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For a general model of a mesoscopic multi-level quantum dot, we determine the necessary conditions for the existence of an anomalous Josephson current with spontaneously broken time-reversal symmetry. They correspond to a finite spin-orbit coupling, a suitably oriented Zeeman field, and the dot being a chiral conductor. We provide analytical expressions for the anomalous supercurrent covering a wide parameter regime.

Introduction.-The Josephson effect, where an equilibrium supercurrent flows through a junction between two superconductors held at phase difference φ, is of fundamental importance in condensed matter physics, quantum information science, microelectronic applications, and metrology [1]. It has recently attracted renewed interest in mesoscopic and nanoscale junctions after the experimental demonstration of gate-tunable Josephson currents through junctions with just a few relevant electronic levels ("quantum dot") in a variety of material systems, e.g., InAs nanowires [2], the 2D electron gas in semiconductors [3], and carbon nanotubes [4]. One important novel aspect arises because the spin-orbit interaction (SOI) strength α due to structural and bulk inversion asymmetries is often significant [START_REF] Winkler | Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF][START_REF] Nitta | [END_REF], and theoretical work has therefore started to address SOI effects on the Josephson current in such devices [7,8,9,10,11,12,13]. So far this activity has mainly focused on 0-and πjunctions (positive or negative critical current I c , respectively). A remarkable prediction concerns the possibility for an anomalous supercurrent I a , flowing even at zero phase difference (φ = 0) if both a (suitably oriented) Zeeman field b and the SOI are present [8,12,13]. For φ = 0, the Hamiltonian is invariant under time-reversal symmetry (TRS) even when α = 0 and b = 0, and the anomalous supercurrent thus spontaneously breaks TRS, which otherwise enforces I(φ) = -I(-φ) and hence I a = 0 [1]. Anomalous supercurrents were first predicted in unconventional superconductors [14], but were never observed there. In the tunneling limit, where the conventional current-phase relation (CPR) reads I(φ) = I c sin φ, this is equivalent to a phase shift φ 0 , i.e., I(φ) = I c sin(φ+φ 0 ) and thus I a = I c sin φ 0 . The phase shift in such a "φ 0junction" could be observed in a SQUID containing one 0-and one φ 0 -junction via the shift of the diffraction pattern, or as spontaneous current in a superconducting ring containing a φ 0 -junction. Both effects are tunable by external gate voltages (affecting the SOI), Zeeman fields, and by an orbital magnetic flux. Moreover, a φ 0 -junction can also act as a superconducting rectifier [12].

Mesoscopic systems contacted by conventional s-wave BCS superconductors could then yield a new class of systems with spontaneously broken TRS, and therefore exhibit anomalous supercurrents. Recent works have started to address this point. First, Ref. [8] considered a long ballistic one-dimensional Rashba quantum wire, where I a = 0 is tied to the Zeeman effect and to the difference between the velocities of right-and leftmoving electrons. However, for physically realizable α, the reported I a values turn out to be extremely small, I a ∝ α 4 , or are most likely inaccessible in experiments. In a mainly numerical study [12], the anomalous Josephson effect was also found for a multi-channel spin-polarizing quantum point contact. Finally, Buzdin [13] reported I a = 0 in junctions containing a noncentrosymmetric ferromagnet as a weak link. There is clearly a need to systematically classify all ingredients necessary to observe the anomalous Josephson effect. In this work, we compute the Josephson current through a generic phase-coherent mesoscopic system (an arbitrary multilevel quantum dot). Analytical predictions for I a are provided for a physically important parameter regime. In addition, these results are supported by numerics. A necessary condition for I a = 0 emerges from our study: the quantum dot must be a chiral conductor, see Eq. ( 13) below. This requirement was implicit in Ref. [8] but is apparently violated [15] in Ref. [13].

Model and exact solution.-As a generic model for the Josephson current through a quantum dot, we consider H = H L + H R + H T + H D , with two identical s-wave BCS superconductors (H j=L/R ) of gap ∆ held at phase difference φ and tunnel-coupled (H T ) to the quantum dot. With lead fermion operators c L/R,kσ for spin σ =↑, ↓ and momentum k, the BCS Hamiltonian reads (we often put = 1 and, for simplicity, take the zero-temperature limit)

H j = kσ k 2 2m c † jkσ c jkσ + k ∆e ∓iφ/2 c † jk↑ c † j(-k)↓ + h.c. .
For α = 0 and b = 0, the closed dot can be described in terms of real-valued eigenfunctions χ n (r) [with r = (x, y, z)] for eigenenergy ǫ n , where n = 1, . . . , N labels the relevant dot orbitals. Using fermion operators d nσ for these orbitals and disregarding strong correlation effects, the dot Hamiltonian in the presence of SOI and Zeeman field can be written in the form (the Pauli matrices σ x,y,z act in spin space, spin indices are kept implicit, and we absorb the magnetic factor gµ B /2 into b)

H D = n d † n [ǫ n + b • σ] d n -i nn ′ d † n a nn ′ • σ d n ′ . (1)
We consider both the Rashba and Dresselhaus SOI due to structural and bulk inversion asymmetry, respectively, with the electric field pointing in z direction. The SOI is encoded in the antisymmetric matrices a x,y forming the vector [10] 

a nn ′ = α m dr χ n (r) sin(θ)∂ x + cos(θ)∂ y -cos(θ)∂ x -sin(θ)∂ y χ n ′ (r).
(2) The overall SOI strength is represented by the characteristic inverse length α, while the angle θ = 0 corresponds to a pure Rashba and θ = π/2 to a pure Dresselhaus case [START_REF] Winkler | Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF]. The tunneling Hamiltonian is

H T = j=L/R,knσ t jn c † jkσ d nσ + h.c., (3) 
where we make the inessential assumption of kindependent tunneling matrix elements. It is useful to define the Hermitian N × N hybridization matrices (in dot level space),

Γ j=L/R,nn ′ = πν t * jn t jn ′ , (4) 
where ν is the normal-state density of states in the leads. We find that the anomalous supercurrent is most pronounced if the Zeeman field points along a direction defined by the SO angle θ, namely b = B(cos θ, -sin θ, 0) T . When the magnetic field is orthogonal to this, the anomalous supercurrent is absent. The above model ignores orbital magnetic fields. For the important case of a 2D dot, this is justified by choosing an in-plane magnetic field as above.

Integrating out all fermionic degrees of freedom, the Josephson current for arbitrary system parameters is obtained:

I(φ) = - 2e h ∞ 0 dω ∂ φ tr ln S(ω) (5) 
with a 4N × 4N matrix S(ω). Using auxiliary Pauli matrices τ x,z , the matrix S can be expressed as [10]

S = -iω 1 + Γ L + Γ R √ ω 2 + ∆ 2 + Eσ z τ z + Z + ∆ √ ω 2 + ∆ 2 × [(Γ L + Γ R ) cos(φ/2)σ x τ z + (Γ L -Γ R ) sin(φ/2)σ y ] ,
where E ≡ diag(ǫ 1 , . . . , ǫN ) with ǫn = ǫ n -α 2 /2m contains the dot level energies. The Zeeman field and the SOI are encoded in the ω-independent 4N × 4N matrices

Z = (iA x σ x + B y σ y )τ x + (iA y σ x -B x σ y )τ y + B z τ z + iA z σ z , (6) 
the vector of real anti-symmetric matrices [START_REF]The difference to Eq. (2) arises because a gauge transformation is necessary to obtain the exact solution[END_REF] A

nn ′ = α m dr χ n ∂ y χ n ′   -cos θ[1 -2 cos(2θ) sin 2 (αx)] sin θ[1 + 2 cos(2θ) sin 2 (αx)] cos(2θ) sin(2αx)   .
(7) The matrices B x,y,z are real and symmetric, and for the above Zeeman field given by

B nn ′ = B dr χ n χ n ′ ×   cos θ cos 2 (αx) -cos(3θ) sin 2 (αx) -sin θ cos 2 (αx) -sin(3θ) sin 2 (αx) -cos(2θ) sin(2αx)   . ( 8 
)
One can verify from the above expressions that no anomalous supercurrent can exist in the absence of either the SOI or the Zeeman field. Analytical approach.-We now derive the anomalous supercurrent I a in the most relevant limit of weak SOI and weak Zeeman field, where I a ∝ αB is small. Moreover, the derivation below assumes that the off-diagonal entries in the Γ L/R matrices (4) are small against the diagonal entries. This condition is met in most cases of practical interest, e.g., if one dot level is resonantly coupled to the leads and all other levels are only weakly coupled, or when quasi-random phase shifts between different t jn have to be taken into account. We then consider the limit φ → 0, where under the above conditions, it makes sense to write S = S 0 + S 1 in Eq. ( 5). The "leading" part is diagonal in dot level space,

S 0 = -iω + Eσ z τ z + -iω + ∆σ x τ z √ ω 2 + ∆ 2 Γ 0 , (9) 
with Γ 0 = diag(Γ L + Γ R ). Similarly, using Γ 1 = Γ L + Γ R -Γ 0 , the "perturbation" part is

S 1 = Z + (φ/2)∆(Γ L -Γ R )σ y + [-iω + ∆σ x τ z ]Γ 1 √ ω 2 + ∆ 2 (10 
) with Z given in Eq. ( 6). The anomalous supercurrent then follows by expansion of the tracelog in Eq. ( 5),

I a = 2e h ∞ n=1 (-1) n n ∞ 0 dω ∂ φ tr(S -1 0 S 1 ) n . (11) 
Using Eq. ( 6), straightforward but lengthy algebra shows that both the n = 1 and n = 2 contributions always vanish. The leading contribution to I a then comes from n = 3, where the part ∝ Γ 1 in S 1 , see Eq. ( 10), does not contribute at all. In the end, we arrive at the analytical expression

I a = 8e∆ 2 h ∞ 0 dω ω 2 + ∆ 2 tr d [Γ R , Γ L ] -D -1 (b • A) × D -1 1 -4ω 2 1 + Γ 0 √ ω 2 + ∆ 2 D -1 (12) 
with the diagonal matrix

D = ω 2 +E 2 +Γ 2 0 + 2ω 2 √ ω 2 +∆ 2 Γ 0 .
The trace operation tr d extends over dot level space only. Since b•A ∝ αB, we see that I a ∝ αB as expected. Apart from having a finite SOI and an appropriately oriented Zeeman field, an additional condition must be satisfied in order to have I a = 0:

[Γ R , Γ L ] -= 0, ( 13 
)
which implies chirality for transport through the quantum dot. From numerical studies of the full current (5), we find that Eq. ( 13) is a necessary condition for I a = 0 for arbitrary other parameters, and hence is not restricted by the conditions under which Eq. ( 12) has been obtained. As a consequence, a single-level dot (N = 1) can never allow for an anomalous supercurrent, and at least two relevant orbitals are required. Finally, we remark that Eq. ( 12) can be further simplified for max(Γ nn ) ≫ ∆, where we obtain

I a = 2e∆ tr d (Γ 2 0 + E 2 ) -1 [Γ R , Γ L ] -(Γ 2 0 + E 2 ) -1 b • A . ( 14 
) Basic explanation.-Having established that spontaneously broken TRS is indeed possible in this system, see Eq. ( 12), we now give an intuitive physical argument to understand the origin of this effect. Consider the transfer of a Cooper pair through a quantum dot with N = 2 levels for φ = 0, schematically shown in Fig. 1. The Cooper pair has amplitude t L→R (t R→L ) for transfer from left to right (right to left). For simplicity, we put θ = 0 and assume real tunneling amplitudes t jn in Eq. (3). To lowest order in αB, SOI and Zeeman field combine to the term H ′ = (iA x +B x )σ x , with 2×2 matrices in dot level space,

A x = A 0 1 -1 0
, where A ∝ α, and B x = B 1 0 0 1 .

To lowest order in the t jn and in H ′ , processes like the one sketched in Fig. 1(a) generate a contribution to t L→R . Specifically, the process in Fig. 1(a) yields

δt L→R = (t L1 t R1 ) (t L1 iAB t R2 ), (15) 
where the ↓-electron causes the first factor while the ↑electron switches levels via the product of A x and B x processes. In effect, the SOI and the Zeeman field conspire to produce an effective orbital magnetic field via such processes, which then explains the broken TRS.

With the group velocity v, the anomalous supercurrent contribution from Eq. ( 15) is δI a ∝ vAB Γ L,11 Γ R,12 . Consider next the reverse process, see Fig. 1(b), which yields δt R→L = (t R2 B(-iA)t L1 ) (t R1 t L1 ), and therefore causes the same current contribution δI a ∝ (-v) • (-A)BΓ L,11 Γ R,12 . Summing up all relevant processes, we find

I a ∝ B(t L1 t R1 + t L2 t R2 )(t L1 At R2 + t L2 (-A)t R1 ) (16) = AB [(Γ L,11 -Γ L,22 )Γ R,12 -(Γ R,11 -Γ R,22 )Γ L,12 ] .
Note that I a = 0 precisely when Eq. ( 13) holds, as follows by explicitly computing the commutator in Eq. ( 13) for
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FIG. 1 N = 2. The above arguments resemble the justification for π-junction behavior in quantum dots with Coulomb blockade [START_REF] Spivak | [END_REF], and can in fact be applied to show that I a = 0 under the specified conditions even in the presence of interactions. Interactions give no qualitative change to our results since they do not alter the relevant symmetries. For large Γ L/R , charging effects are smeared out in any case. For small Γ L/R and very strong interactions, the result basically equals the noninteracting one (up to a sign reversal of I a for an occupied dot). Numerical analysis for N = 2.-We have numerically computed the full current [START_REF] Winkler | Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems[END_REF] for a two-level dot, taking the wave functions for a harmonic transverse and hard-wall longitudinal confinement as in Ref. [10]. Denoting the distance between the tunnel contacts by L, the Rashba coupling is kept fixed at a moderately small value, αL = 0.4, while the remaining parameters were taken both inside and outside the parameter regime where the restrictions needed to derive Eq. ( 12) apply. The resulting CPRs are shown in the main panel of Fig. 2, where the supercurrent is plotted for increasing values of the Zeeman field. These plots show that a large value for the anomalous current I a can be obtained with reasonparameters. The hybridization matrices have been chosen to optimize the commutator in Eq. ( 13) while satisfying Γ L/R,12 = Γ L/R,11 Γ L/R,22 . The CPR is either continuous or exhibits jumps associated with a change of the ground state, i.e., with the different occupation of the relevant Andreev levels. Such jumps are a common feature in the presence of Zeeman fields already without 12) (black dashed curve) vs αL, with bx = 0.5∆ and same other parameters as in main panel.

SOI [1]. In the CPRs obtained by numerics from Eq. ( 5), we find that the maximal (positive) current can differ from the minimal (negative) current in magnitude. The existence of such two critical currents and potential for rectification behavior have been discussed in Ref. [12]. The inset of Fig. 2 shows a comparison between the full numerical results for I a and the analytical predictions deduced from Eq. ( 12) as a function of α. The comparison is done for an intermediate value of the Zeeman field, b x = 0.5∆, and the agreement is good even for rather large I a .

Conclusions.-We have shown that a generic model for superconducting transport through a quantum dot exhibits spontaneously broken TRS, leading to an anomalous supercurrent appearing at zero phase difference between the superconductors. The effect occurs in the presence of spin-orbit interaction and a suitably oriented Zeeman field, provided that the left and right contact hybridization matrices do not commute. This implies that at least two dot levels must be involved. The wide availability of mesoscopic systems holds the promise to experimentally observe this remarkable effect in the near future.
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 2 FIG.2:(Color online) Numerical results for the CPR of a two-level dot with θ = 0 for bx = 0.3∆, 0.7∆ and 0.9∆ (red, blue, brown curves, respectively, with increasing |Ia|). Parameters: αL = 0.4, ΓL,11 = 2∆, ΓL,22 = 0, ΓR,11 = ΓR,22 = ∆/2, ǫ1 = -ǫ2 = 0.65∆, L = 25 nm, ∆ = 1 meV, and m = 0.035me. Inset: Ia from numerics (red solid curve) and from Eq. (12) (black dashed curve) vs αL, with bx = 0.5∆ and same other parameters as in main panel.

  : (Color online) Schematic picture of transfer of a Cooper pair through a two-level dot. (a) Contribution to tL→R yielding an anomalous supercurrent. (b) Reverse process contributing to tR→L. Top and bottom panels represent initial and final states, respectively, which are connected by a sequence of the intermediate virtual states. Solid arrows indicate transitions due to tunneling (green, connecting leads and dot), spin-orbit (red, connecting different dot levels) and Zeeman (blue) coupling. For details see text.
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