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Abstract. High-temporal resolution pollen record from
the Alboran Sea ODP Site 976, pollen-based quantitative
climate reconstruction and biomisation show that changes
of Mediterranean vegetation have been clearly modulated
by short and long term variability during the last 25 000
years. The reliability of the quantitative climate reconstruc-
tion from marine pollen spectra has been tested using 22 ma-
rine core-top samples from the Mediterranean. The ODP
Site 976 pollen record and climatic reconstruction confirm
that Mediterranean environments have a rapid response to
the climatic fluctuations during the last Termination. The
western Mediterranean vegetation response appears nearly
synchronous with North Atlantic variability during the last
deglaciation as well as during the Holocene. High-resolution
analyses of the ODP Site 976 pollen record show a cooling
trend during the B̈olling/Allerød period. In addition, this pe-
riod is marked by two warm episodes bracketing a cooling
event that represent the Bölling-Older Dryas-Allerød succes-
sion. During the Holocene, recurrent declines of the for-
est cover over the Alboran Sea borderlands indicate climate
events that correlate well with several events of increased
Mediterranean dryness observed on the continent and with
Mediterranean Sea cooling episodes detected by alkenone-
based sea surface temperature reconstructions. These events
clearly reflect the response of the Mediterranean vegetation
to the North Atlantic Holocene cold events.

Correspondence to:
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1 Introduction

In the context of future global warming, the Mediterranean
world region will clearly be one of the most sensitive re-
gion to climate changes due to its intermediate geographi-
cal position at the junction of the tropical and polar influ-
ences (Lionello et al., 2006; IPCC report, 2007). The pre-
dicted climate changes might have a large influence on its
particular environments and dense population as well as mit-
igation and adaptation scenarios (IPCC report, 2007). Un-
derstanding the present and future environmental changes
in the Mediterranean includes discriminating natural global
variability from human impact. Studying past environmen-
tal changes yields a large amount of information in order
to draw the complex picture of climate changes. Numerous
records have demonstrated that Mediterranean environments
show rapid responses to climatic fluctuations during the last
climatic cycle (e.g. Allen et al., 2002; Beaudouin et al., 2007;
Bout-Roumazeilles et al., 2007; Brauer et al., 2007; Cacho
et al., 1999, 2001; Combourieu Nebout et al., 1999, 2002;
Fletcher and Śanchez Gõni, 2008; Śanchez Gõni et al., 2002;
Watts et al., 1996; Kotthoff et al., 2008a). This is proba-
bly due to the climate specificity of the Mediterranean region
that combines polar tropical and Atlantic influences generat-
ing very sensitive environments strongly adapted to the hot
dry summer and mild humid winter. A number of multi-
proxy records have demonstrated that Mediterranean envi-
ronments have responded to short-term Holocene climatic
events (e.g. Cacho et al., 2001; Frigola et al., 2007; Rohling
et al., 1998, 2002). Few pollen-based studies provide evi-
dence of a clear response of the Mediterranean vegetation to
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these short-lived Holocene events (Allen et al., 2002; Jalut et
al., 2000; Naughton et al., 2007). Several qualitative climate
interpretations, mainly based on lacustrine records, have al-
ready been obtained for part of this period; however, they
differ significantly, particularly regarding the Mediterranean
area (e.g. Sadori and Narcisi, 2001; Antonioli et al., 2001;
Marchal et al., 2002; Magny et al., 2007). This is mainly
due to the scarcity of high-resolution sequences covering the
last 25 000 years in this region. There is also a lack of robust
quantitative estimates of climate parameters in Southern Eu-
rope and the Mediterranean for the last 25 000 years (Huntley
and Prentice, 1988; Huntley et al., 1999; Allen et al., 2002;
Cheddadi et al., 1997, 1998; Davis et al., 2003; Brewer et al.,
2007; Fletcher et al., 2009; Dormoy et al., 2009).

In order to investigate the sensitivity of Mediterranean
vegetation to the last deglaciation and Holocene events, we
present here high temporal resolution pollen analyses of the
last 25 000 years from ODP Leg 161 Site 976 (Alboran Sea).
This detailed study allows us to identify centennial to millen-
nial scale vegetation changes in the western Mediterranean
and to reconstruct quantitative estimations of climatic param-
eters.

This study aims to provide a new high resolution pollen
record and a reliable picture of paleoclimatic variations in the
Mediterranean region for the last 25 000 years BP in order to
improve the state-of-the-art on environmental changes of the
last deglaciation and Holocene (e.g. Allen et al., 2002; Cacho
et al., 2001; Frigola et al., 2007; Naughton et al., 2007; Jalut
et al., 2000; Bj̈ork et al.; 1998; Bond et al., 1997; Lowe et
al.; 2008; Magny et al., 2006, 2007; Drescher-Schneider et
al., 2007; Colombaroli et al.; 2008; Rasmussen et al., 2007,
2008; Jalut et al., 2009).

2 Location and environmental setting

ODP Leg 161 Site 976 was drilled in the Alboran Sea
(36◦12 N, 4◦18 W) close (at about 110 km) to the Gibral-
tar strait by the Joides resolution at 1108 m water depth
(Fig. 1) (Comas et al., 1996). The Alboran Sea is bordered
by the two Arc Mountains of Betic cordillera in Spain and
Rif in Morocco. Climate is dominated by the influence of
the Southern Azores anticyclone in summer and the mid-
latitude atmospheric circulation in winter that results in a
Mediterranean climate with long, dry summers (3 to more
than 5 months) and mild, rainy winters (Walter et al., 1975;
Quézel and Ḿedail, 2003). The Westerlies, that dominate
the wind regime during winter, are weaker during summer
due to the influence of the Azores anticyclone. The river
system in the surrounding continents does not display impor-
tant rivers and, then large riverine inputs to the Alboran Sea
mainly come from Mediterranean local torrential rains. Arid-
ity reaches a maximum along the southern Spanish coast, but
peaks of precipitation occur in the Spanish hinterlands dur-
ing spring and autumn. In Northern Africa, rainfall is con-
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Fig. 1. Location map of the ODP Leg 161 Site 976. Climate di-
agram showing the present-day climate (annual precipitation and
temperature distribution) at the studied site calculated with the New
Locclim software.

centrated near the coast from autumn to spring and sharply
decreases southward (Walter et al., 1975) (Fig. 1). In both ar-
eas, the Atlantic influence is marked by increasing humidity
in the western lands. The presence of the two Arc Moun-
tains (Moroccan Rif and Betic Cordillera) implies increasing
humidity and decreasing temperature, and climate conditions
range from semi-arid near the coast to wet at high elevations.
Thus mean temperature of the coldest month varies from less
than 10◦C near the coast to values between−7◦ and 0◦C at
high altitude (above 2000 m) while mean temperature of the
warmest month is generally greater than 20◦C and mean an-
nual temperature around 18◦C. Annual precipitation ranges
from less than 400 mm in the lowlands to more than 1400 mm
in the Betic and Rif mountains (Quézel and Ḿedail, 2003;
Grieser et al., 2006). Such climatic and geographic condi-
tions in the Moroccan Rif and in the Betic Cordillera gener-
ate thermal and hydrologic gradients with altitudinal eleva-
tion. As a consequence, the climate ombrothermic diagram
calculated for the Alboran Sea by New LocClim software
does not well represent these gradients (Fig. 1) (Grieser et
al., 2006). As a result, Mediterranean landscapes are here or-
ganised in altitudinal belts according to the ecologic and cli-
matic requirements of the plants (Ozenda, 1975; Rivas Mar-
tinez, 1982; Polunin and Walter, 1985; Barbero et al., 1981;
Benabib, 1982, 2000; Quézel, 2002; Qúezel and Ḿedail,
2003). Modern vegetation environments are divided into
four classifications. A thermomediterranean belt is found
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in the lowlands withOlea/Pistaciasclerophillous shrublands
and some associated steppe or semi-desert representatives
(Artemisia, Chenopodiaceae,Ephedra). At mid-altitudes the
mesomediterranean belt is represented by the sclerophyllous
oak forest and the humid-temperate oak forest (eurosiberian
trees, mainly deciduousQuercusand Ericaceae). The higher
altitudes are characterised by a supramediterranean belt with
a cold-temperate coniferous forest (Pinus, Abiesand/orCe-
drus, the latter growing only in Morocco today at high eleva-
tion).

3 Methodology

3.1 Chronology

This study is based on the uppermost 10 m of the ODP Site
976 core. The sediments consist of homogeneous clays (Co-
mas et al., 1996). The age model developed for the stud-
ied interval is based on ten14C AMS radiocarbon ages per-
formed on monospecific samples ofGlobigerina bullöıdes
and Neogloboquadrina pachyderma(left coiling) from the
size fraction>125µm, at the Leibniz-Laboratory of Kiel
University (Combourieu Nebout et al., 2002) (Fig. 2).14C
ages have been corrected by 400 years to account for14C
reservoir age of the modern Alboran Sea surface water. We
are however aware that some modifications of14C reservoir
ages may have occurred during the studied interval (Bard,
1998; Siani et al., 2000, 2001). Conversions into calen-
dar years have been done using the calibrations of Bard
et al. (1998), Stuiver and Reimer (1993) and Stuiver et
al. (1998).

According to our age model, presented here in an
age/depth diagram (Fig. 2), our record spans the last 25 000
calendar (cal.) years (Figs. 5 to 8). Sedimentation rate ap-
pears quite constant along the whole sequence although the
14C dates are unevenly spread in depth. Thus the time reso-
lution between samples varies from∼20–40 years during the
abrupt events to 200–500 years elsewhere.

3.2 Pollen data

This core was sampled at 10 cm intervals and every 1–
5 cm during the B̈olling/Allerød and the beginning of the
Holocene. Pollen extractions followed the classic protocol
(Faegri and Iversen, 1964; Combourieu Nebout et al., 2002):
after drying, samples were processed with 25% cold HCl,
cold 70% HF, 50% HCl and sieved on a 10µm sift. Due to
the over-representation ofPinuspollen grains in marine sedi-
ments (Heusser and Balsam, 1977; Turon, 1984), each pollen
count always comprises from 300 to 1600 pollen grains, in-
cluding at least 100 and more often 300 pollen grains with-
outPinus. Moreover, each pollen analysis generally includes
the determination of at least twenty taxa.Pinuspollen per-
centages were calculated on the total pollen sum as well as
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Fig. 2. ODP Leg 161 Site 976 age-depth model.14C ages have
been corrected by the 400 yr reservoir age. Depths are in meter
composite depth (mcd).

the pollen curves of the synthetic pollen diagram. Individ-
ual pollen percentages were calculated on a sum excluding
Pinusto highlight the variations of the other taxa which are
often dampened due toPinusover-representation in marine
sediments. Pollen analysis yielded a rich microflora with 120
pollen taxa identified.

Pollen grain transport in the marine realm has been largely
debated and it has been admitted for a long time that pollen
grains carried by wind and /or rivers to marine sediments
come from the nearby continental areas (e.g. Heusser and
Balsam, 1977; Hooghiemstra et al., 1992, 1995, 2006; Turon,
1984; Naughton et al., 2007). Thus, palynological inter-
pretations for the ODP Site 976 sequence are based on the
assumption that pollen grains mainly come from the bor-
derlands of the Alboran Sea basin, essentially Morocco and
Spain. The fossil pollen spectrum ranges from semi-desert
vegetation to mountain deciduous and coniferous forest al-
lowing that the interpretation follows the modern climatic-
plant relationships in Eurasia and Northern Africa (Wood-
wards, 1987; Peyron et al., 1998).

3.3 Pollen-inferred climate reconstructions and
biomisation

The Modern Analogues Technique (MAT), also called the
best analogues method, which was first developed by Hutson
(1980) and Overpeck et al. (1985) and extended by Guiot
(1990) to reconstruct climate parameters from fossil assem-
blages for past key periods, has been applied to the ODP 976
pollen sequence. This method has been extensively used for
the Late glacial and Holocene climate reconstructions in Eu-
rope (e.g. Cheddadi et al., 1997, 1998; Davis et al., 2003;
Peyron et al., 2005; Bordon et al., 2009; Magny et al., 2009;
Kotthoff et al., 2008). The principle of this technique is (1)
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Fig. 3. Location map of the marine core-tops used for the comparison observed/reconstructed climate values. On the right: pollen spectra of
the studied core-tops; at the bottom: names, coordinates and depth of the studied cores grouped according to the different basins.

to compare, using a dissimilarity index, the fossil pollen as-
semblages with the modern pollen assemblages collected in
a high-quality and taxonomically consistent modern pollen
dataset, (2) and to select, for each fossil assemblage, sev-
eral closest modern pollen assemblages (or best modern ana-
logues). The selection of the best modern analogues (here
10) is based on the calculation of a chord distance measured
between each fossil and modern pollen assemblage (Guiot,
1990). The climatic values of each fossil assemblage are ob-
tained as a weighted average of the climate parameters of the
best analogues selected (Guiot, 1990). The climate parame-
ters of each modern pollen record have been calculated and
interpolated at each site using the high resolution database of
climatic means of New et al. (2000). We have selected the
mean temperature of the warmest month (Tsum) and coldest
month (Twin), as these are important climate parameters con-
trolling the plant distribution after Prentice et al. (1992), and
also the mean annual temperature (Tann), mean monthly pre-
cipitation in summer (Psum) and mean monthly precipitation
in winter (Pwin). We present the climate estimations in terms
of anomalies to facilitate the comparison with other Euro-
pean climate reconstructions (Davis et al., 2003; Wu et al.,
2007; Brewer et al., 2007) and model simulations (Kageyama
et al., 2005; Wiesrma and Renssen, 2006).

The MAT, like most of the approaches which aim to quan-
titatively reconstruct the past climate from fossil assem-
blages, is based on present-day environments, and there-
fore requires high-quality, taxonomically consistent modern

datasets. In this study, the method is based on an updated
modern pollen-climate dataset which comprises 3530 pollen
data sampled from a wide variety of biomes (Bordon et al.,
2009). Among these 3530 samples, more than 2000 pollen
spectra taken from mosses, soil or core samples are located in
the Mediterranean basin (Spain, Morocco, Italia and Turkey).
As Pinusis always over-represented in marine sediments, we
removed this taxon from the modern spectra as well as from
the fossil spectra.

The character of past vegetation and climate can be in-
ferred from pollen analytical data in various ways, quali-
tative (pollen analyses and biomes) and quantitative (quan-
tifications of climate parameters). In the present study, we
have chosen to couple both approaches in order to recon-
struct past vegetation changes by looking at the vegetation
structure or biome. In Europe, 11 biomes are usually found
in modern samples: tundra, cold deciduous forest, taiga, cool
conifer forest, cold mixed forest, temperate deciduous for-
est, cool mixed forest, and more frequently in the Mediter-
ranean area: warm mixed forest, xerophytic wood/shrub,
steppes/temperate grassland, or desert. This approach allows
the objective assignment of pollen taxa to plant functional
types (PFTs) and to biomes on the basis of the modern plant
ecology, bioclimatic tolerance and phenology. We applied
the biomisation technique described by Prentice et al. (1996),
adapted by Peyron et al. (1998), Tarasov et al. (1999a and
b) and largely used in Europe (M̈uller et al., 2009) and the
Mediterranean (e.g. Allen et al., 2002; Huntley et al., 2003;
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Fig. 4. Comparison between LocClim observed and MAT reconstructed climate values from the core-tops.(a): temperature;(b): precipita-
tion.

Bordon et al., 2009), to each marine pollen assemblage. For
each sample, the associated biome has been defined follow-
ing the plant functional type-biome assignment procedure
based on Prentice et al. (1996) and Peyron et al. (1998).

In order to further test the reliability of the MAT on ma-
rine pollen samples, we have applied this method to 22 core-
top samples reflecting modern climate conditions in the At-
lantic and Circum-Mediterranean regions. The core-top sedi-
ments were collected from the Morocco shelf, Gulf of Cadix,
Alboran Sea, Gulf of Lion, Tyrrhenian Sea, Adriatic Sea,
Aegean Sea and Siculo-Tunisian strait (Figs. 3 and 4). Pollen
counts of the core-top samples reflect a good representa-
tion of the vegetation of each studied area, as in other stud-

ies based on marine superficial sediments off Europe and
off West Africa (e.g. Naughton et al., 2007; Hooghiemstra
et al., 1995). However, Mediterranean taxa appear under-
represented in most of the marine spectra. The MAT re-
constructions are based on the modern pollen dataset from
Bordon et al. (2009) described previously. The compari-
son between the present day observed (Locclim software,
Gieser et al., 2006) and MAT reconstructed values of sev-
eral climatic parameters (Tann, Tsum, Twin, Pann, Pwin and
Psum) shows an adequate consistency considering the esti-
mation errors, especially for Tsum, Psum and Pann (Fig. 4a
and b, Table 1). Paired samples t-tests show that there is
no significant difference in the means of the observed and
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Table 1a.Relationship between observed and reconstructed climatic parameters (core-tops grouped according to the different basins): mean
discrepancies calculated for the temperature (a) and precipitation (b); paired samples T-test for means (c).

Mean difference Core numbers Twin Twin− Twin + Tsum Tsum− Tsum + Tann Tann− Tann +

Off Morocco 1 −0.53 −5.15 2.32 1.43 −1.76 2.45 0.31 −4.05 2.06
Gulf of Cadix 2 −5.83 −9.27 −0.48 0.15 −2.23 1.75 −2.30 −5.00 0.41
Alboran Sea 3.4 −6.01 −9.54 −2.19 −1.92 −3.91 −0.46 −3.74 −6.40 −1.17
Gulf of Lion 5 to 18 −5.91 −5.88 −4.42 −0.95 −1.74 −2.44 −3.17 −2.82 −3.91
Siculo-Tunisian strait 19 2.00 −0.49 2.31 2.68 1.50 2.63 2.06 0.71 1.99
Tyrrhenian Sea 20 −3.12 −4.99 −0.53 −1.31 −4.04 2.07 −2.31 −4.61 0.59
Adriatic Sea 21 −6.74 −13.28 0.19 1.19 −0.83 3.02 −2.05 −5.07 0.61
Aegean Sea 22 −1.22 −4.04 2.78 −3.82 −8.62 −0.06 −2.97 −7.07 0.99

Mediterranean area −3.4 −6.6 0 −0.3 −2.7 1.1 −1.8 −4.2 0.2

Table 1b. Continued.

Mean difference Core numbers Pwin Pwin− Pwin + Psum Psum− Psum + Pann Pann− Pann +

Off Morocco 1 111.54 22.37 205.38 −34.65 −21.53 −29.07 26.50 79.16 −84.61
Gulf of Cadix 2 −14.20 −92.38 89.64 28.79 3.45 82.36−83.96 −117.76 29.09
Alboran Sea 3.4 73.66 −11.26 139.72 30.39 2.55 67.61 67.67 38.64 182.47
Gulf of Lion 5 to 18 110.23 48.78 153.80 12.21 −8.99 40.39 213.38 229.91 207.12
Siculo-Tunisian strait 19 78.49 69.75 84.03−46.47 −16.82 −58.05 −9.42 77.66 −13.26
Tyrrhenian Sea 20 12.76 12.13 42.16−23.55 −28.99 6.01 −72.83 −4.32 −114.12
Adriatic Sea 21 33.08 4.76 77.01 14.50 −0.56 57.15 137.82 96.08 239.56
Aegean Sea 22 52.50 −54.93 100.69 −3.21 −25.00 9.85 190.47 60.45 201.37

Mediterranean area 57.3 0 111.6 −2.8 −12.0 22.0 58.7 57.48 81.0

Table 1c.Continued.

T-test: Paired samples for means Twin Tsum Tann Pwin Psum Pann
H0=0, alpha=0.05, DF=7,
t (critical value)=2.366

Mean Difference −3.419 −0.319 −1.770 57.257 −2.750 58.705
t (Observed value) −3.008 −0.431 −2.553 3.600 −0.266 1.457
p-value (Two-tailed) 0.020 0.679 0.038 0.009 0.798 0.189

reconstructed values of these three climatic parameters (Ta-
ble 1c). Nevertheless the MAT regularly seems to underes-
timate the Twin values by about∼3◦C in comparison with
the observed values and to overestimate the Pwin by about
∼60 mm (Table 1a and b). As a result, differences between
observed and reconstructed values are also observed in Tann
(∼2◦C) and Pann (∼60 mm) (Table 1a and b). The discrep-
ancies are probably linked, on the one hand, to a weak repre-
sentation of Mediterranean taxa in most of the marine pollen
spectra (Fig. 3) and to the lack of modern pollen analogues
in Tunisia, Libya and Egypt. Therefore, Northern Europe
pollen analogues are often attributed to the Mediterranean
marine spectra analysed. This induces a decrease in Twin

values and an increase in the Pwin values. On the other
hand, some biases inherent to the LocClim software influ-
ence the observed estimations because calculations rely on a
limited number of meteorological stations that are inhomoge-
neously distributed and particularly scarce at high elevations,
and chosen inside a restricted perimeter. The software hardly
provides an accurate integrated estimation of the climatic pa-
rameters at a regional scale like marine pollen data, in par-
ticular for mountainous areas. For example, for little basins
such as the Alboran and Adriatic Seas, for which many mete-
orological stations are available at low altitudes, the software
fails to integrate the altitude gradient in the climatic estima-
tions. This causes an overestimation of observed temperature
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and an underestimation of precipitation, and consequently
amplifies the discrepancy with the reconstructed values from
marine pollen spectra that integrate the vegetation from dif-
ferent elevations.

4 West Mediterranean vegetation and climate changes
over the last 25 000 yr BP

Close relationship between continental vegetation and pollen
grain content in marine surface sediments has already been
clearly established in several studies that show the reliability
of pollen analyses at regional-scale interpretations (Heusser
and Balsam, 1977; Hoghiemstra et al., 1992, 1995, 2006;
Turon, 1984; Naughton et al., 2007). The main part of
pollen flora recorded in the ODP Site 976 record, such as
the all inclusive components of theQuercusdeciduous and
Mediterranean forests, probably originates from Spain as
well as from Morocco while the presence ofCedrusin no-
ticeable percentages definitively marks inputs from the south
(Quézel and Ḿedail, 2003; Qúezel, 2002; Magri et al., 2002).
This indicates that, in the Alboran area, pollen spectra corre-
spond to a combination of north and south supplies (Bout-
Roumazeilles et al., 2007), making our pollen record a re-
liable synthetic picture of the regional vegetation changes
from the whole Alboran Sea area.

Moreover, the ODP pollen record is comparable with other
marine pollen records from the Alboran Sea (Fletcher and
Sánchez Gõni, 2008) and Portuguese margin (Turon et al.,
2003; Naughton et al., 2007) as well as with terrestrial se-
quences from the Southern Spain (Pons and Reille, 1988;
Carrión et al., 2007) and Northern Morocco (Cheddadi et al.,
1998, 2009; Lamb et al., 1989). This similarity also shows
the ability of the ODP Site 976 record to highlight the re-
sponse of the Spanish and Moroccan vegetation to the suc-
cessive climate events over the last 25 000 years (Table 2,
Fig. 2).

4.1 Heinrich event 2 and late Pleniglacial

Between 25 000 and 23 500 cal yr BP (pollen zones 1 and 2,
Fig. 5, Table 2), the pollen associations reflect a broad ex-
tension of steppe or semi-desert plants with the dominance
of Artemisiaand Chenopodiaceae, and a temperate forest re-
duction shown by very low percentages of deciduousQuer-
cus(Table 2, Fig. 5). These vegetation assemblages are in-
dicative of enhanced drought in the Alboran Sea borderlands
that match the timing of the Heinrich 2 event (H2) (Elliot
et al., 1998). Reconstructed biomes from pollen data cor-
respond to an alternating of warm and cold steppe (Fig. 5).
Pollen-inferred climatic parameters indicate that cold and dry
conditions prevailed during H2 in the Alboran Sea region
(anomaly values:−20◦C in winter; −15 to −10◦C in an-
nual, −8◦C in summer;−200 mm in winter, +100 mm in
summer) (Fig. 5). The annual temperature curve shows the

same climate trend although with higher amplitude than the
alkenone-based temperature record that indicates a decrease
of about 3◦C during H2 (Cacho et al., 1999, 2001) (Fig. 6).
The semi-desert phase is contemporaneous with a peak of
Neoglobiquadrina pachydermaleft coiling and increasing
abundance of the dinocystBitectatodinium tepikiense, both
indicating a cooling in Alboran Sea surface temperatures
(Combourieu Nebout et al., 2002). A similar synchroniza-
tion between marine and continental changes during this time
slice is also recorded in other Atlantic and Mediterranean
cores (Combourieu Nebout et al., 1998, 2002; Sánchez Gõni
et al., 2002; Turon et al., 2003; Naughton et al., 2007;
Fletcher et al., 2008) and allows correlation of this episode
with Heinrich event 2. In the ODP record, this event is placed
between 25 000 and 23 500 cal yr BP, a time slice that corre-
sponds well with the established ages for this event in the
North Atantic (Bond et al., 1993; Elliot et al., 1998).

Between 23 500 and 17 500 cal yr BP, a time-period be-
ing assigned to the LGM (Mix et al., 2001; Kucera et al.,
2005), the vegetation became a heathland, associated with
cedar forest (probably at high altitude) after 20 000 cal yr BP
(Figs. 5 and 6). Such association contrasts with theArtemisia
semi-desert association recognized during H2 and reflects a
clear different climate, more humid but still cool. Recon-
structed biomes are dominated by warm steppe with rare cold
steppe/temperate grassland and temperate deciduous forest.
The quantitative climate reconstruction indicates high am-
plitude climate oscillations during this period characterised
by a slightly moist climate with cool temperatures in agree-
ment with the pollen assemblages. Results show TANN
anomalies around−5◦C with Twin −10◦ to −15◦C (Fig. 6).
The anomalies are slightly lower during the Last Glacial
Maximum that during the H2 event and are similar to the
SST anomalies deduced from quantitative reconstructions of
foraminifer associations (Hayes et al., 2005; Kuhleman et
al., 2008). The LGM climate estimates from ODP Site 976
are consistent with those reconstructed for the Mediterranean
region with the inverse vegetation modelling technique (Wu
et al., 2007), and 5◦C higher than the temperatures recon-
structed with the plant functional type method (Peyron et al.,
1998). These values are also in better agreement with the
recent atmosphere general circulation model simulations for
the Last Glacial Maximum period (Kageyama et al., 2005;
Jost et al., 2005; Ramstein et al., 2007).

Between 21 000 and 17 500 cal yr BP, it is noteworthy
that temperature and precipitation estimations are close to
present-day conditions, that is clearly too warm and humid
for LGM conditions. In addition, the biome assigned to the
pollen association is “temperate deciduous forest” although
the biome representatives such asQuercusare not the domi-
nant taxa of the pollen spectra. This discrepancy is mirrored
by the high distances recorded between ODP samples and
the MAT analogues and is probably due to the lack of good
present-day analogues for the cedar/heath pollen association
(Fig. 6).
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Table 2. Chronostratigraphy and description of the ODP Site 976 pollen zones with their main representative biomes deduced from pollen
association.

Chronostatigraphy Pollen zone Pollen signature Main biome

Holocene ODP 976-6d Increase inPinus(30%), Mediterranean taxa (20%),
Ericaceae (15%) and Cichoriodeae (25%)
Peak in Artemisia (10%)
Decrease inQuercus(<30%)

Warm mixed forest

ODP 976-6c Oscillations in Quercus (30–50%)
Reappearance ofArtemisiain low percentages, low
percentages in Cichoriodeae (<10%) and Ericaceae
lower than 10%

Warm mixed forest
Temperate deciduous forest

ODP 976-6b Increase in Ericaceae (15%) and Cichoriodeae (25%)
Quercusdecrease (<30%)

Warm mixed forest
Temperate deciduous forest

ODP 976-6a Regular decrease inPinus (70→30%) and Cedrus
(30→5–10%)
Higher abundance ofQuercus(40–60%) and increase
in Mediterranean taxa (10–15%)
Regular presence ofPistaciaandOlea
Isoetesregularly abundant

Warm mixed forest
Temperate deciduous forest
Climatic optimum

Younger Dryas ODP 976-5b Pinus(70%)
Increase inCedrus(30%)
Low representation inQuercus(<20%)
Decrease inArtemisiaand Chenopodiaceae and
persistance ofEphedra
Pteridophytae (5–10%)

Temperate deciduous
forest

ODP 976-5a Pinus(<50%)
Increase in all semidesert taxa (Artemisia−20%,
Ephedra−5%, Chenopodiaceae−15%),
Decrease in all trees (Cedrus<10%,Quercus<20%)

Temperate decidupus forest
Steppe

Bölling/Allerød
Allerød

ODP 976-4c Pinus(40–60%)
Increase in temperate (30%) and
Mediterranean taxa (15%)
Decrease in semi desert (<15%)
Isoetesin low percentages (1–5%)

Temperate deciduous forest
Warm mixed forest

Older Dryas ODP 976-4b Pinus(40–60%)
Decrease in temperate taxa
Slight increase in semi desert (<15%)

Warm steppe

Bölling ODP 976-4a Pinus(40–60%)
Increase in temperate (30%) and
Mediterranean taxa (15%)
Decrease in semi desert (<15%)

Temperate deciduous forest
Warm mixed forest

Oldest Dryas-H1 ODP 976-3b Pinus(70–80%)
Low percentages inQuercusand temperate taxa
(<10%), presence of pioneers (Alnus)
Decrease in Ericaceae (15→5%)
Increase in semi desert associations (Artemisia
20–40%), Chenopodiaceae (10–20%),
Ephedra(5–10%)
Cichoriodeae decrease (20→<10%)

Steppe

ODP 976-3a Pinus(60–70%)
Cichoriodeae abundant (25%), Poaceae (5–10%)
Low percentages in temperate and
Mediterranean taxa (<10%)
Ericaceae decrease (20–10%)
Cedrusdecrease (20→<10%)

Warm steppe

Late pleniglacial ODP 976-2b Pinus(80%)
Low percentages in temperate and
Mediterranean taxa (<10%)
Cedrusabundant (10–25%)
Ericaceae abundant (15–25%)
Semi desert elements in low representation
(Artemisia<10%,Ephedra<5%,
Chenopodiaceae<10%)
Cichoriodeae (15%)

Temperate deciduous forest

ODP 976-2a Pinus(60%)
Cedrus(<10%)
Low percentages in temperate and
Mediterranean f taxa (<10%)
Ericaceae abundant (15–25%)
Cichoriodeae in high percentages (20–40%)

Steppe

H2 ODP 976-1 Pinus(35–60%)
Low percentages in temperate and
Mediterranean taxa (<10%)
Ericaceae (10–30%)
semi desert taxa abundant (Artemisia20–50%),
Chenopodiaceae (5–15%),Ephedra(1–5%)
Cichoriodeae (15–35%), Poaceae (5%)

Steppe
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4.2 Heinrich event 1

Between 17 000 and 15 000 cal yr BP (pollen zone 3, Fig. 5,
Table 2), a large development ofArtemisia, Chenopodi-
aceae andEphedra associated first with Asteraceae indi-
cate an expansion of steppe or semi-desert (Table 2, Fig. 5).
Such change in the vegetation around 15 000 yr BP has been
clearly evidenced and often attributed to the Oldest Dryas
(GS-2) event, in the south-west as well as in other parts of
the Mediterranean region (e.g. Pons and Reille, 1988; Watts
et al., 1996; Combourieu Nebout et al., 1998, 2002; Allen et
al., 2002; Pẽnalba et al., 1997; Turon et al., 2003; Naughton
et al., 2007; Fletcher and Sánchez Gõni, 2008; Bordon et
al., 2009). This corresponds with increased dryness over
the Mediterranean and especially over the Alboran Sea bor-
derlands. This semi-desert expansion is correlated in the
marine environment to a peak in the foraminiferNeoglobo-
quadrina pachydermaleft coiling indicating a SST cooling
(Combourieu Nebout et al., 2002). This cold and dry event
is consistent with the H1-Oldest Dryas event as recorded in
other marine records off Iberian peninsula (e.g. Fletcher and
Sánchez Gõni, 2008; Turon et al., 2003; Naughton et al.,
2007). A maximum in cedar percentages reflects the devel-

opment of a conifer forest at high elevation in the mountains
that probably implies an increasing input from the south (Ma-
gri et al., 2002). As during H2, the reconstructed biomes
from pollen data correspond to an alternation of warm and
cold steppe/temperate grassland. Reconstructed annual tem-
perature and precipitation show very cold conditions (Twin
anomalies: around−20◦C, Tsum anomalies: around−8◦C,
Pwin anomalies:−200 to −300 mm, Psum anomalies: 0
to 50 mm) (Fig. 6). The annual temperature change recon-
structed here fits remarkably well that of the alkenone-based
SST record in the nearby MD 95-2043 marine core (Cacho et
al., 2001; Ṕerez Folgado et al., 2004) (Fig. 7). However, the
continental temperature values show a more abrupt decrease
and are colder than the alkenone and foraminifer-based SST
in the Mediterranean (Cacho et al., 2001; Kallel et al., 1997;
Rohling et al., 1998; Ṕerez Folgado et al., 2003).

4.3 Bölling-Allerød

From 14 700 to 12 500 cal yr BP (pollen zone 4, Fig. 5, Ta-
ble 2), the first large increase in deciduous (mainlyQuercus)
and Mediterranean taxa corresponds to the Bölling-Allerød
interstadial (GI-1). During this period,Cedrusis abundant
(15–20%), while, among the herbs, the Cichoriodeae remain
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present in noticeable percentages (15–20%) and semi-desert
taxa such asArtemisiastrongly decrease (Table 2, Fig. 5).
Such an association implies settling of the forest into al-
titudinal belts in the Betic and Rif Arc mountains with a
probable enhanced wind input from the south (Magri and
Parra, 2002; Bout-Roumazeille et al., 2007). The develop-
ment of the Mediterranean oak forest at the expense of semi-
desert formations is largely recognized in all the Mediter-
ranean records. The ODP Site 976 diagram may then be
easily correlated to the well known Padul peat bog pollen
diagram from Southern Spain (Pons and Reille, 1988). Nev-
ertheless, the Mediterranean taxa are less represented in ma-
rine than in continental records. This discrepancy is proba-
bly due to the location of the Padul peat bog at 785 m eleva-
tion in the altitudinal range of theQuercus ilexsclerophyl-
lous forest (Barbero et al., 1992). Climatic reconstructions
reveal temperature and precipitation values comparable to
those depicted during the Holocene. The biome reconstruc-
tions clearly indicate temperate deciduous forest. However,
some samples are still associated with a steppe biome (Figs. 5
and 6), and could indicate the occurrence of rapid and abrupt
climate events during the Late glacial. Two clear warming
episodes are depicted by a forest development from 14 800
to 14 120 cal yr BP and from 13 800 to 12 800 cal yr BP. They
may be interpreted as the well-known Bölling and Allerød
warming periods respectively (Figs. 5 and 6), which are de-
scribed in Europe and the Mediterranean records (e.g. Magny
et al., 2006; Drescher-Schneider et al., 2007; Kotthoff et al.,
2008b). These warm episodes are separated by a rapid cold
oscillation from 14 120 to 13 800 cal yr BP (Fig. 5 and Ta-
ble 3, “od” event) indicated by a weak decrease in forest
cover that may be related to the Older Dryas or GI-1d event
(Wohlfart, 1996; Bjork et al., 1998; Lowe et al., 2008). The
chronology of ODP Site 976 events is in agreement with both
North GRIP and GISP chronozones GI-a to c, d and e (Ta-
ble 3, Rasmussen et al., 2006, 2007; Lowe et al., 2008). Nev-
ertheless, our pollen record does not permit to distinguish
the GI-1a, b, c succession, although we clearly see biome
changes from temperate deciduous forest to steppe during
the Allerød interstadial at around 13 200 cal yr BP that may
be related to GI-1b (Fig. 7). The Bölling interstadial appears
slightly less warm than the Allerød interstadial, as recorded
by a weaker development of temperate forest (Fig. 7). It sug-
gests a warming trend from Bölling to Allerød which has
been also evidenced in the stalagmite oxygen isotope record
from Southern France (Genty et al., 2006). Such a trend con-
trasts to the cooling recorded by the North GRIP and GISP
ice core records and the Mid-European lake isotope signal
which show a warmer B̈olling followed by a regular trend
decreasing intensity of the Allerød warm events (Rasmussen
et al., 2006, 2007; Lowe et al., 2008; NGrip members, 2004;
Johnsen et al., 2001; von Grafenstein et al., 1999). Therefore,
the ODP Site 976 results support the evidence of a general
north to south climatic contrast during the Bölling/Allerød
period showing a cooling in Greenland and Northern Europe

and a climate stability or warming in the Southern Europe
and North Africa (Genty et al., 2006).

4.4 Younger Dryas

Between 12 500 and 11 750 cal yr BP (pollen zone 5, Fig. 5,
Table 2), an increase ofArtemisiaand semi-desert taxa sug-
gests the return to cold conditions related to the Younger
Dryas event (YD) (Table 1, Fig. 5). This event is recorded
throughout the Mediterranean by many proxies from both
continental and marine sites (e.g. Pons and Reille, 1988;
Lamb et al., 1989; Watts et al., 1996; Combourieu Nebout
et al., 1998, 2002; Allen et al., 1996, 2002; Peñalba et al.,
1997; Turon et al., 2003; Naughton et al., 2007; Kotthoff
et al., 2008b; Fletcher and Sánchez Gõni, 2008; Bordon et
al., 2009; Dormoy et al., 2009). This period may be divided
into two parts: a very dry period at the beginning (12 500
to 12 200 yr) which corresponds to the increase ofArtemisia
and a more humid period (12 200 to 11 750) at least at mid
to high elevation, indicated by the correlative presence of
Artemisiasemi-desert and cedar forest together with a slight
increase ofQuercusforest (Fig. 5).

The biomisation indicates a steppe at the beginning of
the YD and a temperate deciduous forest during the second
part. During the firstArtemisiasemi-desert phase, cold and
dry conditions are reconstructed for all climate parameters
(Fig. 6). Finally, Twin and Pwin increase at the time of cedar
presence in vegetation. These results suggest storage of fresh
water in continental ice sheet during the dry and cold phase
of the Younger Dryas whereas the following humid period
may reflect enhanced precipitation possibly due to a more
efficient hydrological cycle. Alternatively, it could also cor-
respond to a latitudinal shift of the Westerlies northward dur-
ing the early phase and to the south afterwards that may be
linked to particular atmospheric configurations such as alter-
nation between positive and negative NAO situations.

4.5 Holocene

In the Alboran Sea borderlands, the onset of the Holocene
(pollen zone 6, Fig. 5, Table 1) is clearly detected after
11 750 cal yr BP by the large expansion of the forest mainly
composed of deciduousQuercusin association with Mediter-
ranean sclerophyllous taxa (mainlyQ. ilex-type andPistacia)
(Table 2, Fig. 5). Such a vegetation change is classically ob-
served at the beginning of Holocene in the Mediterranean
region although the forest expansion is delayed by up to
three millennia in some marginal areas due to moisture defi-
ciency or anthropogenic activity (e.g. Pons and Reille, 1988;
Lamb et al., 1989; Watts et al., 1996; Combourieu Nebout
et al., 1998, 2002; Allen et al., 1996, 2002; Peñalba et al.,
1997; Turon et al., 2003; Naughton et al., 2006; Fletcher and
Sánchez Gõni, 2008; Bordon et al., 2009; Jalut et al., 2009;
Tzedakis, 2007; Tinner et al., 2009). This marks the progres-
sive onset of the present-day altitudinal vegetation belts and
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Table 3. Age comparison between events from ODP 976 record and Greenland records during the Bölling/Allerød period.

Ngrip and Gripa,b Alboran Sea

Events Age in cal kyr BP Pollen eventc Age in cal kyr BP

GS-1 12.896a,b–11.703a,b Younger Dryas 12.8–11.75
GI-1a 13.099b–12.896a,b Allerød 13.8–12.8
GI-1b 13.311b–13.099b interstadial
GI-1c 13.954b–13.311b

GI-1d 14.075a,b–13.954b Older dryas stadial (od event) 14.12–13.8
GI-1e 14.692a,b–14.075a,b Bolling interstadial 14.8–14.12

a Rasmussen et al. (2006);b Lowe et al. (2008);c this work

Mediterranean climate. This forest expansion is contempo-
raneous with the shift in planktonicδ18O towards light val-
ues which reflects the climate improvement in the marine en-
vironments at the beginning of the Holocene (Combourieu
Nebout et al., 1998, 1999, 2002). A parallel change is de-
tected by the alkenone and foraminiferal-based SST records
in the nearby MD 95-2042 core (Cacho et al., 2001; Pérez
Folgado et al., 2002). In comparison, the amplitude of MAT
annual temperature rise is lower than SST shift. This can be
partly due to the∼3◦C bias on the MAT Twin values pre-
viously shown (Fig. 7). The maximum extension ofQuer-
cus forest marks the optimum climatic conditions of the
Holocene between 9000 and 7000 cal yr BP. However, this
interval is interrupted by a forest decrease event at around
8000 cal yr BP that can be correlated to the 8.2 ka event. The
biome assignment shows an alternating of temperate, decid-
uous forest and warm mixed forest, especially around the
8.2 ka event. The climate reconstruction shows warm and
humid conditions (Fig. 6); the wetness is also depicted by
the increase in fresh water plants input (Fig. 5). The an-
nual temperature (between 0 and−5◦C) and precipitation
(between 0 and 100 mm) anomalies are consistent with the
reconstructions obtained from southern Spanish records by
the inverse modelling method for the mid-Holocene period
(i.e. 6000 cal yr BP; Wu et al., 2007; Brewer et al., 2007)
(Fig. 6).

After 7000 cal yr BP, a substantial decrease of the forest
cover marks the upper late Holocene cooling trend that is
not clearly expressed with the climate parameters changes
(Fig. 6). The period between 4000 and 1500 cal yr BP,
is marked by abrupt forest cover expansion/regression
episodes. In the younger samples (younger than 1500 yrs),
semi-desert taxa and especiallyArtemisia increase again,
suggesting the recent change in vegetation cover probably
related to anthropogenic impact.
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Fig. 8. Correlation between the Alboran Sea pollen events from
ODP Site 976 record, North Atlantic cold events (Bond et al., 1993),
aridification events in the continental sites (Jalut et al., 2000), and
Mediterranean marine events from the Adriatic Sea, Tyrrhenian Sea
and Gulf of Cadiz (Cacho et al., 2001) and from the oxygen isotope
record off the Balearic islands (Frigola et al., 2007).

The general warming then cooling trends of the Holocene
are interrupted by several rapid oscillations depicted by the
temperate forest curve which may be interpreted as short-
lived climate events at 11.95–11.4, 11–10.8, 10.5–9.8, 9.6–
8.9, 8.5–7.9, 6–4.5, 3.7–3.1, 2.6–2.3 and 1.5–0.7 ka, ACP1 to
8 (Tables 3, 4, Figs. 7 and 8). Similar changes in vegetation
composition during the Holocene have also been documented
in the Italian Monticchio series (Allen et al., 2002) and in the
Iberian Peninsula (Jalut et al., 2000). Even if unnoticeable
increase in steppic vegetation occurred during ODP Site 976
events, some of the temperate forest reduction events may be
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Table 4. Age comparison between the Alboran Sea pollen events from ODP Site 976 record, the North Atlantic cold events (Bond et al.,
1993), the aridification events in the continental sites (Jalut et al., 2000), and with Mediterranean marine events from alkenone record in
Adriatic Sea, Tyrrhenian Sea and Gulf of Cadix (Cacho et al., 2001) and from the oxygen isotope record off Balearic islands (Frigola et al.,
2007).

Mediterranean

North Atlantic Pollen Eventsb Aridification eventsc SST Eventsd δ18O eventse

Cold eventa Gulf of Cadiz Alboran Sea Tyrrhenian Sea Minorca

1 APC1 6 – AC1 TC1 M1
1.4 0.7–1.5 (1.1) 0.75–1.3 1.01–1.9 1–1.91 1.4–1.8

2 APC 2 5 – – TC2 M2
2.8 2.3–2.6 (2.45) 1.7–2.8 2.5–3.45 2.3–2.6

– APC 3 – – – M3
3.14–3.77 (3.36) 4 3.1–3.4

3 3.4–4.3 – – – M4
4.3 ACP 4 4–4.2
4 4.5–6 (5.2) 3 AC2 TC3 M5
5.9 4.2–5.3 4.75–5.94 5.28–6.58 4.7–5.3

5 APC 5 2 CC1 AC3 – M8
8.2 7.9–8.5 (8.2) 7.6–8.4 7.8–8.25 7.56–9.08 7.8–9

6 APC 6 ? – – TC4 –
9.5 9.6–8.9 (9.35) 9–9.5 9.13–9.62

7 APC 7 1 CC2 AC4 TC5 –
10.3 9.8–10.5 (10.35) 9.7–10.9 9.9–10.2 9.95–10.34 9.62–10.38

8 APC 8 – AC5 – –
11.1 10.8–11 (10.9) 10.95–11.21

– APC 9-YD1 CC3 AC6 TC6 –
11.4–11.75 (11.57) 12.2–12.4 11.65–11.9 10.9–11.78

YD YD2 CYD AYD TYD –
12.5 11.75–12.8 (12.37) 12.6–12.9 12–13.1 12–13.09

a Bond et al. (1997);b this work;c Jalut et al. (2002);d Cacho et al. (2001),e Frigola et al. (2007)

chronologically linked to the Holocene aridification episodes
documented in the continental pollen records from Southern
Spain. Therefore APC 1, 2, 4, 5 and 7 may be correlated
to the aridification events 6, 5, 3, 2 and 1 noted by Jalut et
al. (2000) (Table 4, Fig. 8).

These rapid and repetitive forest cover fluctuations do not
correspond to abrupt changes in climate parameters as shown
by the weak changes in MAT reconstructed temperature
(Tann, Twin) and/or in precipitation (Pann, Pwin) anoma-
lies (Figs. 6 and 7). This is particularly evidenced for the
8.2 ka event which is marked by a larger decrease in temper-
ate and humid forest associated with increased Cichoriodeae
and only represented by weak changes in reconstructed cli-
mate parameters (Fig. 7). Nevertheless, the strong decrease
in temperate, humid forest that marks the 8.2 ka event may be
linked to a decrease in humidity (Dormoy et al., 2009) that

correlates to low lake-levels in western and to the aridifica-
tion event 2 Mediterranean (Jalut et al., 2000; Magny et al.,
2003; Lamb et al., 1995).

The variability of vegetation cover may also be correlated
to marine environmental changes recorded by the alkenone-
based SST events in other cores located in the Gulf of Cadiz,
Alboran and Tyrrhenian Sea (Cacho et al., 2001) (Figs. 7 and
8) and withδ18O events detected in Balearic basin (Frigola
et al., 2007) (Table 4). A tentative correlation between
west Mediterranean vegetation events and these marine cold
events is presented in Fig. 5. Taking into account the dif-
ferent chronological framework, each ODP forest event can
be tentatively correlated to west Mediterranean marine cold
events. However, a comparison between the Alboran Sea
pollen and alkenone-based SST records shows that more
events are expressed on the continent (Fig. 7). Thus, ACP
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6, 3 and 2 are absent in the Alboran Sea alkenone-based
SST record. If we look only at the pollen-inferred TANN
and alkenone-based SST curves, this discrepancy disappears
(Fig. 7). This may be related to the combined temperature
and precipitation influence on the Alboran Sea borderland
vegetation which is particularly controlled by moisture avail-
ability.

As the North Atlantic influence modulates the present-day
western Mediterranean climate variability (Lionello et al.,
2006), the nine pollen events detected by the ODP Site 976
record may also be linked to the North Atlantic Holocene
cold events (Bond et al., 1993, 2001). We present here
a eventual correlation (Fig. 8, Table 4). According to our
chronology, ACP 1, 2 and 4 to 8 may be related to Bond
events 1 to 3 and 5 to 8 (Fig. 8). ACP 4 could include two
Bond events, 3 and 4 probably, because, at the time of Bond
event 3, only a very slight change appears in our record. This
discrepancy is probably due to the lack of14C dates within
the 7.8–3.2 ka interval that reduces age constrains at time of
ACP 4 event (Figs. 2 and 8). In fact, this event corresponds
here simultaneously to an increase in Ericaceae and a mini-
mum representation ofQuercus(Figs. 5 and 6) resulting only
in a slight decrease in our temperate forest curve at around
4500 yr (Fig. 7). During the Holocene, beside being repre-
sented on their own chronological scale, the timing of ACP
events is very consistent with the North Atlantic Bond events
(Bond et al., 1993, 2001) and Mediterranean climate events
defined both in marine and continental series (Cacho et al.,
2001; Frigola et al., 2007; Jalut et al., 2000, 2009) (Fig. 8).
This suggests a very rapid response of Mediterranean vege-
tation to short-term climate forcing.

These repetitive short-lived events recorded in the ODP
pollen data reveal the high variability of continental climate
in the Mediterranean region during the Holocene and confirm
the far-reaching impact of the North Atlantic cold events on
both marine data (Cacho et al., 2001; Frigola et al., 2007) and
continental vegetation of the whole Mediterranean (Allen et
al., 2002; Jalut et al., 2000, 2009). ODP Site 976 results
highlight the main control of precipitation on Mediterranean
vegetation changes, that reflect the Ocean-Atmosphere cou-
pling through the apparent link between North Atlantic SSTs
and atmospheric configuration (Cacho et al., 2001).

5 Conclusions

In order to investigate the vegetation and climatic variabil-
ity during the last 25 000 years in the Mediterranean region,
we have established a marine pollen record (ODP Site 976)
from the Alboran Sea and quantitatively estimated the cli-
matic changes using the Modern Analog Technique.

Beforehand, we have tested the reliability of this ap-
proach in reconstructing the climatic parameters from ma-
rine pollen spectra in using 22 Atlantic and Mediterraneean
core-top pollen samples. An adequate consistency between

the present day observed and MAT estimations is especially
shown for Tsum, Psum and Pann values. Nevertheless, MAT
winter temperatures seem to be underestimated by few de-
grees and winter precipitation overestimated by less than one
hundred millimeters. Although future studies including a
greater number of core-top samples are necessary, the MAT
appears already as a valuable approach to estimate the past
climatic changes on land from marine Mediterranean pollen
records.

The high-temporal resolution pollen record ODP Site 976,
pollen-based quantitative climate reconstruction and biomi-
sation show that Mediterranean vegetation changes have
been clearly modulated by short-term and long-term variabil-
ity of the North Atlantic during the last deglaciation and the
Holocene. As in other western Mediterranean cores, the ODP
Site 976 pollen record shows drastic cool and dry conditions
which are correlated to the refreshment of Mediterranean sea
surface temperature and coeval with Heinrich events 2 and
1. During the B̈olling/Allerød period, two warm episodes
surround a cooling, which represent the climatic succession
of Bölling, Older Dryas and Allerød, with a cool trend from
Bölling to Allerød. The Younger Dryas event may be di-
vided into two parts: a very dry period followed by a more
humid interval at least at mid to high elevation. Recurrent
Holocene declines of forest cover on the Alboran Sea bor-
derlands correlate with the continental aridification events
and the Mediterranean SST coolings. They also are timely
correlated to the Holocene North Atlantic cold events. This
suggests the rapid response of Mediterranean vegetation to
Holocene short-time climate events and reflects the large
ocean-atmosphere coupling.
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