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Conservative linear equations arise in many areas of application, including continuum mechanics or high-frequency geometrical optics approximations. This kind of equations admits most of the time solutions which are only bounded measures in the space variable known as duality solutions. In this paper, we study the convergence of a class of nitedi erences numerical schemes and introduce an appropriate concept of consistency with the continuous problem. Some basic examples including computational results are also supplied.

Introduction

This paper is devoted to rather general numerical approximations of the following linear conservation equation: @ t + @ x (a ) = 0 for (t; x) 2 ]0; T R;

(0; :) = 0 2 M loc (R);

(1) when the coe cient a satis es a 2 L 1 (]0; T R); @ x a in ]0; T R; 2 L 1 (]0; T ):

(2)

We shall also consider brie y the corresponding transport equation @ t u + a@ x u = 0 for (t; x) 2 ]0; T R; u(0; :) = u 0 2 BV loc (R):

(

This kind of equations is encountered for example in the eld of non linear hyperbolic systems. The transport equation appears in the context of nonconservative products involved for instance in multispecies chemical reacting models, and in several numerical methods for hyperbolic systems (see e.g. 9, 20]). The conservation equation arises when considering systems with measure-valued solutions, see for instance [START_REF] James | Convergence results for the ux identi cation in a scalar conservation law[END_REF][START_REF] Larrouturou | How to preserve the mass fractions positivity when computing multicomponent ows[END_REF][START_REF] Tadmor | Local Error Estimates for Discontinuous Solutions of Nonlinear Hyperbolic Equations[END_REF]. Another eld of application is the so-called pressureless gases model: 1, 10, [START_REF] Godlewski | On the linearization of hyperbolic systems of conservation laws. Application to stability[END_REF][START_REF] Bouchut | One-dimensional transport equations with discontinuous coecients[END_REF][START_REF] Bouchut | Solutions en dualit e pour les gaz sans pression[END_REF]. Equation (1) appears also explicitly when linearizing a nonlinear hyperbolic equation @ t u + @ x f(u) = 0 [START_REF] Bouchut | One-dimensional transport equations with discontinuous coecients[END_REF] with respect to the initial data or the ux f. Concerning the rst case, we refer to the numerical application by Olazabal 24], where a 2-dimensional perturbation of a 1-dimensional shock is studied (see also [START_REF] Engquist | Multi-phase computations in geometrical optics[END_REF]). A simpli ed model for this is the linearized equation @ t + @ x f 0 (u) ] = 0;

(5) and we refer to 6] for a theoretical study of this problem when f is convex. In the context of the ux identi cation for convex scalar conservation laws, we obtain the same equation, with a measure-valued right-hand side. We refer to 18], where the adopted point of view is very close to the one in this paper. One may consider also the high-frequency geometrical optics approximations for the twodimensional Helmholtz equation in a non-homogeneous medium. If one looks for planar wave solutions in the form A(x; y)e i!'(x;y) , where A is the amplitude, ! the time frequency, and ' the phase of the wave, then ' satis es a steady eikonal equation with a source term on the right-hand side and the \energy" Ã = A 2 =2 might be sought as the solution of div x;y ( Ã r') = 0 (cf [START_REF] Rykov | Generalized Variational Principles, Global Weak Solutions and Behavior with Random Initial Data for Systems of Conservation Laws Arising in Adhesion Particle Dynamics[END_REF]12]).

Most of the numerical approximations one can get for this stationary problem are obtained by a time dependant scheme iterated up to the convergence. The following one-dimensional equation can therefore be considered as a simpli ed model for this process: @ t à + @ x (@ x ' Ã) = 0: [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness[END_REF] Since ' is usually de ned in the sense of the viscosity theory 23], it is only endowed with a Lipschitz smoothness in space. This matches the context in which we propose our work.

An appropriate theoretical framework for (1) has been recently introduced by Bouchut and James 2, 3] (see also Poupaud and Rascle 26] for another approach in the multidimensional case). It turns out that, in most of the cases, is a measure in the space variable. So, because of the very low regularity imposed on the coe cient a, one cannot treat a priori this Cauchy problem in the theory of distributions. One way out is to understand the solution of (1) in the duality sense. For this purpose, it will be useful to write down the dual problem @ t p + a@ x p = 0; (t; x) 2 ]0; T R; p(T; :) = p T 2 Lip(R) with compact support: [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] It is known that this backward problem admits a Lipschitz continuous solution under condition (2), and this fact has been already used to obtain uniqueness for (4) (see [START_REF]R esolution num erique du syst eme des perturbations lin eaires d'un ecoulement MHD[END_REF][START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF][START_REF] Grenier | Existence globale pour le syst eme des gaz sans pression C[END_REF][START_REF] Tadmor | Numerical viscosity and the entropy condition for conservative di erence schemes[END_REF][START_REF] Lefloch | An existence and uniqueness result for two nonstrictly hyperbolic systems, Nonlinear evolution equations that change type[END_REF]). The point is that there is no uniqueness for [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF], and one of the main results in 2, 3] is to characterize a class of solutions, known as reversible solutions, for which existence and uniqueness hold. The duality solution of (1) is then the unique element of the space C( 0; T]; M loc (R)) satisfying for all reversible p's d dt Z R p(t; x) (t; dx) = 0:

A similar notion can be introduced for (3). Equipped with this characterization, it is therefore possible to give a precise interpretation of the ambiguous product (a ) in the distributional framework.

We want now to make more precise what we mean by numerical approximation of (1). We consider for K 2 N conservative algorithms of the type:

8 > > > > > > > < > > > > > > > : n+1 j = n j ? t x < A n j+ 1 2 ; ~ n j+ 1 2 > R 2K ? < A n j? 1 2 ; ~ n j? 1 2 > R 2K ~ n j+ 1 2
= ( n j?K+1 ; :::

; n j+K ) 2 R 2K
A n j+ 1 2 = (a n j+ 1 2 ;?K+1 ; :::; a n j+ 1

2 ;K ) 2 R 2K (9) 
where n j and A n j+ 1 2 denote respectively some approximations of (n t; j x) and a(n t; j x).

At this numerical level, the main di culty is to handle the lack of a priori estimates satis ed by [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF]. Consequently, most of the work is done estimating what we called the dual scheme which is obtained by a summation by parts (as it is done for the continuous equations). Because of the smoothness of the reversible solutions of [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF], it seems more hopeful to seek strong properties such as BV , L 1 or Lipschitz-like bounds for these backward approximations. We prove that, under some CFL-type conditions on the space-time grid, we have compactness results and convergence towards the reversible solution associated to every smooth nal data. Moreover, property ( 8) is automatically enforced by the de nition of our dual scheme. Finally, as a consequence of the conservative character of (9), we have also a uniform bound on the total mass of the approximate solution of (1). Putting all these arguments together gives easily the expected convergence result towards the duality solution of the problem (1). Consequently, this paper is organized as follows: in Section 2, we recall the speci c characterizations of duality solutions for (1) and (3), with the existence and uniqueness results. We present also the derivation of the universal representative â of a, which gives a meaning to the product a in the distribution theory. In Section 3, we develop our theory for conservative (2K + 1)-points schemes for (1) and (3). We de ne the associated dual scheme and analyse its behaviour by checking the sign of some appropriate coe cients. The cornerstone of our convergence proofs are some positivity requirements for these coe cients, which give bounds on the amplitude and the total variation of the approximations, as well as monotonicity and monotonicity preserving properties, together with a convenient notion of weak consistency with the time-continuous equation (1). In Section 4, we use these general results to establish the convergence of some very classical numerical schemes developed in the context of scalar conservation laws belonging to the Lax-Friedrichs (LxF) and upwind families. Finally, in Section 5, we present some numerical computations obtained with three-points schemes taken from both these classes.

Some features about duality solutions

In this section we recall the de nitions of the duality solutions to the direct problems (1) and (3), introduced by Bouchut and James 2, 3]. As mentioned before, a key tool is the adjoint equation, [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] for the conservative case, and @ t + @ x (a ) = 0; (t; x) 2 ]0; T R (T; :) = T 2 L 1 loc (R) [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF] for the transport equation. We rst introduce the notion of reversible solutions to the backward problems ( 7) and [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF]. Since one of the aims of this paper is to characterize the approximations of (1) and ( 3) for which the afore mentioned dual scheme mimics these properties, we state precisely the most important properties of these solutions. Next, we give the de nitions and fundamental properties of duality solutions.

In all Section 2 we consider a coe cient a 2 L 1 ( ), =]0; T R, satisfying the one-sided Lipschitz condition (2). Notice that (2) actually implies some regularity on a: indeed for almost every t 2]0; T , a(t; :) 2 BV loc (R) and for any x 1 < x 2 TV x 1 ;x 2 ] (a(t; :)) 2 (j (t)j(x 2 ? x 1 ) + kak L 1 ) :

(11) Following 3], we introduce the following four spaces: S M = C( 0; T]; M loc (R) ? (M loc (R); C c (R))); S Lip = Lip loc ( 0; T] R); S BV = C( 0; T]; L 1 loc (R)) \ B( 0; T]; BV loc (R)); S L 1 = C( 0; T]; L 1 loc (R) ? (L 1 loc (R); L 1 c (R))): (12) We are here interested in solutions p 2 S Lip to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF], 2 S M to (1) and to solutions 2 S L 1 to [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF], u 2 S BV to [START_REF] Bouchut | Equations de transport unidimensionnelles a coe cients discontinus[END_REF].

Detailed proofs of all the theorems in this section are to be found in 3].

Reversible solutions of the dual backward problems

We shall denote by L the space of Lipschitz solutions to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF]. The key problem here is that there is no uniqueness for solutions in this class, as is it evidenced by the following example (Conway 8]). Consider a(x) = ? sgn(x). Then any solution to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] is of the following form: p(t; x) = p T (x ? (T ? t) sgn x) if T ? t jxj, h(T ? t ? jxj) if T ? t jxj, [START_REF] Engquist | Finite di erence methods for geometrical optics and related nonlinear PDEs approximating the high frequency Helmoltz equation[END_REF] for some h 2 Lip( 0; T]) such that h(0) = p T (0). Notice that there is a \canonical choice" for the above h, namely h p T (0). If p T has a nite total variation, then it is preserved for this solution. Motivated by these observations, we introduce the following de nition.

De nition 1 (reversible solutions) (i) We call exceptional solution any function p e 2 L such that p e (T; :) = 0. We denote by E the vector space of exceptional solutions.

(ii) We call domain of support of exceptional solutions the open set V e = n (t; x) 2 ; 9 p e 2 E; p e (t; x) 6 = 0 o :

(iii) Any p 2 L is called reversible if p is locally constant in V e . The vector space of reversible solutions to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] will be denoted by R.

In the preceding example, the exceptional solutions are given by p e (t; x) = h((T ? t ? jxj) + ) with h 2 Lip( 0; T]), h(0) = 0, and we have V e = f(t; x) 2 ; jxj < T ? tg. Theorem 1 (backward Cauchy problem) Let p T 2 Lip loc (R). Then there exists a unique p 2 L reversible solution to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] such that p(T; :) = p T . This solution satis es for any x 1 < x 2 and t 2 0; T] kp(t; :)k L 1 (I) kp T k L 1 (J) ; [START_REF] Engquist | Stable and entropy satisfying approximations for transonic ow calculations[END_REF] k@ x p(t; :)k L 1 (I) e T R t (s):ds k@ x p T k L 1 (J) ; [START_REF] Engquist | Multi-phase computations in geometrical optics[END_REF] with I =]x 1 ; x 2 and J =]x 1 ?kak 1 (T ?t); x 2 +kak 1 (T ?t) . Moreover, @ x p(t; :) 0 if @ x p T 0.

Equipped with this class of solutions, we shall be able now to give a precise meaning to the formal de nition given by [START_REF] Brenier | The discrete one-sided Lipschitz condition for convex scalar conservation laws[END_REF]. But before that, we state some very important properties of reversible solutions. First, more handable characterizations of reversible solutions are given by their speci c behaviour with respect to monotonicity and total variation properties, which are of course related.

Theorem 2 Let p 2 L. p is reversible if and only if there exists p 1 , p 2 2 L such that @ x p 1 0, @ x p 2 0 and p = p 1 ? p 2 .

Next, another important feature of reversible solutions is the following stability result with respect to perturbations of the coe cient and nal data.

Theorem 3 (stability) Let (a n ) be a bounded sequence in L 1 ( ), with a n * a in L 1 ( )?w?.

Assume @ x a n n (t), where ( n ) is bounded in L 1 (]0; T ), @ x a 2 L 1 (]0; T ). Let (p T n ) be a bounded sequence in Lip loc (R), p T n ! p T , and denote by p n the reversible solution to @ t p n + a n @ x p n = 0 in ; p n (T; :) = p T n : Then p n ! p in C( 0; T] ?R; R]) for any R > 0, where p is the reversible solution to @ t p + a@ x p = 0 in ; p(T; :) = p T :

We turn now to the resolution of [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF]. The following de nition and properties actually follow by di erentiating the reversible solutions of [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF]. More precisely, if 2 S L 1 solves [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF], there exists a unique (up to an additive constant) p 2 S Lip which solves [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] (see Lemma 2.2.1 in 3]).

Thus we can state the following de nition.

De nition 2 We say that 2 S L 1 solving ( 10) is a reversible solution if the corresponding p is reversible.

The reversible conservative solutions therefore enjoy the following properties.

Theorem 4 (Conservative reversible solutions) The following three properties are equivalent for 2 S L 1 solution to [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF].

(i) is reversible, (ii) = 0 in V e , (iii) = 1 ? 2 , for some i 2 S L 1 solutions to (10), such that i 0.

From the existence and uniqueness theorem 1 for the nonconservative Cauchy problem, we have immediately Theorem 5 (Conservative backward Cauchy problem) Let T 2 L 1 loc (R). Then there exists a unique 2 S L 1 reversible solution to [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF] such that (T; :) = T . This solution satis es for any x 1 < x 2 and t 2 0; T] k (t; :)k L 1 (I) e R T t k T k L 1 (J) ; where I =]x 1 ; x 2 and J =]x 1 ? kak 1 (T ? t); x 2 + kak 1 (T ? t) . Moreover, 0 if T 0.

Duality solutions

Without any further comment, we turn to the forward problem (1), and state the following De nition 3 (conservative duality solutions) We say that 2 S M is a duality solution to

(1) if for any 0 < T, and any reversible solution p to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF] with compact support in x, the function t 7 ! Z R p(t; x) (t; dx) is constant on 0; ]. Theorem 6 (forward conservative Cauchy problem) Given 0 2 M loc (R), there exists a unique 2 S M duality solution to (1), such that (0; :) = 0 . This solution satis es for any x 1 < x 2 and t 2 0; T] Z x 1 ;x 2 ] j (t; dx)j Z x 1 ?kak1t;x 2 +kak1t] j 0 (dx)j: [START_REF] Godlewski | On the linearization of hyperbolic systems of conservation laws. Application to stability[END_REF] Moreover, t 7 ! Z R j (t; dx)j is nonincreasing on 0; T].

Once again, the similar notion of duality solution for the transport equation (3) follows by analogy to the conservative case.

De nition 4 (nonconservative duality solutions) We say that u 2 S BV is a duality solution to (3) if for any 0 < T, and any reversible solution to [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF] with compact support in x, the function t 7 ! Z R (t; x)u(t; x) dx is constant on 0; ].

Theorem 7 (forward nonconservative Cauchy problem) Given u 0 2 BV (R), there exists a unique u 2 S BV duality solution to (3), such that u(0; :) = u 0 . This solution satis es for any x 1 < x 2 and t 2 0; T] TV I (u(t; :)) TV J (u 0 ); [START_REF] Grenier | Existence globale pour le syst eme des gaz sans pression C[END_REF] ku(t; :)k L 1 (I) ku 0 k L 1 (J) ; [START_REF] Ho | The Sharp Form of Oleinik's Entropy Condition in Several Space Variables[END_REF] with I =]x 1 ; x 2 and J =]x 1 ? kak 1 t; x 2 + kak 1 t . Moreover, u 2 Lip( 0; T]; L 1 loc (R)).

Notice that the formal result which allows formally to pass from the conservative equation (1) to the nonconservative one (3) by integration holds true in the duality sense. More precisely, we have the following proposition, which will be useful in the sequel.

Proposition 1 (i) Let u 2 S BV be a duality solution to @ t u + a@ x u = 0. Then = @ x u 2 S M is a duality solution to @ t + @ x (a ) = 0. (ii) Let 2 S M be a duality solution to @ t + @ x (a ) = 0. Then there exists u 2 S BV duality solution to @ t u+a@ x u = 0, such that = @ x u. Moreover, u is unique up to an additive constant.

Up to now, the major drawback of duality solutions is that they are not de ned as distributional solutions, since the product a or a@ x u is not de ned. The purpose of the next section is to give some indications about that, and to state a stability result with respect to perturbations of a and initial data, which is an important feature of duality solutions.

De nition of the (a ) product and stability

First we have to introduce a notion of ux, which de nes the product a in a rather simple way, through the equation.

De nition 5 (Generalized ux) Let 2 S M be a duality solution to (1). We de ne the ux corresponding to by a = ?@ t u; [START_REF] James | Convergence results for the ux identi cation in a scalar conservation law[END_REF] where = @ x u and u 2 S BV is a duality solution to the nonconservative problem (cf Proposition 1(ii)). We have therefore @ t + @ x (a ) = 0 in D 0 ( ): [START_REF] Kranzer | A Strictly Hyperbolic System of Conservation Laws Admitting Singular Shocks, Nonlinear Evolution Equations that Change Type[END_REF] The application 7 ! a is of course linear, and since u 2 Lip( 0; T]; L 1 loc (R)), one can prove that a 2 L 1 (]0; T ; M loc (R)), and for any x 1 < x 2 , ka k L 1 (]0;T ;M(]x 1 ;x 2 )) kak 1 Z ]x 1 ?kak1T;x 2 +kak1T j (0; dx)j:

The following stability theorem is a consequence of Proposition 1 and Theorem 3.

Theorem 8 (Weak stability) Let (a n ) be a bounded sequence in L 1 (]0; T R), with a n ! a in L 1 (]0; T R) ? w . Assume @ x a n n (t), where ( n ) is bounded in L 1 (]0; T ), @ x a 2 L 1 (]0; T ). Consider a sequence ( n ) 2 S M of duality solutions to @ t n + @ x (a n n ) = 0 in ; such that n (0; :) is bounded in M loc (R), and n (0; :) * 0 2 M loc (R).

Then n ! in S M , where 2 S M is the duality solution to @ t + @ x (a ) = 0 in ; (0; :) = 0 : Moreover, a n n * a weakly in M loc ( ).

As it stands, the de nition of the ux depends on the solution we consider, and thus is not completely satisfactory. We have actually the following result, which is proved through the study of the backward ow associated to (1). The proof is much more delicate than the previous result, in particular for the last assertion of the theorem.

Theorem 9 (Universal representative) There exists a bounded Borel function b a :]0; T R ! R such that for any conservative duality solution , one has a = b a : [START_REF] Larrouturou | How to preserve the mass fractions positivity when computing multicomponent ows[END_REF] We call such a function a universal representative of a.

Moreover, one can choose b a such that a.e. t 2]0; T ; 8x 2 R; b a(t; x) 2 a(t; x+); a(t; x?)] : [START_REF] Lefloch | An existence and uniqueness result for two nonstrictly hyperbolic systems, Nonlinear evolution equations that change type[END_REF] In particular, we have b a(t; x) = a(t; x) = a(t; x+) = a(t; x?) a.e. in ]0; T R: [START_REF] Lefloch | Uniqueness via the Adjoint Problems for Systems of Conservation Laws[END_REF] 3 Numerical approximation

Some conservative linear numerical schemes

Starting from here, we introduce a uniform grid de ned by the two parameters x and t denoting respectively the mesh-size and the time-step. As usual, the parameter will refer to t= x, and we shall write for short ! 0 when t; x ! 0 with a xed . Moreover, the following notations will be of constant use in the sequel:

8j 2 Z; 0 j = 1 x Z R 1 (j? 1 2 ) x;(j+ 1 2 ) x (x)d 0 (x):
The aim of this work is to derive numerical algorithms able to compute a sequence ( n j ) n2N j2Z of approximations of local averages: 8(j; n) 2 (Z N ); n j ' 1 x Z R 1 (j? 1 2 ) x;(j+ 1 2 ) x (x) (n t; dx): We will also frequently use the vectors ~ n j+ 1 2 and A n j+ 1 2 in R 2K introduced in (9). In the whole section, the notation a n j will stand for an approximation of the coe cient a which can vary from one scheme to another. The letter N will also stand for the quantity T= t. We give at once several examples directly inspired by standard algorithms used in the context of scalar conservation laws.

Lax-Friedrichs type schemes. A sequence of nonnegative viscosity coe cients " n j+ 1 2 being given, this class of schemes writes n+1 j = n j ? 1 2 (a n j+1 n j+1 ? a n j?1 n j?1 ) ? 1 2 h " n j+ 1 2 ( n j+1 ? n j ) ? " n j? 1 2 ( n j ? n j?1 ) i : [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] In this case, we have

A n j+ 1 2 = 1 2 a n j +
" n j+ 1 2 ; a n j+1 ? " n j+ 1 2 ! :

The classical LxF scheme corresponds to the constant value " n j+ 1 2 1. For the case where " n j+ 1 2 1 2 , we get the modi ed \ a la Tadmor" version 27]. Notice that, for this kind of schemes,

we have K = 1, but more than three points may be involved through the viscosity coe cients " n j+ 1 2

.

Upwind type schemes. We rst de ne for each z 2 R its positive and negative parts:

z + = max(0; z); z ? = min(z; 0):

We introduce the following discretization: n+1 j = n j ? h (a n j+ 1

2 ) + n j ? (a n j? 1

2 ) + n j?1 )] + (a n j+ 1

2 ) ? n j+1 ? (a n j? 1

2 ) ? n j ] i : [START_REF]R esolution num erique du syst eme des perturbations lin eaires d'un ecoulement MHD[END_REF] In this case, we have

A n j+ 1 2 = (a n j+ 1 2 ) + ; (a n j+ 1 
2 ) ? : We will present in Section 4 some possible choices for the values a n j+ 1 2

. Notice that we can rewrite the scheme [START_REF]R esolution num erique du syst eme des perturbations lin eaires d'un ecoulement MHD[END_REF] in the following form:

n+1 j = n j ? h (a n j+ 1
2 ) ? ( n j+1 ? n j ) + (a n j+ 1 2 ) + ( n j ? n j?1 ) + (a n j+ 1 2 ? a n j? 1 2 ) n j i ; which appears as a natural upwind discretization of @ t + a@ x + @ x a = 0:

Remark 1 We would like to emphasize that the approximation of a (namely, the choice of the vector A n j+ 1 2

) may not be totally arbitrary. For instance, concerning the linearized equation ( 5), it depends on the approximation used for (4). In the geometrical optics setting, [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness[END_REF], it is given by a discretization of @ x ', which is de nitely not straightforward to choose.

Working out the associated dual scheme

An important tool for the study of the numerical schemes for (1) is the dual algorithm.

De nition 6 For every direct scheme [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF] operating on ( n j ) 0 n N j2Z , we de ne the dual scheme as the relation operating on the real-valued sequence (p n j ) 0 n N j2Z and satisfying the formal equality: 

This equality is of course the discrete analogue of (8) which characterizes the duality solutions of (1). Now, we detail the structure of this dual scheme: by its de nition, we have X j2Z n?1 j p n j ? (< A n?1 j+ 1 2

; ~ n?1 j+ 1 2 > R 2K ? < A n?1 j? 1 2

; ~ n?1 j? 1 2 > R 2K ) ? n?1 j p n?1 j = 0:

A summation by parts gives therefore X j2Z p n j < A n?1 j+ 1 2 ; ~ n?1

j+ 1 2 > R 2K = X j2Z K X k=?K+1
p n j a n?1 j+ 1 2

;k n?1 j+k = X j2Z K X k=?K+1
p n j?k a n?1 j?k+ 1 2 ;k n?1 j ; so that, for 1 n N, we get X j2Z n?1 j " p n j ? K X k=?K+1

a n?1 j?k+ 1 2 ;k (p n j?k ? p n j?k+1 ) ? p n?1 j # = 0:

That gives the expression of the dual scheme:

p n?1 j = p n j ? K X k=?K+1

a n?1 j?k+ 1 2 ;k (p n j?k ? p n j?k+1 ):

(29)

Expressions ( 27) and ( 28) imply respectively the two discrete weak formulations: X j2Z p 0 j 0 j + N?1 X n=1 X j2Z p n+1 j h n+1 j ? n j + (< A n j+ 1 2 ; ~ n j+ 1 2 > R 2K ? < A n j? 1 2 ; ~ n j? 1

2 > R 2K ) i = 0; and N?1 X n=0 X j2Z n j " p n j ? p n+1 j + K X k=?K+1
a n j?k+ 1 2 ;k (p n+1 j?k ? p n+1 j?k+1 ) # :

At this point, it is convenient to introduce some other notations. We rst rewrite the scheme [START_REF] Tadmor | Local Error Estimates for Discontinuous Solutions of Nonlinear Hyperbolic Equations[END_REF] in order to emphasize boundedness and monotonicity. Let us introduce the following coe cients:

B n j;k = (a n j?k? 1 2 ;k+1 ? a n j?k+ 1 2 ;k ); k 6 2 f?K; 0; Kg B n j;?K = a n j+K? 1 2 ;?K+1 B n j;K = ? a n j?K+ 1 2 ;K B n j;0 = 1 + (a n j? 1 2 ;1 ? a n j+ 1

2 ;0 ) (30) 
We notice that by construction

8(j; n) 2 Z N; K X k=?K B n j;k = 1; (31) 
and that ( 29) is equivalent to p n?1 j = K X k=?K B n?1 j;k p n j?k :

(32)

Next, to study the TVD and monotonicity preservation properties of the scheme, we introduce p n j+ 1 2 = p n j+1 ? p n j ;

and another set of coe cients, namely C n j;k = (a n j?k+ 1 2 ;k+1 ? a n j?k+ 1 2 ;k ); k 6 2 f?K; 0; Kg C n j;?K = a n j+K+ 1 2 ;?K+1 C n j;K = ? a n j?K+ 1 2 ;K C n j;0 = 1 + (a n j+ 1

2 ;1 ? a n j+ 1

2 ;0 ) (33) 
for which we have

8(j; n) 2 Z N; K X k=?K C n j+k;k = 1: (34) 
Notice that the coe cients B n j;k and C n j;k satisfy C n j;k = B n j;k + (a n j?k+ 1 2 ;k+1 ? a n j?k? 1 2 ;k+1 ); for ? K k K ? 1; C n j;K = B n j;K :

Writing [START_REF] Tadmor | Local Error Estimates for Discontinuous Solutions of Nonlinear Hyperbolic Equations[END_REF] for the indexes j and j + 1, and making the di erence, we obtain p n?1 j+ 1 2 = K X k=?K C n?1 j;k p n j?k+ 1 2 :

(36)

Coe cients B n j;k and C n j;k characterize various stability properties for the adjoint scheme [START_REF] Tadmor | Local Error Estimates for Discontinuous Solutions of Nonlinear Hyperbolic Equations[END_REF], which are given in the following two lemmas.

Lemma 1 Assume that the coe cients a n j+ 1 2 ;k introduced in (9) are uniformly bounded, and that 8(j; n) 2 Z N; B n j;k 0:

(37)

Then the following estimates hold for all n 2 f0; : : : ; N ? 1g: sup j2Z jp n j j sup j2Z jp N j j;

(38) 8 J > 0; X jjj J jp n?1 j ? p n j j C X jjj J jp n j ? p n j?1 j:

(39)

Moreover, the scheme ( 29) is monotone.

Proof. Because of the formulation (32), the uniform bound on the size of the p n j is a straightforward consequence of relation (31) and the sign requirement (37). Now, for the equicontinuity in time, we notice that jp n?1 j ? p n j j = K X k=?K B n?1 j;k p n j?k ?

K X k=?K B n?1 j;k ! p n j K X k=?K
B n?1 j;k jp n j?k ? p n j j:

We use now the standard triangular inequalities:

( k > 0 : jp n j?k ? p n j j P k l=1 jp n j?l+1 ? p n j?l j k < 0 : jp n j?k ? p n j j P k?1 l=0 jp n j?l+1 ? p n j?l j We plug this in the time variation expression and switch the j and l indices to get: X jjj J jp n?1 j ? p n j j ?1

X k=?K k?1 X l=0 X jjj J B n?1 j+l;k jp n j+1 ? p n j j + K X k=1 k X l=1 X jjj J
B n?1 j+l;k jp n j+1 ? p n j j:

We move now the sum over the j's: X jjj J jp n?1 j ? p n j j X jjj J ?K+1 X l=0 ?1

X k=?K B n?1 j+l;k + K X l=1 K X k=l B n?1 j+l;k ! jp n j+1 ? p n j j X jjj J ?K+1 X l=0 a n?1 j+ 1 2 ;l ? K X l=1
a n?1 j+ 1 2 ;l ! jp n j+1 ? p n j j:

Finally, this gives: X jjj J jp n?1 j ? p n j j 2K sup k;j;n ja n j+ 1 2 ;k j X jjj J jp n j+1 ? p n j j:

Concerning monotonicity, we introduce the operator H : R 2K ! R such that: p n?1 j = H(p n j?K ; p n j?K+1 ; :::; p n j+K ) Then, the partial derivatives of H are just given by the B n j;k coe cients. Consequently, H is a monotone increasing function of each of its arguments under requirement (37). 2 Lemma 2 Assume that the coe cients a n j+ 1 2 ;k are uniformly bounded and that 8(j; n) 2 Z N; B n j;k 0; C n j;k 0: (40)

Then in addition to properties of Lemma 1, the dual scheme (29) satis es the backward TVD estimate X j2Z jp n j+1 ? p n j j X j2Z jp N j+1 ? p N j j;

(41) and preserves monotonicity.

Proof. The TVD property follows easily from the formulation (36), (34) and the sign requirement (40). Moreover, if we assume that each p n j+ 1 2 0, then the formulation (36) implies that p n?1 j+ 1 2 0 as a convex combination of some positive quantities. This proves the two announced statements. 2

Remark 2 All the properties in Lemmas 1 and 2 are discrete analogues of those of reversible solutions. Schemes satisfying only (37) do not enjoy all the properties, in particular they lack the monotonicity preservation.

Notion of consistency and convergence

We turn now to the de nition of a notion of consistency for our schemes. Let us denote by ; p the piecewise constant functions de ned for all (t; x) respectively by n j , and p n j on each cell T n j def = n t; (n + 1) t (j ? 1 2 ) x; (j + 1 2 ) x :

We de ne also the following vector-valued function:

A = (a k ) k=?K+1;:::;K : 0; T] R ! R 2K (t; x) 7 ! A n j+ 1 2 for (t; x) 2 T n j ;

(42) and we assume that, for a given p T 2 Lip(R), the discretization (p N j ) j2Z satis es sup j2Z j p N j+ 1 2 j x Lip(p T ):

(43) This is achieved for instance by taking the local averages of p T on cells. Finally, we shall need the functions a and b de ned for (x; t) 2 T n j by

a (t; x) = K X k=?K+1 a k (t; x); b (t; x) = 1 x K X k=?K+1
a k (t; x + (k ? 1) x) ? a k (t; x + (k ? 2) x) :

(44)

We can state now the most important de nition:

De nition 7 The scheme ( 9) is said to be weakly consistent with the continuous equation

(1) if the coe cients a n j+ 1 2 ;k are uniformly bounded and (i) a * a in L 1 ? w ? as ! 0;

(ii) for each , there exists 2 L 1 (]0; T ), with k k 1 C uniformly in , such that b (t; :) (t) for a.e. t 2]0; T .

These assumptions are the discrete analogues of those in the stability result for reversible solutions (Theorem 3). From assertion (i) it follows by an easy computation that b ! @ x a in the sense of distributions. Assumption (ii) allows to precise this convergence: provided a satis es (2), we have actually b ! @ x a for the weak topology of measures. This leads to the weak consistency for the backward problem and therefore to the following result.

Theorem 10 Let p T be a Lipschitz continuous function with Lipschitz constant Lip(p T ). Assume that the adjoint scheme is consistent and satis es the positivity requirements (40). Then the sequence (p ) converges as ! 0 in the strong topology of L 1 loc ( ) and almost everywhere towards the reversible solution of the problem [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF].

Proof. We begin by a discrete analogue of the Lipschitz estimate [START_REF] Engquist | Multi-phase computations in geometrical optics[END_REF]. From (36) and the non negativity of the C n?1 j;k 's, it follows

j p n?1 j+ 1 2 j K X k=?K C n?1 j;k j p n j?k+ 1 2 j M n K K X k=?K C n?1 j;k ;
where for q 2 N, M n q sup ?q k q j p n j?k+ 1 2 j. Using now ( 35) and (37), we have j p n?1 j+ 1 2 j 1 + K?1 X k=?K (a n?1 j?k+ 1 2 ;k+1 ? a n?1 j?k? 1

2 ;k+1 ) ! M n K :
Going back to the de nitions of a k and b , the preceding inequality rewrites j p n?1

j+ 1 2 j 1 + t Z t n t n?1 Z R b (t; x)1 ]x j? 1 2 ;x j+ 1 2 (x)dx dt M n K :
Assumption (ii) in De nition 7 gives therefore after an immediate induction j p n?1

j+ 1 2 j 1 + Z t n t n?1 (t)dt M n K N Y q=n?1 1 + Z t q t q?1 (t)dt M N (N?n+1)K :
But Q N q=n?1 1 + R t q t q?1 (t)dt e R t N t n?1 (t)dt e C by the consistency assumption (ii). Thus we obtain the desired estimate: if Q > 0 is a given integer, sup

?Q j Q 1 x j p n?1 j+ 1 2 j e C sup ?Q?(N?n+1)K ` Q+(N?n+1)K?1 j p N j?`+ 1 2 j x : (45)
Letting ! 0, N ! +1 and lim n Q q 1 + R t q t q?1 (t)dt = e R (t)dt , so that we recover at the limit an analogue of [START_REF] Engquist | Multi-phase computations in geometrical optics[END_REF]. Thus, provided the sequence (p n j ) converges, its limit is Lipschitz continuous.

We turn now to relative compactness. The former estimate readily gives, for any given a < b, kp (t; :) ? p (t; : + x)k L 1 (]a;b ) x(b ? a)e C Lip(p T ):

In the same way, we get from (39) kp (t; :) ? p (t + t; :)k L 1 (]a;b ) x t(b ? a)e C Lip(p T ):

Thus the sequence (p ) is relatively compact in L 1 loc ( ), so we have convergence, up to a subsequence, to some p which is Lipschitz continuous. Next, p solves the backward equation. Indeed, if p t = p n j ? p n?1 j t for (t; x) 2 T n j ; it follows from the de nition of the adjoint scheme and (45) that p t is bounded in L 1 , so p t * @ t p in L 1 ? w?. Then, we have K X k=?K+1 a n?1 j?k+ 1 2 ;k p n j?k ? p n j?k?1 x = K X k=?K+1

a n?1 j?k+ 1 2 ;k p n j?k ? K X k=?K+1

a n?1 j?k? 1 2 ;k p n j?k?1 x ? K X k=?K+1 a n?1 j?k+ 1 2 ;k ? a n?1 j?k? 1 2 ;k x p n j?k?1 (46) Setting (ap) = P j;n P K k=?K+1 a n?1 j?k+ 1 2 ;k p n j?k 1 T n j , we rewrite the rst term in the right-hand side of ( 46) as (ap) (t; x)?(ap) (t; x? x)]= x, which converges to @ x (ap) provided (ap) * ap. But

(ap) (t; x) = K X k=?K+1
a n?1 j?k+ 1 2 ;k p n j?k + K X k=?K+1

a n?1 j?k+ 1 2 ;k (p n j?k ? p n j ) for (t; x) 2 T n j

The rst term tends to ap in D 0 by the consistency assumption on a and the bounds on p , the second tends to 0 because of the Lipschitz estimate jp n j?k ? p n j j K x e C Lip(p T );

(47) and the boundedness of a n?1 j?k+ 1 2 ;k . The same trick allows us to rewrite the second term in (46) as (b p )(t; x) + K X k=?K+1 a n?1 j?k+ 1 2 ;k ? a n?1 j?k? 1 2 ;k x (p n j?k ? p n j ):

Assumption (ii) in De nition 7 leads to b ! @ x a in the weak sense of measures, and p is a uniformly bounded Borel function, so b p ! @ x a p in the sense of distributions. The second term is handled in the same way, since (47) holds for any (t; x) and the remaining coe cient is a bounded measure. So far, we proved that, up to a subsequence, (p n j ) j;n converges strongly to a Lipschitz continuous solution to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF]. To prove that p is reversible, which will lead by uniqueness to the convergence of the whole sequence, we remark that by construction the adjoint scheme preserves monotonicity (Lemma 2). Thus, if we split p T = p T 1 ? p T 2 , with @ x p T i 0, and denote p i the discrete solution computed by [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF], then (i) p i ! p i Lipschitz solution to (7); (ii) @ x p i 0 by Lemma 2, so that @ x p i 0;

(iii) p = p 1 ? p 2 ! p = p 1 ? p 2 by linearity. So p is reversible by the second characterization of Theorem 2. 2 Remark 3 Theorem 10 actually gives an alternative proof for the existence of reversible solutions to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF].

A straightforward computation leads to the following scheme n?1 j = n j ? K X k=?K+1 a n?1 j?k? 1 2 ;k n j?k ?

K?1 X k=?K a n?1 j?k? 1 2 ;k+1 n j?k = K X k=?K

C n?1 j?1;k n j?k :

Under the boundedness and nonnegativity requirements on C n?1 j?1;k , this scheme is clearly bounded in L 1 and preserves nonnegativity. Since the corresponding constant by cell function is L 1 bounded, up to a subsequence, converges to some in L 1 ? w?. The consistency requirements imply that solves the backward equation [START_REF] Maso | De nition and Weak Stability of Nonconservative Products[END_REF], as in the proof of Theorem 10. Finally, is reversible, since the positivity is preserved, and using the third characterization in Theorem 4.

Passing to the limit in (50), we obtain that u converges to the duality solution.

2

Corollary 1 Set (a ) (t; x) = P j;n < A n j+ 1 2 ; ~ n j+ 1 2 > R 2K 1 T n j (t; x). Then, under the assumptions of Theorem 12, (a ) ?! a = â in D 0 ( ): Proof. First notice that u x P j;n (u n j+1 ?u n j )= x1 T n j converges in D 0 ( ) to @ x u, and that, by Proposition 1, @ x u solves (1) in the sense of duality. On the other hand, by construction, de ned by [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF] tends to , which is also duality solution to (1). Since, at t = 0, (0; ) = @ x u(0; ), we have by uniqueness = @ x u. This justi es the \discrete di erentiation" of the scheme.

Finally, we notice that u t P j;n (u n+1 j ? u n j )= t1 T n j converges in D 0 ( ) to @ t u. But, on the one hand, by de nition of the ux, @ t u = ?a = â , and on the other hand, u t = ?(a ) by construction of the scheme. Thus we are done.

4 Some classical examples

The aim of this section is to illustrate the preceding results on a few examples from the usual literature. Obviously, we do not pretend to exhaustivity. In the following, we choose for a n j a n j = 1

x t

Z Z R + R a(t; x)1 T n j dx dt: (51) 
This is justi ed and natural since the only assumption on a is an L 1 bound.

Remark 4 Notice that for the function a (t; x) = P j;n a n j 1 T n j (t; x) converges a.e. to a and is bounded in L 1 , so that a * a in L 1 ? w?. Moreover, since for a.e. t, @ x a(t; :) is a locally bounded measure, we have for a.e. x a(t; x) ? a(t; x ? x) = Z x j+ 1 2 x j? 1 2 @ x a(t; d ) x (t):

Thus 8 j 2 Z and a.e. t 2]t n ; t n+1 , a n j ? a n j?1 x (t), and also (a n j ? a n j?1 ) + x (t) ( in (2) can always be chosen nonnegative).

Lax-Friedrichs type schemes

The most encountered rst-order discretizations belonging to this family correspond to constant values for the viscosity coe cient " n j+ 1 2

. We rst give a general consistency result. We recall from the preceding section that we have:

A n j+ 1 2 = 1 2 a n j + " n j+ 1 2 ; a n j+1 ?

" n j+ 1 2 ! This choice leads to the following coe cients

8 > > > > > > > > > > > < > > > > > > > > > > > :
B n j;?1 = C n j;?1 = 2 a n j+1 + " n j+ 3 2 ! B n j;0 = 1 ?

" n j+ 1 2 + " n j? 1 2 2 C n j;0 = 1 + 2 ? a n j+1 ? a n j ? " n j+ 1 2 B n j;1 = C n j;1 = ? 2 a n j ?

" n j? 1 2 ! Lemma 3 The Lax-Friedrichs type schemes [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] are weakly consistent in the sense of De nition 7 under the condition 9M > 0; 8 0 n N; j 2 Z; ? " n j+ 1 2 + 2" n j? 1 2 ? " n j? 3 2 M x:

(52)

Proof. We have, for (t; x) 2 T n j , a (t; x) = 1 2 (a n j + a n j+1 ), which tends to a in L 1 w? by construction of the a n j 's, so that the rst requirement of De nition 7 is met. Next, for (t; x) 2 T n j , a simple computation gives b (t; x) = 1 2 x (a n j+1 ? a n j ) + (a n j ? a n j?1 ) + 1 (?" j+ 1 2 + 2" j? 1 2 ? " j? 3 2 ) : From condition (52) and Remark 4, we obtain that b satis es the second requirement of Denition 7, with = + M=(2 ). This concludes the proof. 2

We are going to state two convergence theorems. The rst one is a direct consequence of the general results of the previous section, but needs a restrictive CFL condition. In order to relax this assumption, we have to strengthen the constraints on " n j+ 1 2

. We present the proofs of these results for the sake of completeness, but we do not wish to search for optimal conditions, since there is a numerical evidence of the bad quality achieved by Lax-Friedrichs type schemes in this context (see Section 5).

Proposition 2 The scheme [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] converges towards the duality solution of (1) as ! 0, under the consistency condition (52), provided (51) is chosen and the following conditions are met: 8(j; n) 2 Z N; ja n j j " n j 1 2 1;

(a n j ? a n j+1 )=2 1 ? " n j+ 1 2 :

(53)

Proof. The proof is an immediate consequence of Theorem 11, since the conditions in (53)

exactly imply the positivity requirements on the coe cients B n j;k and C n j;k . 2 The second requirement of (53) cannot be met if, for instance, " n j+ 1 2 1 and x 7 ! a(x; t) is a decreasing function. To x this drawback, we also propose an alternative result Proposition 3 The scheme [START_REF] Lions | Generalized solutions of Hamilton-Jacobi equations[END_REF] converges towards the duality solution of (1) as ! 0, under the consistency condition (52), provided (51) is chosen and the following conditions are met: 8(j; n) 2 Z N; ja n j j " n j 1 2 1;

" n j+ 1 2 " n :

(54)

Proof. First we notice that (54) implies B n j;k 0, so that Lemma 1 applies. However, as noticed before, we do not have C n j;0 0. We have therefore to prove rst that the discrete Lipschitz estimate holds, then that we can recover monotonicity preservation.

Concerning the Lipschitz estimate, we have from (36) that p n?1 j+ 1 2 = 2 0 @ a n?1 j+1 +

" n?1 j+ 3 2 1 A p n j+ 3

2 + 1 + 2 (a n?1 j+1 ? a n?1 j ) ? " n?1 j+ 1 2 p n j+ 1 2 ? 2 0 @ a n?1 j ?

" n?1 j? 1 2 1 A p n j? 1 2 :

Using the rst requirement in (54), we can write j p n?1 j+ 1 2 j 2 0 @ a n?1 j+1 +

" n?1 j+ 3 2 1 A j p n j+ 3 2 j + 1 + 2 (a n?1 j+1 ? a n?1 j ) ? " n?1 j+ 1 2 j p n j+ 1 2 j ? 2 a n?1 j ?

" n?1 j? 1 2 j p n j? 1 2 j 2 ja n?1 j+1 ? a n?1 j j + (a n?1 j+1 ? a n?1 j ) + 1 ? " n?1 j+ 1 2 + " n?1 j+ 3 2 + " n?1 j? 1 2 2 M n 1 ;

with the notations of Theorem 10. We have for a.e. t 1 2 ja n?1 j+1 ? a n?1 j j + (a n?1 j+1 ? a n?1 j ) = (a n?1 j+1 ? a n?1 j ) +

x (t):

We can proceed as in the proof of Theorem 10 if for all j " n?1 j+ 3 2 + " n?1 j? 1 2 2 " n?1 j+ 1 2 :

An easy computation shows that this is possible only if the sequence is constant, because " n?1 j+ 1 2 0. If the second condition in (54) holds, we have therefore j p n?1 j+ 1 2 j 1 + Z t n t n?1 (t) dt M n 1 ;

and we obtain the nal estimate exactly as in the proof of Theorem 10.

So far, we know that, up to a subsequence, p tends to p, Lipschitz solution to [START_REF] Bouchut | Di erentiability with respect to initial data for a scalar conservation law[END_REF]. We want now to prove that p is the reversible solution. Since the scheme does not preserve monotonicity a priori, we have to be a bit more careful.

We have by (36) and (35)

p n?1 j+ 1 2 = K X k=?K B n?1 j;k p n j?k+ 1 2 + K?1 X k=?K a n?1 j?k+ 1 2 ;k+1 ? a n?1 j?k? 1 2 ;k+1 p n j?k+ 1 2 : (55) upw upwind scheme (25) EFO modi ed upwind scheme (59) LxF standard Lax-Friedrichs scheme (" n j+ 1 2 1) Tad modi ed Lax-Friedrichs scheme (" n j+ 1 2 1 2 )

Finally, the numerical approximation of a Dirac mass has been chosen as 1= x on the appropriate cell.

Approximation of a Dirac mass in the compressive case

We consider here a(t; x) = ? sgn(x? 1

2 ) for all t. The initial datum is 0 (x) = 1 x 1 2 . In this case, the exact solution is 1 2 x= 1 2 . We choose x = 0:002. The approximate solutions are displayed in Figure 1 and we also present the numerical primitives in Figure 2 in order to show that the weight of the Dirac mass is correctly computed. 5.2 Lipschitz expansive coe cient and smooth initial datum

We turn now to a smooth coe cient a(t; x) = x ? 1 2 for all t, and 0 (x) = sin( x)1 x2 0;1] . The exact solution is given by (t; x) = 0 (x + t 2 )

1 + t : (63) This example clearly evidences the lack of \strong" consistency in this theory. Indeed the Engquist-Osher upwind scheme (57) exhibits a spurious spike at the point where a changes sign. This spike is concentrated on one cell, and is of bounded amplitude. Thus we clearly have only a weak convergence. A similar phenomenon was observed by Engquist and Runborg in the simulation of two-dimensional geometrical optics (see 14]). The modi ed version proposed in ( 12,[START_REF] Rykov | Generalized Variational Principles, Global Weak Solutions and Behavior with Random Initial Data for Systems of Conservation Laws Arising in Adhesion Particle Dynamics[END_REF]) is better suited in this case. The Lax-Friedrichs type schemes behave in the same way as the scheme (59), so that we only display the results for the upwind type schemes. The solution is given at time T = 3 in gure 3. "EFO" "upw_coarse" "upw_medium" "upw_thin"

Figure 3: Upwind schemes in the case a(t; x) = x ? 1 2 for x = 0:02; 0:002; 0:0005

Lipschitz expansive coe cient and Riemann initial datum

We keep on using a smooth coe cient a(t; x) = x ? 1 2 for all t, but we consider now a Riemann initial datum 0 (x) = 1 x 1 2 . The exact solution is again given by (63). We display the results obtained by both upwind schemes (57) and (59) with x = 0:002 in Figure 4. The solution is given at time T = 3 and is free from any spurious oscillation or numerical di usion.

However, considering the results obtained by the LxF schemes displayed in Figure 5, one notices an excessive numerical dissipation creating an arti cial pro le which length shrinks to zero as x ! 0. Moreover, the approximate solution generated by the LxF scheme is endowed with oscillations whose amplitudes decrease also to zero as we re ne the grid.

Spreading of a Dirac mass by a rarefaction

We turn now to the nonuniqueness cases starting with the conservative version of the rst example presented in 2], Section 3.1. This corresponds to the following problem: a(t; x) = 8 > > < > > :

?1 if x ? 1 2 ?t, x ? 1 2 t if ?t x ? 1 2 0, 0 if x ? 1 2 0, 2 . For any ' 2 BV (] ? 1; 0 ) we de ne for t > 0 u(t; x) = 8 > < > :

?1 if x ? 1 2 < ?t, '( x ? 1 2 t ) if ?t < x ? 1 2 < 0, 0 if x > 0. Then = @ x u belongs to S M for any T > 0 and solves ( 1) in ]0; 1 R.

Two computations are displayed here at time T = 0:1, the rst on a medium mesh ( x = 0:002), the second on a re ned mesh ( x = 0:0005). The rst remark is that the solution generated by the standard Lax-Friedrichs scheme is highly oscillating, while Tadmor's modi cation behaves nicely (see Figure 6). The Dirac mass is spread in a more or less symmetric way. The upwind type schemes are not displayed here: they give a good approximation of a solution which is the Dirac mass at x = 1 2 . It is more interesting to show the primitives of the solutions, especially to understand the behaviour of the schemes when we re ne the mesh, see Figure 7. It becomes clear that, on the medium grid, the most important phenomenon for Lax-Friedrichs type schemes is the numerical di usion. Indeed, since the velocity on the right is zero, no information should be present for x > 1 2 , and the pro les are symmetrical. When re ning the mesh, this phenomenon disappears, but it is not clear at all that the schemes converge to the Dirac mass at x = 1 2 ; it is not even clear that they converge to the same solution. "prim_LxF" "prim_LxF_thin" "prim_Tad" "prim_Tad_thin" "prim_EFO" "prim_upw" By a wildly expansive coe cient, we mean a discontinuous coe cient which does not satisfy the OSLC condition (2). A typical example is a(t; x) = sgn(x ? 1

2 ), and we take for initial datum 0 = x= 1 2 . First we present a set of numerical solutions with x = 0:0025, and t = 0:001 in Figure 8. When re ning the grid, the oscillations in Lax-Friedrichs remain as it might be expected considering the proof of Proposition 2, where the role of the OSLC condition is crucial.

Next, we play with the value of the Courant number for the modi ed Tadmor scheme 27]. It turns out that each CFL number determines a spreading of the Dirac mass, which clearly illustrate the lack of uniqueness in this problem, see Figure 9. "prim_upw_06" "prim_Tad_06" "prim_Tad_04" "prim_Tad_02"

Figure 9: Numerical primitives with a(t; x) = sgn(x ? 1 2 ) and x = 0:002; 0:004; 0:006

1{.

  Characterization by total variation. (i) If p is reversible then t 7 ! Z R j@ x p(t; x)j dx is constant in 0; T]. (ii) If the above function is constant and nite, then p is reversible. 2{. Characterization by monotonicity.

Figure 2 :

 2 Figure 2: Numerical primitives in the case a(t; x) = ? sgn(x ? 1 2 )

Figure 4 :

 4 Figure 4: Numerical solutions with upwind schemes in the case a(t; x) = x ? 1 2

Figure 5 :

 5 Figure 5: Numerical solutions with LxF schemes in the case a(t; x) = x ? 1 2 and x = 0:002; 0:0005

Figure 6 :

 6 Figure 6: Numerical solutions for a rarefaction, LxF schemes, x = 0:002

Figure 7 :

 7 Figure 7: Numerical primitives for a rarefaction with x = 0:002; 0:0005

Figure 8 :

 8 Figure 8: Numerical solutions with a(t; x) = sgn(x ? 12 ) and x = 0:0025
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Theorem 11 Assume that the adjoint scheme is consistent and satis es the positivity requirements (40). Then the sequence ( ) converges as ! 0 in the weak topology of M( ) towards the duality solution of the problem (1).

Proof. By its formulation, the scheme ( 9) is conservative and consequently is endowed with a uniform bound in M( ). So, up to a subsequence, we have:

< :

* in the weak ? topology of M( ); d dt Z R p (t; x) (t; dx) = 0; which means that converges towards the unique duality solution of (1). By the classical uniqueness argument, the whole sequence is convergent. 2

Convergence for the associated transport equation

This subsection is devoted to the study of some numerical schemes for the transport equation ( 3). We introduce some schemes which are in a way \integrated versions" of the conservative schemes [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF], and prove the convergence to the duality solution to (3). As a corollary, we shall recover some convergence results of the \discrete product" of a by towards the product â .

Concerning the proofs, we shall limit ourselves to the nice case where the coe cients C n j;k de ned by (33) are nonnegative. The Lax-Friedrichs type schemes do not fall in this category, but for the sake of brevity, and in view of their poor numerical behaviour, we do not wish to state the proofs here. Let us now be more speci c. We consider the following scheme u n+1 j = u n j ? < A n j+ 1 2 ; ~ u n j > R 2K ; with ~ u n j = ? u n j+k ? u n j+k?1 k=?K+1;:::;K ; (48) and denote by u the corresponding constant by cell function. We rst notice that, setting n j = u n j+1 ? u n j x ;

(49) a simple computation shows that n j is given by the conservative scheme [START_REF] Conway | Generalized Solutions of Linear Di erential Equations with Discontinuous Coe cients and the Uniqueness Question for Multidimensional Quasilinear Conservation Laws[END_REF]. This is the discrete analogue of Proposition 1. Thus, formally, we pass from nonconservative to conservative by discrete di erentiation, and interpret n j as a numerical approximation of (u n j+1 ? u n j ) x j+ 1 2 , which is related to @ x u .

Theorem 12 Assume that the positivity and the consistency requirements of Lemma 2 and De nition 7 are met, then the sequence (u ) converges as ! 0 towards the unique duality solution of the equation ( 3) in the strong topology of L 1 loc ( ).

Proof. We merely give a sketch of the proof, since the arguments used here are very similar to those in the proof of Theorems 10 and 11.

First, the scheme (48) is by construction endowed with a uniform BV bound, so that the function u belongs to L 1 (0; T; BV (R)) as soon as we assume the initial sequence (u 0 j ) j2Z to be bounded in total variation. We immediately deduce that the family (u ) !0 is relatively compact in the strong topology of L 1 loc (]0; T R) and almost everywhere convergent up to the extraction of a subsequence. Therefore, we are done as soon as we prove that t 7 ! R u dx is constant for any reversible compactly supported .

Therefore, as for the conservative case, we introduce the adjoint scheme by imposing 8 1 n N; X j2Z n j u n j = X j2Z n?1 j u n?1 j :

(50)

First consider (55) for n = N. Assuming p N j+ 1 2 0 for all j's (which is achieved by a suitable discretization if @ x p T 0), since B N?1 j;k 0, we have p N?1 j+ 1 2 a N?1 j?k+ 1 2 ;k+1 ? a N?1 j?k? 1 2 ;k+1 p N j?k+ 1 2 :

(56) But, by (43), sup j j p N j+ 1 2 j = O( x), and, on the other hand, ja N?1 j?k+ 1 2 ;k+1 ? a N?1 j?k? 1 2 ;k+1 j C since the coe cients are bounded. This implies that the right-hand side of (55) is larger than a O( x).

We proceed now by induction, and assume that for some n N, inf j p n j+ 1

2 O( x). The rst term in the right-hand side of (55) is larger than a O( x) since B n?1 j;k 0 and P k B n?1 j;k = 1.

The second term is treated exactly as above, since the Lipschitz estimate gives for all n's sup j2Z j p n j+ 1 2 j sup j2Z j p N j+ 1 2 j = O( x):

We can conclude now, because if we set for (t; x) 2 T n j , p x p j? 1 2 = x, then, up to a subsequence, p x * @ x p in L 1 ? w? as ! 0, so that the limit p of p satis es @ x p 0. 2

Upwind schemes

From the expression [START_REF]R esolution num erique du syst eme des perturbations lin eaires d'un ecoulement MHD[END_REF], one sees that the keypoint is in the determination of the vector A n j+ 1 2 once the a n j 's are xed. The simplest choice is as follows:

A n j+ 1 2 = ? (a n j ) + ; (a n j+1 ) ? :

(57)

This scheme can be interpreted as an adaptation of the classical Engquist-Osher scheme 13] to the linear case. One notices that the corresponding scheme is not consistent with the continuous problem in the usual sense of Taylor expansions as soon as the coe cient a encounters a change of its sign. Anyway, we have the following consequence of Theorem 11.

Proposition 4

The upwind discretization given by ( 25), (57) is consistent with the continuous equation (1) provided (51) is chosen. Moreover, it converges towards its unique duality solution as goes to zero under the CFL condition: 8(j; n) 2 Z N; ja n j j 1 2 :

(58)

Proof. We check the sign of the following coe cients:

> > < > > :

B n j;?1 = C n j;?1 = (a n j ) + 0 B n j;0 = 1 + (a n j ) ? ? (a n j ) + ] C n j;0 = 1 + (a n j+1 ) ? ? (a n j ) + ] B n j;1 = C n j;1 = ? (a n j ) ? 0 The second and third expressions are positive under the restriction (58). On the other hand, the consistency requirements of De nition 7 are met with for instance = 2 . 2 According to [START_REF] Rykov | Generalized Variational Principles, Global Weak Solutions and Behavior with Random Initial Data for Systems of Conservation Laws Arising in Adhesion Particle Dynamics[END_REF]12], another possibility is to use the following average values which correspond to Vol'pert's superposition product 30] (or the straight lines regularization in 9]):

A n j+ 1 2 = (a n j + a n j+1 ) + 2 ;

(a n j + a n j+1 ) ? 2 ! (59)

We shall consider more general upwind schemes de ned by, for any given number 2 0; 1], A n j+ 1 2 = ? ((1 ? )a n j + a n j+1 ) + ; ((1 ? )a n j + a n j+1 ) ? :

(60)

This de nition has to be compared with the last assertion of Theorem 9. The de nition of the scheme de nes in some way the value of a everywhere, and for 2 0; 1] this is coherent with [START_REF] Lefloch | An existence and uniqueness result for two nonstrictly hyperbolic systems, Nonlinear evolution equations that change type[END_REF].

Proposition 5 The upwind discretizations given by ( 25), (60) are consistent with the continuous equation (1) provided ( 51) is chosen. Moreover, they converge towards its unique duality solution as goes to zero under the CFL condition: 8(j; n) 2 Z N; ja n j j 1 2 :

(61)

Proof. In this case, we have the following quantities: 8 > > < > > :

B n j;?1 = C n j;?1 = ((1 ? )a n j + a n j+1 ) + 0 B n j;0 = 1 + ((1 ? )a n j?1 + a n j ) ? ? ((1 ? )a n j + a n j+1 ) + ] C n j;0 = 1 ? j a n j+1 + (1 ? )a n j j B n j;1 = C n j;1 = ? ((1 ? )a n j?1 + a n j ) ? 0

The second and third expressions are positive under the restriction (61). The two consistency requirements of De nition 7 are again met for = 2 . 2

We mention a variant of the preceding schemes, which is used by Olazabal 24] and Godlewski et al. [START_REF] Engquist | Multi-phase computations in geometrical optics[END_REF]]. They consider the convex nonlinear equation ( 4) with an entropy initial datum, for which a Roe type scheme is used. In this context, it is well-known that the scheme converges almost everywhere towards the entropy solution of the problem; moreover it satis es a uniform discrete one-sided Lipschitz condition (see 7]). Next, they linearize this equation, obtaining [START_REF] Bouchut | Solutions en dualit e pour les gaz sans pression[END_REF], and propose the following \linearized Roe scheme" to solve it: let us denote by a a Roe linearized of f, and set a n j+ 1 2 = a(u n j ; u n j+1 ). Then the scheme is exactly the preceding one, with a n j+ 1 2 playing the same role as a n j+ 1 2

. Thus

A n j+ 1 2 = a(u n j ; u n j+1 ) + 2 ; a(u n j ; u n j+1 ) ? 2 ! :

The stability analysis (nonnegativity of B n j;k ; C n j;k ) follows exactly as before. Concerning the consistency, the strong convergence of u n j implies the convergence of a , and the one-sided Lipschitz property provides the required bound on b .

Numerical results

We illustrate in this section the behaviour of the four schemes studied in Section 3, on ve test cases. For three of them (sections 5.1, 5.2 and 5.3), uniqueness is ensured, and all the schemes converge towards the duality solution. Then, considering the associated transport equation, one can compute explicitly the exact solution. In the last two cases (sections 5.4 and 5.5), uniqueness does not hold, and it is clearly evidenced that each scheme chooses its own solution. All the computations have been performed using a CFL condition of 1 2 , except the last case, where other values are interesting to consider. In all the gures, we shall have the following conventions