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Abstract

In this article we prove new results concerning the existence and var-
ious properties of an evolution system UA+B(t; s)0�s�t�T generated by
the sum �(A(t) + B(t)) of two linear, time-dependent and generally un-
bounded operators de�ned on time-dependent domains in a complex and
separable Banach space B. In particular, writing L(B) for the algebra
of all linear bounded operators on B, we can express UA+B(t; s)0�s�t�T
as the strong limit in L(B) of a product of the holomorphic contraction
semigroups generated by �A(t) and �B(t), respectively, thereby proving
a product formula of the Trotter-Kato type under very general conditions
which allow the domain D(A(t)+B(t)) to evolve with time provided there
exists a �xed set D � \t2[0;T ]D(A(t) +B(t)) everywhere dense in B. We
obtain a special case of our formula when B(t) = 0, which, in e¤ect, allows
us to reconstruct UA(t; s)0�s�t�T very simply in terms of the semigroup
generated by �A(t). We then illustrate our results by considering various
examples of non-autonomous parabolic initial-boundary value problems,
including one related to the theory of time-dependent singular perturba-
tions of self-adjoint operators. We �nally mention what we think remains
an open problem for the corresponding equations of Schrödinger type in
quantum mechanics.

1 Introduction and Outline

It is well-known that the Hille-Yosida theory of semigroups and its numerous
extensions regarding the construction of evolution operators on Banach spaces
has had and still has far reaching applications to the analysis of certain lin-
ear or nonlinear, deterministic or stochastic, partial di¤erential equations with
time-independent or time-dependent coe¢ cients. In many instances that may
encompass parabolic equations, hyperbolic equations or Schrödinger equations,
to name only a few, it is indeed possible to reformulate a given initial and
boundary-value problem as one related to evolution equations on suitably chosen
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functional spaces. The mathematical investigation of such a problem concern-
ing for example the existence and the uniqueness of various types of solutions,
the relations among them, their various representations and their asymptotic
behavior for large times, then becomes intimately related to the properties of
the corresponding linear propagator (see, for instance, [22], [29], [35] and [38] for
general references regarding the deterministic case as well as [9] for the stochas-
tic case). Among those properties, perturbation formulae of the Trotter-Kato
type such as those stated in [6], [7], [14], [26], [27] or [36] for holomorphic or
more general semi-groups are of particular importance for the understanding
of certain basic questions in applied mathematics or mathematical physics that
can be formulated in terms of autonomous partial di¤erential equations; thus,
a strongly convergent product formula of the form

exp [�t(A+B)] = lim
n!+1

�
exp

�
� t

n
A

�
exp

�
� t

n
B

��n
(1)

with t 2 R+ and A, B time-independent linear operators on a Banach space sat-
isfying certain conditions, allows one to relate the solutions of certain evolution
problems to the theory of Wiener integrals through the celebrated Feynman-Kac
formula (see, for instance, [31]). On the other hand, in the realm of quantum
mechanics a slightly modi�ed version of (1) also allows a rigorous construc-
tion of the so-called Feynman path integral representation of the solutions to
Schrödinger equations with time-independent potentials (see, for instance, [4],
[19] and [27]). Consequently, a question that arises naturally is whether formu-
lae of the form (1) can be generalized to the case where the linear operators A(t)
and B(t) depend explicitly on the time variable in some way; it turns out that
such a generalization was indeed carried out in [13] when both A(t) and B(t)
are the in�nitesimal generators of C0-contraction semigroups on a Banach space
for every t, under the additional restriction that the domain D(A(t) +B(t)) of
the operator sum A(t) + B(t) be time-independent ; this was nonetheless suf-
�cient to enable the author of [13] to give a precise mathematical meaning to
the Feynman path integral representation in the case of Schrödinger equations
with certain time-dependent potentials. With further hypotheses regarding the
continuity properties of A(t) and B(t) as functions of t, a generalization of (1)
was also obtained in [18] where the authors were able to prove the convergence
of their approximations in the operator norm-topology rather than just in the
strong topology.
There are, however, a host of important situations where D(A(t)+B(t)) does

depend explicitly on time, thereby making some of the arguments of [13] and
[18] inapplicable; as a concrete class of examples which will motivate some of
the hypotheses of the theory we develop below, let D � Rd be an open bounded
domain with a smooth boundary @D (see, for instance, [2] for a de�nition of this
and related concepts); let T 2 R+� := R+� f0g and let us consider parabolic
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initial-boundary value problems of the form

@u(x; t)

@t
= div(k(x; t)ru(x; t))� {u(x; t); (x; t) 2 D � (0; T ] ;

u(x; 0) = u0(x); x 2 D;
@u(x; t)

@n(k)
= 0; (x; t) 2 @D � (0; T ] ; (2)

with { 2 R+ a parameter and where the last relation in (2) stands for the co-
normal derivative of u relative to the matrix-valued function k. We assume that
the following hypotheses hold (here and below we use the standard notations
for the usual spaces of Lebesgue integrable functions and for the correspond-
ing Sobolev spaces on regions of Euclidean space; we also write c for all the
irrelevant constants that occur in the various estimates unless we specify these
constants otherwise):
(K) The function k : D � [0; T ] 7! Rd2 is matrix-valued and for every i; j 2

f1; :::; dg we have ki;j = kj;i 2 L1(D � (0; T );R); moreover, there exists a
constant k 2 R+� such that the inequality

(k(x; t)q; q)Rd � k jqj2 (3)

holds uniformly in (x; t) 2 D� [0; T ] for all q 2 Rd, where (:; :)Rd and j:j denote
the Euclidean inner product and the induced norm in Rd, respectively; �nally,
there exist constants c� 2 R+� , � 2

�
1
2 ; 1
�
, such that the Hölder continuity

estimate
max

i;j2f1;:::;dg
jki;j(x; t)� ki;j(x; s)j � c� jt� sj�

is valid for every x 2 D and every s; t 2 [0; T ].
(I) The initial datum satis�es u0 2 L2(D;R).

As is well-known, Hypothesis (K) allows one to construct a self-adjoint,
positive realization of the elliptic partial di¤erential operator with conormal
boundary conditions in (2). In fact, let us write (:; :)2 and k:k2 for the inner
product and the induced norm in L2(D;C), respectively, together with (:; :)1;2
and k:k1;2 for the inner product and the induced norm in H1(D;C), respec-
tively; let (:; :)Cd be the standard inner product in Cd. Then, for the Hermitian
sesquilinear form a:[0; T ]�H1(D;C)�H1(D;C) 7! C de�ned by

a(t; v; w) :=

Z
D

dx (k(x; t)rv(x);rw(x))Cd (4)

we have the estimates

ja(t; v; w)j � c kvk1;2 kwk1;2 ;

a(t; v; v) � k
�
kvk21;2 � kvk

2
2

�
� 0 (5)
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uniformly in t 2 [0; T ] for every v; w 2 H1(D;C), as well as

ja(t; v; w)� a(s; v; w)j � c jt� sj� kvk1;2 kwk1;2 (6)

for every s; t 2 [0; T ]; consequently, the operator

A(t) := �div(k(:; t)r) + { (7)

is indeed self-adjoint and positive in L2(D;C) on the time-dependent domain
given by

D(A(t)) =
�
v 2 H1(D;C) : A(t)v 2 L2(D;C); ((A(t)� {)v; w)2 = a(t; v; w)

	
(8)

where the last relation in (8) holds for every w 2 H1(D;C). Then for any
t 2 [0; T ], �A(t) is the in�nitesimal generator of a holomorphic semigroup of
contractions exp [�sA(t)]s�0 in L2(D;C), and also generates there an evolution
system UA(t; s)0�s�t�T given by

UA(t; s)v =

�
v if t = s;R

D
dyGA(:; t; y; s)v(y) if t > s;

(9)

whose range satis�es
RanUA(t; s) � D(A(t))

for every s; t with 0 � s < t � T . Here we denote by GA the parabolic Green�s
function associated with (2) (see, for instance, [24], [25], [29] or [35] for other
typical constructions of this kind). This means that it becomes possible to
investigate the existence and the various properties of solutions to (2) through
the integral relation

u(:; t) =

Z
D

dyGA(:; t; y; 0)u0(y)

in L2(D;R).
Let us now perturb the partial di¤erential operator in (2) by considering

initial-boundary value problems of the form

@u(x; t)

@t
= div(k(x; t)ru(x; t))� (l(x; t);ru(x; t))Rd � ({ + "m(x; t))u(x; t);

(x; t) 2 D � (0; T ] ;
u(x; 0) = u0(x); x 2 D;
@u(x; t)

@n(k)
= 0; (x; t) 2 @D � (0; T ] ; (10)

with " 2 R+ a parameter and with the following additional hypotheses regarding
the lower-order di¤erential operators, where we assume without restricting the
generality that the constants c� and � are the same as in Hypothesis (K):
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(L) Each component of the vector-�eld l : D � [0; T ] 7! Rd satis�es li 2
L1(D � (0; T );R) and the Hölder continuity estimate

max
i2f1;:::;dg

jli(x; t)� li(x; s)j � c� jt� sj�

holds for every x 2 D and every s; t 2 [0; T ].
(M) We have m 2 L1(D � (0; T );R+) along with

jm(x; t)�m(x; s)j � c� jt� sj�

for every x 2 D and every s; t 2 [0; T ].

As is the case for (7), it is also possible to construct a realization of the
partial di¤erential operator

C"(t) := �div(k(:; t)r) + { + (l(:; t);r)Rd + "m(:; t)
:= A(t) +B"(t) (11)

in (10) by considering the sesquilinear form c":[0; T ]�H1(D;C)�H1(D;C) 7! C
de�ned by

c"(t; v; w) := a(t; v; w) + {(v; w)2 + b"(t; v; w) (12)

with a(t; v; w) given by (4) and

b"(t; v; w) :=

Z
D

dx (l(x; t);rv(x))Cd w(x) + "
Z
D

dxm(x; t)v(x)w(x): (13)

In fact, thanks to Hypotheses (L), (M) and by elementary arguments we get the
estimates

jb"(t; v; w)j � c kvk1;2 kwk2 ;

Re b"(t; v; v) � �
k

2
kvk21;2 � c kvk

2
2 (14)

uniformly in t 2 [0; T ] for every v; w 2 H1(D;C), as well as

jb"(t; v; w)� b"(s; v; w)j � c jt� sj� kvk1;2 kwk2 (15)

for every s; t 2 [0; T ], with the norm kwk2 rather than kwk1;2 in (14) and (15).
Consequently, this leads to the realization of the lower-order operator B"(t) in
L2(D;C) on the time-independent domain

D(B"(t)) = H1(D;C)

with
(B"(t)v; w)2 = b"(t; v; w)

and
kB"(t)vk2 � c kvk1;2 (16)
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for every t 2 [0; T ], any v 2 H1(D;C) and each w 2 L2(D;C), and thereby to
the realization of (11) as an operator in L2(D;C) on the time-dependent domain

D(C"(t)) = D(A(t)) \H1(D;C) = D(A(t))

for every t 2 [0; T ]. Moreover, as is the case for �A(t) the operator �C"(t) also
generates a holomorphic semigroup and an evolution system UA+B"

(t; s)0�s�t�T
given by

UA+B"(t; s)v =

�
v if t = s;R

D
dyGA+B"(:; t; y; s)v(y) if t > s

(17)

in L2(D;C), whose range satis�es

RanUA+B"
(t; s) � D(A(t))

for every s; t with 0 � s < t � T and where G
A+B"

is the parabolic Green�s
function associated with the di¤erential operator in (10). These two assertions
follow from the general theory developed in [35] since we can infer successively
from (5), (6), (14) and (15) that the estimates

jc"(t; v; w)j � c kvk1;2 kwk1;2 ; (18)

Re c"(t; v; v) �
k

2
kvk21;2 � (k + c) kvk

2
2 (19)

hold uniformly in t 2 [0; T ] for every v; w 2 H1(D;C), and that

jc"(t; v; w)� c"(s; v; w)j � c jt� sj� kvk1;2 kwk1;2 (20)

holds for every s; t 2 [0; T ].
In the realm of this class of examples the natural questions we want to ask are

whether we can reconstruct the evolution system UA(t; s)0�s�t�T in terms of the
contraction semigroup exp [�sA(t)]s�0 in a simple manner, and more generally
whether we can express (17) in terms of the unperturbed system (9) through
some kind of generalization of (1). Even the �rst question is not trivial, as the
various relations known thus far between UA(t; s)0�s�t�T and exp [�sA(t)]s�0
are notoriously complicated ones (see, for instance, [29] and [35]).
In order to motivate further the theory we develop below, it is worth noting

here that under the above hypotheses the operator B"(t) is always a relatively
bounded perturbation of the operator A(t) in the sense of [22]. In fact, aside
from the inclusion

D(A(t)) � D(B"(t))
we also have

kvk21;2 � k�1 ((A(t)� {)v; v)2 + kvk
2
2 � k�1 k(A(t)� {)vk2 kvk2 + kvk

2
2

as a consequence of (5), (8) and Schwarz inequality, which implies

kvk1;2 � c (kA(t)vk2 + kvk2)
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for every v 2 D(A(t)) since kvk�11;2 kvk2 � 1 when v 6= 0. Consequently, from
the last relation and (16) we obtain

kB"(t)vk2 � c (kA(t)vk2 + kvk2)

for every t 2 [0; T ] and any v 2 D(A(t)), which is the desired assertion.
As we shall see in Section 4, similar questions can be raised for other classes

of concrete examples, a case in point being the class of time-dependent singular
perturbations of self-adjoint di¤erential operators which are supported on a
�nite or discrete set of points in Euclidean space (see, for instance, [3], [8], [11],
[12] and [15] for general references concerning such problems).
Although (10) is inherently variational, it is equally plain that it is formally

a particular example of an abstract evolution problem of the form

du(t)

dt
= �(A(t) +B(t))u(t); t 2 (s; T ] ;

u(s) = us (21)

de�ned in a complex and separable Banach space B. In the sequel we shall
investigate (21) from the point of view we just outlined under appropriate hy-
potheses concerning A(t) and B(t) when D(A(t)+B(t)) may be time-dependent,
but without reference to any kind of variational structure in the abstract setting.
Accordingly, we shall organize the remaining part of this article in the following
way: in Section 2 we state and discuss our main theorem regarding the exis-
tence of an evolution system UA+B(t; s)0�s�t�T concerning (21) and a related
extension of (1), for a suitable class of A(t)�s and of time-dependent perturba-
tions B(t)0�t�T . There we also put our result into a broader perspective by
comparing our way of constructing the UA+B(t; s)�s with other known methods
such as those put forward in [1], [30] or in the review article [33]. We prove our
main result in Section 3; our general framework in that section is the theory of
evolution operators as developed in [35], which indeed motivated our choice of
the A(t)�s and the B(t)�s in the �rst place. We illustrate our main statements
by means of several examples in Section 4, aside from also considering there
examples showing that some of our hypotheses, albeit natural, su¢ cient and
indeed veri�able in a host of important situations, are not necessary for our
product formula to hold. In this context it is worth pointing out that there
are two well-known analytical tools which play an important rôle in our analy-
sis of some of those examples, namely, Euler�s summation formula and Krein�s
formula for resolvents (see, for instance, [17] and [3], respectively). Finally, we
refer the reader to [37] for a short announcement of our result and a very brief
sketch of its proof.

2 Statement and Discussion of the Main Result

In the sequel we write k:k for the norm in B and k:k1 for the usual operator-norm
in L(B), the Banach algebra of all bounded linear operators on B . According
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to what we outlined in the preceding section, we wish to construct an evolution
system UA+B(t; s)0�s�t�T for Problem (21) which we can express in terms of
the semigroups generated by A(t) and B(t) through a suitable generalization of
(1), without ever requiring that the domains D(C�(t)) of the fractional powers
of C(t) for � 2 (0; 1] be time-independent, where C(t) := A(t) + B(t). To this
end we assume that the following hypotheses are valid (see, for instance, [35]
for the basic de�nitions and properties):

(A1) The linear operator �A(t) is the in�nitesimal generator of a holomor-
phic semigroup exp [�sA(t)]s�0 on B for every t 2 [0; T ] and we have 0 2 �(A(t))
for any such t, where �(A(t)) denotes the resolvent set of A(t).

(A2) The function t 7! A�1(t) is continuously di¤erentiable with respect to
the norm-topology of L(B) and there exist constants a2 2 R+� , ~a2 2 (0; 1] such
that the Hölder continuity estimatedA�1(t)dt

� dA�1(s)

ds


1
� a2 jt� sj~a2 (22)

is valid for every s; t 2 [0; T ].

As is well-known, Hypothesis (A1) implies the existence of constants � 2�
0; �2

�
, c� 2 R+� such that the inclusion S� � �(A(t)) and the inequality

kR(A(t); �)k1 � c� (1 + j�j)�1 (23)

hold for every t 2 [0; T ] and any � 2 S�, where

R(A(t); �) := (A(t)� �)�1

and
S� := f� 2 C : jarg �j � �g [ f0g : (24)

Furthermore, Hypotheses (A1) and (A2) also imply the di¤erentiability of the
function t 7! R(A(t); �) on [0; T ] with respect to the norm-topology of L(B),
whose derivative we require to satisfy the following hypothesis:

(A3) There exist constants a3 2 R+� , ~a3 2 (0; 1] such that the inequality @@tR(A(t); �)

1
� a3 j�j�~a3 (25)

holds for every t 2 [0; T ] and every � 2 S�� f0g.

Hypotheses (A1)-(A3) are the building blocks of the existence theory of
solutions to non-autonomous linear parabolic equations developed in [35] when
D(A(t)) varies with time, thereby providing an evolution system UA(t; s)0�s�t�T
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for Problem (21) when B(t) = 0; however, they are by far not the only su¢ -
cient conditions that allow the construction of the UA(t; s)�s, and we shall indeed
dwell a bit on this point and on related matters immediately after the statement
of our theorem.
Since we have in mind a generalization of (1) to the time-dependent case, it

is then natural to ask whether those conditions remain stable under a suitable
class of perturbations B(t)0�t�T of the A(t)�s. We shall see that this is indeed
the case provided we impose the following hypotheses:

(B1) The linear operator B(t) is closed in B for every t 2 [0; T ] and we have
D(B(t)) � D(A(t)) for any such t; moreover, there exist constants a 2 [0; 1),
b 2

�
0; (1� a)c�1�

�
where c� is the constant in (23), such that the inequality

kB(t)vk � a k(A(t)� �)vk+ b kvk (26)

holds for every v 2 D(A(t)), any t 2 [0; T ] and each � 2 S�.

(B2) The function t 7! B(t)A�1(t) is continuously di¤erentiable on [0; T ]
with respect to the norm-topology of L(B) and there exist constants b2 2 R+� ,
~b2 2 (0; 1] such that the Hölder continuity estimated(B(t)A�1(t))dt

� d(B(s)A�1(s))

ds


1
� b2 jt� sj

~b2

is valid for every s; t 2 [0; T ].

(B3) The function t 7! B(t)R(A(t); �) is continuously di¤erentiable on [0; T ]
with respect to the norm-topology of L(B) and there exists a constant c�� 2 R+�
such that the inequality  @@t (B(t)R(A(t); �))


1
� c��

holds for every t 2 [0; T ] and each � 2 S�.

While Hypothesis (B1) is evidently some kind of relative boundedness con-
dition, we remark that it also imposes a smallness condition on the constant
b in (26). This will allow us to prove a crucial ingredient for our upcoming
arguments to work, namely, the bounded invertibility of A(t) + B(t) for every
t 2 [0; T ], which means that even in the case of bounded B(t)�s the admissible
perturbations will be limited to those of small norm. Furthermore, whereas the
preceding hypotheses indeed guarantee the existence of the evolution system we
alluded to above (see Proposition 1 of Section 3), we note that they are not
quite su¢ cient to allow the generalization of (1) that we want. For this we still
impose the following three conditions.

(A4) The semigroup exp [�sA(t)]s�0 in Hypothesis (A1) is contractive on B
for every t 2 [0; T ].
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(B4) The operator �B(t) is the in�nitesimal generator of a holomorphic
semigroup of contractions exp [�sB(t)]s�0 on B for every t 2 [0; T ]; moreover,
the function t 7! R(B(t); �) is continuous on [0; T ] uniformly in � 2 S�� in the
strong topology of L(B), where S�� is given by (24) but with

S�� � �(B(t))

for some �� 2
�
0; �2

�
.

(D) There exists a dense set D � B satisfying

D � \t2[0;T ] D(A(t) +B(t)) (27)

such that for every v 2 D we have

sup
t2(0;T ]

kA(t)vk < +1 (28)

and
sup

t2(0;T ]
kB(t)vk < +1: (29)

As is the case for the operator A(t), Hypothesis (B4) also implies the exis-
tence of a constant c� 2 R+� such that the resolvent estimate

kR(B(t); �)k1 � c� (1 + j�j)�1 (30)

holds for every t 2 [0; T ] and every � 2 S�� ; moreover, our arguments below
will show that in the particular case of time-independent B�s, we can weaken
Hypothesis (B4) by only requiring that exp [�sB]s�0 be a C0-contraction semi-
group.

Under these conditions we can formulate our main result as follows.

Theorem. Assume that Hypotheses (A1)-(A3) and (B1)-(B3) hold. Then
there exists an evolution system UA+B(t; s)0�s�t�T solving Problem (21) such
that the following properties are valid for all s; t with 0 � s < t � T :
(1) The range of UA+B(t; s) satis�es

RanUA+B(t; s) � D(A(t) +B(t)) = D(A(t)): (31)

Moreover, the operator-valued function t 7! UA+B(t; s) is continuously di¤eren-
tiable with respect to the norm-topology of L(B) and we have

@UA+B(t; s)

@t
= �(A(t) +B(t))UA+B(t; s) 2 L(B)

with the estimate @UA+B(t; s)@t


1
� c(t� s)�1
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for some c 2 R+� independent of s; t. Finally, the operator-valued function s 7!
UA+B(t; s) is also di¤erentiable with respect to the norm-topology of L(B) and
we have

@UA+B(t; s)

@s
2 L(B)

with the same estimate as above, namely,@UA+B(t; s)@s


1
� c(t� s)�1

where @UA+B(t;s)
@s stands for the bounded linear extension of UA+B(t; s)(A(s) +

B(s)) on B.
(2) In addition to the above hypotheses, if (A4), (B4) and (D) hold then for

all s; t with 0 � s � t < T we have the Trotter-Kato product formula

UA+B(t; s) (32)

= lim
n!+1

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��
exp

�
� t� s

n
B
�
s+



n
(t� s)

��
in the strong topology of L(B).

Remarks. (1) Aside from Hypotheses (A1)-(A3), there exist several other
su¢ cient conditions that would have allowed the construction of the UA(t; s)�s
when B(t) = 0; we refer the reader for instance to [1] for a general and thorough
investigation of such conditions and of the relations among them. In particular,
we could have used Hypotheses I and II of that paper in the somewhat stronger
form introduced in [30] and [33] to get such a result. There also exist various
su¢ cient conditions which could have lead to the existence of perturbed evo-
lution systems UA+B(t; s) for suitable classes of B(t)�s, for example those put
forward in [30] and [33]. However, a basic di¢ culty emerges there when one tries
to prove a product formula such as (32) for them; thus, while the UA+B(t; s)�s
of Theorem 9.19 in [33] are only de�ned for almost every t > s and lack dif-
ferentiability properties, those of Theorem 4.2 in [30] are only weakly locally
di¤erentiable relative to the time variable and satisfy an equation such as (21)
almost everywhere. A direct consequence of this is that such evolution systems
are not amenable to the method of proof we develop in the next section, which
requires the UA+B(t; s)�s to be once continuously di¤erentiable in t relative to
the strong topology of L(B); furthermore, such a strong smoothness property
does not readily follow from our hypotheses regarding the B(t)�s unless we as-
sume more regularity properties on the perturbations (see, for instance, [23] for
results in this direction). In short, it is thus far the general framework of [35]
that has allowed us to prove the above theorem and to deal with all the exam-
ples we have in mind in a relatively simple and direct way . Of course, whether
one can prove a Trotter-Kato formula such as (32) under the sole conditions of
[30], [33], or under even more general conditions, remains an interesting open
problem at this time.
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(2) It is clear that the condition 0 2 �(A(t)) \ �(B(t)) stemming from Hy-
potheses (A1), (B4) is imposed only for convenience, as the conclusions of our
theorem still hold without this restriction; in particular, (32) remains unaltered
by the addition of constants to A(t) or B(t). It is also clear that if both A(t)
and B(t) are independent of t, formula (32) reduces to the form (1). However,
in the time-dependent case we ought to point out that the �rst factor on the
right-hand side of (32) only involves the contraction semigroup exp [�sA(t)]s�0
and not the full evolution system UA(t; s)0�s�t�T . Then, by choosing B = 0 in
(32) we obtain

UA(t; s) = lim
n!+1

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��
; (33)

which provides the new and simple way of reconstructing the UA(t; s)�s from
the exp [�sA(t)]�s we alluded to above. In Section 4 we shall also consider
two examples for which we can prove (33) more directly by means of Euler�s
summation formula.
(3) While (32) and (33) hold in the strong topology of L(B), an issue of

independent interest is whether there might exist simple and natural condi-
tions which would imply the convergence of these approximations in the norm-
topology of that space. We refer the reader to [5], [18], [26] and [39] for some
results and discussions in this direction in a di¤erent context.
(4) Whereas the above conditions are su¢ cient to ensure the validity of the

theorem, they are certainly not optimal since we did not strive for maximal
generality. In particular, they are not all necessary when applied to parabolic
problems that exhibit a variational structure; this is easy to understand in light
of the theory developed in [35] since, in that case, proofs can as a rule be
obtained under a weaker set of hypotheses. Typical hypotheses of this kind are,
for instance, (4)-(6) and (18)-(20) in the case of (9) and (17), respectively. In
particular, it would be highly desirable to get a proof of (32) under hypotheses of
that kind, which, in e¤ect, raises the more general question of proving product
formulae by means of the theory of time-dependent quadratic forms. To the
best of our knowledge this is an open problem, whereas the time-independent
case was settled in [21], of which a special case can be found in [10]. We shall
come back to this point in Section 4.
(5) Our theorem o¤ers an alternative approach to Kato�s theory of non-

autonomous parabolic evolution equations which was developed many years ago
in [20]. Since that time this theory has been successfully applied to numer-
ous speci�c problems particularly when the domains of the operators involved
are time-independent (see, for instance, [19], [20], [29], [35] and the references
therein). However, when those domains become time-dependent Kato�s theory
imposes rather strong invariance conditions which are as a rule very di¢ cult to
check in practice, particularly in concrete examples of partial di¤erential equa-
tions with time-varying boundary conditions such as (10). This remark applies,
for instance, to the veri�cation of the �rst product formula in [28], which, inci-
dentally, does bear some formal resemblance with (33). By contrast, our result

12



does not require any such invariance conditions and thereby allows us to treat
a wide class of such models as we shall see below. Finally, we also would like
to mention [16] and its numerous references for a systematic account of certain
recent probabilistic developments of Kato�s theory in the non-autonomous case,
including the analysis of the related Feynman-Kac propagators.

We devote the next section of this article to the proof of the above theorem.

3 Proof of the Main Result

Our preliminary remark is the following lemma, whose proof is immediate by
induction and therefore omitted.

Lemma 1. For every n 2 N+\ [3;+1) let (U)2f1;:::;ng and (V)2f1;:::;ng
be two families of operators in L(B); then the identity

1Y
=n

U �
1Y

=n

V =

2Y
�=n

U� � (U1 � V1)

+
n�1X
=2

+1Y
�=n

U� � (U � V)�
1Y

�=�1
V� + (Un � Vn)�

1Y
�=n�1

V� (34)

holds. Furthermore, for every n 2 N+ and any U; V 2 L(B) we have

Un � V n =
nX
=1

Un�(U � V )V �1: (35)

In what follows we write I for the identity operator on B and recall that
C(t) = A(t) + B(t). The stability of the basic properties of the A(t)�s relative
to the perturbation by the B(t)�s is stated in the following result.

Lemma 2. (a) Assume that Hypotheses (A1) and (B1) hold. Then for any
t 2 [0; T ] the operator �C(t) is the in�nitesimal generator of a holomorphic
semigroup on B. Moreover, for every such t the operator C(t) is invertible and
we have C�1(t) 2 L(B).
(b) Assume that Hypotheses (A1), (A2), (B1) and (B2) hold. Then the

function t 7! C�1(t) is continuously di¤erentiable with respect to the norm-
topology of L(B) and there exist constants c2 2 R+� , ~c2 2 (0; 1] such that the
Hölder continuity estimatedC�1(t)dt

� dC�1(s)

ds


1
� c2 jt� sj~c2

is valid for every s; t 2 [0; T ].
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(c) Assume that Hypotheses (A1), (A3), (B1) and (B3) hold. Then there
exist constants c3 2 R+� , ~c3 2 (0; 1] such that the inequality @@tR(C(t); �)


1
� c3 j�j�~c3 (36)

holds for every t 2 [0; T ] and each � 2 S�� f0g.

Proof. In order to prove (a), it is su¢ cient to show that S� � �(C(t)) and
that

kR(C(t); �)k1 � ~c�(1 + j�j)�1 (37)

for every t 2 [0; T ] and each � 2 S� for some ~c� 2 R+� independent of t and �,
where S� is given by (24). Let � 2 S� and let us choose v = R(A(t); �)w in (26)
where w 2 B� f0g is arbitrary; then, by virtue of (23) and the choice of a; b in
Hypothesis (B1) we have

kB(t)R(A(t); �)wk � (a+ bc�) kwk < kwk ; (38)

so that (I+B(t)R(A(t); �))�1 2 L(B). Therefore we get

R(C(t); �) = R(A(t); �)(I+B(t)R(A(t); �))�1

= R(A(t); �)
+1X
m=0

(�1)m (B(t)R(A(t); �))m 2 L(B); (39)

which implies (37) as a consequence of (23) and (38).
In order to prove (b), we �rst remark that (39) implies

C�1(t) = A�1(t)D(t) (40)

when � = 0, where we have de�ned

D(t) := (I+B(t)A�1(t))�1 =
+1X
m=0

(�1)m
�
B(t)A�1(t)

�m
for every t 2 [0; T ]. According to Hypothesis (A2) and (40), it is then su¢ cient
to prove that the function t 7! D(t) is continuously di¤erentiable with respect
to the norm-topology of L(B) on [0; T ] and that its derivative t 7! dD(t)

dt is
Hölder continuous there; but this follows from Hypothesis (B2) and standard
arguments based on the decomposition formulae (34) and (35).
The starting point for the proof of (c) is (39), which we rewrite as

R(C(t); �) = R(A(t); �)D(t; �)

by analogy with (40), where we have de�ned

D(t; �) := (I+B(t)R(A(t); �))�1 =
+1X
m=0

(�1)m (B(t)R(A(t); �))m :
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On the one hand, it follows from the preceding expression and (38) that the
function t 7! D(t; �) is bounded in the norm-topology of L(B) on [0; T ] uniformly
in � 2 S�. On the other hand, it also follows from standard arguments that
the function t 7! D(t; �) is continuously di¤erentiable with respect to the norm-
topology of L(B) on [0; T ], and that the representation

@D(t; �)

@t

=
+1X
m=1

(�1)m
m�1X
k=0

(B(t)R(A(t); �))
k @(B(t)R(A(t); �))

@t
(B(t)R(A(t); �))

m�k�1

holds as a convergent series in the Banach space of all continuous mappings
from [0; T ] into L(B) endowed with the uniform topology. From this, (38) and
Hypothesis (B3) we then infer that the estimate

sup
t2[0;T ]

@D(t; �)@t


1
�
 
+1X
m=1

m�m�1

!@(B(t)R(A(t); �))@t


1
� c < +1

is valid uniformly in � 2 S�. Consequently, since we have

@

@t
R(C(t); �) = R(A(t); �)

@D(t; �)

@t
+
@

@t
R(A(t); �)� D(t; �)

we evidently get  @@tR(C(t); �)

1

� c

�
kR(A(t); �)k1 +

 @@tR(A(t); �)

1

�
� c

�
c� (1 + j�j)�1 + a3 j�j�~a3

�
� c3 j�j�~a3

for some c3 2 R+� for every � 2 S�� f0g, by virtue of (23), (25) and the fact
that ~a3 2 (0; 1]; we may thus choose ~c3 = ~a3. �

Lemma 2 along with Tanabe�s theory developed in [35] then imply the fol-
lowing result.

Proposition 1. Assume that Hypotheses (A1)-(A3) and (B1)-(B3) hold.
Then, there exists an evolution system UA+B(t; s)0�s�t�T for Problem (21) such
that Statement (1) of the theorem holds for every s; t with 0 � s < t � T .

The remaining results are, therefore, preparatory statements which will lead
to our proof of the product formula. From now on we may assume that t 2
(s; T ) since Statement (2) of the theorem trivially holds for t = s, and begin
with the following uniformity result which is the consequence of an elementary
compactness argument.
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Lemma 3. Let (R(h; r))(h;r)2(0;T�t]�(s;t] � L(B) be a family of operators
satisfying

sup
(h;r)2(0;T�t]�(s;t]

kR(h; r)k1 < +1: (41)

Furthermore let K � B be compact, let I be any subinterval of (s; t] and assume
that the limit

lim
h!0

R(h; r)v = 0 (42)

exists for every v 2 K in the strong topology of B uniformly in r 2 I. Then,
(42) holds uniformly in v 2 K.

Proof. On the one hand, if the preceding conclusion does not hold there
exist � 2 R+� along with a sequence (hn) � (0; T � t] satisfying hn < 1

n , together
with sequences (rn) � I, (vn) � K, such that the inequality

kR(hn; rn)vnk > � (43)

holds true for every n 2 N+. On the other hand, because of the compactness of
K we may assume that vn ! v� 2 K in the strong topology of B when n! +1,
so that by virtue of (41) and (42) the estimate

kR(hn; rn)vnk
� kR(hn; rn)(vn � v�)k+ kR(hn; rn)v�k
� c kvn � v�k+ kR(hn; rn)v�k � �

is valid for every n � N(�; v�) for some N(�; v�) 2 N+, thereby contradicting
(43). �

We now introduce three families of linear operators on B whose proper-
ties will be crucial in our proof of Statement (2) below; indeed we de�ne
E(h; r); F (h; r), G(h; r) by

E(h; r) = h�1 (I� exp [�hA(r)])�A(r);
F (h; r) = h�1 exp [�hA(r)] (I� exp [�hB(r)])�B(r);
G(h; r) = h�1 (I�UA+B(r + h; r))� C(r) (44)

for every (h; r) 2 (0; T � t] � (s; t], respectively. From these relations and the
de�nition of the generator C(r) we then obtain

E(h; r) + F (h; r)�G(h; r)
= h�1 (UA+B(r + h; r)� exp [�hA(r)] exp [�hB(r)]): (45)

The following result unveils the behavior of these operators when h ! 0, and
part of its proof is a consequence of a repeated application of Lemma 3.
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Lemma 4. Assume that the same hypotheses as in Proposition 1 hold; more-
over, assume that Hypotheses (A4) and (D) hold, along with the C0-continuity
and the contractive property of Hypothesis (B4). Then we have

lim
h!0

sup
r2(s;t]

kE(h; r)UA+B(r; s)wk

= lim
h!0

sup
r2(s;t]

kF (h; r)UA+B(r; s)wk

= lim
h!0

sup
r2(s;t]

kG(h; r)UA+B(r; s)wk = 0 (46)

for every t 2 (0; T ) and each w 2 D.
Proof. In order to prove the �rst two relations in (46), it is su¢ cient to

show that the two limits

lim
h!0

sup
r2[s+�;t]

kE(h; r)UA+B(r; s)wk

= lim
h!0

sup
r2[s+�;t]

kF (h; r)UA+B(r; s)wk = 0 (47)

hold uniformly in � 2 (0; t� s), respectively. From the de�nition of E(h; r) and
a general property of C0-semigroups we may write

E(h; r)UA+B(r; s)w = h�1
Z h

0

dk (exp [�kA(r)]� I)A(r)UA+B(r; s)w

since UA+B(r; s)w 2 D(A(r)) for every r 2 [s+ �; t] and each w 2 D as a
consequence of (31). Therefore we obtain the inequality

kE(h; r)UA+B(r; s)wk � sup
k2[0;h]

k(exp [�kA(r)]� I)A(r)UA+B(r; s)wk ;

so that in order to get the �rst relation in (47) it is su¢ cient to have

lim
h!0

sup
r2[s+�;t]

k(exp [�hA(r)]� I)A(r)UA+B(r; s)wk = 0 (48)

for every w 2 D uniformly in �. To this end let us de�ne R(h; r) and K� by

R(h; r) = exp [�hA(r)]� I (49)

and
K�= fv 2 B : v = A(r)UA+B(r; s)w; r 2 [s+ �; t]g

respectively; since the semigroup in (49) is contractive, it is clear that R(h; r)
satis�es (41). Furthermore we also have

lim
h!0

sup
r2[s+�;t]

R(h; r)v = 0 (50)
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for every v 2 B uniformly in �; in fact, from (28), (49) and for every v 2 D we
obtain the estimate

kR(h; r)vk �
Z h

0

dk kexp [�kA(r)]A(r)vk � h sup
r2(0;T ]

kA(r)vk ! 0

as h ! 0 uniformly in r and �, which then leads to (50) since D � B is dense.
Finally, in order to prove the compactness of K� it is su¢ cient to prove the
continuity of the mapping r 7! A(r)UA+B(r; s)w in the strong topology of B
for r 2 [s+ �; t]; but this is an immediate consequence of Hypothesis (B2), (40)
and Statement (1) of the theorem since we have

A(r)UA+B(r; s)w

=
�
I�B(r)A�1(r)D(r)

�
(A(r) +B(r))UA+B(r; s)w:

Therefore, (48) indeed emerges as a consequence of Lemma 3.
We now proceed in much the same way to prove the second relation in (47).

We start with the integral representation

F (h; r)UA+B(r; s)w

= h�1
Z h

0

dk (exp [�hA(r)] exp [�kB(r)]� I)B(r)UA+B(r; s)w

valid for every w 2 D, which leads to the inequality

kF (h; r)UA+B(r; s)wk
� sup

k2[0;h]
k(exp [�hA(r)] exp [�kB(r)]� I)B(r)UA+B(r; s)wk : (51)

This time we de�ne R(h; r) and K� by

R(h; r) = exp [�hA(r)] exp [�kB(r)]� I (52)

and
K�= fv 2 B : v = B(r)UA+B(r; s)w; r 2 [s+ �; t]g

respectively; from the contractive properties of the semigroups involved it follows
again that (52) satis�es (41), while the relation

lim
h!0

sup
r2[s+�;t]

R(h; r)v = 0 (53)

is in this case a consequence of the identity

R(h; r) = exp [�hA(r)] (exp [�kB(r)]� I)+ exp [�hA(r)]� I:

In fact, by using the same kind of integral representation as above along with
(29) we obtain

kexp [�hA(r)] (exp [�kB(r)]� I)vk

�
Z k

0

dl kexp [�lB(r)]B(r)vk � h sup
r2(0;T ]

kB(r)vk ! 0 (54)
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as h! 0 uniformly in r and � for every v 2 D and hence for every v 2 B, while
from the �rst part of the proof we get

sup
r2[s+�;t]

k(exp [�hA(r)]� I) vk ! 0 (55)

as h ! 0 for every v 2 B, both (54) and (55) implying (53) for every such v.
Finally, for the same reasons as above K� is compact, so that from Lemma 3
we infer that the relation

lim
h!0

sup
r2[s+�;t]

k(exp [�hA(r)] exp [�kB(r)]� I)B(r)UA+B(r; s)wk = 0

holds for every w 2 D uniformly in �; together with (51) this implies the desired
result.
The proof of the third relation in (46) follows a slightly di¤erent line, the

starting point being the identity

G(h; r)UA+B(r; s)w

= h�1
Z r+h

r

dk (C(k)UA+B(k; s)w � C(r)UA+B(r; s)w) (56)

which is a simple consequence of Statement (1) of the theorem and of the third
relation in (44). Since that statement also implies the uniform continuity of the
function k ! C(k)UA+B(k; s)w � C(r)UA+B(r; s)w with respect to the strong
topology of B on the compact interval [r; r + h], we may conclude that for every
� 2 R+� there exists an h� 2 R+� such that the inequalities 0 � k � r � h � h�
together with (56) lead to the estimate

kG(h; r)UA+B(r; s)wk � �

uniformly in r 2 (s; t], which is the desired result. �

Finally, we will still need the following continuity result.

Lemma 5. Assume that Hypotheses (A1), (A2), (A4), (B4) and (D) hold.
Then, the functions

r 7! exp [�(r � s)A(r)] (57)

and
r 7! exp [�(r � s)B(r)] (58)

are continuous on the interval [s; t] in the strong topology of L(B).

Proof. The proof of (57) follows from the standard arguments of [35]. As
for (58) we �rst prove the right-continuity at r = s; for this we start by noticing
that the analyticity part of Hypothesis (B4) allows us to write

exp [�(r � s)B(r)] v = 1

2�i

Z
�r;s

d�e�(r�s)�R(B(r); �)v (59)
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for every v 2 B and each r 2 (s; t], where �r;s := �1;r;s [ �2;r;s [ �3;r;s is the
union of the three paths

�1;r;s =

�
�e�i�

�
:

1

r � s � � < +1
�
;

�2;r;s =

�
1

r � se
i� : �� � � � 2� � ��

�
and

�3;r;s =

�
�ei�

�
:

1

r � s � � < +1
�
:

The orientation we choose for �r;s is that of increasing values of Im�. From the
residue theorem and the chosen orientation of �r;s we then easily obtain

1

2�i

Z
�r;s

d�e�(r�s)���1 = �1;

so that we may write

exp [�(r � s)B(r)] v � v

=
1

2�i

Z
�r;s

d�e�(r�s)�
�
R(B(r); �) + ��1

�
v

=
1

2�i

Z
�r;s

d�e�(r�s)���1R(B(r); �)B(r)v

=
1

2�i

Z
�0

d�e����1R

�
B(r);

�

r � s

�
B(r)v (60)

for every v 2 D, the dense set of Hypothesis (D), where the new integration
path �0 := (r � s)�r;s in (60) is independent of r and s. Therefore, owing to
(29) and (30) we obtain

kexp [�(r � s)B(r)] v � vk

� c sup
r2(0;T ]

kB(r)vk (r � s)
Z
�0

jd�j
��e���� j�j�2 ! 0

as r & s; since D is dense and the semigroup exp [�sB(t)]s�0 contractive, the
desired right-continuity at r = s follows.
As for the proof of the continuity away from the left endpoint, we �nd it

more convenient to choose the integration path � := �1[�2 in (59) rather than
the path �r;s, where

�1 =
n
�e�i�

�
: 0 � � < +1

o
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and
�2 =

n
�ei�

�
: 0 � � < +1

o
;

the orientation being the same as before. Let us �x r 2 (s; t), let (rn)n2N+ be
any sequence such that rn > r with rn ! r as n! +1 and write

exp [�(r � s)B(r)] v � exp [�(rn � s)B(rn)] v

=
1

2�i

Z
�

d�e�(r�s)� (R(B(r); �)�R(B(rn); �)) v

+
1

2�i

Z
�

d�e�(r�s)�
�
1� e�(rn�r)�

�
R(B(rn); �)v: (61)

From the continuity part of Hypothesis (B4) we have

lim
n!+1

sup
�2S��

k(R(B(r); �)�R(B(rn); �)) vk = 0;

which indeed implies that

lim
n!+1

Z
�

d�e�(r�s)� (R(B(r); �)�R(B(rn); �)) v = 0 (62)

strongly in B for every v sinceZ
�

jd�j
���e�(r�s)���� < +1:

Furthermore, the norm of the integrand in the second term on the right-hand
side of (61) goes to zero as n ! +1 for every � 2 �. Moreover, owing to (30)
and to our choice of the rn�s we can estimate that norm ase�(r�s)� �1� e�(rn�r)��R(B(rn); �)v

� c

��e�(r�s)���
1 + j�j kvk

uniformly in n, so that we eventually get

lim
n!+1

Z
�

d�e�(r�s)�
�
1� e�(rn�r)�

�
R(B(rn); �)v = 0 (63)

strongly in B for every v by dominated convergence sinceZ
�

jd�j
��e�(r�s)���
1 + j�j < +1:
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A similar argument holds for r 2 (s; t] if (rn)n2N+ is any sequence such that
rn < r with rn ! r as n ! +1. This, together with (61)-(63) proves the
desired continuity away from r = s.
Evidently, if the B�s are independent of r the C0-continuity of exp [�sB]s�0

alone gives the result. �

We are now ready for the following.

Proof of the theorem. By virtue of Proposition 1 it remains to prove
Statement (2). For every n 2 N+ su¢ ciently large we set h = t�s

n and de�ne
the sequence of products (Pn(t; s)) � L(B) by

Pn(t; s) = UA+B(t; s)�
1Y

=n

exp [�hA (s+ ( � 1)h)] exp [�hB (s+ ( � 1)h)] :

Since both exp [�sA(t)]s�0 and exp [�sB(t)]s�0 are semigroups of contractions
for every t 2 [0; T ] the sequence (Pn(t; s)) is bounded in L(B), so that in order to
prove the product formula it is su¢ cient to show that Pn(t; s)v ! 0 as n! +1
in the strong topology of B for every v 2 D, the dense set of Hypothesis (D).
To this end we choose the two families (U)2f1;:::;ng, (V)2f1;:::;ng of Lemma
1 as

U = UA+B(s+ h; s+ ( � 1)h);
V = exp [�hA (s+ ( � 1)h)] exp [�hB (s+ ( � 1)h)] ;

respectively; owing to the basic composition law of the UA+B(t; s)�s and by
virtue of Lemma 1 we then have after some rearrangements

Pn(t; s) = �
n�1X
=1

+1Y
�=n

V� � (V � U)UA+B(s+ ( � 1)h; s)

+(Un � Vn)UA+B(s+ (n� 1)h; s):

Therefore, for every v 2 D and by using again the estimate
+1Y
�=n

V�


1

� 1

we obtain the inequalities

kPn(t; s)vk �
nX
=1

k(U � V)UA+B(s+ ( � 1)h; s)vk

� n sup
r2[s;s+(n�1)h]

kUA+B(r + h; s)v � exp [�hA(r)] exp [�hB(r)]UA+B(r; s)vk

� n sup
r2[s;t]

kUA+B(r + h; s)v � exp [�hA(r)] exp [�hB(r)]UA+B(r; s)vk (64)
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after a simple change of summation variable, where we may now write r =
s + �nh for � 2 [0; 1]. Furthermore, expressing h in (64) as a function of r by
means of this last relation and by using Lemma 5, we see that the function

r 7! UA+B

�
r +

r � s
�n

; s

�
� exp

�
�r � s

�n
A(r)

�
exp

�
�r � s

�n
B(r)

�
UA+B(r; s)

is continuous on the interval [s; t] in the strong topology of L(B) since the
evolution system UA+B(t; s)0�s�t�T also enjoys this property. Consequently,
this allows us to replace the interval [s; t] by (s; t] in (64), so that we �nally
obtain

kPn(t; s)vk

� c sup
r2(s;t]

�E �r � s�n
; r

�
+ F

�
r � s
�n

; r

�
�G

�
r � s
�n

; r

��
UA+B(r; s)v

! 0

for every v 2 D when n! +1, as a consequence of (45) and Lemma 4. �

We devote the next section to the discussion of some examples illustrating
the statements of our main theorem.

4 Some Simple Examples

While it is clear that our theorem has a wide range of potential applications,
we shall restrict ourselves here to the simplest situations. We �rst consider
a particular case of (10), namely, the class of parabolic initial-value problems
given by

@u(x; t)

@t
= div(k(x; t)ru(x; t))� ({ + "m(x; t))u(x; t); (x; t) 2 D � (0; T ] ;

u(x; 0) = u0(x); x 2 D;
@u(x; t)

@n(k)
= 0; (x; t) 2 @D � (0; T ] : (65)

In this case (13) reduces to

b"(t; v; w) = "

Z
D

dxm(x; t)v(x)w(x)

and thus extends to a Hermitian sesquilinear form on B =L2(D;C), so that the
associated multiplication operator B"(t) := "B(t) is bounded and self-adjoint
there. In order for (65) to �t the theory of the preceding section, however, we
need to impose stronger conditions on the coe¢ cients than (K) and (M) do.
The following smoothness requirements are su¢ cient for this purpose.

(K0) We have k : D � [0; T ] 7! Rd2 and for every i; j 2 f1; :::; dg the func-
tions (x; t) 7! ki;j(x; t) = kj;i(x; t) are continuously di¤erentiable on D� [0; T ];
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moreover, the ellipticity condition (3) holds and there exist constants c0� 2 R+� ,
�0 2 (0; 1] such that the Hölder continuity estimate

max
i;j2f1;:::;dg

����@ki;j(x; t)@t
� @ki;j(x; s)

@s

���� � c0� jt� sj
�0 (66)

is valid for every x 2 D and every s; t 2 [0; T ].

(M0) We have m 2 L1(D � [0; T ] ;R+) and t 7! m(x; t) is continuously dif-
ferentiable on [0; T ] uniformly in x 2 D with @m

@t 2 L
1(D� [0; T ] ;R); moreover,

the Hölder continuity estimate����@m(x; t)@t
� @m(x; s)

@s

���� � c0� jt� sj
�0

holds for every x 2 D and every s; t 2 [0; T ].

We then have the following result.

Proposition 2. Assume that Hypotheses (K 0) and (M 0) hold ; then, all the
conclusions of the theorem are valid for the evolution system given by (17). In
particular, for all s; t with 0 � s � t < T and every " 2 R+ su¢ ciently small
we have

UA+B"(t; s) (67)

= lim
n!+1

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��
exp

�
� t� s

n
B"

�
s+



n
(t� s)

��
in the strong topology of L(L2(D;C)), where exp [�sA(t)]s�0 and exp [�sB"(t)]s�0
are the semigroups generated by (7) and �B"(t), respectively. Thus, the recon-
struction formula (33) also holds in this case.

The proof of Proposition 2 rests on several lemmas and remarks. Without
restricting the generality, we �rst choose { � k in (65). Then, the opera-
tor given by (7) satis�es Hypotheses (A1), (A4) as an immediate consequence
of standard Lax-Milgram arguments and elliptic regularity theory; moreover,
Hypothesis (B1) trivially holds for " su¢ ciently small since B"(t) is bounded.
The veri�cation of the remaining hypotheses requires more work; we settle the
question regarding (A2) with the following result.

Lemma 6. Assume that Hypothesis (K 0) holds; then, the function t 7!
A�1(t)f is strongly di¤erentiable in L2(D;C) for every f ; moreover, we have
d
dtA

�1(t)f 2 H1(D;C) and there exists a constant a2 2 R+� such that the Hölder
continuity estimate ddtA�1(t)f � d

ds
A�1(s)f


1;2

� a2 jt� sj�
0
kfk2 (68)
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holds for all s; t 2 [0; T ] and every f 2 L2(D;C), with �0the Hölder exponent
in (66).

Proof. Let us write u(s) := A�1(s)f with u(s) 2 D(A(s)); from (8) we then
have

a(s; u(s); w) + {(u(s); w)2 = (f; w)2 (69)

and
a(t; u(t); w) + {(u(t); w)2 = (f; w)2 (70)

for all s; t 2 [0; T ] and every w 2 H1(D;C), so that by subtracting (69) from
(70) we obtain

a(t; u(t)� u(s); w)
+{ (u(t)� u(s); w)2

= a(s; u(s); w)� a(t; u(s); w): (71)

Next, for every t 2 [0; T ] we introduce the shorthand notation

(v; w)1;2;t := a(t; v; w) + {(v; w)2 (72)

and observe that these new sesquilinear forms de�ned on H1(D;C)�H1(D;C)
induce norms k:k1;2;t equivalent to k:k1;2 on H1(D;C) by virtue of the bound-
edness of the ki;j�s and (3), the equivalence constants being independent of t.
Then, �x t and set h = s� t in (71); owing to (4) and (72) this gives�

u(t+ h)� u(t)
h

;w

�
1;2;t

= �
dX

i;j=1

Z
D

dx
ki;j(x; t+ h)� ki;j(x; t)

h
uxi(x; t+ h)wxj (x); (73)

from which equality we now want to prove that

lim
h!0

�
u(t+ h)� u(t)

h
;w

�
1;2;t

= �
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t)wxj (x): (74)

Subtracting the right-hand side of (74) from (73) we have������
�
u(t+ h)� u(t)

h
;w

�
1;2;t

+
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t)wxj (x)

������
�

dX
i;j=1

Z
D

dx

����ki;j(x; t+ h)� ki;j(x; t)h
� @ki;j(x; t)

@t

���� juxi(x; t)j ��wxj (x)��
+

dX
i;j=1

Z
D

dx

����ki;j(x; t+ h)� ki;j(x; t)h

���� juxi(x; t+ h)� uxi(x; t)j ��wxj (x)��
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and proceed by showing that these two terms each go to zero when h! 0. For
the �rst one this follows from Hypothesis (K0) and dominated convergence since
the estimate ����ki;j(x; t+ h)� ki;j(x; t)h

� @ki;j(x; t)

@t

���� juxi(x; t)j ��wxj (x)��
� c juxi(x; t)j

��wxj (x)��
holds uniformly in h as a consequence of the boundedness of @ki;j(x;t)@t and the
uniform Lipschitz continuity of t 7! ki;j(x; t). For the second one we have

dX
i;j=1

Z
D

dx

����ki;j(x; t+ h)� ki;j(x; t)h

���� juxi(x; t+ h)� uxi(x; t)j ��wxj (x)��
� c ku(t+ h)� u(t)k1;2;t kwk1;2;t ;

so that it remains to prove the relation

lim
h!0

ku(t+ h)� u(t)k1;2;t = 0. (75)

But going back to (73) we have���(u(t+ h)� u(t); w)1;2;t���
� c jhj

A�1(t+ h)f
1;2;t

kwk1;2;t � c jhj kfk2 kwk1;2;t

from which (75) follows immediately, thereby completing the proof of (74).
Therefore, there exists du(t)

dt 2 H1(D;C) such that�
du(t)

dt
; w

�
1;2;t

= �
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t)wxj (x)

for every t 2 [0; T ] and every w 2 H1(D;C), which implies that

lim
h!0

u(t+ h)� u(t)
h

=
du(t)

dt

strongly in L2(D;C) by virtue of the compact embeddingH1(D;C) ,!L2(D;C).
Hence, the function t 7! A�1(t)f is indeed strongly di¤erentiable in L2(D;C)
with d

dtA
�1(t)f 2 H1(D;C) for every f ; furthermore, we have�

du(t)

dt
� du(s)

ds
; w

�
1;2;t

= �
dX

i;j=1

Z
D

dx

�
@ki;j(x; t)

@t
� @ki;j(x; s)

@s

�
uxi(x; t)wxj (x)

�
dX

i;j=1

Z
D

dx
@ki;j(x; s)

@s
(uxi(x; t)� uxi(x; s))wxj (x);
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which, together with (66) and arguments similar to those we just used, leads to
the estimate �����

�
du(t)

dt
� du(s)

ds
; w

�
1;2;t

�����
� c jt� sj�

0
kfk2 kwk1;2;t

and thereby to (68). �

It is plain that the preceding construction implies the existence of a linear
bounded operator dA�1(t)

dt : L2(D;C) 7!H1(D;C) satisfying du(t)
dt = dA�1(t)

dt f ,
so that the validity of Hypothesis (A2) indeed emerges as a direct consequence
of Lemma 6.

We now turn to Hypothesis (A3), whose veri�cation rests on the following
result.

Lemma 7. Assume that Hypothesis (K 0) holds; then, the function t 7!
R(A(t); �)f is strongly di¤erentiable in L2(D;C) for every f ; moreover, we
have @

@tR(A(t); �)f 2 H
1(D;C) and there exists a constant a3 2 R+� such that

the estimate  @@tR(A(t); �)f

1;2

� a3 j�j�
1
2 kfk2 (76)

holds for every t 2 [0; T ], every f 2 L2(D;C) and every � 2 S�� f0g.

Proof. Let us �x � 2 �(A(t)); it is easy to prove the strong di¤erentiability
of t 7! R(A(t); �)f by relating R(A(t); �)f to A�1(t)f by means of the resolvent
identity; we obtain

@

@t
R(A(t); �)f = (I+ �R(A(t); �))

dA�1(t)

dt
(I+ �R(A(t); �)) f (77)

for every t 2 [0; T ] and every f 2 L2(D;C). Furthermore, (77) and the de�nition
of dA�1(t)

dt give @
@tR(A(t); �)f 2 H1(D;C). Let us now �x � 2

�
0; �2

�
and

� 2 S�� f0g in order to prove (76). For this we rely again on the variational
structure of the problem; writing u(t; �) := R(A(t); �)f with u(t; �) 2 D(A(t))
and arguing exactly as in the proof of Lemma 6 we eventually get the relation

a

�
t;
@u(t; �)

@t
; w

�
+ {

�
@u(t; �)

@t
; w

�
2

� �
�
@u(t; �)

@t
; w

�
2

= �
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)wxj (x)
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valid for every t 2 [0; T ] and every w 2 H1(D;C), which reduces to

a

�
t;
@u(t; �)

@t
;
@u(t; �)

@t

�
+ {

@u(t; �)@t

2
2

� �
@u(t; �)@t

2
2

= �
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)

�
@�u(x; t; �)

@t

�
xj

(78)

by choosing w = @u(t;�)
@t . We �rst prove (76) for arg � � � with Re� > 0,

Im� > 0; for this we take the real and imaginary parts of (78) to obtain

Re�

@u(t; �)@t

2
2

= a

�
t;
@u(t; �)

@t
;
@u(t; �)

@t

�
+ {

@u(t; �)@t

2
2

+Re
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)

�
@�u(x; t; �)

@t

�
xj

(79)

and

Im�

@u(t; �)@t

2
2

= Im

dX
i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)

�
@�u(x; t; �)

@t

�
xj

; (80)

respectively. From (79), (80), the fact that the form a+{ is coercive onH1(D;C)
and from the boundedness of the @ki;j

@t �s we then get

k

@u(t; �)@t

2
1;2

� 1

tan �
Im

dX
i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)

�
@�u(x; t; �)

@t

�
xj

�Re
dX

i;j=1

Z
D

dx
@ki;j(x; t)

@t
uxi(x; t; �)

�
@�u(x; t; �)

@t

�
xj

� c ku(t; �)k1;2
@u(t; �)@t


1;2

;

that is,  @@tR(A(t); �)f

1;2

� c kR(A(t); �)fk1;2 (81)

for every t 2 [0; T ] and every f 2 L2(D;C). But from standard estimates for
the resolvent of time-dependent sectorial operators (see, for instance, [35]) we
have in this case

kR(A(t); �)fk1;2 � c j�j�
1
2 kfk2 (82)

so that (76) indeed follows from (81) and (82). The proof of (76) when arg � �
�� with Re� > 0, Im� < 0, or when Re� � 0 with � 6= 0, follows from similar
arguments and is thereby omitted. �
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It remains to verify Hypotheses (B2)-(B4) and (D). As far as (B2) and (B3)
are concerned, it is su¢ cient to prove that the function t 7! B(t) is continu-
ously di¤erentiable with respect to the norm-topology of L(L2(D;C)) and that
its derivative dB(t)

dt is Hölder continuous there, for then the result follows from
Lemma 6 and (77), respectively; but these required properties of B(t) are im-
mediate consequences of Hypothesis (M0).

As for Hypothesis (B4), the semigroup generated by �B(t) is the multipli-
cation operator

exp [�sB(t)] f = exp [�sm(:; t)] f
on L2(D;C) and is clearly holomorphic and contractive since B(t) is self-adjoint
and m(:; t) � 0 for every t 2 [0; T ]; consequently, the only point that requires
attention is the continuity of t 7! R(B(t); �), although we can easily establish
the continuity of (58) directly in this case since the B(t)�s are bounded. However,
we wish to present an independent argument which easily carries over to the
case of certain unbounded B(t)�s. For this we assume without restricting the
generality that m := inf(x;t)2D�[0;T ]m(x; t) > 0.

Lemma 8. The mapping t 7! R(B(t); �) is Lipschitz continuous on [0; T ]
in the norm-topology of L(B) uniformly in � 2 S�� for every �� 2

�
�
4 ;

�
2

�
.

Proof. Let us write Ranm for the range of m; if � 2 C�Ranm then from
the relation

R(B(t); �)f(x) =
f(x)

m(x; t)� �
and the fact that t 7! m(x; t) is Lipschitz continuous uniformly in x as a conse-
quence of Hypothesis (M0) we readily obtain

kR(B(t); �)f �R(B(s); �)fk2 � c
jt� sj
d2m;�

kfk2 (83)

for every f 2 L2(D;C) and every s; t 2 [0; T ], where

dm;� := inf
(x;t)2D�[0;T ]

jm(x; t)� �j > 0

is the distance between � and Ranm. In order to get the desired uniformity in
(83), it is thus su¢ cient to prove that

dm := inf
�2S��

dm;� > 0. (84)

Let us �x �� 2
�
�
4 ;

�
2

�
; we �rst prove (84) for arg � � �� with Re� > 0, Im� > 0.

On the one hand, if Re� 2 (0;m) we have

d2m;� � (Im�)
2
+ (m� Re�)2

� (Re�)
2
tan2 �� +m2 � 2mRe�

� (Re�)
2 �
tan2 �� � �

�
+m2

�
1� ��1

�
29



for every � 2 R+� by using Cauchy�s interpolated inequality, so that by choosing
� = tan2 �� we obtain

d2m;� � m2
�
1� tan�2 ��

�
> 0

thanks to our choice of ��. On the other hand, if Re� 2 [m;+1) we get

dm;� � Im� � Re� tan �� � m tan �� > 0:

The remaining cases when arg � � ��� with Re� > 0, Im� < 0, or when
Re� � 0 can be dealt with in a similar way, thereby proving (84). �

Finally, Hypothesis (D) is a straightforward consequence of (K0), (M0) and
Gauss�divergence theorem if we choose, for instance, D = C20(D;C), the space
of all complex-valued, twice continuously di¤erentiable functions with compact
support in D.

Remarks. (1) The statement of Proposition 2 is, therefore, a direct con-
sequence of the above considerations and our main theorem since (K0) obvi-
ously implies (K) while (M0) implies (M). Indeed, by uniqueness, the evolution
systems UA(t; s)0�s�t�T and UA+B"(t; s)0�s�t�T of Proposition 2 are then ex-
actly the same as those de�ned by (9) and (17), respectively. But the natural
question that is now emerging is whether the product formula (67) might hold
under (K) and (M) alone; this is not immediate for Hypothesis (D) is not nec-
essarily veri�ed under these two conditions and, furthermore, some aspects of
our proof of (32) are not completely independent of the existence proof for
UA+B(t; s)0�s�t�T . In fact, a rigorous proof of (67) under the sole set of con-
ditions (K) and (M) is lacking at the moment, though we conjecture that this
result is true. In any case, this brings us back to the third remark following the
statement of the theorem.
(2) The fact that (67) holds with UA+B"

(t; s) given by (17) where GA+B"
is

now the parabolic Green�s function associated with the di¤erential operator
in (65) allows one to express the solution to this problem in the form of a
Feynman-Kac formula. This is of course invaluable information for what regards
the analysis of solutions to related semilinear initial-boundary value problems.
However, we will not dwell on this any further in this paper, as we want to defer
such detailed applications to a separate publication.

The above conjecture is all the more reinforced by the fact that some of the
hypotheses of the preceding section are not necessary for our formulae to be
valid in some simpler models. A case in point is the following example, which
is a particular case of (65), namely, the class of parabolic initial-value problems
of the form

@u(x; t)

@t
= k(t)4u(x; t)� {u(x; t); (x; t) 2 D � (0; T ] ;

u(x; 0) = u0(x); x 2 D;
@u(x; t)

@n(x)
= 0; (x; t) 2 @D � (0; T ] ; (85)
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where k 2 C1([0; T ] ;R+� ). Hypothesis (K) is here trivially satis�ed and the self-
adjoint, positive operator A(t) := �k(t)4 + { in L2(D;C) is de�ned on the
time-independent domain

D(A(t)) =
�
v 2 H2(D;C) : (rv(x); n(x))Cd = 0; x 2 @D

	
since k is a scalar function. Furthermore, Hypothesis (A1) holds if { is su¢ -
ciently large but Hypothesis (A2) does not since we cannot expect (22) to be
satis�ed without requiring the derivative k0 to be Hölder continuous. Neverthe-
less, there exists an evolution system UA(t; s)0�s�t�T for (85), namely,

UA(t; s) = e�{(t�s) exp

�Z t

s

dyk(y)4
�
; (86)

and our point with this example is to show that we can also reconstruct (86) by
means of (33). In fact, on the one hand we have

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��

= e�{(t�s) exp

"
t� s
n

n�1X
=0

k
�
s+



n
(t� s)

�
4
#
; (87)

and on the other hand we may write

n�1X
=0

k
�
s+



n
(t� s)

�
=

Z n�1

0

dyk
�
s+

y

n
(t� s)

�
+
1

2

�
k(s) + k

�
s+

n� 1
n

(t� s)
��

+
t� s
n

Z n�1

0

dy

�
y � [y]� 1

2

�
k0
�
s+

y

n
(t� s)

�
(88)

by Euler�s summation formula, with [y] the integral part of y (see, for instance,
[17]). Regarding the �rst term on the right-hand side of (88) we have

lim
n!+1

t� s
n

Z n�1

0

dyk
�
s+

y

n
(t� s)

�
=

Z t

s

dyk(y) (89)

since k is smooth, while for the remaining two terms we get

lim
n!+1

t� s
2n

�
k(s) + k

�
s+

n� 1
n

(t� s)
��

= lim
n!+1

�
t� s
n

�2 Z n�1

0

dy

�
y � [y]� 1

2

�
k0
�
s+

y

n
(t� s)

�
= 0; (90)

the last equality in the preceding expression being a consequence of the bound-
edness of y 7! y � [y] � 1

2 and k
0. Consequently, owing to (87)-(90) and to the
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C0-continuity of the underlying di¤usion semigroup generated by the Laplacian
we get

exp

�Z t

s

dyk(y)4
�
= lim

n!+1
exp

"
t� s
n

n�1X
=0

k
�
s+



n
(t� s)

�
4
#

(91)

in the strong topology of L(L2(D;C), as desired.
Along with (91), we remark that in the preceding example Hypothesis (D)

also holds if we choose once more D= C20(D;C). Since that hypothesis plays an
important rôle in the proof of (32) and (33) within our abstract setting, we may
then tend to believe that it is also necessary for those product formulae to hold.
We now show that even this is not the case by considering a third example
related to one very brie�y mentioned at the end of [20]. Let us consider the
initial value problem

du(x; t)

dt
= � u(x; t)

(t� x)2 ; (x; t) 2 (0; 1)� (0; 1] ;

u(x; 0) = u0; x 2 (0; 1) (92)

in L2((0; 1);C), that is, (21) with T = 1, B(t) = 0 and the A(t)�s self-adjoint,
multiplication operators de�ned by

A(t)v(x) :=
v(x)

(t� x)2
(93)

on the maximal, time-dependent domains

D(A(t)) =
(
v 2 L2((0; 1);C) :

Z 1

0

dx
jv(x)j2

(t� x)4
< +1

)
(94)

where t 2 [0; 1]. In this case Hypothesis (D) does not hold since we have the
rather extreme opposite situation where

\t2[0;1]D(A(t)) = f0g : (95)

In fact, let v 2 \t2[0;1]D(A(t)) and � 2 R+� su¢ ciently small; on the one hand,
by using Schwarz inequality we have

(2�)
�1
Z t+�

t��
dx jv(x)j

� (2�)
�1
�Z t+�

t��
dx(t� x)4

� 1
2

kA(t)vk2 � c�
3
2 kA(t)vk2 ! 0 (96)

for every t 2 (0; 1) as � ! 0+. On the other hand, we infer from standard
one-dimensional Lebesgue integration theory that

lim
�!0+

(2�)
�1
Z t+�

t��
dx jv(x)j = jv(t)j
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for almost every t 2 (0; 1), which, together with (96), indeed implies v = 0 in
L2((0; 1);C).
In spite of this fact and by means of yet another application of Euler�s

summation formula, we now prove that (33) holds for all s; t with 0 � s � t � 1
in the strong topology of L2((0; 1);C), thereby showing that the reconstruction
of the full evolution system from the semigroups generated by the A(t)�s is
possible in this case as well. On the one hand, the holomorphic semigroup
generated by �A(t) is the contraction semigroup given by

exp [�sA(t)] v(x) = exp
"
� s

(t� x)2

#
v(x) (97)

for every s 2 R+and any v 2 L2((0; 1);C). On the other hand, an explicit calcu-
lation from (92) shows that the corresponding evolution system UA(t; s)0�s�t�1
in B = L2((0; 1);C) also exists in the form of the multiplication operators

UA(t; s)v(x) =

(
exp

h
(t� x)�1 � (s� x)�1

i
v(x) if x 2 (0; s) [ (t; 1) ;

0 if x 2 (s; t) :

)
(98)

We begin our analysis of the reconstruction with the following auxiliary result.

Proposition 3. For every v 2 L2((0; 1);C) and all s; t with 0 � s < t � 1
we have

lim
n!+1

Z t

s

dx exp

"
�2n(t� s)

n�1X
=0

1

((t� s)� n(x� s))2

#
jv(x)j2 = 0.

Proof. It is su¢ cient to prove thatZ t

s

dx exp

"
�2n(t� s)

n�1X
=0

1

((t� s)� n(x� s))2

#
jv(x)j2

� exp

�
� 4n

t� s

�
kvk22 : (99)

In order to achieve this we writeZ t

s

dx exp

"
�2n(t� s)

n�1X
=0

1

((t� s)� n(x� s))2

#
jv(x)j2 (100)

=
n�1X
�=0

Z s+(�+1)
(t�s)
n

s+�
(t�s)
n

dx exp

"
�2n(t� s)

n�1X
=0

1

((t� s)� n(x� s))2

#
jv(x)j2

and observe that the inequalities

( � � � 1) (t� s) < (t� s)� n(x� s) < ( � �) (t� s)
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hold for every x and every ; � 2 f0; :::; n� 1g in each of the integrals on the
right-hand side of (100). Consequently, if  � � we get the lower bound

1

((t� s)� n(x� s))2 >
1

( � � � 1)2 (t� s)2

while if  � � + 1 we have

1

((t� s)� n(x� s))2 >
1

( � �)2 (t� s)2
:

Therefore we obtain the estimate
n�1X
=0

1

((t� s)� n(x� s))2

=
�X

=0

1

((t� s)� n(x� s))2 +
n�1X
=�+1

1

((t� s)� n(x� s))2

>
1

(t� s)2

0@ �X
=0

1

( � � � 1)2
+

n�1X
=�+1

1

( � �)2

1A >
2

(t� s)2

uniformly in x, � and n, so that the substitution of the preceding inequality into
the right-hand side of (100) indeed leads toZ t

s

dx exp

"
�2n(t� s)

n�1X
=0

1

((t� s)� n(x� s))2

#
jv(x)j2

� exp

�
� 4n

t� s

� n�1X
�=0

Z s+(�+1)
(t�s)
n

s+�
(t�s)
n

dx jv(x)j2 � exp
�
� 4n

t� s

�
kvk22 ;

which is (99). �

It is more complicated to get the relevant estimates when x 2 (0; s) [ (t; 1).
To this end let us introduce the functions fn;t;s(:; x) : [0; n� 1] 7! R+� de�ned
by

fn;t;s(y; x) :=
1

(y(t� s)� n(x� s))2 (101)

for every n 2 N+ \ [2;+1), along with the function ft;s : (0; s) [ (t; 1) 7! R��
given by

ft;s(x) := (t� x)�1 � (s� x)�1: (102)

Our second auxiliary result is the following.

Proposition 4. For every v 2 L2((0; 1);C) and all s; t with 0 � s < t � 1
we have

lim
n!+1

Z s

0

dx

�����exp
"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2 = 0
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and

lim
n!+1

Z 1

t

dx

�����exp
"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2 = 0:

The proof of this proposition rests on one crucial lemma. We �rst remark
that the fn;t;s(:; x)�s are well-de�ned and continuously di¤erentiable on [0; n� 1]
for every x 2 (0; s) [ (t; 1) since their denominators do not vanish there. Con-
sequently, we may write

n�1X
=0

fn;t;s(; x)

=

Z n�1

0

dyfn;t;s(y; x) +
1

2
(fn;t;s(0; x) + fn;t;s(n� 1; x))

�
Z n�1

0

dy (y)f 00n;t;s(y; x) (103)

as a variant of Euler�s summation formula, where we have de�ned

 (y) :=

Z y

0

dz

�
z � [z]� 1

2

�
:

We remark that  satis�es the inequalities

�1
8
�  (y) � 0 (104)

for every y 2 R; regarding (101) we then have the following.

Lemma 9. For every x 2 (0; s) [ (t; 1) and all s; t with 0 � s < t � 1 we
have

exp

�
�n(t� s)

Z n�1

0

dyfn;t;s(y; x)

�
= exp

"�
t� x� t� s

n

��1
� (s� x)�1

#
(105)

along with

exp

�
�n(t� s)

2
(fn;t;s(0; x) + fn;t;s(n� 1; x))

�
= exp

�
� t� s

2

�
1

n(x� s)2 +
n

(n(t� x)� (t� s))2

��
: (106)
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Moreover, we have the estimate

exp

"
(t� s)2

4

�
n

(n(t� x)� (t� s))3 +
1

n2(x� s)3

�#

� exp

�
n(t� s)

Z n�1

0

dy (y)f 00n;t;s(y; x)

�
� 1: (107)

Proof. Relations (105) and (106) follow from an explicit evaluation of the
�rst two terms on the right-hand side of (103). Furthermore, from (104) we
have

�n(t� s)
8

�
f 0n;t;s(n� 1; x)� f 0n;t;s(0; x)

�
= �n(t� s)

8

Z n�1

0

dyf 00n;t;s(y; x)

� n(t� s)
Z n�1

0

dy (y)f 00n;t;s(y; x) � 0

since fn;t;s(:; x) is convex, from which (107) follows immediately. �

For the sake of simplicity we now introduce a shorthand notation for all
three exponential arguments above, namely,

�n;t;s(x) := n(t� s)
Z n�1

0

dyfn;t;s(y; x); (108)

�n;t;s(x) :=
n(t� s)
2

(fn;t;s(0; x) + fn;t;s(n� 1; x)) (109)

and

	n;t;s(x) := n(t� s)
Z n�1

0

dy (y)f 00n;t;s(y; x): (110)

We then have the following.

Proof of Proposition 4. For every x 2 (0; s) [ (t; 1) and all s; t with
0 � s < t � 1 we may write

exp

"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

= exp [��n;t;s(x)] exp [	n;t;s(x)] (exp [��n;t;s(x)]� exp [ft;s(x)])
+ (exp [��n;t;s(x)] exp [	n;t;s(x)]� 1) exp [ft;s(x)]

as a consequence of (103) and (108)-(110); moreover, from (102), (106) and
(107) we have

exp [ft;s(x)] � 1;
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exp [��n;t;s(x)] exp [	n;t;s(x)] � 1
and

lim
n!+1

exp [��n;t;s(x)] exp [	n;t;s(x)] = 1; (111)

respectively. For every v 2 L2((0; 1);C), almost every x 2 (0; s) [ (t; 1) and all
s; t with 0 � s < t � 1 we then get�����exp

"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2

� 2
�
jexp [��n;t;s(x)]� exp [ft;s(x)]j2 jv(x)j2

+ jexp [��n;t;s(x)] exp [	n;t;s(x)]� 1j2 jv(x)j2
�
;

so that by taking (105) and (111) into account we obtain

lim
n 7!+1

�����exp
"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2 = 0:

The result then follows from a simple dominated convergence argument. �

It is now plain that (33) emerges as a consequence of Propositions 3 and 4;
in fact, thanks to (97) and (101) we have

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��
v(x)

= exp

"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
v(x)

for every v 2 L2((0; 1);C), almost every x 2 (0; 1) and all s; t with 0 � s < t � 1.
Therefore, from (98), (102) along with Propositions 3 and 4 we indeed getUA(t; s)v �

0Y
=n�1

exp

�
� t� s

n
A
�
s+



n
(t� s)

��
v


2

2

=

Z s

0

dx

�����exp
"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2

+

Z t

s

dx exp

"
�2n(t� s)

n�1X
=0

fn;t;s(; x)

#
jv(x)j2

+

Z 1

t

dx

�����exp
"
�n(t� s)

n�1X
=0

fn;t;s(; x)

#
� exp [ft;s(x)]

�����
2

jv(x)j2 ! 0
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as n! +1. �

Our last example is motivated by some questions related to the theme of
singular perturbations of self-adjoint operators. It also illustrates the fact that
the theory we developed in the preceding section can be applied to evolution
problems de�ned on unbounded domains of Euclidean space and, of course, to
the case of unbounded B(t)�s. Thus, let us consider the parabolic initial-value
problem

@u(x; t)

@t
=

�
d2

dx2
� s(t)�x� � { � "m(x; t)

�
u(x; t); (x; t) 2 R� (0; T ] ;

u(x; 0) = u0(x); x 2 R; (112)

corresponding to a time-dependent, zero-range perturbation at x� 2 R involving
Dirac�s distribution �x� , with u0 2 L2(R;R) and {; " 2 R+ parameters as before.
Problems such as (112) with one or several perturbations supported on a discrete
set of points in one or several space dimensions may play an important rôle in
the mathematical analysis of the dynamics of one particle di¤using through a
set of very small obstacles varying with time (see, for instance, [11] for further
information on the subject).
Regarding the strength of the zero-range perturbation we introduce the fol-

lowing condition:

(S) The function s : [0; T ] 7! R+ is di¤erentiable, and its derivative s0 is
Hölder continuous with Hölder exponent �0 2 (0; 1].

As for the lower order term we impose the following hypothesis:

(M00) The function m : R� [0; T ] 7! R+ is measurable with

x 7! M(x) := sup
t2[0;T ]

m(x; t) 2 L2(R;R+): (113)

Furthermore, the function t 7! m(x; t) is di¤erentiable on [0; T ] for every x 2 R
and there exist a constant c0� 2 R+� , a function H 2 L2(R;R+) such that the
Hölder continuity estimate����@m(x; t)@t

� @m(x; s)

@s

���� � c0�H(x) jt� sj
�0 (114)

holds for every x 2 R and every s; t 2 [0; T ], where �0 2 (0; 1] may be chosen to
be the same as in Hypothesis (S). Finally, we have

x 7! N(x) := sup
t2[0;T ]

����@m(x; t)@t

���� 2 L2(R;R+): (115)

As above, it is here also possible to construct a self-adjoint, positive realiza-
tion of the operator

A(t) := � d2

dx2
+ s(t)�x� + { (116)
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in L2(R;C), this time as a form sum by considering the Hermitian sesquilinear
form a:[0; T ]�H1(R;C)�H1(R;C) 7! C de�ned by

a(t; v; w) :=

Z
R
dxv0(x)w0(x) + s(t)v(x�)w(x�) + {

Z
R
dxv(x)w(x): (117)

In this case, the corresponding time-dependent domain for (116) is given by

D(A(t)) =
�
v 2 H1(R;C)\H2(R� fx�g ;C) : v0(x�+)� v0(x��) = s(t)v(x�)

	
for every t 2 [0; T ], where

v0(x�+) := lim
y&0

v0(x� + y)

and
v0(x��) := lim

y&0
v0(x� � y)

(see, for instance, [3]).
From Hypothesis (S) and standard one-dimensional Sobolev theory, it fol-

lows that (117) satis�es estimates similar to (5) and (6). Consequently, since
s(t) � 0 for every t 2 [0; T ] we infer from the general theory of [35] that �A(t)
generates a holomorphic semigroup of contractions exp [�sA(t)]s�0 in L2(R;C),
which means that Hypotheses (A1) and (A4) hold provided we choose again
{ su¢ ciently large, for instance { � 1. Furthermore, �A(t) also generates an
evolution system UA(t; s)0�s�t�T in L2(R;C).
Therefore, in order to prove (32) for (112) we can begin by verifying (A2),

(A3) and for this we wish to exploit the fact that the resolvent operator for
(116) is known quite explicitly, rather than rely on the variational structure of
the problem. More precisely, for every � 2 C�R+ we write k2 := { � � with
Re k > 0 and then have by Krein�s formula for resolvents (see, for instance, [3])

R(A(t); �)f(x)

=

�
� d2

dx2
+ s(t)�x� + k

2

��1
f(x) (118)

=
1

2k

Z
R
dye�kjx�yjf(y)� s(t)

2k (s(t) + 2k)

�Z
R
dye�kjx

��yjf(y)

�
e�kjx�x

�j

for every f 2 L2(R;C) and almost every x 2 R, from which we obtain

@

@t
R(A(t); �)f(x) = � s0(t)

(s(t) + 2k)2

�Z
R
dye�kjx

��yjf(y)

�
e�kjx�x

�j (119)

thanks to the di¤erentiability of s. From this we �rst get the following result.

Lemma 10. Assume that Hypothesis (S) holds; then, there exists a constant
a2 2 R+� such that the Hölder continuity estimate ddtA�1(t)f � d

ds
A�1(s)f


2

� a2 jt� sj�
0
kfk2 (120)
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holds for all s; t 2 [0; T ] and every f 2 L2(R;C), with �0the Hölder exponent in
(S).

Proof. Relation (119) with � = 0 reduces to

d

dt
A�1(t)f(x) = � s0(t)

(s(t) + 2
p
{)2

�Z
R
dye�

p
{jx��yjf(y)

�
e�

p
{jx�x�j, (121)

and furthermore we infer from Hypothesis (S) that the function

t 7! s0(t)

(s(t) + 2
p
{)2

is Hölder continuous on [0; T ] with Hölder exponent �0. Moreover, we can esti-
mate the integral in (121) by means of Schwarz inequality, so that we eventually
get  ddtA�1(t)f � d

ds
A�1(s)f


2

� c jt� sj�
0
�Z

R
dxe�2

p
{jxj
� 1

2

kfk2

� c jt� sj�
0
kfk2

for every s; t 2 [0; T ] and every f 2 L2(R;C). �

While it is plain that (120) leads to Hypothesis (A2), we now turn to the
veri�cation of (A3). For this we have the following result.

Lemma 11. Assume that Hypothesis (S) holds; then, there exists a constant
a3 2 R+� such that the estimate @@tR(A(t); �)f


2

� a3 j�j�1 kfk2 (122)

holds for every t 2 [0; T ], any f 2 L2(R;C) and each � 2 S�� f0g.

Proof. From (119) we easily obtain @@tR(A(t); �)f

2

� c

js(t) + 2kj2
�Z

R
dye�2Re kjyj

�
kfk2

� c

jkj2Re k
kfk2 (123)

for every f 2 L2(R;C) and every � 2 C�R+, where the last inequality follows
from an explicit evaluation of the integral and the fact that s � 0, Re k > 0.
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Without restricting the generality we now take � 2
�
�
4 ;

�
2

�
and �rst prove

the existence of a constant c� 2 R+� such that the inequality

jkj2 � c� (1 + j�j) (124)

holds for every � 2 S�� f0g; this is obvious with a constant independent of � if
Re� � 0 (with � 6= 0 when Re� = 0) since��k2��2 = {2 � 2{Re�+ j�j2 :
Furthermore, if arg � � � with Re� > 0, Im� > 0, or if arg � � �� with
Re� > 0, Im� < 0 we get from the preceding relation and Cauchy�s interpolated
inequality the estimate��k2��2 � �1� ��1�{2 + �1� � tan�2 �� j�j2 (125)

for every � 2 R+� , so that by choosing for instance � = 1
2

�
1 + tan2 �

�
we can

make the two terms in (125) positive, which indeed leads to (124).
We proceed by proving that

inf
�2S��f0g

Re k > 0: (126)

We have

Re k =

 
Re k2 + jkj2

2

! 1
2

(127)

so that if Re� � { we get Re k2 � 0 and hence

Re k � c� (128)

from (124) and (127). In order to get a similar bound for the case Re� > {, it is
su¢ cient to prove that Re k is bounded from below by a function of Re� having
a positive minimum at Re� = {; to this end, let us de�ne F�:[{;+1) 7! R+�
by

F�(�) :=
{ � � +

�
{2 � 2{� + �2(1 + tan2 �)

� 1
2

2
: (129)

A direct calculation shows that F� is monotone increasing, so that the compar-
ison of (127) and (129) gives

(Re k)2 � F�(Re�) � F�({) �
tan �

2
> 0

and thereby indeed a bound identical to (128). Therefore (126) holds, which,
together with (123) and (124), gives (122). �

We proceed with the veri�cation of (B1)-(B4). The multiplication operators
B"(t) := "B(t) de�ned by

B(t)v := m(:; t)v (130)
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are in this case self-adjoint and positive on the maximal, time-dependent do-
mains

D(B(t)) =
�
v 2 L2(R;C) :

Z
R
dx jm(x; t)v(x)j2 < +1

�
for every t 2 [0; T ] and, although the B(t)�s are in general unbounded, the
crucial fact that entails the validity of (B1) is the boundedness of the operators
B(t)R(A(t); �) on L2(R;C). More precisely we have the following result.

Lemma 12. Assume that Hypothesis (S) and (113) hold; then, there exists
a constant c� 2 R+� such that the inequality

kB(t)R(A(t); �)fk2 � c� kMk2 kfk2 (131)

is valid for every t 2 [0; T ], any f 2 L2(R;C) and each � 2 S�. Thus, the
B"(t)�s satisfy (B1) for every " 2 R+ su¢ ciently small.

Proof. From (118), (130) and estimates similar to those carried out in the
proofs of the last two lemmas we easily obtain

kB(t)R(A(t); �)fk22

� c

jkj4Re k

�
1 + jkj2

��Z
R
dxm2(x; t)

�
kfk22 ;

of which (131) is a consequence because of (113), (124) and (128). The remaining
statement of the lemma is then immediate by setting v = R(A(t); �)f in (131)
for every v 2 D(A(t)). �

Next, we have the following result whose proof is relatively long but similar
to the last three and therefore omitted.

Lemma 13. Assume that Hypothesis (S) and (113)-(115) hold; then, there
exists a constant c� 2 R+� depending on �, kMk2, kHk2 and kNk2 such that the
Hölder continuity estimate ddtB(t)A�1(t)f � d

ds
B(s)A�1(s)f


2

� c� jt� sj�
0
kfk2

is valid for all s; t 2 [0; T ] and every f 2 L2(R;C). Moreover, the function
t 7!

 @
@t (B(t)R(A(t); �))


1 is continuously di¤erentiable on [0; T ] with respect

to the norm-topology of L(L2(R;C)) and there exists a constant c� 2 R+� such
that the inequality @@tB(t)R(A(t); �)f


2

� c� (kMk2 + kNk2) kfk2

holds for every t 2 [0; T ], any f 2 L2(R;C) and each � 2 S�. Thus, the B"(t)�s
satisfy (B2) and (B3) for every " 2 R+.
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As for the veri�cation of (B4), we can either proceed as in Lemma 8 or prove
(58) directly by observing that

exp [�(r � s)B(r)] f = exp [�(r � s)m(:; r)] f

in L2(R;C). Then, for any r 2 [s; t] and any sequence (rn)n2N+ � [s; t] such
that rn ! r we have

exp [�(rn � s)m(x; rn)] f(x)! exp [�(r � s)m(x; r)] f(x)

for almost every x 2 R when n! +1, as well as

jexp [�(rn � s)m(x; rn)] f(x)� exp [�(r � s)m(x; r)] f(x)j2

� c jf(x)j2

uniformly in n. Therefore, we get

lim
n!+1

exp [�(rn � s)B(rn)] f = exp [�(r � s)B(r)] f

strongly in L2(R;C) by dominated convergence, which is the desired property.
Finally, Hypothesis (D) can be veri�ed with

D =
�
v 2 C20(R� fx�g ;C) : v(x�) = 0

	
(132)

which is dense in L2(R;C); indeed (27) and (29) trivially hold, as does (28) since
the restriction of (116) to the domain (132) coincides with the time-independent
operator � d2

dx2 + { (see, for instance, [3] or [11]).

The preceding considerations thus lead to the following result.

Proposition 5. Assume that Hypotheses (S) and (M 00) hold ; then, all the
conclusions of the theorem are valid for (112) for every " 2 R+ su¢ ciently small.
In particular, the Trotter-Kato formula (32) and the reconstruction formula (33)
hold in the strong topology of L(L2(R;C)).

Remark. The preceding example shows that in the particular case where
the B(t)�s are self-adjoint multiplication operators on a Hilbert space, there is a
much more direct way of proving the strong continuity of r 7! exp [�(r � s)B(r)]
than that stemming from Hypothesis (B4), as it is su¢ cient to invoke the spec-
tral theorem. However, in the general case the full force of (B4) is indeed deemed
appropriate according to the proof of Lemma 5.

We conclude this article by establishing a connection between the above
theory and the corresponding evolution problems for Schrödinger-type equations
of quantum mechanics, namely,

i
du(t)

dt
= (A(t) +B(t))u(t); t 2 (s; T ] ;

u(s) = us (133)
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de�ned in a complex and separable Hilbert spaceH, with A(t)+B(t) self-adjoint
there. In this case, only partial results regarding the existence of dynamics are
known, for example when the domain of A(t) + B(t) is independent of time
(see, for instance, [31], [34] and the references therein); but to the best of our
knowledge a Trotter-Kato product formula for this is not available. For instance,
in the case of (112) the corresponding quantum mechanical equation reads

i
@u(x; t)

@t
=

�
� d2

dx2
+ s(t)�x� + { + "m(x; t)

�
u(x; t); (x; t) 2 R� (0; T ] ;

u(x; 0) = u0(x); x 2 R; (134)

and under Hypotheses (S), (M00) there exist the unitary groups exp [�isA(t)]s2R
and exp [�isB"(t)]s2R for every t 2 [0; T ], where the A(t)�s, B"(t)�s are given by
(116), (130), respectively. However, whether the strong limit

lim
n!+1

0Y
=n�1

exp

�
�i t� s

n
A
�
s+



n
(t� s)

��
exp

�
�i t� s

n
B"

�
s+



n
(t� s)

��
exists in L(L2(R;C)) and describes the true dynamics generated by (134) seems
to be an open problem at this time. The same remark applies to other unitary
evolution systems generated by Schrödinger equations in the presence of time-
dependent singular perturbations of zero-range, such as those constructed in [32]
and more recently in [8] and [12]. Away from the one-dimensional case, these
constructions rest essentially on von Neumann�s theory of self-adjoint extensions
for symmetric operators.
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