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Validating fault-tolerant behaviors of synchronous system
specifications by discrete controller synthesis *

Emil DUMITRESCU, Alain GIRAULT and Eric RUTTEN
INRIA, Montbonnot, FRANCE

Abstract

Discrete controller synthesis is used to formally as-
sess the fault-tolerance capabilities of a dependable
system from the early design stages. Fault-tolerance
is the ability of the system to handle failures so that
its service and/or performance is maintained. Our
originality is to use discrete controller synthesis to
act on an executable specification in order to yield
a new fault-tolerant executable specification, possi-
bly non-deterministic. Then, we obtain manually the
final distributed implementation and we formally ver-
ify it against the initial fault-tolerant specification.

1 Introduction

This work addresses the fault-tolerance issue in
discrete-event synchronous systems design. Fault oc-
currence must be taken into account from the early
design stages of dependable complex systems. First,
the designer must think about the functionalities of
the system that may fail. Then, for each possible
failure, a tolerance policy must be specified in order
to limit error propagation (and prevent the failure of
other components) and to ensure the correct behavior
of the system, despite the failure. At the functional
level, a fault-tolerance policy is described as an ad-
ditional behavior that should be enabled whenever a
failure occurs. Its purpose is the total or partial com-
pensation of the loss of functionality /performance
triggered by the failure.

However, given the complexity of an executable de-
scription, programming a fault-tolerance policy is a
very difficult task. Indeed, the designer must think
of all possible evolutions that may follow the fail-
ure of a component, and distinguish which ones must
be avoided. Such an approach is not realistic, as it
amounts to finding all possible execution sequences
that satisfy a correctness requirement of a design. In
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this context, we propose a formal analysis framework,
allowing designers to deal with fault tolerance at the
functional level of the design executable specification.
The main interest of working with executable specifi-
cations is that formal techniques are much more efli-
cient at this level, as specifications are usually simple
and non-deterministic.

We propose to use a particular discrete controller
synthesis technique [7] to generate automatically, if
it exists, a behavior implementing the user-specified
fault-tolerant policy, and to compose it with the de-
sign’s executable specification, in order to yield a new
fault-tolerant specification. If such a behavior does
not exist, this means that, at its current descrip-
tion level, the design is not fault-tolerant: there is
no means to prevent failure propagations or inconsis-
tent executions. The executable specification should
hence be redesigned.

We claim that most fault-tolerant behaviors can be
interpreted in terms of total or partial service conti-
nuwity, according to the initial formal specification of
the design. Ideally, we would like to formally state
what the nominal service of a design is, and require
that this nominal service be maintained for any ex-
pected fault occurrence. Discrete controller synthesis
should then ensure the continuity of this service.

The resulting fault-tolerant specification gathers a
set of possible fault tolerant behaviors. The choice
between these behaviors is often non-deterministic.
In order to derive a deterministic fault-tolerant imple-
mentation, a definitive choice must be made among
the existing behaviors. Moreover, the implemented
behavior must comply to the architectural constraints
of the implementation. In practice, distributed con-
trol solutions are often required, because the target
architecture is distributed. In order to handle distri-
bution, we chose to address the implementation step
manually. Indeed, the automatic generation of com-
municating distributed controllers is the only prac-
tical alternative to the manual distribution, and we
show that it would not be a good choice given our
fault-tolerance goal, which prohibits the introduction
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Figure 1: Architecture of the distributed arbiter

of additional communication.

Once an implementation has been manually ob-
tained, its fault-tolerance properties can be assessed
by comparing it formally with respect to the fault-
tolerant specification it was derived from. We pro-
pose to use the refinement checking technique [2] in
order to achieve this last step.

In the sequel, we present our general design ap-
proach and illustrate its different steps on a run-
ning example: the functional specification of a fault-
tolerant distributed arbiter. Then, we discuss the re-
sults of our method as well as the manual implemen-
tation aspects, and we conclude on the advantages of
our approach.

2 Specification of the dis-

tributed arbiter

The arbiter model we use as a running example is
inspired from [8]. It deals with four clients (Fig-
ure 1) wishing to access some shared resource. Each
client ¢ (i = 1..4) can request access by asserting
the input signal regq;. The arbiter replies accordingly
by asserting the proper acknowledgment signal ack;
and possibly de-asserting other acknowledge signals
ack;,j # i. The arbiter must achieve two basic func-
tionalities, mutual exclusion and liveness, formally
expressed with the classical temporal logic CTL [1]:

e Mutual Exclusion (ME): at any moment, at
most one acknowledge signal can be asserted:
ME AG(not(acky.acks + acky.acks +
acky .acky + acks.acks + acks.acky + acks.acky))

e Liveness (LIV): for each client i, if a request is
asserted, then it is eventually acknowledged:
LIV; : AG(req; — AF(ack;))

The arbiter does not memorize incoming requests.
Thus, to satisfy LIV;, we must assume that each
client is persistent: it maintains req; at least until
receiving ack;. However, if req; is deasserted before
obtaining ack;, then it shall not be acknowledged at
all. In order to implement liveness, a token mecha-
nism is used. Each cell is periodically given priority
with respect to the others. Each token is valid for
only one single time unit (execution cycle) and then
expires even though it has not been consumed. At
any time, at most one token may circulate through
the cells. The token is transmitted via the point-
to-point dedicated communication links [; (¢ = 1..4)
established between consecutive cells. The cell i may
only acknowledge its client if it is holding the token
at the current cycle. However, in case cell; is not cur-
rently holding the token, then it may still acknowl-
edge its client according to a weak priority policy: the
cells are ordered according to a static priority scheme,
from celly, which has the highest priority to celly. If
the cell currently holding the token does not have an
incoming request, then other cells must be able to
acknowledge their incoming requests, provided mu-
tual exclusion is respected. Thus, if cell; receives an
incoming request while not holding the token, then
it may acknowledge this request only if there are no
more prioritary requests (cells j = 1.4 — 1) and if
none among the less prioritary cells (k = ¢ + 1..4) is
about to acknowledge its corresponding request while
holding the token.

Finally, we wish our arbiter to have a distributed
architecture: four cells, each corresponding to one
client.

3 Overview of our method

3.1 Faults, errors, and failures

This is the fundamental causal principle in the study
of fault pathology and the design of dependable sys-
tems [4]. A fault may yield an error: a physical haz-
ardous event may yield a logical internal inconsis-
tency of the system. An error may yield a failure of
one or more components. A failure of one component
can be viewed as a fault at the system level. Each
possible failure is permanent.

In our context, we treat primary faults that can
only be physical external events. We limit our study
to error processing: we assume there exists a reliable
external unit, which reports an error if and only if
a physical fault has occurred. Failure management
may involve both hardware and software or temporal
redundancy. In our context, we rely on the manual in-
troduction of hardware redundancy, followed by the
automatic generation of redundant software, which
exploits both the existing and the redundant hard-
ware.

The design of dependable systems calls for a ded-
icated specification and validation procedure. Three



key points must be taken into account: the failure
hypothesis, the failure model and the fault tolerance
policy. In this section, we outline these three points
from a general point of view, before specifying them
formally with respect to our particular problem in the
next section.

3.2 Defining a failure hypothesis

A failure hypothesis states which components of the
system may fail. If more than one component is likely
to fail, failure configurations are a common way to ex-
press subsets of components that may fail together.
According to this hypothesis, the remaining compo-
nents are supposed to be reliable: they never fail,
or if such a failure occurs, the whole system fails.
The failure hypothesis needs to be confirmed by a
stochastic analysis step, in order to find the probabil-
ity for each failure configuration. In this document,
we assume that all failure configurations specified are
equally probable.

3.3 Defining a failure model

When a component fails, specify what this failure im-
plies. This amounts to defining a behavior that is
triggered by this failure and that might influence the
behavior of the remaining components. For instance,
when a component fails (processor, communication
link, sensor, etc.), it may stop reacting to its environ-
ment. This means either sending a constant value, or
sending random values to the environment (Byzan-
tine behavior), or sending no value at all (fail-safe
behavior).

3.4 Defining a fault tolerance policy

Ideally, a fault-tolerant system should maintain its
functionalities and its performance (nominal service)
even though some of its components are down. In
practice, this assumption is too strict and expensive
to implement. Thus, in case a failure occurs, the nom-
inal service may be replaced by a degraded operating
mode. When the system runs inside a degraded mode,
only a subset of its initial functional requirements are
still met. We wish to achieve fault-tolerance by set-
tling such a degraded operating mode when a failure
occurs. In our context, this is done by expressing the
appropriate constraints that are used to control the
system’s behavior from outside, in order to avoid un-
wanted configurations that may become reachable in
case of a failure. This approach only applies to sys-
tems that are controllable: for such systems, a set of
dedicated controllable inputs is provided for service
maintenance purposes. The system behavior is con-
strained by driving the controllable inputs appropri-
ately. All remaining input variables are called uncon-
trollable. The discrete controller synthesis technique
[7] is an excellent choice for automatically producing
such controlling constraints.

In our context, adding controllability to a design
amounts to adding supplementary hardware (input
variables and additional states and transitions) for
backup purposes. This is synonym of specifying
a hardware redundancy mechanism. On the other
hand, the resulting synthesized controller, if it ex-
ists, represents a “program” (software redundancy)
that appropriately uses the already existing redun-
dant hardware in order to establish the degraded op-
erating mode.

Discrete controller synthesis needs a formal control
objective. In our framework, this control objective
must express fault tolerance. This can be achieved in
two ways:

1. Specify how a failure should be handled. This
can be done whenever the back-up procedure
is known a-priori, or when this procedure must
comply to a pre-defined standard. The resulting
controller should drive the controllable inputs ac-
cordingly.

2. Specify what the system should always do, de-
spite failure occurrences. A degraded service
is formally specified and the resulting controller
must constrain the system so that this service is
achieved.

4 Formally specifying the ar-
biter dependability

4.1 Failure hypothesis

We assume that only the communication links /; be-
tween cells may fail. When link /; fails, it stops trans-
mitting tokens to the cell . Each link is fail-silent and
its failure is permanent. Thus, potentially, the cell
may never be acknowledged anymore. Moreover, we
shall assume that the probability to have a failure
affecting more than one link is negligible.

4.2 Link failure model

An abstract model for each communication link is
given Figure 2. Each link may be either functional, in
which case it transmits correctly the tokens and pri-
ority management information, or in a failure state,
in which case it stops transmitting forever. The tran-
sition to the failure state is triggered by the environ-
ment and corresponds to a physical damage event.

The static priority between the cells is defined us-
ing an override/grant mechanism. Thus, cell i over-
rides cell i+ 1 iff regq; is active or if cell i — 1 overrides
cell 4. The first cell in the chain (cell 1) cannot be
overridden. On the other hand, cell ¢ grants cell 4 —1
iff it is granted itself by cell 4 4+ 1 and if it is not hold-
ing both an incoming request and a token. The last
cell in the chain (cell 4) is always granted.

Each cell i is aware of the state (running or fail-
ure) of the communication link [; it is connected to.
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When link [; is down, cell ¢ stops receiving tokens.
Thus, it stops complying with the specification LIV;.
Moreover, a link failure invalidates the static prior-
ity scheme, as no cell can be aware anymore of other
requests of higher /lower priority.

4.3 Fault tolerance policy

When link /; is down, the token keeps moving until
it reaches [;, and then it is lost. From that moment,
no other request will ever be acknowledged. Thus,
the mutual exclusion requirement is still trivially sat-
isfied, but the response time is no longer guaranteed
for any cell. Also, the static priority scheme is dis-
abled.

The fault-tolerance policy must address the re-
sponse time problem, while still ensuring mutual ex-
clusion. As we know that in its degraded mode, our
arbiter does not comply with the response time re-
quirement, we wish to appropriately constrain its be-
havior, so that the response time becomes acceptable.
We shall use the controller synthesis technique in or-
der to produce appropriate controlling constraints.
However, in its current design state, our arbiter has
very few possible behaviors and can hardly be con-
trolled: it should be avoided to constrain the incom-
ing request or error signals, as requests and error
events should be able to arrive at any moment. Be-
sides, the only way to constrain the behavior of a
reactive system is via its input signals. Thus, in or-
der to achieve this fault-tolerance policy, we must re-
design our arbiter interface and behavior, to make it
more “controllable”.

Adding controllability. When alink is down, the
arbiter stops complying to its specification as soon
as the token is lost. Thus, a possible supplemen-
tary control solution involves adding a backup token
insertion point mechanism (Figure 3). The arbiter
environment can reinsert a new token by adequately
controlling this supplementary input. However, if I;
is operational, backup token reinsertion has no effect.

backup_token,;

req;
—

ack; cell;

D

Figure 3: Cell i interface with hardware redundancy

We redesign the arbiter by assuming the exis-
tence of an external global supervisor. By assert-
ing the backup_-token; signal, this supervisor inserts
a new token inside the arbiter. By deasserting the
backup_token; signal, it prevents a new token from
being inserted. First, backup tokens should only be
inserted when at least one link is down. Second, when
this is the case, tokens should not be inserted too of-
ten, as at most one token should circulate inside the
arbiter. Finally, token insertion should be done pe-
riodically, so that each incoming request is acknowl-
edged with a reasonable response time.

4.4 Achieving liveness control objec-
tives

Up to now, discrete controller synthesis handles
safety and non-blocking objectives. In order to ad-
dress the liveness enforcement problem, we have cho-
sen to replace the concept of “response in finite time”
by a bounded time response requirement, which is
more easily solvable by currently available controller
synthesis algorithms. This requires finding a reason-
able bound on the response time for each ack; sig-
nal. Since there are four cells, and since at each cycle
a new cell receives the token, we set the response
bound to four cycles. Thus, the liveness requirement
adapted to bounded time becomes:

LIV} : AG(req; — ack; + AX (ack; + AX (ack; +
AX (ack; + AX (ack:)))))

By combining the objectives ME and LIV} (i =
1..4), we obtain a controller having the following fea-
tures:

e it observes every variable in the system;

e it is only allowed to control the inputs
backup_token; (i = 1..4) in order to constrain
the arbiter to achieve its functional requirement;

e according to the control objectives, if link /; fails,
the controller will reestablish the global system
coherence by possibly reinserting backup tokens
through cell 4, while preventing such token in-
sertions whenever this would violate the M E re-
quirement.



5 Validation of the fault toler-
ant behavior

We have modeled our arbiter and we have validated
its fault-tolerance capability, by actually synthesizing
a controller which ensures all the requirements stated
in Section 4. For example, if link /; fails, the following
scenarios are possible:

e req; is asserted and reqs,reqs, and reqy are all
deasserted. req; is acknowledged.

e reqy is asserted. If regqs,reqs, and reqq are as-
serted and if links I5,l3, and l4 are operational,
then the controller enforces the fair acknowledg-
ment of all the requests, by inserting a backup
token through cell 1. The token insertion takes
into account the response delay bound of each
cell. Thus, a possible future violation of the de-
lay response bound is anticipated and avoided,
by enforcing the insertion of a token at the ap-
propriate moment.

o If cell j (j = 2..4) holds a token, then the con-
troller disables the insertion of a new backup to-

ken until the currently existing token is lost in-
side the failed link [;.

The controlled arbiter obtained is non-deterministic.
The control which has been synthesized is called
mazimally permissive: controllable inputs are only
constrained in case of necessity with respect to the
control objectives. Indeed, if link [; is operational,
the value of the controllable input backup_token;
does not influence the behavior of the arbiter, as we
chose by construction. If link [; is down, the input
backup_token; only needs to be constrained in two
specific scenarios:

e As long as the token ring contains a token,
backup_token; is set to false.

e When the token ring becomes empty (the token
gets lost by link /;), the controller enforces the
introduction of a new backup token only when a
possibility exists that a request is not acknowl-
edged within the 4-cycle time bound. If only
one incoming request is active at a time, it is
immediately acknowledged, without a need for a
token. Still, in such a situation, a token may be
inserted.

The resulting controlled arbiter actually offers a
choice among several available fault-tolerant behav-
iors. Because of its non-deterministic nature, we con-
sider this result as a newly generated executable spec-
ification which embeds a set of fault-tolerant behav-
iors.

6 Implementing and verifying
the fault-tolerant arbiter

At this stage, obtaining a possible implementation of
the fault-tolerant arbiter would involve choosing one
interesting behavior among those allowed by the exe-
cutable specification and expressed in the controlled
arbiter, with the additional constraint that the result
must be deterministic.

The architecture of the resulting controller must
also comply to the initial failure hypothesis. Accord-
ing to this hypothesis, only communication links may
fail. Thus, we must assume that the controller cannot
fail. Unfortunately, the resulting controller achieves
global control and observation; thus, such an assump-
tion is not realistic with respect to the distributed ar-
chitecture of the arbiter. Hence, the implementation
of the controlled arbiter must also meet the archi-
tectural constraint: each cell i should be locally con-
trolled, and the only variables the local controller is
allowed to monitor should be the internal variables of
cell i. The automatic generation of local controllers
achieving global control objectives is a much more
difficult task, known as decentralized controller syn-
thesis [5]. The existence of a distributed control so-
lution often requires supplementary communication
between the local controllers. In our context, assum-
ing reliable communication between local controllers
would contradict our initial failure hypothesis, which
states that communication between cells is not reli-
able. On the other hand, the distributed controller
synthesis problem without communication between
local controllers has been shown to be undecidable [9].

As a consequence, we build the local controllers
manually. By construction, our arbiter has several
interesting properties. First of all, the controllable
inputs are “don’t cares” as long as no link failure has
occurred. Then, according to the failure hypothesis,
only one link may fail. Thus, when link /; is down,
only its corresponding backup_token; needs to be con-
trolled. Finally, by running a sufficient set of simu-
lation scenarios, we realize that there exists a set of
traces that are allowed by the controlled arbiter speci-
fication and that can be played on backup_token;. All
these traces are composed by the following successive
parts: (1) an arbitrary length prefix, corresponding
to the normal operation, before any link failure oc-
curs; all along this prefix, backup_token; can be set to
any value; (2) once a failure occurs, a bounded-length
prefix follows, corresponding to the token propaga-
tion until it is lost; (3) finally, a periodic suffix cor-
responding to the periodic reinsertion of a new token
inside the arbiter once the previous one is lost.

Such a behavior is local to each cell and can be
reproduced by a simple manually built determinis-
tic finite state machine, such as the one presented
Figure 4. Hence, by composing the arbiter with
four instances of this state machine, fault-tolerance
is achieved, provided that only a single fault may oc-
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troller for cell ¢

cur.
Assessing the correctness of the above implemen-
tation is a straightforward task and can be done by
simulation. However, in general, such an exhaus-
tive verification task can become very difficult as
soon as the design becomes more complex. Formal
verification techniques are known to deal more effi-
ciently with this problem, even when applied on real-
life designs. In particular, the refinement checking
technique [2, 3] is used for assessing implementations
against a non-deterministic operational specification.
The use of this technique in our context is effective
for two main reasons: first of all, if an implemen-
tation refines a specification, then it inherits every
V—CTL property satisfied by the specification [2].
Note, however, that this conservative feature only
concerns properties written in Y—CTL. In our con-
text, the fault-tolerance objectives ME and LIV,
(1 = 1.4) are compliant to the V—CTL subset of
CTL. Second, refinement checking is a mature proce-
dure which can extensively rely on compositionality,
and whose complexity does not exceed the reachable
state space computation of the implementation [3].

7 Discussion and conclusion

The main modeling benefit of our technique comes
from the ability to specify what the nominal service
to be maintained is, despite fault occurrences, and
to automatically generate the behavior that main-
tains this service. The use of the discrete controller
synthesis technique is very important in our frame-
work. Even for a simple design like the distributed ar-
biter, finding a global fault-tolerance policy is a tricky
task, and needed several synthesis attempts. Indeed,
in the preliminary attempts an absence of solution
was reported, which was mainly related to the design
choices made concerning control freedom. This game

solving approach is vital in our context, as it is the
only way of determining whether a winning strategy
exists for achieving fault-tolerance. This issue cannot
be addressed using traditional model checking tools,
as they do not distinguish between controllable and
uncontrollable input events. To the best of our knowl-
edge, the only available model checking tool that can
also solve this question is MOCHA [3]. However, this
model checking tool only checks the existence of a
solution, without constructing it exhaustively, while
the discrete controller synthesis based method is con-
structive.

Discrete controller synthesis enabled us to validate
a functional executable specification by providing an
exhaustive set of realistic simulation scenarios, which
would have been difficult to set up manually. We have
used this technique as a design tool for assessing the
fault tolerant capabilities of a given executable spec-
ification. At the specification level, this assessment
is only behavioral: “given its current design state, is
my specification able to deal with faults, and if yes,
how?”. The synthesized controller answers this ques-
tion.

The whole experimentation part has been realized
using the SIGALI [7] discrete controller synthesis tool,
as well as the mode automata under the MATOU [6]
environment.
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