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Abstract—Online peer-to-peer (P2P) communities such as pro-
fessional ones (e.g., medical or research) are becoming popular
due to increasing needs on data sharing. P2P environments offer
valuable characteristics but limited guarantees when sharing
sensitive or confidential data. They can be considered as hostile
because data can be accessed by everyone (by potentially un-
trustworthy peers) and used for everything (e.g., for marketing
or for activities against the owner’s preferences or ethics). In
this paper we propose PriServ, a privacy service located on
top of distributed hash table (DHT) based P2P systems which
prevents data privacy violations. Based on data owner privacy
preferences, PriServ uses Hippocratic database principles, takes
into account which operations will be realized on shared data
(e.g., read, write, disclosure) and uses reputation techniques to
increase trust on peers. Several simulation results encourage our
ideas and a prototype of PriServ is under development1.

Keywords-Peer-to-peer; DHT; Data privacy; Purpose based
access control; Trust;

I. INTRODUCTION

In our days, the democratization of the use of information
systems and the massive data digitalization allow to identify
all aspects of a person’s life. For instance, their professional
performance (e.g., publish or perish software, dblp website),
their client’s profile (e.g., thanks to fidelity smart cards),
their user’s profile (e.g., thanks to their user identity, access
localities, generated traffic) or their health level (e.g., thanks
to the digitalization of medical records). Those observations
have risen serious data privacy concerns.

Online peer-to-peer (P2P) communities such as professional
ones (e.g., medical or research) are becoming popular due
to increasing needs on data sharing. In this context, P2P
environments offer valuable characteristics (e.g., scalability,
distribution, autonomy) but limited guarantees concerning data
privacy. They can be considered as hostile because data, that
can be sensitive or confidential, can be accessed by everyone
(by potentially untrustworthy peers) and used for everything
(e.g., for marketing, profiling, fraudulence or for activities
against the owner’s preferences or ethics).

Data privacy is the right of individuals to determine for
themselves when, how and to what extent information about
them is communicated to others [26]. It has been treated by
many organizations and legislations which have defined well
accepted principles. According to OECD2, data privacy should

1Work partially funded by the DataRing project of the french ANR.
2Organization for Economic Cooperation and Development. One of the world’s

largest and most reliable source of comparable statistics, on economic and social data.
http://www.oecd.org/.

consider: collection limitation, purpose specification, use lim-
itation, data quality, security safeguards, openness, individual
participation, and accountability. From these principles we
underline purpose specification which states that data owners
should be able to specify the data access objective for which
their data will be collected and used.

Several solutions that follow the OECD guidelines have
been proposed. A major solution is Hippocratic databases
which enforces purpose-based disclosure control in a central-
ized relational datastore [1], [2], [5], [17]. This is achieved by
using privacy metadata, i.e. privacy policies and privacy autho-
rizations stored in tables. A privacy policy defines (for each
attribute, tuple or table) the usage purpose(s), the potential
users and retention period while privacy authorization defines
which purposes each user is authorized to use. In a Hippocratic
database, queries are submitted to the database along with their
intended purpose. Query execution preserves privacy using
query modification and restrictions by column/row/cell.

In addition to purpose-based data privacy, to prevent data
misuse, it is necessary to trust participants. Trust management
systems deal with unknown participants by testing their repu-
tation [15], [18], [19], [24]. Reputation techniques verify the
trustworthiness of peers by assigning them trust levels. A trust
level is an assessment of the probability that a peer will not
cheat. A peer with a high trust level is considered as honest
and a peer with a low trust level as malicious. Trust levels are
updated (incremented/decremented) in order to reflect peers’
behavior. If a peer misbehaves, its trust level is decremented.

A. Motivations.

In the context of P2P systems, few solutions for data privacy
have been proposed and they focus on a small part of the
general problem of data privacy, e.g. anonymity of upload-
ers/downloaders, linkability (correlation between uploaders
and downloaders), content deniability, data encryption and
authenticity [6], [16], [21], [25]. However, the major problem
of data privacy violation due to data disclosure to malicious
peers which misuse data, is not addressed.

As a motivating example, consider a collaborative medical
research focusing on the evolution of cardiovascular diseases
(e.g. heart attacks, atherosclerosis, etc.) depending on patient
characteristics (e.g. age, diet, smoking, sports, gender, etc.).
The participants of this research are scientists, doctors, pa-
tients, pharmacist, nurses, medical students, etc. In order to
control disclosure on sensitive data (e.g., medial records owned
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by doctors or research results owned by scientists) without
violating privacy, data access should respect the privacy pref-
erences of data owners. They can be defined in the following
manner:

• A doctor may allow reading access on her medical
records to a patient for seeing her diagnosis.

• A doctor may allow reading access on information such
as age but do not to information such as name or social
security number, to scientists for researching on the
evolution of the cardiovascular disease.

• A doctor may allow writing access on her information to
researchers for adding comments on her diagnosis.

• A researcher may allow reading access on her research
results to doctors for diagnosing.

In this P2P application, sharing data based on data owners
privacy preferences is a challenge. Besides ensuring that
data disclosure should be done only to specified participants,
purposes (e.g. seeing one’s diagnosis, researching, etc.) and
specified operations (e.g., writing, reading) defined by data
owners, should be respected by data requesters. In addition,
data should not be shared indistinctly with all participants
(all scientists or all doctors in the system). It is necessary to
consider the concept of trust among participants. For instance,
doctors need to trust each researcher to share their private data
with her.

Currently, publishing and requesting data in P2P systems
do not take into account privacy preferences. Thus, controlling
data sharing, with trustworthy peers, for specific purposes and
operations, is not possible in such systems without adding
new services. In this context, an efficient P2P purpose-based
privacy service with trust control is needed.

B. Contributions.

This paper has two main contributions.
• We propose a P2P data privacy model. The goal of

such model is to provide the basis of a framework that
facilitates the prevention of data owner’s privacy violation
by 1) allowing them to specify their privacy preferences
and by 2) restraining data users to specify the purpose
and the operation for which they request data.

• We propose PriServ3, a privacy service on top of DHT
which, based on the proposed model, prevents privacy
violation by limiting malicious data access. For that,
we use purpose and operation based access control as
well as trust techniques. To our knowledge, PriServ is
the first proposition that introduces data access based on
purposes in P2P systems. The performance evaluation of
our approach through simulation shows that the overhead
introduced by PriServ is small.

In the following, Section II presents the P2P data privacy
model we propose, Section III presents PriServ, Section IV
presents performance evaluation, Section V discusses related
work and section VI concludes this paper.

3In [13], [14], some aspects of this work were proposed.

II. P2P DATA PRIVACY MODEL

We consider that peers misbehave if they violate data pri-
vacy preferences defined by data owners. There exist numerous
malicious behaviors when sharing data, in this model we
concentrate on preventing:

• Unauthorized disclosure. Server peers can misbehave
by disclosing data to peers who, based on data privacy
preferences, should not have those data.

• Data misuse. Requester peers misbehave if they do not
respect agreements made during data access.

• Attacks to data integrity. Server peers may violate data
integrity by modifying data content of data they provide
without permission.

To prevent those misbehaviors, the proposed P2P data pri-
vacy model uses mainly Hippocratic principles (purpose-based
access control) and trust notions (reputation techniques). This
section introduces some necessary concepts (Section II-A), the
used data model (Section II-B) and finally the functions of the
model (Section II-C).

A. Basic Concepts

In this section we present the basic concepts of our P2P
data privacy model.

1) P2P Systems: A P2P system is a distributed system
composed of participants (peers) with similar characteristics,
that can take the role of “clients” and “servers”. It can scale
up to a large number of participants and allows sharing large
number of data.

A peer represents a participant who shares data, requests
information, or simply contributes in the execution of a service
or a query. We consider also that there exist peers who own
data and that do not necessarily act as servers of those data.
A peer can join or leave the system at any time without
restriction. Thus we distinguish three types of peers:

• Owner. A peer that owns and shares data.
• Requester. A peer that requests data.
• Server. A peer that provides data.

The present model makes no assumptions about the type of
P2P system, it can be structured or unstructured. We only
consider that a peer has a unique identifier in the system.

2) Privacy Policies: Data privacy preferences of data own-
ers are registered in privacy policies (PP). Inspired from P3P
[7], Figure 1 shows a PP model. This model does not claim
to be exhaustive. It shows information about PPs which can
include:

• Authorized users. A list of users who are authorized to
access data. A user can be an individual or a group. In
a P2P system, users are hardly known in advance. In the
following, to simplify, we will consider that individual
users belong to groups.

• Operations. An operation determines what peers can do
with data. We use three basic operations, read, write and
disclose (other operations can be defined).

– Read. A peer can read the data content.
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Fig. 1. Privacy policy (PP) model

– Write. A peer can modify (insert, update, delete) the
data content.

– Disclose. A peer is able to disclose shared data. Dis-
closure can be limited to a predefined time duration.

• Purpose. It states the data access objective. Data owners
should be able to specify the purposes for which users
can access their data.

• Access conditions. They state under which semantic
conditions data can be accessed. This may concern data
values, for example age>10.

• Retention time. It states the limited retention time of
data. For example, the record of patient x should be used
only during two months.

• Obligations. They state the tasks a user must accomplish
after the data access, for example, researcher Ri should
return research results involving the record of patient x.

• Minimal trust level. It is the minimal trust level a
requester peer should have in order to gain data access.

3) Trust: It is a fuzzy concept where trustworthy peers are
supposed to respect privacy policies defined by data owners.
Trust between peers is important in order to control data
access.

• Reputation. It is an overall estimation of the behavior
of a peer. This estimation depends on the interaction of
peers.

• Trust level. The trust level reflects a peer reputation with
respect to other peers. A peer can have different trust
levels at different peers. Trust levels vary in a range of
[0,1].

– An honest peer is a peer which has a high trust level
e.g., [0.5, 1].

– A malicious peer is a peer which has a low trust
level e.g., [0, 0.5).

– An unknown peer is a peer which has an unknown
trust level.

Peers can have locally the trust levels of some peers. If a
peer does not have a particular trust level, it can ask for
it to other peers called friends.

• Friend. A friend of a peer P is a peer with a high trust
level from P’s point of view. The number of friends held
by a peer can vary from one peer to another.

B. Data Model

In order to respect PPs, we define a specific data model
where PPs are associated with data. In this paper, we use
relational tables. However our model can consider any type
of data (files, XML documents, rich text files, etc.).

1) Data Tables: We consider that each owner peer stores
locally the data it wants to share. Those data are stored in
relational tables which we call data tables. One important
restriction on these tables is that primary keys should be
generic and impersonal in order to avoid disclosure of personal
information. Following our motivating example, Table I shows
medical records of doctor Dj.

2) Privacy Policies Table: Data contained in PPs are stored
in a table named privacy policies table. Table II shows the
privacy policies table of doctor Dj. To simplify, we do not
include all elements of Figure 1. In this table, one tuple
corresponds to one PP. The same PP can be applied to different
data. Each policy contains operations (read, write, disclose),
allowed users, access purposes, conditions (if they exist), and
the required minimal trust level of allowed users.

3) Private Data Table: This table joins the data and the
privacy policies tables. Each tuple defines the data subject to
privacy (table, column or line) and the corresponding privacy
policy id (PPID). Table III shows the private data table of
doctor Dj. This table allows cell-based access control if the
table, column and line are specified. In PD1, only some
columns of the data table DTj (those who do not disclose
patients identities) are concerned by the privacy policy PP1
where pharmacists and doctors are allowed to read records
of patients who were born before 2000. In PD3 and PD4 the
diagnosis cell of Pat3 and Pat4 can be modified by doctor
Dk. It is assumed that doctor Dk is concerned also by PD1
so before modifying the diagnosis she can read the complete
patient record.

More sophisticated ways of attaching data to privacy pref-
erences can be used but they go beyond the goal of this work.

C. Basic functions

The basic operations proposed in this model are publishRef-
erence(), publishData() and requesting().

a) Boolean publishData(data, PPId): Owner peers use
this function to publish data content in the system. The
second parameter is the privacy policy that dictates the usage
conditions and access restrictions of the published data. This
function returns true if data content is successfully distributed,
false otherwise. To protect data privacy against potential
untrusted servers, before distribution, data content is encrypted
(symmetric cryptography).

b) Boolean publishReference(data, PPId): Owner peers
use this function to publish data references in the system.
The second parameter is the privacy policy that dictates the
usage conditions and access restrictions of the published data
references. This function returns true if data references are
successfully distributed, false otherwise. Servers store data
references and help requesters to find data owners to obtain
data content. Publishing only data references allows owners
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Data table DTj
Id (PK) SS Name Country Birthdate Gender Smoker Diagnosis

Pat1 001044001001 Alex France 2000 Male No NO cardiovascular disease
Pat2 900344001001 Bea France 1990 Female No NO cardiovascular disease
Pat3 730844001001 Chris France 1973 Male No YES cardiovascular disease
Pat4 441144001001 Dave Belgium 1944 Male Yes YES cardiovascular disease
Pat5 680544001001 Elena Russia 1968 Female Yes YES cardiovascular disease

TABLE I
DATA TABLE OF DOCTOR DJ

Privacy policies table j
Id (PK) Operation User Purpose Condition Minimal

trust level
PP1 Read Pharmacist, Doctors Consulting record Birthdate < 2000 0.5
PP2 Read Researchers Researching on cardiovascular disease — 0.6
PP3 Write Dk Second diagnosis — 0.9

TABLE II
PRIVACY POLICIES TABLE OF DOCTOR DJ

Private data table j
Id (PK) Data Privacy

Table Column Id Policy
PD1 DTj Birthdate, Gender, Smoker, Diagnoses — PP1
PD2 DTj Country, Birthdate, Gender, Smoker, Diagnosis — PP2
PD3 DTj Diagnosis Pat3 PP3
PD4 DTj Diagnosis Pat5 PP3

TABLE III
PRIVATE DATA TABLE OF DOCTOR DJ

to publish private data while being sure that data content will
be provided to the right requesters. This hypothesis can not
be guaranteed in the previous function because servers may
misbehave by returning encrypted data to unauthorized peers.

c) Data request(dataRef, purpose, operation): Requester
peers use this function to request data (dataRef ) for a specific
purpose (e.g., researching, diagnosis, analyzing) to perform a
specific operation (i.e., read, write, disclosure). This function
returns the requested data if the requester has corresponding
rights, otherwise it returns null. This function compels re-
questers to specify the access purposes and the operation that
they will apply to requested data. This explicit request commits
users to use data only for specified purposes and operations.
Legally, this commitment, may be used against malicious users
if data are used for other purposes/operations.

As we will see in the next section, during the execution of
the requesting() function, the trust level of requesters is veri-
fied. Next section introduces PriServ, the service implementing
this model.

III. PRISERV DESIGN

PriServ is an implementation of the proposed privacy model.
It provides the publishReference(), publishData() and request-
ing() functions. It is implemented on top of a DHT-based
P2P system where only the get() and put() functions are
used. Next section introduces our design choices, Section III-B
presents the PriServ architecture and Section III-C an analysis
of incurred costs based on the number of messages.

Fig. 2. Global architecture

A. Design Choices

In this section, we present the DHT-based architecture used
by PriServ and the way the data keys, managed by the DHT
layer, are defined.

1) DHT-based P2P architecture: All DHT systems (e.g.
Chord [23], Pastry [22], etc.) support a distributed lookup
protocol that efficiently locates the peer that stores a particular
data item. Data location is based on associating a key with
each data item, and storing the key/data item pair at the peer
to which the key maps. To generalize, DHT provides two basic
operations [8], each incurring O(logN) messages.

• put(k, data) stores a key k and its associated data object
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in the DHT.
• get(k) retrieves the data object associated with k in the

DHT.
Figure 2 shows the considered global architecture. On top of
the Internet network there is the P2P system. The overlay
network layer takes in charge the routing system by imple-
menting the lookup() function but also by managing the peers
dynamicity (join/leave of peers). On top of this layer, the
distributed storage layer ensures key-based data searching and
data distribution by implementing the put() and get() functions.
Those two layers make abstraction of the DHT-based P2P
system. PriServ is implemented as an APPA (Atlas P2P
Architecture) service [3] on top of the DHT layer. The PriServ
implementation uses Chord for its efficiency and simplicity.
Nevertheless, any DHT-based P2P system can be used.

In Chord, a DHT maps a key k to a peer P called responsible
for k with respect to a hash function h. Peers maintain
information about O(logN) other peers in a finger table and
resolve lookups via O(logN) messages to other peers. A finger
table entry includes both the Chord identifier and the IP
address (and port number) of the relevant peer. A consistent
hash function assigns to each peer and key an m-bit identifier
using a hash function such as SHA-1 [9]. A peer identifier
is chosen by hashing the peer IP address. A key identifier is
based on data values that can be a data reference, an address,
etc. All peers are ordered in a circle modulo 2m. Key k is
assigned to the first peer whose identifier is equal to or follows
k in the identifier space. This peer is called the successor of
k. Chord provides data publishing and searching using only
O(logN) messages.

2) Data keys: We consider that the DHT generates peer
identifiers by hashing the peer IP address (like in Chord).
Concerning data keys, to enforce data privacy, we propose
to hash the triplet (dataRef, purpose, operation). dataRef is a
unique data reference, purpose is the data access purpose and
operation is the operation that will be executed on requested
data. Thus, the same data with different access purposes and
different operations have different keys4.

Because keys contain the notion of purposes and operations,
requesting data is always made for a defined purpose and
operation. This allows to enhance access control.

Data references are expressed as follows. Inspired by PIER
[12], we propose to concatenate the data table name, the
column name and the value of the primary key. By using this
last value, the searching granularity can be a tuple. If shared
data concerns an entire table, the column name and the value of
the primary key are omitted. Similarly, if a particular column
is concerned, the value of the primary key is omitted. If several
columns of the same table are concerned they can be enclosed
in curly brackets. For instance, in table III, the data reference
for PD1 is DTj.{Birthdate, Gender, Smoker, Diagnoses} and

4[10] has analyzed how to manage schemas and process simple queries
efficiently in a flexible P2P environment. Thus, we consider that all peers
accessing the same data are capable of schema mapping and that peers
allowed to access particular data are informed of their allowed purposes. Thus,
requester peers are able to produce keys.

for PD3 is DTj.Diagnosis.Pat3.

B. PriServ architecture

Figure 3 shows the PriServ architecture. Publishing and
requesting are always made through PriServ. Principal compo-
nents of the PriServ service (storage manager, policy manager,
key manager, cipher manager, data signature manager, trust
manager) are organized by an orchestrator. In this section we
present those components and the algorithms where they are
used.

1) Components:
a) Key manager: Its role is to generate data keys. It

creates data keys by hashing data references, purposes and
operations. This component offers two types of functions. The
first one, used in publishReference() and publishData(), returns
the created data key. The second, used in request(), returns the
created data key and attaches it the requester identifier in order
to identify the requester during the requesting process.

b) Policy manager: Its role is to manage PPs. Data
owners organize their privacy preferences in PPs (see Figure 1)
which are stored by the policy manager in Table II. From PPs,
this component creates data usage conditions (see conditions
in Figure 1) that should be respected by requesters. From PPs,
this component also extracts the list of authorized users. This
list is a kind of ACL (Access Control List) that contains only
allowed users. We recall that in this work, for simplification,
we consider that users belong to groups. Thus, this ACL
contains mainly a list of groups of users and maybe some
individual users known in advance.

c) Trust manager: Its role is to manage trust levels. We
consider that each peer stores locally a list of peers and the
corresponding trust levels. If a required trust level does not
exist locally, the trust manager asks for it to other peers. In
PriServ three ways of obtaining trust levels are used, namely,
with-friends, without-friends and with-or-without-friends (see
Section III-B2d). The use of the trust manager allows owners
to increase their data privacy protection level. However, the
use of the trust manager is optional because it may generate
high costs.

d) Storage manager: Its role is to manage data storage.
Stored data are mainly Tables I and III. Data storage is made
locally before data are stored in the P2P system. To store data
in the P2P system, this component invokes the put() and get()
operations of the DHT layer.

e) Cipher manager: Its role is to manage cryptography in
PriServ. It offers a function that creates a symmetric cipher key
for each pair (data, PP). It also offers two functions to encrypt
and decrypt data. PriServ is independent of the encryption
technique used to encrypt data.

f) Data signature manager: Its role is to manage data
signatures to check the integrity of data. This component offers
a function to calculate digital data signatures (e.g., MD5).
PriServ is independent of the technique used to create data
signatures.
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Fig. 3. PriServ architecture

g) PriServ orchestrator: It is the central component of
PriServ. According to the peer type (i.e., requester, owner,
server), the orchestrator executes a different workflow by using
the components introduced before.

• Owner orchestrator. Its role is to orchestrate the owner
functionalities. It is responsible of publishing owner refer-
ences or data depending on the called function (publish-
Data() or publishReference()). It is also responsible of
retrieving data or symmetric keys during the requesting
process. It interacts with the application layer during
publishing and with the requester orchestrator during
retrieving.

• Requester orchestrator. Its role is to orchestrate data
requesting. It interacts with the application layer during
requesting and with the owner orchestrator during retriev-
ing.

• Server orchestrator. Its role is to orchestrate the server
functionalities. For that, it interacts with the DHT layer
to store and retrieve data of the P2P system.

2) Functions: This section presents the publishing and
requesting algorithms implemented by PriServ and gives an
overview of the trust level searching algorithms presented in
[14].

a) PublishReference(data, PPID): When the owner or-
chestrator receives this call, it uses the algorithm shown in
Figure 4 in order to publish data references in the P2P system
and to store data locally. In line 0, the owner application sends
the privacy policy identifier (PPID) and the data to publish. In
lines 2 and 3, the owner orchestrator asks the policy manager
the PP and the usage conditions of PPID. Then, it asks the
key manager to create the data key in line 4. Finally, the

Owner orchestrator
0: publishReference(data, PPID)
1: begin
2: privacyPolicy = policyManager.get(PPID);
3: userCondition =

policyManager.getUserCondition(PPID);
4: key = keyManager.createKey(data.dataref,

privacyPolicy.purpose,
privacyPolicy.operation);

5: storageManager.localPut(data, PPID, userCondition,
privacyPolicy.ACL,
owner, key);

6: end;

Owner storage manager
7: localPut(data, PPID, userCondition, ACL, owner, key)
8: begin
9: DataTable.localSave(data);
10: PrivateDataTable.localSave(data.dataRef,PPID);
11: dataP2P = createDataP2P(userCondition, ACL,

owner);
12: DHT.put(key,dataP2P);
13: end;

Fig. 4. PublishReference() function

orchestrator asks the storage manager to locally put the data
in line 5.

In lines 9 and 10, the storage manager stores locally the
data in the data table (Table I), then the data reference and the
PPID in the private data table (Table III). In line 11, it creates
the P2P data that will be stored on the P2P system. P2P data
is composed of the owner identifier, the usage condition and
the ACL. Finally, in 12, it invokes the DHT to put the P2P
data on the P2P system.

b) PublishData(data, PPID): When the owner orches-
trator receives this call it uses the algorithm shown in Figure
5 to publish the data content in the P2P system and to store

ha
l-0

04
19

62
3,

 v
er

si
on

 1
 - 

24
 S

ep
 2

00
9



Owner orchestrator
0: publishData(data, PPID)
1: begin
2: privacyPolicy = policyManager.get(PPID);
3: userCondition =

policyManager.getUserCondition(PPID);
4: key = keyManager.createKey(data.dataref,

privacyPolicy.purpose,
privacyPolicy.operation);

5: cipherData = cipherManager.encode(data,
privacyPolicy);

6: storageManager.distributedPut(data , PPID,
cipherData,
userCondition,
privacyPolicy.ACL,
owner, key);

7: end;

Owner storage Manager
8: distributedPut(data , PPID, cipherData,

userCondition, ACL, owner, key);
9: begin
10: DataTable.localSave(data);
11: PrivateDataTable.localSave(data.dataRef,PPID);
12: dataP2P = createDataP2P(cipherData,

userCondition,
ACL, owner);

13: DHT.put(key,dataP2P);
14: end;

Fig. 5. publishData() function

locally a copy of the data. Lines 2 to 4 are the same as in the
publishReference() function (same lines). In order to put data
on the P2P system, data should be encrypted, the orchestrator
contacts the cipher manager to obtain the cipher data in line 5.
Finally, in line 6, the orchestrator asks the storage manager to
store locally the data then to put them on the P2P system.
Notice that in this step, cipher data are transmitted to the
storage manager.

Lines 10 and 11 executed by the storage manager are the
same as in the publishReference() function (lines 9 and 10).
In line 12, the storage manager creates the P2P data to store
on the P2P system which is composed of the cipher data, the
owner identifier, the usage condition and the ACL. Finally the
storage manager invokes the DHT to put the P2P data on the
P2P system.

It is important to underline that the DHT is used in the same
way in both publishing functions, lines 12 in the first function
and 13 in the second one. Only the content of the data sent is
different.

c) Requesting: In PriServ, data requesting is done in
three steps: data requesting to the server, data retrieving from
the owner and a trust level searching made by the owner.

Request(dataRef, purpose, operation): When a requester
orchestrator receives this call it uses the algorithm shown in
Figure 6. In line 3, the requester orchestrator asks the key
manager to create the data key. Then, it asks its storage
manager to get the data from the P2P system in line 4.
The storage manager contacts the server storing the data
corresponding to the created data key by invoking the get()
function of the DHT.

When a server peer receives a get message it checks if the
requester is authorized to access the data by using the ACL
attached to each data. Then it returns the stored P2P data to

Requester orchestrator
0: Data request(dataRef, purpose, operation)
1: begin
2: data = null;
3: key = keyManager.createKeyPriServ(dataRef, purpose,

operation, requester);
4: dataP2P = storageManager.distributedGet(key);
5: if (dataP2P contains cipher data) do
6: signature = dataSignatureManager.getSignature(

dataP2P.cipherData);
7: ownerData = dataP2P.owner.retrieve(key,

requester,
signature);

8: if (ownerData contains a cipherKey) do
9: data = cipherManager.decode(

dataP2P.cipherData,
ownerData.cipherKey);

10: else if (ownerData contains data) do
11: data = ownerData.data;
12: endIf;
13: endIf;
14: endIf;
15: if (dataP2P contains a data reference) do
16: data = dataP2P.Owner.retrieve(key, requester);
17: endIf;
18: return data;
19: end;

Requester storage manager
20: dataP2P distributedGet(key)
21: begin
22: dataP2P = DHT.get(key);
23: return dataP2P;
24: end;

Fig. 6. request() function

the requester storage manager in line 22. Finally, the storage
manager returns the P2P data to its orchestrator in line 23.

The P2P data contains either cipher data (line 5) or a data
reference (line 15).

• In the first case, the requester orchestrator asks to its data
signature manager the signature of the received cipher
data in line 6. In line 7, it asks the owner orchestrator the
symmetric cipher key. The owner orchestrator sends the
cipher key or the data (unencrypted) if its data signature
differs from the requester’s one. Then, the requester
orchestrator asks the cipher manager to decrypt the cipher
data in line 9.

• In the second case, in line 16, the requester orchestrator
asks the owner orchestrator the data.

Finally, the orchestrator returns the requested data to the
application (line 18).

Retrieve(key, requester, signature): The owner orchestra-
tor uses the retrieve function to answer the request of the
requester. Figure 7 shows the retrieving algorithm. In line 2,
the owner orchestrator asks its storage manager to get locally
the data corresponding to the received key. Then, in line 3,
it asks its policy manager to check if the requester user has
the right to access data. If yes, the orchestrator asks the trust
manager to find the requester trust level in line 4. If the trust
level is higher or equal to the trust level specified in the
corresponding PP, in line 8, the owner orchestrator asks the
data signature manager to check if the requester data signature
differs from the local signature of the data. In this case, the
requester has a valid cipher data and the owner sends him the
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Owner orchestrator
0: OwnerData retrieve(key, requester, signature)
1: begin
2: localData = storageManager.localGet(key);
3: if (policyManager.check(localData.PPID,requester))
4: requesterTrustL = trustManager.searchTrustLevel(

requester);
5: privacyPolicy = policyManager.get(

localData.PPID());
6: if( requesterTrustL >= privacyPolicy.minTrustL )
7: localSignature = dataSignatureManager.

getSignature(localData.cipherData);
8: if (localSignature.equals(signature)) do
9: cipherKey = cipherManager.get(

localData.data,
privacyPolicy);

10: return OwnerData(cipherKey);
11: endIf;
12: return OwnerData(localData.data);
13: endif;
14: endIf;
15: return null;
16: end;

Fig. 7. Retrieve() function

symmetric cipher key5 in line 10. If data are damaged, the
owner sends to the requester the corresponding data in line
12. If data are damaged, there is a high probability that the
server has modified the data. This means that it violates data
privacy and this cheating should be punished, for example by
lowering the trust level of the server.

In the next we explain briefly the three ways of obtaining
trust levels.

d) SearchTrustL(requester): If the owner trust manager
has the trust level of the requester in its trust table, this level
is returned directly and the owner does not have to contact
other peers, otherwise one of the following methods is used.

• With-friends algorithm. In this method, each peer has at
least one friend that the owner contacts to obtain the
requester trust level. Each received trust level (RTL) is
weighted with the trust level (FTL) of the sending friend.
The final trust level is computed from the received trust
levels. Searching for the requester trust level is recursive.
If a friend does not have the requested trust level it
asks for it to its friends and the number of nested levels
is incremented. Recursion is limited by a predefined
number of iterations (MaxDepth). The maximum number
of contacted friends can also be limited to a predefined
number.

• Without-friends algorithm. In this method, each peer does
not have friends. The algorithm will proceed in the same
way as the with-friends algorithm. However, instead of
contacting friends, an owner will contact the peers in its
finger table (O(LogN) peers).

• With-or-without-friends algorithm. In this method, each
peer may have friends or not. In this case, if an owner has

5Maybe the unique completely secure way of transmitting keys is from hand
to hand between individuals. When a peer requests data, server peers return
the encrypted data and the data owner reference that stores the decryption key.
Owner peers use public-key cryptography to send decryption keys to requester
peers.

some friends, it uses the with-friends algorithm, otherwise
it uses the without-friends algorithm.

C. Cost analysis

This section presents a cost analysis of PriServ. In partic-
ular we present the costs of the publishing and requesting
functions.

1) Publishing cost: By using the DHT, O(logN) messages
are needed to publish each key. In PriServ, the number of
keys is equal to the number of entries of the private table
(ept). Additional costs induced by the cypher key generation
and the data encryption are negligible vis-a-vis the network
costs. Thus, the publishing cost is:

CPublish =
ept∑
i=1

O(logN) = O(ept ∗ logN)

The maximum value of ept is equal to the number of shared
data (nbData) multiplied by the number of purposes (nbPur-
pose) multiplied by the number of operation (nbOperation),
i.e., at worst, each data item is shared for all purposes and all
operations:

CMaxPublish = O(nbData∗nbPurpose∗nbOperation∗logN)

We can see that the number of purposes and operations
affects the publishing cost. Previous studies have shown that
considering ten purposes allows to cover a large number of
applications [20]. Used with ten purposes (by data item) and
three operations PriServ incurs a small overhead. Overall, the
publishing cost remains logarithmic.

2) Requesting cost: The requesting cost is the result of
three costs: get() cost, retrieving cost, and trust level searching
cost. We disregard access control, signature calculation and
decryption costs which are negligible vis-a-vis the network
costs. The get() cost is in O(logN) and the server returns its
answer in one message. For data retrieving, a requester needs
one message to contact an owner and vice versa. The trust level
searching costs are shown in [14]. To resume, the requesting
cost is:

CRequesting = CGet + CRetrieving + CSearchTrustL

= O(logN) + 3 + O((max(logN,NF ))MaxDepth)

= O((max(logN,NF ))MaxDepth)

We can see that the overhead introduced by PriServ comes
from trust level searching. We have shown in [14] how this
cost can be reduced and stabilized to a minimum cost.

IV. PERFORMANCE

PriServ is under development. It is being developed in Java.
Distribution and requesting functions have been developped
and tested. We plan to deploy PriServ and to test it in
Grid50006, an infrastructure distributed in 9 sites around

6www.Grid5000.fr
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Simulation parameters
Variable Description default

n Number of bits 11
in the key/peer

N Number of peers 211

FC Number of friends 2
MaxDepth Maximum depth 11

of trust searching

TABLE IV
TABLE OF PARAMETERS

France, for research in large-scale parallel and distributed
systems.

By simulation, this section evaluates the performance in
terms of number of messages of the publishing, requesting
and trust level searching algorithms.

For the simulation, we use SimJava [11]. We simulate the
Chord protocol with some modifications in the put() and get()
functions. The parameters of the simulation are shown in Table
IV. In our tests, we consider N peers with a number of data
keys equal to the number of data multiplied by the number of
purposes7. Data and peer keys are selected randomly between
0 and 2n. In our simulation, we set n to 11 which corresponds
to 211 peers. This number of users is largely sufficient for
collaborative applications like medical research.

Fig. 8. Publishing cost

Fig. 9. Requesting cost

A. Publishing Cost

We measure the number of messages for publishing one data
item in function of the number of peers. Figure 8 illustrates

7In this simulation the operation parameter of the publishData() and
publishReferences() functions is not taken into account but this does not affect
our results because currently we only consider 3 operations.

5 measures where the number of purposes goes from 1 to
10. We can observe that the distribution cost is logarithmic
and increases with the number of purposes. We recall that
having 10 purposes for each data item is an extreme case. If
the operation parameter of publishing functions is taken into
account, this results may be multiplied by 3 (at worst) but the
cost remains logarithmic.

B. Requesting Cost

We measure the number of messages for requesting one
data item in function of the number of peers. Figure 9 shows
two costs. The first cost is the number of messages to get the
P2P data. The second cost is the sum of the first cost and
the number of messages to retrieve the owner data or cipher
key. We observe that the requesting costs are logarithmic as
predicted by our cost model (see Section III-C).

C. Trust Level Searching Cost

We measure the trust level searching cost (in number of
messages) versus the number of peers for the three algorithms.
In the simulation, we optimize the number of messages as
follows. Consider the trust level searching as a tree in which
the owner is the root and the depth is equal to the maximum
depth of searching. In the simulation, peers who are in the
same branch will not be contacted twice.

a) With-friends algorithm: We consider that peers
have the same number of friends (NF) and the maximum
depth (MaxDepth) is set to 11 (the highest maximum depth
we allow in the simulation). Figure 10.a illustrates 3 measures
where we consider 1, 4 and 10 friends. Those measures
are slightly different of the cost model where the cost is
O(NFMaxDepth) thanks to our tree-based optimization and
because the probability to contact twice a peer in a system
of 100 peers is higher than in a system of 1000 peers. That
is why in Figure 10.a, the trust level searching cost increases
with the number of peers. We observe that for a small number
of friends the trust level searching costs depends only on the
number of friends as predicted by our cost model.

b) Without-friends algorithm: Figure 10.b illustrates
4 measures where the maximum depth of searching varies
between 1, 2, 3 and 11. We recall that the number of contacted
peers is log(N). We observe that the trust level searching costs
is logarithmic for small values of depth. This cost increases
with the maximum depth of searching as predicted by our cost
model.

c) With-or-without-friends algorithm.: We consider in
our simulation that the probability that a peer has friends is
0.9. Figure 10.c illustrates 3 measures where the maximum
depth of searching varies between 5, 8 and 11. We observe
that the trust level searching cost is rather logarithmic for small
values of depth. This cost increases with the maximum depth
as predicted by our cost model8.

8We do not measure the trust level searching cost versus the number of friends which
will be the same as the with-friends case.
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a. With-friends algorithm b. Without-friends algorithm

c. With-or-without-friends algorithm d. Comparison of the three algorithms

Fig. 10. Trust level searching costs

Fig. 11. Stabilization of the trust level searching cost

d) Comparison: Figure 10.d compares the three algo-
rithms seen above. We consider a number of friends equal to
2 and a maximum depth equal to 11. As predicted before,
the with-friends case introduces the smallest cost while the
without-friends case introduces the highest. However, intu-
itively, the probability to find the trust level is higher in the
without-friends algorithm than in the with-friends algorithm.
This is due to the fact that the number of contacted peers is
higher in the without-friends algorithm, which increases the
probability to find the trust level. We estimate that the with-
or-without-friends algorithm is the most optimized because it
is a tradeoff between the probability to find the requester trust
level and the trust level searching cost.

Stabilization of the Trust Level Searching Cost: We now
focus on the number of messages used to search the trust level
of a requesting peer versus the number of its requests. Here
we consider the three algorithms of trust (see Figure 11). We
observe that the number of messages decreases and stabilizes

after a number of searches. This is because the more a peer
requests for data, the more it gets known by the peers in the
system.

When peers ask for a trust level, answers are returned in
the requesting order and the trust tables are updated with
the missing trust level. Thus, the trust tables evolve with the
number of searches. After a while, these tables stabilize. Thus,
the number of messages for searching trust levels is reduced to
a stable value. This value is not null because of the dynamicity
of peers9.

We also observe in Figure 11, that the trust level searching
cost in the without-friends algorithm stabilizes first. This is
due to the fact that a larger number of peers are contacted in
this algorithm. The with-or-without-friends algorithm comes
in second place, and the with-friends algorithm comes last.
As we have seen in the comparison of the three algorithms,
we find again that the with-or-without-friends algorithm is the
most optimized because it is a tradeoff between the time to
stabilization and the trust level searching cost.

The trust level searching cost makes requesting cost linear.
Nevertheless, we proved that this cost is eventually reduced in
systems where the interaction among peers is high.

V. RELATED WORK

Our work is related to three domains, namely, Hippocratic
databases, P2P systems and trust.

A. Hippocratic databases
The first work that uses purposes in data access is Hip-

pocratic databases [2]. Inspired by the Hippocratic Oath and

9In our simulation, we consider that the number of peers joining the system is equal
to those leaving the system. Thus, there are always new peers which do not know the
requester trust level.
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guided by privacy regulations, authors propose ten principles
that should be preserved in Hippocratic databases, namely,
purpose specification, consent of the donor, limited collection,
limited use, limited disclosure, limited retention, accuracy,
safety, openness and compliance. Subsequent works have
proposed solutions for Hippocratic databases. In [17], the goal
is to enforce privacy policies within existing applications. To
do so, authors propose a query modification algorithm that
ensures cell-level privacy protection. In [1], authors address the
problem of how current relational DBMS can be transformed
into their privacy-preserving equivalents. From specifications
of privacy policies, they propose an algorithm that defines
restrictions (on columns, rows and cells) to limit data access.
In [4], authors propose query modification techniques and
Role-Based Access Control (RBAC) to ensure data privacy
based on purposes. They propose to organize purposes in a
tree hierarchy where the root is the most general purpose and
the leafs the more specific ones. In this way, if data access
is allowed for a purpose x, all descendant purposes of x are
also allowed. They also propose data labeling (with allowed
purposes) at different granularity levels (table, column, row,
cell). In addition, they propose some SQL modifications to
include purposes, for instance Select column-name From
table-name For purpose-name.

In this paper, we use the Hippocratic database principles
[2], mainly, access purposes. As in [17] we propose enforcing
privacy policies without modifying existing database applica-
tions. We propose to extend P2P functionalities with a service
that uses privacy policies tables where data and purposes are
linked. Similar to [4], in PriServ the requesting() function (i.e.,
query) includes the purpose name. Unlike [4] relational tables
are not modified with labeling.

B. Privacy in P2P systems

OceanStore [16] is a utility infrastructure designed for
global scale persistent storage which relies on Tapestry [27].
It was designed to provide secure highly available access to
persistent objects. In OceanStore, non public data is encrypted
and access control is based on two types of restrictions:
reader and writer restrictions. In the reader restriction, to
prevent unauthorized reads, data are encrypted (symmetric-
key cryptography) and encryption keys are distributed to users
with read permissions. To revoke the read permission, the data
owner requests that the replicas be deleted or re-encrypted with
a new key. A malicious reader is able to read old data from
cached copies or from misbehaving servers that fail to delete
or re-key. This problem is not specific to OceanStore, even
in conventional systems there is no way to force a reader to
forget what has been read.

To prevent unauthorized writes, writes must be signed so
that well-behaved servers and clients can verify them against
an access control list (ACL). The owner of an object can
choose the ACL for an object by providing a signed certificate.
ACL are publicly readable so that server peers can check
whether a write is allowed. Thus, servers restrict writes by
ignoring unauthorized updates. As in PriServ, OceanStore uses

ACL to control data access (write operation) but contrary to
PriServ, those ACL are public. In PriServ, ACL (that are
attached to published data or references) are sent only to
corresponding data servers.

PAST [21] is a P2P file storage system that relies on Pastry
[22] to provide strong persistence and high availability. In
PAST, requester peers trust owner and server peers thanks to
a smartcard hold by each node which wants to publish data in
the system. A private/public key pair is associated with each
card. Each smartcard’s public key is signed with the smartcard
issuer’s private key for certification purposes. The smartcards
generate and verify various certificates used during insert and
reclaim operations and they maintain secure storage quota
system. A smartcard provides the node ID for an associated
PAST node. The node ID is based on a cryptographic hash of
the smartcard’s public key. The smartcard of a user wishing to
insert a file into PAST issues a file certificate. The certificate
contains, among others, a cryptographic hash of the file’s
contents (computed by the requested node) and the fileId
(computed by the smartcard). PAST as PriServ attempts to
be resilient to malicious servers but contrary to PriServ, PAST
do not trust in data owners.

Freenet [6] is a distributed storage system which focuses
on privacy and security issues. The underlying P2P network is
loosely structured because the policies it employs to determine
the network topology and data placement are not deterministic.
Freenet uses anonymous communications. Messages are not
send directly from sender to recipient, thus, uploader and
downloader anonymity is preserved. Besides, all stored files
are encrypted so that a node can deny the knowledge of the
content. PriServ allows data privacy protection and does not
address peer anonymity.

Several P2P systems propose access control services. It
is important to notice that only two of them rely on DHT
systems (OceanStore and PAST). Similar to PriServ, they
consider servers as untrusted and propose techniques to limit
their malicious acts. Like OceanStore and Past, PriServ uses
encryption to protect data (only when publishing data content
in the system not data references). In those systems, the lack of
authentication is overcome by the distribution of the necessary
keys for accessing data content to a subset of privileged users.

Data encryption also allows servers to deny the knowledge
of the content they store and protects them if data stored in
the system is illegal. Nevertheless, encryption is insufficient
to protect data privacy because once data are decrypted, they
can be disclosed and used for different purposes violating
data owner’s preferences. In this aspect PriServ goes beyond
cryptography techniques by basing data access also on pur-
poses and operations. To obtain data, requesters should specify
the purpose (analysis, experiments, marketing, etc.) and the
operation (read, write, disclosure) for which data are requested.
This explicit request commits clients to use data only for
specified purposes and operations. Legally, this compromise,
may be used against malicious requesters if it is turned out
requested data have been used for purposes/operations non
expressed in data requests.
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C. Trust management

Other works propose trust-based management systems [15],
[18], [24]. In [24], a considerable number of trust models
and algorithms have been presented to tackle the problem of
decentralized trust management.

EigenTrust [15] is based on the notion of transitive trust.
If a peer A trusts a peer B, A also trusts peers trusted by B.
All peers calculate a local trust level for each peer based on
the satisfactory or unsatisfactory transactions that they have
with it. If a peer B needs to verify trustworthiness of a peer
C, B collects statistics about the behavior of peer C and
computes a global trust rating for C. EigenTrust employs a
shared global history of peer interactions to identify potential
malicious providers. We consider that global history schemes
are complicated, they require long periods of time to collect
statistics and to compute global ratings. Priserv does not use
a global history, a peer does not have to contact all peers in
order to search for a trust level. Thus PriServ require less time
and messages, and have a lower searching trust cost.

[18] presents a P2P resource-sharing network in presence
of malicious peers, which uses only limited sharing between
peers. It presents a voting-based reputation system that sig-
nificantly mitigates the deleterious effects of malicious peers,
by sharing information with a small group of peers. In [18],
a peer A asks for a trust level to a limited number of peers
called friends. A friend is a trustworthy peer from the point
of view of A. A calculates a mean value from collected trust
levels which are weighted by the trust levels of friends. PriServ
uses [18] in order to search for trust levels. Unlike [18] where
the trustworthiness of data providers is verified, in PriServ the
trustworthiness of data requesters is verified.

VI. CONCLUSION

This paper proposes an approach to prevent data privacy
violation based on data owner’s preferences on P2P data shar-
ing applications. A P2P privacy model and its implementation,
named PriServ, is presented. The originality of our approach is
a data access control that uses access purposes and operations
in P2P systems. During access control, optionally, reputa-
tion techniques are used to verify requesters’s trustworthy.
Implementation relies on DHT-based P2P systems by using
the basic put and get functions. Our cost analysis reveal
that publishing data in the system conserves the logarithmic
cost of the traditional put function. Concerning requesting, by
using peer’s reputation, costs are linear, otherwise costs are
logarithmic like in the traditional get function.
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