends over all times τ ∈]0, T ] where an interaction occurs
inside [a(τ), b(τ)]. Inserting the estimates (3.7) − (3.8) in (3.4) we obtain

(3.9) ṁ(t) + CΦ̇(t)m(t) ≥ M(T ) − C

(

ǫ +
∑

τ∈T

|∆Q(τ)|

)

,

for some constant C and a.e. t. We now observe that m is a continuous, piecewise
linear function of t, and Φ is uniformly bounded. It can decrease only at interaction
times, where (3.5) holds. Hence its total variation in uniformly bounded and for
some constant Ko we have the estimate

(3.10)

∫ T

0

Φ̇(t)dt ≤ Ko.

As in [3], from (3.9) we deduce the decay estimate:

(3.11) M(T ) ≤ 2eCKo

(

b − a

T

)

+ 2Cǫ + 2C
∑

τ∈T

|∆Q(τ)|.

II. Repeating the above process for any finite number S of disjoint half-open
intervals Is=̇[as, bs[ we obtain

(3.12)

S
∑

s=1

Ms(T ) ≤ C′

(

S
∑

s=1

bs − as

T
+ Sǫ + [Q(u(0)) − Q(u(T ))]

)

,

for some constant C′ independent of S and of the particular ǫ, h-approximate solu-
tion. Here we have used the notation

Ms(T )
.
=

∑

kα=i,xα∈[as,bs[

σα = µi
T ([as, bs[)

to denote the sum of (signed) strength of all i-waves in u(T, ·) contained in the
interval [as, bs[.

III. Let us consider now any open interval ]a, b[. Let N be the number of
i-shocks of the first generation in the front-tracking ǫ, h-approximate solution u,
as defined in [3], Chapter 7. We can thus construct half-open intervals Is=̇[as, bs[,
s = 1, . . . , S ≤ N + 1, such that the following holds (see [3], Chapter 10):

• Every i-rarefaction front in u(T, ·) contained in ]a, b[ falls inside one of the
intervals Is.

• No i-shock front of the first generation fall inside any of the intervals Is.

Calling µi+
T the measure of positive i-waves in u(T, ·), the above properties imply

(3.13) µi+
T (]a, b[) =

∑

s

Ms(T ) + O(1) · [Qh(u(0)) − Qh(u(T ))] + O(1) · r(ǫ)

where Qh is the interaction potential introduced in [1], Section 4.1.
Indeed the only negative i-waves contained in

⋃

s Is must have generation order
≥ 2, originating from interactions during the time interval ]0, T ]. The total strength
of these negative i-waves is bounded by the decrease in the interaction potential Q.
The last term on the right hand side of (3.13) tends to zero as ǫ does and comes
from the difference between Q(u) and Qh(u): in the latter there are no non-physical
fronts and all the countable h-Riemann problems are solved (whereas before only
zero-waves inside the interval (−1/ǫ, 1/ǫ) were considered).
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Altogether, (3.12) and (3.13) yield

(3.14) µi+
T (]a, b[) ≤ C′′

(

b − a

T
+ (N + 1)r(ǫ) + [Qh(u(0)) − Qh(u(T ))]

)

for some constant C′′ independent of ǫ.
IV. For h > 0 fixed, we now consider a sequence of ǫν , h-approximate solutions

satisfying the properties (i) − (iv) stated at the beginning of this section. It is
clearly not restrictive to take C′′ ≥ Co in (3.14), where Co is the (big) constant in
Theorem 2.1. Using (2.8), (2.10), (3.14), (3.1) and (3.2) we obtain

µi+
T (]a, b[)

≤ lim inf
ν→∞

(

µi+
ν,T (]a, b[) + C′′Qh(uν(T ))

)

− C′′Qh(u(T ))

≤ C′′ · lim inf
ν→∞

(

b − a

T
+ (Nν + 1)r(ǫ) + Qh(uν(0))

)

− C′′Qh(u(T ))

≤ C′′ ·
b − a

T
+ C′′

[

Qh(u(0)) − Qh(u(T ))
]

≤ C′′ ·
b − a

T
+ C′′

[

Q(u(0)) − Q(u(T )) + ‖ω‖L1 ·V(u(0))
]

.

Since the last term is independent of h this proves (1.7) in case J is an open interval.
The same arguments can be used in the case where J is a finite collection of open
intervals. Since µi is a bounded Radon measure, the estimate (1.7) holds for every
Borel set J and we are done. �

4. A short comment

All these computations heavily rely on the restrictive assumption that the source
term is dominated by a function ω ∈ L1(IR) (the L∞(IR) bound being just a
consequence of the smoothness of g). In the case of a convex scalar law, [11],

ut + f(u)x = g(u), uo ∈ L1 ∩BV(IR),

the stability of the approximation procedure for (1.3) can be obtained requiring
only ω ∈ L∞(IR). Hence one can follow the same canvas and (3.4) simplifies a lot
thanks to the obvious bound K(t) ≤ ‖ω‖L∞m(t). Thus (3.9) boils down to

ṁ(t) + ‖ω‖L∞m(t) ≥ M(T ),

which leads in sharp contrast to an exponential bound of the type (µ1 = ux):

(4.1) µ1+
t (J) ≤ Ce‖ω‖L∞ t ·

meas(J)

t
, t > 0.

This agrees of course with simple computations, since in this context Olĕınik’s
estimates can be derived from the Riccati differential equation:

zt − g′(u)z + f ′′(u)z2 = 0, z(0) = sup
IR

{

max
(

0, (uo)x

)

}

∈ ĪR.

Therefore one recovers (4.1) in the case C = 1/κ and ω ≡ Lip(g) since we have:

z(t) =
eLip(g).t

1
z(0) + κ

(

eLip(g).t−1
Lip(g)

) ≤
eLip(g).t

κt
, t > 0.

All in all, the L1(IR) bound on ω expresses somehow the fact that the source
has negligible effects outside a compact interval in IR as pointed out in [8] p.329.
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Hence, by the strict hyperbolicity ensured by (1.4)–(3.6), waves exit this region
after some time and then are ruled only by the convective process.
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