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Abstract

The reconstruction of the equilibrium of a plasma in a Tokamak is a free
boundary problem described by the Grad-Shafranov equation in axisymmet-
ric configuration. The right-hand side of this equation is a nonlinear source,
which represents the toroidal component of the plasma current density. This
paper deals with the identification of this nonlinearity source from experi-
mental measurements in real time. The proposed method is based on a fixed
point algorithm, a finite element resolution, a reduced basis method and a
least-square optimization formulation. This is implemented in a software
called Equinox with which several numerical experiments are conducted to
explore the identification problem. It is shown that the identification of the
profile of the averaged current density and of the safety factor as a function
of the poloidal flux is very robust.

Key words: Inverse problem, Grad-Shafranov equation, finite elements
method, real-time, fusion plasma
PACS: 02.30.Zz, 02.60.-x, 52.55.-s, 52.55.Fa, 52.65.-y

1. Introduction

In fusion experiments a magnetic field is used to confine a plasma in the
toroidal vacuum vessel of a Tokamak [[]. The magnetic field is produced by
external coils surrounding the vacuum vessel and also by a current circulating
in the plasma itself. The resulting magnetic field is helicoidal.

Let us denote by j the current density in the plasma, by B the magnetic
field and by p the kinetic pressure. The momentum equation for the plasma
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is
du
Pt
where u represents the mean velocity of particles and p the mass density.

+Vp=jxB

v du
At the slow resistive diffusion time scale [P the term p— can be neglected

compared to Vp and the equilibrium equation for the plasma simplifies to
jxB=Vp

meaning that at each instant in time the plasma is at equilibrium and the
Lorentz force j x B balances the force Vp due to kinetic pressure. Taking
into account the magnetostatic Maxwell equations which are satisfied in the
whole space (including the plasma) the equilibrium of the plasma in presence
of a magnetic field is described by

mj = VxB, (1)
V-B = 0, (2)
jxB = Vp, (3)

where 1 is the magnetic permeability of the vaccum. Ampere’s theorem is
expressed by Eq. ([) and Eq. (B) represents the conservation of magnetic
induction. From the equilibrium equation (B) it is clear that

B-Vp=0andj-Vp=0.

Therefore field lines and current lines lie on isobaric surfaces. These iso-
surfaces form a family of nested tori called magnetic surfaces which enable
to define the magnetic axis and the plasma boundary. On the one hand
the innermost magnetic surface degenerates into a closed curve and is called
magnetic axis and on the other hand the plasma boundary corresponds to
the surface in contact with a limiter or to a magnetic separatrix (hyperbolic
line with an X-point).

The Grad-Shafranov equation [, fl, fl] is a rewriting of Egs. ([[-§) un-
der the axisymmetric assumption. Consider the cylindrical coordinate sys-
tem (e,, ey, e,). The magnetic field B is supposed to be independent of the
toroidal angle ¢. Let us decompose it in a poloidal field B, = B, e, + B.e,
and a toroidal field By = Bye, (see Fig. [I).

Let us also introduce the poloidal flux

1 s
W(r, z) o /D ds /o Jrdr
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Figure 1: Toroidal geometry.

where D is the disc having as circumference the circle centered on the Oz
axis and passing through a point (r, z) in a poloidal section. From Eq. (P)
1
one deduces that B, = —[V4 x ey]. Therefore B.Vi = 0 meaning that 1 is
r
a constant on each magnetic surface and that p = p(v).
The same poloidal-toroidal decomposition can be applied to j. From Eq.
(@) it is clear that V-j = 0. As for B,, it is shown that there exists a function

1
f, called the diamagnetic function, such that j, = —[V(i) X ey]. Since
r

0
j-Vp = 0 then Vf x Vp = 0 and f is constant on the magnetic surfaces,
f=r).
From Eq. ([l) one also deduces that B, = ie(b and j, = (—A*)e, where
r

0,1 0. 0,1 0.

A= —(—— :
8T</L0T or +8z Lo 02

To sum up



B=B,+B,

i .] = jp1+j¢

B, = ;[V@b X €] and i = —[Vi X €]
f . r *Mo

B, =~ey Jo = —A%ey

r

From Eq. (B) one deduces that
. . 1 1
(Jp + Jees) X (By + Byey) = _WB¢VJC +]¢;V¢ =Vp

and since
Vp =p' )V and V[ = f'(¢) V)

the Grad-Shafranov equation valid in the plasma reads

—A"p = rp/(¢) (fF) @) (4)

1
+ -
o
Thus under the axisymmetric assumption, the three dimensional equilib-
rium Egs. (] - f) reduce to a two dimensional non linear problem. Note that
the right-hand side of Eq. (fl) represents the toroidal component j, of the
current density in the plasma which is determined by the unknown functions
p" and ff’. In the vaccum there is no current and the poloidal flux statisfies

—A") =0

In this paper, we are interested in the numerical reconstruction of the
equilibrium i.e of the poloidal flux ¥ and in the identification of the unknown
plasma current density [B, [, §]. In a control perspective this reconstruction
has to be achieved in real time from experimental measurements. The main
difficulty consists in identifying the functions p’ and ff’ in the non linear
right-hand side source term in Eq. (f]). An iterative strategy involving a
finite element method for the resolution of the direct problem and a least
square optimisation procedure for the identification of the non linearity using
a decomposition basis is proposed.

Let us give a brief historical background of this problem of the recon-
struction of the plasma current density from experimental measurements. In
large aspect ratio Tokamaks with circular cross-sections, it was established



in [f, [0] that the quantities that can be identified from magnetic measure-
ments are the total plasma current I, and a sum involving the poloidal beta
and the internal inductance: [, + li/2. A large number of papers proved
the possibility of separating 3, from li as soon as the plasma is no longer
circular with high-aspect ratio [T, [2, [3, [4]. The fact of adding supple-
mentary experimental diagnostics, such as line integrated electronic density
and Faraday rotation measurements, has considerably improved the identi-
fication of the current density profile [I5, [, []]. The knowledge of the flux
lines (from density or temperature measurements) enables in principle [[L] to
determine fully the two functions p’ and ff’ in the toroidal plasma current
density, except in a particular case pointed out by [[7 and studied by [I§]
and referred to as minimum-B equilibria. The difficulty in the reconstruction
of the current profile, especially when only magnetic measurements are used,
has been pointed out in [[[9] and is inherent to the ill-posedness of this inverse
problem. The theory of variances in equilibrium reconstruction [R(] enables
to determine by statistical methods what kind of plasma functions can be
reconstructed in a robust way. The equilibrium reconstruction problem in
the case of anisotropic pressure is treated in [R1].

A certain number of mathematical results on the identifiability of the
right-hand-side of the Grad-Shafranov equation from Cauchy boundary con-
ditions on the plasma frontier exist and seem unknown from the physical
community. They are first dealing with the cylindrical case where the equi-
librium equation becomes —At) = p/(1)) and where only one non-linearity
has to be identified. It is clear that, if the plasma boundary is circular, then
the magnetic field is constant on the plasma boundary and there is an infinity
of non-linearities giving this value and the only information coming from the
poloidal field on the plasma boundary is the total plasma current. In 3]
it was proved that if p’ is a real-analytic function, then in a domain with
a corner there is only one non-linearity p’ corresponding to a given poloidal
field on the plasma boundary. Some angles in the proof were excluded but
in [23] the proof was given for corners with arbitrary angles (including the
90 degrees X-point case). Curiously the case where the plasma boundary is
smooth is mathematically more difficult and it has been proved in [4] that,
if the plasma is non-circular and if p’ is affine in terms of ¢ then there ex-
ists at most a finite number of affine functions corresponding to the Cauchy
boundary conditions. The link with the Schiffer and Pompeiu conjectures
which is clearly pointed out in this paper is particularly interesting. In 7]
results of unicity for a class of affine functions or for exponential functions are



given for special smooth boundaries and results of non-unicity for doublet-
type configurations. Finally in [Rg] identifiability results are given for the
full Grad-Shafranov equation in a domain with a corner, with some excep-
tions for the angle. Of course, in spite of all these identifiability results,
the ill-posedness of the reconstruction of the non-linearities from the Cauchy
boundary measurements remains and has to be tackled very cautiously.

Section 2 is devoted to the statement of the mathematical problem and to
the description of the experimental measurements avalaible. The proposed
algorithm is described in Section 3. This methodology has been implemented
in a software called Equinox and numerical results using synthetic and real
measurements are presented in Section 4.

2. Setting of the direct and inverse problems

2.1. Experimental measurements

Although the unknown functions p'(¢) and (ff’)(¢)) cannot be directly
measured in a Tokamak several measurements are available:

e Magnetic measurements: they represent the basic information on which
any equilibrium reconstruction relies. Flux loops provide measurements
of 1) and magnetic probes provide measurements of the poloidal field
B, at several points around the vacuum vessel. Let €2 be the domain
representing the vacuum vessel and 0f) its boundary. In what follows

we assume that we are able to obtain the Dirichlet boundary condi-

10
tions 9 = gp and the Neumann boundary conditions _O—w = gy at
ron

any points of the contour 0f) thanks to a preprocessing of the magnetic
measurements. This preprocessing can either be a simple interpolation
between real measurements or be the result of some boundary recon-
struction algorithm which computes @ outside the plasma satisfying
A*1) = 0 under the constraint of the measurements [R7, B8, R9.

A second set of measurements which can be used as a complement to
magnetic measurements are internal measurements:

e Interferometric measurements: they give the values of the integrals
along a family of chords ¢; of the electronic density n.(v) which is

approximately constant on each flux line [ n.(¢)dl = ;.

Ci



e Polarimetric measurements: they give the value of the integrals

/ neW) O gy _ g,

r on

0
9 is the normal derivative of ¢ along the chord ¢;.

on

Even when using magnetic measurements only for the equilibrium recon-
struction the numerical algorithm presented in this paper also uses:

e Current measurement: it gives the value of the total plasma current I,

defined by
Ip :/ j¢d!L‘
Q

P
Ampere’s theorem shows that this quantity can be deduced from mag-
netic measurements.

e Toroidal field measurement: it gives the value By of the toroidal com-
ponent of the field in the vacuum at the point (ro,0) where ry is the
major radius of the Tokamak. This is used for the integration of ff’
into f and for the computation of the safety factor ¢ (see ).

2.2. Direct problem

The equilibrium of a plasma in a Tokamak is a free boundary problem.
The plasma boundary is determined either as being the last flux line in a
limiter L or as being a magnetic separatrix with an X-point (hyperbolic
point). The region €2, C € containing the plasma is defined by

), = {x e Q, ¥(x) >}
where 1), = maxy ¢ in the limiter configuration or ¢, = (X) when an
X-point exists.
In the vacuum region, the right-hand side of Eq. vanishes and the
equilibrium equation reads
A" =01in Q\ Q,
7/1 — wa
wb - ’l/}a 1
- A 0 L
Va = maxg, v, A() = p'(¢) and BW) = ——(ff)(%). This is in-
HoTo

troduced so that the non dimensional and unknown functions A and B are

Let us introduce the normalized flux ¢ = € [0,1] in 2, with



defined and identified on the fixed interval [0, 1]. Imposing Dirichlet bound-
ary conditions the final equilibrium equation is expressed as the boundary
value problem:

—AY = N—A@) + “B()xq, 0

To

v = gp on 0f)

()

The free boundary aspect of the problem reduces to the particular non linear-
ity appearing through xgq, the characteristic function of €2,. The parameter
A is a scaling factor used to ensure that the given total current value I, is
satisfied
T - To -
L= [ AW + 2B (6)
Q

Pro

2.83. Inverse problem

The inverse problem consists in the identification of functions A and B
from the measurements available. It is formulated as a least-square mini-
mization problem

Find A*, B*, n} such that :
(7)

J(A*, B*,n}) = inf J(A, B, n.).

e

If magnetic measurements only are used the formulation only needs the
A and B variables and the J; and J; terms in Eq. (§) below are not needed.
When polarimetric and interferometric measurements are used, the electronic
density n, (1) also has to be identified even if it does not appear in Eq. (f).
The cost function J is defined by

J(A,B,ne):J0+J1+JQ+Jg (8)

Jo describes the misfit between computed and measured tangential compo-
nent of By

where NV is the number of points M}, of the boundary 02 where the magnetic
measurements are given.



Ne¢ n

Jl _ %Z(wzolar)2</0 ne(,lvz)) Z_:fdl . Oék)Q

.
k=1
and
1 Qe _
Ja= 5 S [ = )
k=1 Ch

N, is the number of chords over which interferometry and polarimetry
measurements are given. The weights w give the relative importance of the
different measurements used. The influence of the choice of the weights on
the results of the identification was extensively studied in [[]. As a conse-
quence of the ill-posedness of the identification of A, B and n., a Tikhonov
regularization term J, is introduced [BQ] where

1 1 1
=% [Wwerds 2 [ B@ras S [ era
2 Jo 2 Jo 2 Jo
and €4, ep and ¢, are the regularization parameters.

The values of the different weights and parameters introduced in the cost
function are discussed in Section f.

It should be noticed here that magnetic measurements provide Dirichlet
and Neumann boundary conditions. The choice was made to use the Dirichlet
boundary conditions in the resolution of direct problem and to include the
Neumann boundary conditions in the cost function formulated to solve the
inverse problem. This is arbitrary and another solution could have been
chosen.

3. Algorithm and numerical resolution

3.1. Quverview of the algorithm

The aim of the method is to reconstruct the equilibrium and the toroidal
current density in real time. At each time step determined by the avail-
ability of new measurements during a discharge, the algorithm consists in
constructing a sequence (", 27, A", B", \") converging to the solution vec-
tor (¢, Q,, A, B,\). The unknown function n. may be added too if interfer-
ometry and polarimetry measurements are used. The sequence is obtained
through the following iterative loop:



Starting guess: %, Q) A%, B® and X known from the previous time
step solution.

Step 1 - Optimisation step: compute A" satisfying (f)
Ry

n+l __ Ln_n “Vpon/n
W=D [ LA + e

then compute A™*!(y)") and B"*!(¢") using the least square procedure
detailed in Section B.2.9.

Step 2 - Direct problem step: compute of 1" solution to

Ry

—ATgT = XA () 4 2B (g in Q

Ry B (9)
Y™t = gp  on ON.
and the new plasma domain Q"'
n := n + 1. If the process has not converged return to Step 1 else
(¥, Q, A, B, \) = (¢, Q, A*, B", \""). The process is supposed to have
n+l _ ,/n
converged when the relative residu W is small enough.

At each iteration of the algorithm, an inverse problem corresponding to

the optimization step and an approximated direct Grad-Shafranov problem
have to be solved successively. In Eq. (), ¢" is known and since the right-
hand side does not depend on 1" *! the boundary value problem () is linear.

In the next section the numerical methods used to solve the two problems
corresponding to step 1 and step 2 are detailed.

3.2. Numerical resolution
3.2.1. The finite element method for the direct problem

The resolution of the direct problem is based on a classical P! finite

element method [B]]. Let us consider the family of triangulation 7, of €2, and
V}, the finite dimensional subspace of H'(2) defined by

Vi, = {Uh S Hl(Q),’Uh|T € Pl(T), VT € Th}.

10



and introduce V2 = V;, N H}(Q). The discrete variational formulation of the
boundary value problem { reads

Find v, € V}, with ¢, = gp on 0f2 such that

1 r

Y, € V;?,/ —Vy, - Vupdr = / )\[—
a Ho? o, Ho r
where 1* represents the known value of ¢ at the previous iteration. Nu-
merically the Dirichlet boundary conditions are imposed using the method
consisting in computing the stiffness matrix K of the Neumann problem and
- 1

modifying it. Consider (v;) a basis of V}, then K;; = / —Vv;Vu,;dx The

Q HoT
modifications consist in replacing the rows corresponding to each boundary

node setting 1 on the diagonal terms and 0 elsewhere. At each iteration only
the right-hand side of the linear system in which the Dirichlet boundary con-
ditions appear has to be modified. The linear system corresponding to Eq.
can be written in the form

KV =y+g (11)

where K is the n x n modified stiffness matrix, ¥ is the unknown vector
of size n the number of nodes of the finite elements mesh, y is the vector
associated with the modified right-hand side of Eq. ([[(]) and g is the vector
corresponding to the Dirichlet boundary conditions.

The matrix K is sparse and so is its LU decomposition. The inverse
matrix K ! however is not sparse. The linear system ([[1]) is inverted using
the LU decomposition since it is computationally cheaper than using the full
inverse matrix K ! which is nevertheless needed for the optimization step of
the algorithm in Eq. ([() below.

The vector y depends on functions A and B which are determined in
the optimization step. Functions A, B and n. are decomposed on a finite
dimensional basis (®;);1,.  of functions defined on [0, 1]

Az) = Z a;®;(z), B(x) = Z b;®;(z) and n,(z) = Z ;P (x).

The vector y reads
y =YW )u (12)

11



where u = (ay, ..., Gm, b1, ..., by) € R*™ is the vector of the components of
functions A and B in the basis (®;). The matrix Y of size n x 2m is defined
as follows. Each row i of Y is decomposed as

/ARLQj(z/?*)vidx if1<j<m
Q, 1o

Vi (9") = R _
/Q )\TO(IDj_m(@Z)*)vidx ifm+1<j<2m.

3.2.2. Detailed numerical algorithm

One equilibrium computation corresponds to one instant in time during
a pulse. The quasi-static approximation consists in considering that at each
instant the Grad-Shafranov equation is satisfied. During a pulse successive
equilibrium configurations are computed with a time resolution At corre-
sponding to the acquisition time of measurements:

e Initialization before the discharge: the modified stiffness matrix K, its
LU decomposition as well its inverse K~! are computed once for all
and stored.

e Consider that the equilibrium at time ¢t — At is known and that a new
set of measurements is acquired at time t.

e Computation of the new equilibrium at time ¢ through the iterative
loop briefly described in the previous Section and detailed below:

The equilibrium from the previous time step is used as a first guess in the
iterative loop.

Step 1 - Optimization step. During the optimisation step, n. is first estimated
from interferometric measurements and A and B are computed in a second
time.

e Compute the electronic density n. based on the equilibrium of the
previous iteration 1)* using a least square formulation for the minimun
of Jo with Tikhonov regularization and solving the associated normal
equation: The flux ¥* is given.

me(a) = 3 v;0,(x)

12



The interferometric measurements for 7 =1 ... n, are
Yi ~ / ne(z/;*)dl = Z’Uj/ gbj(’lj)*)dl = Zvaij
C; ; C; p
The cost functional reads
_ 1 inter\2 2 € T
J(v) = 5 Z(wi ) (Z Bijv; —7i)” + 5Y Av
i j

1
= SID(Bu = )|P + 50" Aw

where DV/2 = diag(w™*") and the regularization matrix A is defined
by

1
AZ] = / q),?Z(x)@?,](.ﬁC')dl'
0

and ®, is the second derivatives of the basis function ®;.

It is minimized solving the associated normal equation
(a*(DY2B)T(DY2B) + éA)o = a(DY2B)T D'y (13)

Since n. ~ 10¥m™ an adimensionalizing parameter o = 109m =3,

such that v = av, is introduced in order to precondition the linear
system which is inverted using LU decomposition, as well as a reason-
able prescribed value for the non dimensional regularization parameter
£ = a’e.

Compute A" satisfying Eq. (f). In the right-hand side y, A appears
in the product A\u. In order to avoid any divergence issue due to the
non uniqueness of A (for all a;, Au = (Aa)(g)) the degrees of freedom

1
(dofs) u are scaled by m = max(|a;|), u is replaced by —u and X by
m

ma.

Compute A and B. In order to approximate A and B, suppose n, is
known and consider the discrete approximated inverse problem

{ Find % minimizing :
(14)

1 N €
J() = I = dl} + Su"Au

13



where C(1)*) is the observation operator and d the vector of experimen-
tal measurements. The first term in J is the discrete version of Jy+ J;.
The second one corresponds to the first two terms of the Tikhonov reg-
ularization .J. with e 4 = eg = ¢ which will always be assumed in order
for functions A and B to play a symmetric role.

Let us denote by [ the number of measurements available (I = N + N,
if magnetic and polarimetric measurements are used) and by D the

diagonal matrix made of the weights wjy, and w?”*" the norm ||.||p is

defined by ¥x € R! ||x||% = (Dx,x) = (D'*x, D'/*x)

C(v*) is a sparse matrix of size [ x n and can be viewed as a vector
composed of two blocks Cy of size N x n and indepedent of ¢* and
Cy(y*) of size N, x n corresponding respectively to Jy and J;. That
is to say that multiplication of the kth row of Cy by ¢ gives the kth
Neumann boundary condition approximation

(o) ~ (L2 ().

ron

The block C;(¢*) depends on 9* through the n.(¢*) function. The
multiplication of the kth row of C(¢)*) by ¥ gives the kth polarimetric
measurements approximation

ne(W) 00y

r  On

(CL )W ~ /

The matrix A is of size 2m x 2m and is block diagonal composed of
two blocks A and Ay of size m x m, with

M= (el = [ @)@
Using Eqs .([[J] - [J) problem ([4) becomes
Tw) = SIC@)E —dl}+ u A
= SICWOKTY (@)t (CE)E g~ Dl + SuT
- gmu—ﬂ@+§#mu

14



where E = C(¢*)K—'Y (¢*) and f = —C(¢*)K~'h + d. Setting £ =
D'2E problem ([[4) reduces to solve the normal equation

(E"E +eNu=E"f (15)
whose solution is denoted by u*.

Direct problem step. Update the dofs v and update the flux ¥ by solving the
linear system -

K¢ =Y (@ )u" +g
using the precomputed LU decomposition of matrix K. Update €, possi-
bly computing the position of the X-point if the plasma is not in a limiter

configuration.

4. Numerical results

4.1. Twin experiment with noise free magnetic measurements

In this section we assume that the poloidal flux corresponding to an equi-
librium configuration v is given on the boundary I' . These Dirichlet bound-
ary conditions can either be real measurements or can be the output from
some equilibrium simulation code. In a first step we also assume to know
functions p’ and ff’ (or A and B). In what follows these reference functions
are given point by point. It is then possible to run a direct simulation to

0
compute ¢ on 2 (see Fig. P) and thus % on I' which can then be used as

measurements in an inverse problem resolution.

In this first experiment the magnetic measurements are free of noise.
The identification algorithm is initialized using the first guess functions are
A(z) = B(z) = 1—x and A = 1. The poloidal flux 1 is initially a constant on

Q). The weights in the misfit part of the cost function Jj related to magnetic

1 . .
measurements are defined by wy, = Since the error on magnetic

VNo'

measurements are of about one percent we define 0 = 0.01B,,, where B,, is a
mean magnetic field value which thanks to Ampere’s theorem can be defined
I
as B, = M&r .
The functions A and B are decomposed in a function basis defined on
the interval [0, 1]. Several basis have been tested (piecewise affine functions,
polynomials, Bplines and wavelets) in order to verify that the result of the

15



Figure 2: An equilibrium configuration for the tokamak JET from which twin experiments
are performed. The domain € is shown. Isoflux are plotted from 1) = 0 (magnetic axis)
to 1) = 1 (plasma boundary defined by the existence of an X-point at point 7 = 2.5 and
z = —1.4 m) by step of Ay = 0.1 Interferometry and polarimetry chords appear in green.

identification does not depend on the decomposition basis. This is the case
as long as the dimension of the basis is large enough. In the remaining part
of this paper each function is decomposed in the same basis of 8 Bsplines
[BZ. The boundary condition A(1) = B(1) = 0 is imposed.

The computations are carried out for several values of the regularization
parameters ¢ ranging from 1071 to 1. We are interested in the ability of the
method to recover functions A and B and thus the current density profile

16



averaged over the magnetic surfaces (see [A):

j(r,v)

To < >= M) + \rg < %2 > B(v)
and the safety factor ¢ (see B).

As can be seen from Fig. [ the optimal choice for ¢ is of about 1073
for which functions A and B are well recovered. For smaller values some
oscillations appear because the regularization is not strong enough and on the
contrary greater values lead to less precision in the recovery of the unknown
functions since regularization is too strong. In the second column the relative
errors on the identified functions are plotted.

Figure [] shows an important point. Almost whatever the chosen value
of € is, i.e. whatever the quality of the identification of A and B is, the

J(r, )

q are always well recovered and the relative errors are one order of magnitude
smaller than for functions A and B. The same kind of observation was made
in [§] where the identified functions A and B seemed to be rather sensitive
to perturbations whereas the mean current density was very stable.

In Table [, the evolution of the relative residu on ¢, A, B and A versus the
number of iterations is given. It demonstrates numerically the convergence
of the algorithm in this case where a value of 107 is used as stop condition.
The algorithm needs 10 iterations to converge. It is interesting to notice that
even though the first guess is not particularly well chosen the relative residu
on 1) at the second iteration has already fallen to 4%. In real applications
when simulating a whole pulse the first guess for the computation of the
equilibrium at t is the equilibrium computed at ¢ — 0t and 2 iterations are
enough to ensure a good convergence of the algorithm.

identified average current density ro < > as well as the safety factor

4.2. Twin experiment with noisy magnetic measurements

Figures f] and | shows the results of the same type of numerical experiment
but with noisy measurements. Each magnetic input, m representing either

1 or —d) at a point of the domain boundary I' is perturbated with a one

ron

percent noise normally distributed, m,, = m + n with  ~ N(m,0.01m). For
each chosen value of the regularization parameter the algorithm is run 200
times with measurements randomly perturbated as above. Then for each

17
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Figure 3: Twin experiment with noise free measurements and different regularization
parameters ¢ ranging from 1071 to 1. Left column: identified functions A\A(¢)), M3 <

1
— > B(v) for each different ¢ value, and the known reference functions. Right column:
,

relative errors.

J(r, )

median function and a standard deviatiog function is computed.

In comparison with the noise free case the regularization parameter needs
to be significantly increased to values of at least ¢ = 1072 and for a safer
convergence of the algorithm to e = 107!, For smaller values the algorithm
either does not converge or gives very oscillating identified functions.

The mean error on the reconstructed functions is always smaller in the
interval ¢ € [0.5,1] than in the interval [0,0.5]. This is due to the fact
that magnetic measurements are external to the plasma and do not provide

. 1 .
function A\A, )\rg < — > B, rp < > and ¢, a mean function, a
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Figure 4: Twin experiment with noise free measurements and different regularization
parameters € ranging from 10710 to 1. Left column: resulting identified mean current

GO

r
reference values. Right column: relative errors.

density rg < >, safety factor ¢ for each € value and the corresponding known

enough information to properly reconstruct the functions in the innermost
part of the plasma.

As € increases the variability or the standard deviation on the identified
functions decreases. With small € the algorithm can find very different func-
tions depending on the perturbations of the measurements. With ¢ = 1072
the variability in the identified functions A and B is strong however the mean
identified functions are close to the exact reference ones. On the other hand
with € = 1 the variability of the identified functions is strongly reduced but
they are quite different from the exact reference functions in the interval

[0,0.5].
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Table 1: Numerical convergence of the algorithm.

”wnJrl _ wn” HAn+1 _ An” HBn+1 _ Bn” ‘)\nJrl _ )\n|

Iteration n

[ |A] 1B~ [A7]
1 2.64809 6.07599 5.3509 0.100127
2 0.0408642 1.19473 1.42619 9.24968
3 0.0733385 1.83005 1.47338 0.563235
4 0.0404254 0.884617 1.0359 0.108107
) 0.00539736 4.79091 4.37571 0.826455
6 0.000349811  0.127626 0.180449 0.0889022
7 1.58606e-05  0.0262942 0.0246657 0.0263
8 5.67036e-06  0.00294791 0.0024952 0.00315952
9 1.4533e-06 0.000339986  0.000273055  0.000362224
10 6.19066e-07  6.41923e-05 6.51076e-05 6.29838e-05

It is worth noticing that in all cases the resulting safety factor ¢ and mean

J(r, )

ing section on the identirﬁability of the mean current density still holds: it is
quit