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A General Trotter-Kato Formula for a Class of Evolution Operators with Examples

In this article we prove new results concerning the existence and various properties of an evolution system UA+B(t; s) 0 s t T generated by the sum (A(t) + B(t)) of two linear, time-dependent and generally unbounded operators de…ned on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express UA+B(t; s) 0 s t T as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by A(t) and B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a …xed set D \ t2[0;T ] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in e¤ect, allows us to reconstruct UA(t; s) 0 s t T very simply in terms of the semigroup generated by A(t). We then illustrate our results by considering various examples of non-autonomous parabolic initial-boundary value problems, including one related to the theory of time-dependent singular perturbations of self-adjoint operators. We …nally mention what we think remains an open problem for the corresponding equations of Schrödinger type in quantum mechanics.

Introduction and Outline

It is well-known that the Hille-Yosida theory of semigroups and its numerous extensions regarding the construction of evolution operators on Banach spaces has had and still has far reaching applications to the analysis of certain linear or nonlinear, deterministic or stochastic, partial di¤erential equations with time-independent or time-dependent coe¢ cients. In many instances that may encompass parabolic equations, hyperbolic equations or Schrödinger equations, to name only a few, it is indeed possible to reformulate a given initial and boundary-value problem as one related to evolution equations on suitably chosen functional spaces. The mathematical investigation of such a problem concerning for example the existence and the uniqueness of various types of solutions, the relations among them, their various representations and their asymptotic behavior for large times, then becomes intimately related to the properties of the corresponding linear propagator (see, for instance, [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤ erential Equations[END_REF], [START_REF] Tanabe | Equations of Evolution[END_REF] and [START_REF] Yosida | Functional Analysis, Classics in Mathematics Series[END_REF] for general references regarding the deterministic case as well as [START_REF] Da Prato | Stochastic Equations in In…nite Dimensions[END_REF] for the stochastic case). Among those properties, perturbation formulae of the Trotter-Kato type such as those stated in [START_REF] Chernoff | Note on Product Formulas for Operator Semigroups[END_REF], [START_REF] Chernoff | Semigroup Product Formulas and Addition of Unbounded Operators[END_REF], [START_REF] Faris | The Product Formula for Semigroups de…ned by Friedrichs Extensions[END_REF], [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF], [START_REF] Nelson | Feynman Integrals and the Schrödinger Equation[END_REF] or [START_REF] Trotter | On the Product of Semigroups of Operators[END_REF] for holomorphic or more general semi-groups are of particular importance for the understanding of certain basic questions in applied mathematics or mathematical physics that can be formulated in terms of autonomous partial di¤erential equations; thus, a strongly convergent product formula of the form

exp [ t(A + B)] = lim n!+1 exp t n A exp t n B n (1) 
with t 2 R + and A, B time-independent linear operators on a Banach space satisfying certain conditions, allows one to relate the solutions of certain evolution problems to the theory of Wiener integrals through the celebrated Feynman-Kac formula (see, for instance, [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]). On the other hand, in the realm of quantum mechanics a slightly modi…ed version of (1) also allows a rigorous construction of the so-called Feynman path integral representation of the solutions to Schrödinger equations with time-independent potentials (see, for instance, [START_REF] Babbitt | The Wiener Integral and Perturbation Theory of the Schrödinger Operator[END_REF], [START_REF] Johnson | The Feynman Integral and Feynman's Operational Calculus[END_REF] and [START_REF] Nelson | Feynman Integrals and the Schrödinger Equation[END_REF]). Consequently, a question that arises naturally is whether formulae of the form (1) can be generalized to the case where the linear operators A(t) and B(t) depend explicitly on the time variable in some way; it turns out that such a generalization was indeed carried out in [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF] when both A(t) and B(t) are the in…nitesimal generators of C 0 -contraction semigroups on a Banach space for every t, under the additional restriction that the domain D(A(t) + B(t)) of the operator sum A(t) + B(t) be time-independent; this was nonetheless suf-…cient to enable the author of [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF] to give a precise mathematical meaning to the Feynman path integral representation in the case of Schrödinger equations with certain time-dependent potentials. With further hypotheses regarding the continuity properties of A(t) and B(t) as functions of t, a generalization of (1) was also obtained in [START_REF] Ichinose | Error Estimate in Operator Norm of Exponential Product Formulas for Propagators of Parabolic Evolution Equations[END_REF] where the authors were able to prove the convergence of their approximations in the operator norm-topology rather than just in the strong topology. There are, however, a host of important situations where D(A(t)+B(t)) does depend explicitly on time, thereby making some of the arguments of [START_REF] Faris | Product Formulas for Perturbations of Linear Propagators[END_REF] and [START_REF] Ichinose | Error Estimate in Operator Norm of Exponential Product Formulas for Propagators of Parabolic Evolution Equations[END_REF] inapplicable; as a concrete class of examples which will motivate some of the hypotheses of the theory we develop below, let D R d be an open bounded domain with a smooth boundary @D (see, for instance, [START_REF] Adams | Sobolev Spaces[END_REF] for a de…nition of this and related concepts); let T 2 R + := R + f0g and let us consider parabolic initial-boundary value problems of the form @u(x; t) @t = div(k(x; t)ru(x; t)) {u(x; t); (x; t) 2 D (0; T ] ; u(x; 0) = u 0 (x); x 2 D; @u(x; t) @n(k) = 0; (x; t) 2 @D (0; T ] ;

with { 2 R + a parameter and where the last relation in [START_REF] Adams | Sobolev Spaces[END_REF] stands for the conormal derivative of u relative to the matrix-valued function k. We assume that the following hypotheses hold (here and below we use the standard notations for the usual spaces of Lebesgue integrable functions and for the corresponding Sobolev spaces on regions of Euclidean space; we also write c for all the irrelevant constants that occur in the various estimates unless we specify these constants otherwise): (K) The function k : D [0; T ] 7 ! R d 2 is matrix-valued and for every i; j 2 f1; :::; dg we have k i;j = k j;i 2 L 1 (D (0; T ); R); moreover, there exists a constant k 2 R + such that the inequality (k(x; t)q; q) R d k jqj 2 [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF] holds uniformly in (x; t) 2 D [0; T ] for all q 2 R d , where (:; :) R d and j:j denote the Euclidean inner product and the induced norm in R d , respectively; …nally, there exist constants c 2 R + , 2 1 2 ; 1 , such that the Hölder continuity estimate max i;j2f1;:::;dg jk i;j (x; t) k i;j (x; s)j c jt sj is valid for every x 2 D and every s; t 2 [0; T ].

(I) The initial datum satis…es u 0 2 L 2 (D; R).

As is well-known, Hypothesis (K) allows one to construct a self-adjoint, positive realization of the elliptic partial di¤erential operator with conormal boundary conditions in [START_REF] Adams | Sobolev Spaces[END_REF]. In fact, let us write (:; :) 2 and k:k 2 for the inner product and the induced norm in L 2 (D; C), respectively, together with (:; :) 1;2 and k:k 1;2 for the inner product and the induced norm in H 1 (D; C), respectively; let (:; :) C d be the standard inner product in C d . Then, for the Hermitian sesquilinear form a:[0; T ] H 1 (D; C) H 1 (D; C) 7 ! C de…ned by a(t; v; w) := Z D dx (k(x; t)rv(x); rw(x)) C d [START_REF] Babbitt | The Wiener Integral and Perturbation Theory of the Schrödinger Operator[END_REF] we have the estimates ja(t; v; w)j c kvk 1;2 kwk 1;2 ; a(t; v; v) k kvk uniformly in t 2 [0; T ] for every v; w 2 H 1 (D; C), as well as ja(t; v; w) a(s; v; w)j c jt sj kvk 1;2 kwk 1;2 [START_REF] Chernoff | Note on Product Formulas for Operator Semigroups[END_REF] for every s; t 2 [0; T ]; consequently, the operator A(t) := div(k(:; t)r) + { [START_REF] Chernoff | Semigroup Product Formulas and Addition of Unbounded Operators[END_REF] is indeed self-adjoint and positive in L 2 (D; C) on the time-dependent domain given by

D(A(t)) = v 2 H 1 (D; C) : A(t)v 2 L 2 (D; C); ((A(t) {)v; w) 2 = a(t; v; w) (8) 
where the last relation in [START_REF] Correggi | Ionization for Three Dimensional Time-Dependent Point Interactions[END_REF] holds for every w 2 H 1 (D; C). Then for any t 2 [0; T ], A(t) is the in…nitesimal generator of a holomorphic semigroup of contractions exp [ sA(t)] s 0 in L 2 (D; C), and also generates there an evolution system U A (t; s) 0 s t T given by U A (t; s)v = v if t = s; R D dyG A (:; t; y; s)v(y) if t > s; [START_REF] Da Prato | Stochastic Equations in In…nite Dimensions[END_REF] whose range satis…es Ran U A (t; s) D(A(t))

for every s; t with 0 s < t T . Here we denote by G A the parabolic Green's function associated with (2) (see, for instance, [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF], [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤ erential Equations[END_REF] or [START_REF] Tanabe | Equations of Evolution[END_REF] for other typical constructions of this kind). This means that it becomes possible to investigate the existence and the various properties of solutions to (2) through the integral relation

u(:; t) = Z D dyG A (:; t; y; 0)u 0 (y) in L 2 (D; R).
Let us now perturb the partial di¤erential operator in (2) by considering initial-boundary value problems of the form

@u(x; t) @t = div(k(x; t)ru(x; t)) (l(x; t); ru(x; t)) R d ({ + "m(x; t))u(x; t); (x; t) 2 D (0; T ] ; u(x; 0) = u 0 (x); x 2 D; @u(x; t) @n(k) = 0; (x; t) 2 @D (0; T ] ; (10) 
with " 2 R + a parameter and with the following additional hypotheses regarding the lower-order di¤erential operators, where we assume without restricting the generality that the constants c and are the same as in Hypothesis (K): As is the case for [START_REF] Chernoff | Semigroup Product Formulas and Addition of Unbounded Operators[END_REF], it is also possible to construct a realization of the partial di¤erential operator

C " (t) := div(k(:; t)r) + { + (l(:; t); r) R d + "m(:; t) := A(t) + B " (t) (11) 
in [START_REF] Davies | One-Parameter Semigroups[END_REF] by considering the sesquilinear form c " :

[0; T ] H 1 (D; C) H 1 (D; C) 7 ! C de…ned by c " (t; v; w) := a(t; v; w) + {(v; w) 2 + b " (t; v; w) (12) 
with a(t; v; w) given by ( 4) and b " (t; v; w) :=

Z D dx (l(x; t); rv(x)) C d w(x) + " Z D dxm(x; t)v(x)w(x): (13) 
In fact, thanks to Hypotheses (L), (M) and by elementary arguments we get the estimates jb " (t; v; w)j c kvk 1;2 kwk 2 ;

Re b " (t; v; v) k 2 kvk 2 1;2 c kvk 2 2 (14) 
uniformly in t 2 [0; T ] for every v; w 2 H 1 (D; C), as well as

jb " (t; v; w) b " (s; v; w)j c jt sj kvk 1;2 kwk 2 (15) 
for every s; t 2 [0; T ], with the norm kwk 2 rather than kwk 1;2 in ( 14) and [START_REF] Faris | Self-Adjoint Operators[END_REF]. Consequently, this leads to the realization of the lower-order operator B " (t) in L 2 (D; C) on the time-independent domain

D(B " (t)) = H 1 (D; C) with (B " (t)v; w) 2 = b " (t; v; w)
and kB " (t)vk 2 c kvk 1;2 [START_REF] Gulisashvili | Non-Autonomous Kato Classes and Feynman-Kac Propagators[END_REF] for every t 2 [0; T ], any v 2 H 1 (D; C) and each w 2 L 2 (D; C), and thereby to the realization of [START_REF] Dell'antonio | A Limit Evolution Problem for Time-Dependent Point Interactions[END_REF] as an operator in L 2 (D; C) on the time-dependent domain

D(C " (t)) = D(A(t)) \ H 1 (D; C) = D(A(t))
for every t 2 [0; T ]. Moreover, as is the case for A(t) the operator C " (t) also generates a holomorphic semigroup and an evolution system U A+B" (t; s) 0 s t T given by

U A+B" (t; s)v = v if t = s; R D dyG A+B" (:; t; y; s)v(y) if t > s (17) in L 2 (D; C), whose range satis…es Ran U A+B" (t; s) D(A(t))
for every s; t with 0 s < t T and where G A+B" is the parabolic Green's function associated with the di¤erential operator in [START_REF] Davies | One-Parameter Semigroups[END_REF]. These two assertions follow from the general theory developed in [START_REF] Tanabe | Equations of Evolution[END_REF] since we can infer successively from ( 5), ( 6), ( 14) and ( 15) that the estimates jc " (t; v; w)j c kvk 1;2 kwk 1;2 ;

(18)

Re c " (t; v; v) k 2 kvk 2 1;2 (k + c) kvk 2 2 (19) 
hold uniformly in t 2 [0; T ] for every v; w 2 H 1 (D; C), and that jc " (t; v; w) c " (s; v; w)j c jt sj kvk 1;2 kwk 1;2 [START_REF] Kato | Abstract Evolution Equations of Type in Banach and Hilbert Spaces[END_REF] holds for every s; t 2 [0; T ].

In the realm of this class of examples the natural questions we want to ask are whether we can reconstruct the evolution system U A (t; s) 0 s t T in terms of the contraction semigroup exp [ sA(t)] s 0 in a simple manner, and more generally whether we can express [START_REF] Hardy | Divergent Series[END_REF] in terms of the unperturbed system (9) through some kind of generalization of (1). Even the …rst question is not trivial, as the various relations known thus far between U A (t; s) 0 s t T and exp [ sA(t)] s 0 are notoriously complicated ones (see, for instance, [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤ erential Equations[END_REF] and [START_REF] Tanabe | Equations of Evolution[END_REF]).

In order to motivate further the theory we develop below, it is worth noting here that under the above hypotheses the operator B " (t) is always a relatively bounded perturbation of the operator A(t) in the sense of [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]. In fact, aside from the inclusion

D(A(t)) D(B " (t))
we also have

kvk 2 1;2 k 1 ((A(t) {)v; v) 2 + kvk 2 2 k 1 k(A(t) {)vk 2 kvk 2 + kvk 2 2
as a consequence of ( 5), [START_REF] Correggi | Ionization for Three Dimensional Time-Dependent Point Interactions[END_REF] and Schwarz inequality, which implies

kvk 1;2 c (kA(t)vk 2 + kvk 2 )
for every v 2 D(A(t)) since kvk 1 1;2 kvk 2 1 when v 6 = 0. Consequently, from the last relation and ( 16) we obtain kB " (t)vk 2 c (kA(t)vk 2 + kvk 2 ) for every t 2 [0; T ] and any v 2 D(A(t)), which is the desired assertion.

As we shall see in Section 4, similar questions can be raised for other classes of concrete examples, a case in point being the class of time-dependent singular perturbations of self-adjoint di¤erential operators which are supported on a …nite or discrete set of points in Euclidean space (see, for instance, [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF], [START_REF] Correggi | Ionization for Three Dimensional Time-Dependent Point Interactions[END_REF], [START_REF] Dell'antonio | A Limit Evolution Problem for Time-Dependent Point Interactions[END_REF], [START_REF] Dell'antonio | The Schrödinger Equation with Moving Point Interactions in Three Dimensions[END_REF] and [START_REF] Faris | Self-Adjoint Operators[END_REF] for general references concerning such problems).

Although [START_REF] Davies | One-Parameter Semigroups[END_REF] is inherently variational, it is equally plain that it is formally a particular example of an abstract evolution problem of the form

du(t) dt = (A(t) + B(t))u(t); t 2 (s; T ] ; u(s) = u s (21) 
de…ned in a complex and separable Banach space B. In the sequel we shall investigate [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] from the point of view we just outlined under appropriate hypotheses concerning A(t) and B(t) when D(A(t)+B(t)) may be time-dependent, but without reference to any kind of variational structure in the abstract setting. Accordingly, we shall organize the remaining part of this article in the following way: in Section 2 we state and discuss our main theorem regarding the existence of an evolution system U A+B (t; s) 0 s t T concerning [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] and a related extension of (1), for a suitable class of A(t)'s and of time-dependent perturbations B(t) 0 t T . There we also put our result into a broader perspective by comparing our way of constructing the U A+B (t; s)'s with other known methods such as those put forward in [START_REF] Acquistapace | A Uni…ed Approach to Abstract Linear Nonautonomous Parabolic Equations[END_REF], [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] or in the review article [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF]. We prove our main result in Section 3; our general framework in that section is the theory of evolution operators as developed in [START_REF] Tanabe | Equations of Evolution[END_REF], which indeed motivated our choice of the A(t)'s and the B(t)'s in the …rst place. We illustrate our main statements by means of several examples in Section 4, aside from also considering there examples showing that some of our hypotheses, albeit natural, su¢ cient and indeed veri…able in a host of important situations, are not necessary for our product formula to hold. In this context it is worth pointing out that there are two well-known analytical tools which play an important rôle in our analysis of some of those examples, namely, Euler's summation formula and Krein's formula for resolvents (see, for instance, [START_REF] Hardy | Divergent Series[END_REF] and [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF], respectively). Finally, we refer the reader to [START_REF] Vuillermot | A Trotter-Kato Product Formula for a Class of Non-Autonomous Evolution Equations, Trends in Nonlinear Analysis: in Honour of Professor V. Lakshmikantham[END_REF] for a short announcement of our result and a very brief sketch of its proof.

Statement and Discussion of the Main Result

In the sequel we write k:k for the norm in B and k:k 1 for the usual operator-norm in L(B), the Banach algebra of all bounded linear operators on B . According to what we outlined in the preceding section, we wish to construct an evolution system U A+B (t; s) 0 s t T for Problem [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] which we can express in terms of the semigroups generated by A(t) and B(t) through a suitable generalization of (1), without ever requiring that the domains D(C (t)) of the fractional powers of C(t) for 2 (0; 1] be time-independent, where C(t) := A(t) + B(t). To this end we assume that the following hypotheses are valid (see, for instance, [START_REF] Tanabe | Equations of Evolution[END_REF] for the basic de…nitions and properties):

(A1) The linear operator A(t) is the in…nitesimal generator of a holomorphic semigroup exp [ sA(t)] s 0 on B for every t 2 [0; T ] and we have 0 2 (A(t)) for any such t, where (A(t)) denotes the resolvent set of A(t).

(A2) The function t 7 ! A 1 (t) is continuously di¤erentiable with respect to the norm-topology of L(B) and there exist constants a 2 2 R + , ã2 2 (0; 1] such that the Hölder continuity estimate

dA 1 (t) dt dA 1 (s) ds 1 a 2 jt sj ã2 (22) 
is valid for every s; t 2 [0; T ].

As is well-known, Hypothesis (A1) implies the existence of constants 2 0; 2 , c 2 R + such that the inclusion S (A(t)) and the inequality kR(A(t); )k 1 c (1 + j j)

1 ( 23 
)
hold for every t 2 [0; T ] and any 2 S , where R(A(t); ) := (A(t) )

1 and S := f 2 C : jarg j g [ f0g : (24) 
Furthermore, Hypotheses (A1) and (A2) also imply the di¤erentiability of the function t 7 ! R(A(t); ) on [0; T ] with respect to the norm-topology of L(B), whose derivative we require to satisfy the following hypothesis:

(A3) There exist constants a 3 2 R + , ã3 2 (0; 1] such that the inequality

@ @t R(A(t); ) 1 a 3 j j ã3 (25) 
holds for every t 2 [0; T ] and every 2 S f0g.

Hypotheses (A1)-(A3) are the building blocks of the existence theory of solutions to non-autonomous linear parabolic equations developed in [START_REF] Tanabe | Equations of Evolution[END_REF] when D(A(t)) varies with time, thereby providing an evolution system U A (t; s) 0 s t T for Problem [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] when B(t) = 0; however, they are by far not the only su¢cient conditions that allow the construction of the U A (t; s)'s, and we shall indeed dwell a bit on this point and on related matters immediately after the statement of our theorem.

Since we have in mind a generalization of (1) to the time-dependent case, it is then natural to ask whether those conditions remain stable under a suitable class of perturbations B(t) 0 t T of the A(t)'s. We shall see that this is indeed the case provided we impose the following hypotheses: ) is continuously di¤erentiable on [0; T ] with respect to the norm-topology of L(B) and there exists a constant c 2 R + such that the inequality @ @t (B(t)R(A(t); ))

(B1)
1 c
holds for every t 2 [0; T ] and each 2 S .

While Hypothesis (B1) is evidently some kind of relative boundedness condition, we remark that it also imposes a smallness condition on the constant b in [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF]. This will allow us to prove a crucial ingredient for our upcoming arguments to work, namely, the bounded invertibility of A(t) + B(t) for every t 2 [0; T ], which means that even in the case of bounded B(t)'s the admissible perturbations will be limited to those of small norm. Furthermore, whereas the preceding hypotheses indeed guarantee the existence of the evolution system we alluded to above (see Proposition 1 of Section 3), we note that they are not quite su¢ cient to allow the generalization of (1) that we want. For this we still impose the following three conditions.

(A4) The semigroup exp [ sA(t)] s 0 in Hypothesis (A1) is contractive on B for every t 2 [0; T ].

(B4) The operator B(t) is the in…nitesimal generator of a holomorphic semigroup of contractions exp [ sB(t)] s 0 on B for every t 2 [0; T ]; moreover, the function t 7 ! R(B(t); ) is continuous on [0; T ] uniformly in 2 S in the strong topology of L(B), where S is given by [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF] but with

S (B(t))
for some 2 0; 2 .

(D) There exists a dense set D B satisfying

D \ t2[0;T ] D(A(t) + B(t)) (27) 
such that for every v 2 D we have

sup t2(0;T ] kA(t)vk < +1 (28) 
and sup

t2(0;T ] kB(t)vk < +1: (29) 
As is the case for the operator A(t), Hypothesis (B4) also implies the existence of a constant c 2 R + such that the resolvent estimate kR(B(t); )k 1 c (1 + j j) 1 [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] holds for every t 2 [0; T ] and every 2 S ; moreover, our arguments below will show that in the particular case of time-independent B's, we can weaken Hypothesis (B4) by only requiring that exp [ sB] s 0 be a C 0 -contraction semigroup.

Under these conditions we can formulate our main result as follows.

Theorem. Assume that Hypotheses (A1)-(A3) and (B1)-(B3) hold. Then there exists an evolution system U A+B (t; s) 0 s t T solving Problem [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] such that the following properties are valid for all s; t with 0 s < t T :

(1) The range of U A+B (t; s) satis…es

Ran U A+B (t; s) D(A(t) + B(t)) = D(A(t)): (31) 
Moreover, the operator-valued function t 7 ! U A+B (t; s) is continuously di¤ erentiable with respect to the norm-topology of L(B) and we have

@U A+B (t; s) @t = (A(t) + B(t))U A+B (t; s) 2 L(B)
with the estimate @U A+B (t; s) @t 1 c(t s)

1
for some c 2 R + independent of s; t. Finally, the operator-valued function s 7 ! U A+B (t; s) is also di¤ erentiable with respect to the norm-topology of L(B) and we have @U A+B (t; s) @s 2 L(B)

with the same estimate as above, namely,

@U A+B (t; s) @s 1 c(t s) 1
where @U A+B (t;s) @s stands for the bounded linear extension of U A+B (t; s)(A(s) + B(s)) on B.

(2) In addition to the above hypotheses, if (A4), (B4) and (D) hold then for all s; t with 0 s t < T we have the Trotter-Kato product formula

U A+B (t; s) (32) = lim n!+1 0 Y =n 1 exp t s n A s + n (t s) exp t s n B s + n (t s)
in the strong topology of L(B).

Remarks.

(1) Aside from Hypotheses (A1)-(A3), there exist several other su¢ cient conditions that would have allowed the construction of the U A (t; s)'s when B(t) = 0; we refer the reader for instance to [START_REF] Acquistapace | A Uni…ed Approach to Abstract Linear Nonautonomous Parabolic Equations[END_REF] for a general and thorough investigation of such conditions and of the relations among them. In particular, we could have used Hypotheses I and II of that paper in the somewhat stronger form introduced in [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] and [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF] to get such a result. There also exist various su¢ cient conditions which could have lead to the existence of perturbed evolution systems U A+B (t; s) for suitable classes of B(t)'s, for example those put forward in [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] and [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF]. However, a basic di¢ culty emerges there when one tries to prove a product formula such as [START_REF] Sayapova | The Evolution Operator for Time-Dependent Potentials of Zero Radius[END_REF] for them; thus, while the U A+B (t; s)'s of Theorem 9.19 in [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF] are only de…ned for almost every t > s and lack differentiability properties, those of Theorem 4.2 in [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] are only weakly locally di¤ erentiable relative to the time variable and satisfy an equation such as [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] almost everywhere. A direct consequence of this is that such evolution systems are not amenable to the method of proof we develop in the next section, which requires the U A+B (t; s)'s to be once continuously di¤erentiable in t relative to the strong topology of L(B); furthermore, such a strong smoothness property does not readily follow from our hypotheses regarding the B(t)'s unless we assume more regularity properties on the perturbations (see, for instance, [START_REF] Kato | On the Abstract Evolution Equation[END_REF] for results in this direction). In short, it is thus far the general framework of [START_REF] Tanabe | Equations of Evolution[END_REF] that has allowed us to prove the above theorem and to deal with all the examples we have in mind in a relatively simple and direct way . Of course, whether one can prove a Trotter-Kato formula such as [START_REF] Sayapova | The Evolution Operator for Time-Dependent Potentials of Zero Radius[END_REF] under the sole conditions of [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF], [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF], or under even more general conditions, remains an interesting open problem at this time.

(2) It is clear that the condition 0 2 (A(t)) \ (B(t)) stemming from Hypotheses (A1), (B4) is imposed only for convenience, as the conclusions of our theorem still hold without this restriction; in particular, [START_REF] Sayapova | The Evolution Operator for Time-Dependent Potentials of Zero Radius[END_REF] remains unaltered by the addition of constants to A(t) or B(t). It is also clear that if both A(t) and B(t) are independent of t, formula (32) reduces to the form (1). However, in the time-dependent case we ought to point out that the …rst factor on the right-hand side of (32) only involves the contraction semigroup exp [ sA(t)] s 0 and not the full evolution system U A (t; s) 0 s t T . Then, by choosing B = 0 in (32) we obtain

U A (t; s) = lim n!+1 0 Y =n 1 exp t s n A s + n (t s) ; (33) 
which provides the new and simple way of reconstructing the U A (t; s)'s from the exp [ sA(t)]'s we alluded to above. In Section 4 we shall also consider two examples for which we can prove (33) more directly by means of Euler's summation formula.

(3) While ( 32) and ( 33) hold in the strong topology of L(B), an issue of independent interest is whether there might exist simple and natural conditions which would imply the convergence of these approximations in the normtopology of that space. We refer the reader to [START_REF] Cachia | Operator-Norm Approximation of Semigroups by Quasi-Sectorial Contractions[END_REF], [START_REF] Ichinose | Error Estimate in Operator Norm of Exponential Product Formulas for Propagators of Parabolic Evolution Equations[END_REF], [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF] and [START_REF] Zagrebnov | Quasi-Sectorial Contractions[END_REF] for some results and discussions in this direction in a di¤erent context.

(4) Whereas the above conditions are su¢ cient to ensure the validity of the theorem, they are certainly not optimal since we did not strive for maximal generality. In particular, they are not all necessary when applied to parabolic problems that exhibit a variational structure; this is easy to understand in light of the theory developed in [START_REF] Tanabe | Equations of Evolution[END_REF] since, in that case, proofs can as a rule be obtained under a weaker set of hypotheses. Typical hypotheses of this kind are, for instance, ( 4)-( 6) and ( 18)- [START_REF] Kato | Abstract Evolution Equations of Type in Banach and Hilbert Spaces[END_REF] in the case of ( 9) and [START_REF] Hardy | Divergent Series[END_REF], respectively. In particular, it would be highly desirable to get a proof of (32) under hypotheses of that kind, which, in e¤ect, raises the more general question of proving product formulae by means of the theory of time-dependent quadratic forms. To the best of our knowledge this is an open problem, whereas the time-independent case was settled in [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF], of which a special case can be found in [START_REF] Davies | One-Parameter Semigroups[END_REF]. We shall come back to this point in Section 4.

(5) Our theorem o¤ers an alternative approach to Kato's theory of nonautonomous parabolic evolution equations which was developed many years ago in [START_REF] Kato | Abstract Evolution Equations of Type in Banach and Hilbert Spaces[END_REF]. Since that time this theory has been successfully applied to numerous speci…c problems particularly when the domains of the operators involved are time-independent (see, for instance, [START_REF] Johnson | The Feynman Integral and Feynman's Operational Calculus[END_REF], [START_REF] Kato | Abstract Evolution Equations of Type in Banach and Hilbert Spaces[END_REF], [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤ erential Equations[END_REF], [START_REF] Tanabe | Equations of Evolution[END_REF] and the references therein). However, when those domains become time-dependent Kato's theory imposes rather strong invariance conditions which are as a rule very di¢ cult to check in practice, particularly in concrete examples of partial di¤erential equations with time-varying boundary conditions such as [START_REF] Davies | One-Parameter Semigroups[END_REF]. This remark applies, for instance, to the veri…cation of the …rst product formula in [START_REF] Nickel | Evolution Semigroups and Product Formulas for Nonautonomous Cauchy Problems[END_REF], which, incidentally, does bear some formal resemblance with [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF]. By contrast, our result does not require any such invariance conditions and thereby allows us to treat a wide class of such models as we shall see below. Finally, we also would like to mention [START_REF] Gulisashvili | Non-Autonomous Kato Classes and Feynman-Kac Propagators[END_REF] and its numerous references for a systematic account of certain recent probabilistic developments of Kato's theory in the non-autonomous case, including the analysis of the related Feynman-Kac propagators.

We devote the next section of this article to the proof of the above theorem.

Proof of the Main Result

Our preliminary remark is the following lemma, whose proof is immediate by induction and therefore omitted.

Lemma 1. For every n 2 N + \ [3; +1) let (U ) 2f1;:::;ng and (V ) 2f1;:::;ng be two families of operators in L(B); then the identity

1 Y =n U 1 Y =n V = 2 Y =n U (U 1 V 1 ) + n 1 X =2 +1 Y =n U (U V ) 1 Y = 1 V + (U n V n ) 1 Y =n 1 V (34) 
holds. Furthermore, for every n 2 N + and any U; V 2 L(B) we have

U n V n = n X =1 U n (U V )V 1 : (35) 
In what follows we write I for the identity operator on B and recall that C(t) = A(t) + B(t). The stability of the basic properties of the A(t)'s relative to the perturbation by the B(t)'s is stated in the following result.

Lemma 2. (a) Assume that Hypotheses (A1) and (B1) hold. Then for any t 2 [0; T ] the operator C(t) is the in…nitesimal generator of a holomorphic semigroup on B. Moreover, for every such t the operator C(t) is invertible and we have C 1 (t) 2 L(B).

(b) Assume that Hypotheses (A1), (A2), (B1) and (B 2) hold. Then the function t 7 ! C 1 (t) is continuously di¤ erentiable with respect to the normtopology of L(B) and there exist constants c 2 2 R + , c2 2 (0; 1] such that the Hölder continuity estimate

dC 1 (t) dt dC 1 (s) ds 1 c 2 jt sj c2
is valid for every s; t 2 [0; T ].

(c) Assume that Hypotheses (A1), (A3), (B1) and (B3) hold. Then there exist constants c 3 2 R + , c3 2 (0; 1] such that the inequality @ @t R(C(t); )

1 c 3 j j c3 (36) 
holds for every t 2 [0; T ] and each 2 S f0g.

Proof. In order to prove (a), it is su¢ cient to show that S (C(t)) and that kR(C(t);

)k 1 c (1 + j j) 1 (37) 
for every t 2 [0; T ] and each 2 S for some c 2 R + independent of t and , where S is given by [START_REF] Lions | Équations Di¤ érentielles Opérationnelles et Problèmes aux Limites[END_REF]. Let 2 S and let us choose v = R(A(t); )w in [START_REF] Neidhardt | Trotter-Kato Product Formula and Operator-Norm Convergence[END_REF] where w 2 B f0g is arbitrary; then, by virtue of ( 23) and the choice of a; b in Hypothesis (B1) we have

kB(t)R(A(t); )wk (a + bc ) kwk < kwk ; (38) so that (I+B(t)R(A(t); )) 1 2 L(B). Therefore we get R(C(t); ) = R(A(t); )(I+B(t)R(A(t); )) 1 = R(A(t); ) +1 X m=0 ( 1) m (B(t)R(A(t); )) m 2 L(B); (39) 
which implies [START_REF] Vuillermot | A Trotter-Kato Product Formula for a Class of Non-Autonomous Evolution Equations, Trends in Nonlinear Analysis: in Honour of Professor V. Lakshmikantham[END_REF] as a consequence of ( 23) and [START_REF] Yosida | Functional Analysis, Classics in Mathematics Series[END_REF].

In order to prove (b), we …rst remark that (39) implies

C 1 (t) = A 1 (t)D(t) (40) 
when = 0, where we have de…ned

D(t) := (I+B(t)A 1 (t)) 1 = +1 X m=0 ( 1) m B(t)A 1 (t) m for every t 2 [0; T ].
According to Hypothesis (A2) and (40), it is then su¢ cient to prove that the function t 7 ! D(t) is continuously di¤erentiable with respect to the norm-topology of L(B) on [0; T ] and that its derivative t 7 ! dD(t) dt is Hölder continuous there; but this follows from Hypothesis (B2) and standard arguments based on the decomposition formulae [START_REF] Simon | Quantum Mechanics Hamiltonians De…ned as Quadratic Forms[END_REF] and [START_REF] Tanabe | Equations of Evolution[END_REF].

The starting point for the proof of (c) is ( 39), which we rewrite as

R(C(t); ) = R(A(t); )D(t; )
by analogy with (40), where we have de…ned

D(t; ) := (I+B(t)R(A(t); )) 1 = +1 X m=0 ( 1) m (B(t)R(A(t); )) m :
On the one hand, it follows from the preceding expression and (38) that the function t 7 ! D(t; ) is bounded in the norm-topology of L(B) on [0; T ] uniformly in 2 S . On the other hand, it also follows from standard arguments that the function t 7 ! D(t; ) is continuously di¤erentiable with respect to the normtopology of L(B) on [0; T ], and that the representation

@D(t; ) @t = +1 X m=1 ( 1) m m 1 X k=0 (B(t)R(A(t); )) k @(B(t)R(A(t); )) @t (B(t)R(A(t); )) m k 1
holds as a convergent series in the Banach space of all continuous mappings from [0; T ] into L(B) endowed with the uniform topology. From this, [START_REF] Yosida | Functional Analysis, Classics in Mathematics Series[END_REF] and Hypothesis (B3) we then infer that the estimate

sup t2[0;T ] @D(t; ) @t 1 +1 X m=1 m m 1 ! @(B(t)R(A(t); )) @t 1 c < +1
is valid uniformly in 2 S . Consequently, since we have

@ @t R(C(t); ) = R(A(t); ) @D(t; ) @t + @ @t R(A(t); ) D(t; )
we evidently get

@ @t R(C(t); ) 1 c kR(A(t); )k 1 + @ @t R(A(t); ) 1 c c (1 + j j) 1 + a 3 j j ã3 c 3 j j ã3
for some c 3 2 R + for every 2 S f0g, by virtue of ( 23), [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF] and the fact that ã3 2 (0; 1]; we may thus choose c3 = ã3 . Lemma 2 along with Tanabe's theory developed in [START_REF] Tanabe | Equations of Evolution[END_REF] then imply the following result.

Proposition 1. Assume that Hypotheses (A1)-(A3) and (B1)-(B3) hold. Then, there exists an evolution system U A+B (t; s) 0 s t T for Problem [START_REF] Kato | Trotter's Product Formula for an Arbitrary Pair of Self-Adjoint Contraction Semigroups[END_REF] such that Statement (1) of the theorem holds for every s; t with 0 s < t T .

The remaining results are, therefore, preparatory statements which will lead to our proof of the product formula. From now on we may assume that t 2 (s; T ) since Statement (2) of the theorem trivially holds for t = s, and begin with the following uniformity result which is the consequence of an elementary compactness argument. Lemma 3. Let (R(h; r)) (h;r)2(0;T t] (s;t] L(B) be a family of operators satisfying sup

(h;r)2(0;T t] (s;t] kR(h; r)k 1 < +1: (41) 
Furthermore let K B be compact, let I be any subinterval of (s; t] and assume that the limit lim

h!0 R(h; r)v = 0 (42)
exists for every v 2 K in the strong topology of B uniformly in r 2 I. Then, (42) holds uniformly in v 2 K.

Proof. On the one hand, if the preceding conclusion does not hold there exist 2 R + along with a sequence

(h n ) (0; T t] satisfying h n < 1 n , together with sequences (r n ) I, (v n ) K, such that the inequality kR(h n ; r n )v n k > (43)
holds true for every n 2 N + . On the other hand, because of the compactness of K we may assume that v n ! v 2 K in the strong topology of B when n ! +1, so that by virtue of ( 41) and (42) the estimate

kR(h n ; r n )v n k kR(h n ; r n )(v n v )k + kR(h n ; r n )v k c kv n v k + kR(h n ; r n )v k
is valid for every n N ( ; v ) for some N ( ; v ) 2 N + , thereby contradicting (43).

We now introduce three families of linear operators on B whose properties will be crucial in our proof of Statement (2) below; indeed we de…ne E(h; r); F (h; r), G(h; r) by

E(h; r) = h 1 (I exp [ hA(r)]) A(r); F (h; r) = h 1 exp [ hA(r)] (I exp [ hB(r)]) B(r); G(h; r) = h 1 (I U A+B (r + h; r)) C(r) (44) 
for every (h; r) 2 (0; T t] (s; t], respectively. From these relations and the de…nition of the generator C(r) we then obtain

E(h; r) + F (h; r) G(h; r) = h 1 (U A+B (r + h; r) exp [ hA(r)] exp [ hB(r)]): (45) 
The following result unveils the behavior of these operators when h ! 0, and part of its proof is a consequence of a repeated application of Lemma 3.

Lemma 4. Assume that the same hypotheses as in Proposition 1 hold; moreover, assume that Hypotheses (A4) and (D) hold, along with the C 0 -continuity and the contractive property of Hypothesis (B4). Then we have

lim h!0 sup r2(s;t] kE(h; r)U A+B (r; s)wk = lim h!0 sup r2(s;t] kF (h; r)U A+B (r; s)wk = lim h!0 sup r2(s;t] kG(h; r)U A+B (r; s)wk = 0 (46)
for every t 2 (0; T ) and each w 2 D.

Proof. In order to prove the …rst two relations in (46), it is su¢ cient to show that the two limits

lim h!0 sup r2[s+ ;t] kE(h; r)U A+B (r; s)wk = lim h!0 sup r2[s+ ;t] kF (h; r)U A+B (r; s)wk = 0 (47)
hold uniformly in 2 (0; t s), respectively. From the de…nition of E(h; r) and a general property of C 0 -semigroups we may write Therefore, (48) indeed emerges as a consequence of Lemma 3.

E(h; r)U A+B (r; s)w = h 1
We now proceed in much the same way to prove the second relation in (47). We start with the integral representation 

F (h; r)U A+B (r; s)w = h 1 Z h 0 dk (exp [ hA(r)] exp [ kB(r)] I) B(
G(h; r)U A+B (r; s)w = h 1 Z r+h r dk (C(k)U A+B (k; s)w C(r)U A+B (r; s)w) (56) 
which is a simple consequence of Statement (1) of the theorem and of the third relation in (44). Since that statement also implies the uniform continuity of the function k ! C(k)U A+B (k; s)w C(r)U A+B (r; s)w with respect to the strong topology of B on the compact interval [r; r + h], we may conclude that for every 2 R + there exists an h 2 R + such that the inequalities 0 k r h h together with (56) lead to the estimate kG(h; r)U A+B (r; s)wk uniformly in r 2 (s; t], which is the desired result.

Finally, we will still need the following continuity result. Proof. The proof of (57) follows from the standard arguments of [START_REF] Tanabe | Equations of Evolution[END_REF]. As for (58) we …rst prove the right-continuity at r = s; for this we start by noticing that the analyticity part of Hypothesis (B4) allows us to write

exp [ (r s)B(r)] v = 1 2 i Z r;s d e (r s) R(B(r); )v (59) 
for every v 2 B and each r 2 (s; t], where r;s := 1;r;s [ 2;r;s [ 3;r;s is the union of the three paths 1;r;s = e i : 1 r s < +1 ; The orientation we choose for r;s is that of increasing values of Im . From the residue theorem and the chosen orientation of r;s we then easily obtain

1 2 i Z r;s d e (r s) 1 = 1;
so that we may write

exp [ (r s)B(r)] v v = 1 2 i Z r;s d e (r s) R(B(r); ) + 1 v = 1 2 i Z r;s d e (r s) 1 R(B(r); )B(r)v = 1 2 i Z 0 d e 1 R B(r); r s B(r)v (60) 
for every v 2 D, the dense set of Hypothesis (D), where the new integration path 0 := (r s) r;s in (60) is independent of r and s. Therefore, owing to ( 29) and ( 30 the orientation being the same as before. Let us …x r 2 (s; t), let (r n ) n2N + be any sequence such that r n > r with r n ! r as n ! +1 and write

exp [ (r s)B(r)] v exp [ (r n s)B(r n )] v = 1 2 i Z d e (r s) (R(B(r); ) R(B(r n ); )) v + 1 2 i Z d e (r s) 1 e (rn r) R(B(r n ); )v: (61) 
From the continuity part of Hypothesis (B4) we have

lim n!+1 sup 2S k(R(B(r); ) R(B(r n ); )) vk = 0;
which indeed implies that

lim n!+1 Z d e (r s) (R(B(r); ) R(B(r n ); )) v = 0 (62) 
strongly in B for every v since Z jd j e (r s) < +1:

Furthermore, the norm of the integrand in the second term on the right-hand side of (61) goes to zero as n ! +1 for every 2 . Moreover, owing to [START_REF] Räbiger | Non-Autonomous Miyadera Perturbations[END_REF] and to our choice of the r n 's we can estimate that norm as e (r s) 1 e (rn r) R(B(r n ); )v c e (r s) 1 + j j kvk uniformly in n, so that we eventually get

lim n!+1 Z d e (r s) 1 e (rn r) R(B(r n ); )v = 0 (63) 
strongly in B for every v by dominated convergence since Z jd j e (r s) 1 + j j < +1:

A similar argument holds for r 2 (s; t] if (r n ) n2N + is any sequence such that r n < r with r n ! r as n ! +1. This, together with (61)-(63) proves the desired continuity away from r = s. Evidently, if the B's are independent of r the C 0 -continuity of exp [ sB] s 0 alone gives the result.

We are now ready for the following.

Proof of the theorem. By virtue of Proposition 1 it remains to prove Statement (2). For every n 2 N + su¢ ciently large we set h = t s n and de…ne the sequence of products (P n (t; s)) L(B) by

P n (t; s) = U A+B (t; s) 1 Y =n exp [ hA (s + ( 1)h)] exp [ hB (s + ( 1)h)] :
Since both exp [ sA(t)] s 0 and exp [ sB(t)] s 0 are semigroups of contractions for every t 2 [0; T ] the sequence (P n (t; s)) is bounded in L(B), so that in order to prove the product formula it is su¢ cient to show that P n (t; s)v ! 0 as n ! +1 in the strong topology of B for every v 2 D, the dense set of Hypothesis (D).

To this end we choose the two families (U ) 2f1;:::;ng , (V ) 2f1;:::;ng of Lemma 1 as

U = U A+B (s + h; s + ( 1)h); V = exp [ hA (s + ( 1)h)] exp [ hB (s + ( 1)h)] ;
respectively; owing to the basic composition law of the U A+B (t; s)'s and by virtue of Lemma 1 we then have after some rearrangements

P n (t; s) = n 1 X =1 +1 Y =n V (V U ) U A+B (s + ( 1)h; s) +(U n V n )U A+B (s + (n 1)h; s):
Therefore, for every v 2 D and by using again the estimate

+1 Y =n V 1 1
we obtain the inequalities We devote the next section to the discussion of some examples illustrating the statements of our main theorem.

kP n (t; s)vk n X =1 k(U V )U A+B (s

Some Simple Examples

While it is clear that our theorem has a wide range of potential applications, we shall restrict ourselves here to the simplest situations. We …rst consider a particular case of [START_REF] Davies | One-Parameter Semigroups[END_REF], namely, the class of parabolic initial-value problems given by @u(x; t) @t = div(k(x; t)ru(x; t)) ({ + "m(x; t)) u(x; t); (x; t) 2 D (0; T ] ; u(x; 0) = u 0 (x); x 2 D; @u(x; t) @n(k) = 0; (x; t) 2 @D (0; T ] :

In this case (13) reduces to b " (t; v; w) = "

Z D dxm(x; t)v(x)w(x)
and thus extends to a Hermitian sesquilinear form on B =L 2 (D; C), so that the associated multiplication operator B " (t) := "B(t) is bounded and self-adjoint there. In order for (65) to …t the theory of the preceding section, however, we need to impose stronger conditions on the coe¢ cients than (K) and (M) do.

The following smoothness requirements are su¢ cient for this purpose.

(K 0 ) We have k : D [0; T ] 7 ! R d 2 and for every i; j 2 f1; :::; dg the functions (x; t) 7 ! k i;j (x; t) = k j;i (x; t) are continuously di¤erentiable on D [0; T ]; moreover, the ellipticity condition (3) holds and there exist constants c 0 2 R + , 0 2 (0; 1] such that the Hölder continuity estimate max i;j2f1;:::;dg @k i;j (x; t) @t @k i;j (x; s) @s c 0 jt sj 0 (66) is valid for every x 2 D and every s; t 2 [0; T ].

(M 0 ) We have m 2 L 1 (D [0; T ] ; R + ) and t 7 ! m(x; t) is continuously dif- ferentiable on [0; T ] uniformly in x 2 D with @m @t 2 L 1 (D [0;
T ] ; R); moreover, the Hölder continuity estimate @m(x; t) @t @m(x; s) @s c 0 jt sj 0 holds for every x 2 D and every s; t 2 [0; T ].

We then have the following result.

Proposition 2. Assume that Hypotheses (K 0 ) and (M 0 ) hold ; then, all the conclusions of the theorem are valid for the evolution system given by [START_REF] Hardy | Divergent Series[END_REF]. In particular, for all s; t with 0 s t < T and every " 2 R + su¢ ciently small we have

U A+B" (t; s) (67) = lim n!+1 0 Y =n 1 exp t s n A s + n (t s) exp t s n B " s + n (t s)
in the strong topology of L(L 2 (D; C)), where exp [ sA(t)] s 0 and exp [ sB " (t)] s 0 are the semigroups generated by [START_REF] Chernoff | Semigroup Product Formulas and Addition of Unbounded Operators[END_REF] and B " (t), respectively. Thus, the reconstruction formula (33) also holds in this case.

The proof of Proposition 2 rests on several lemmas and remarks. Without restricting the generality, we …rst choose { k in (65). Then, the operator given by [START_REF] Chernoff | Semigroup Product Formulas and Addition of Unbounded Operators[END_REF] satis…es Hypotheses (A1), (A4) as an immediate consequence of standard Lax-Milgram arguments and elliptic regularity theory; moreover, Hypothesis (B1) trivially holds for " su¢ ciently small since B " (t) is bounded. The veri…cation of the remaining hypotheses requires more work; we settle the question regarding (A2) with the following result. Lemma 6. Assume that Hypothesis (K 0 ) holds; then, the function t 7 ! A 1 (t)f is strongly di¤ erentiable in L 2 (D; C) for every f ; moreover, we have It is plain that the preceding construction implies the existence of a linear bounded operator dA 1 (t)

d dt A 1 (t)f 2 H 1 (D; C)
dt : L 2 (D; C) 7 !H 1 (D; C) satisfying du(t) dt = dA 1 (t)
dt f , so that the validity of Hypothesis (A2) indeed emerges as a direct consequence of Lemma 6.

We now turn to Hypothesis (A3), whose veri…cation rests on the following result.

Lemma 7. Assume that Hypothesis (K 0 ) holds; then, the function t 7 ! R(A(t); )f is strongly di¤ erentiable in L 2 (D; C) for every f ; moreover, we have @ @t R(A(t); )f 2 H 1 (D; C) and there exists a constant a 3 2 R + such that the estimate @ @t R(A(t); )f

1;2 a 3 j j 1 2 kf k 2 (76)
holds for every t 2 [0; T ], every f 2 L 2 (D; C) and every 2 S f0g.

Proof. Let us …x 2 (A(t)); it is easy to prove the strong di¤erentiability of t 7 ! R(A(t); )f by relating R(A(t); )f to A 1 (t)f by means of the resolvent identity; we obtain

@ @t R(A(t); )f = (I + R(A(t); )) dA 1 (t) dt (I + R(A(t); )) f (77)
for every t 2 [0; T ] and every f 2 L 2 (D; C). Furthermore, (77) and the de…nition of dA 1 (t) dt give @ @t R(A(t); )f 2 H 1 (D; C). Let us now …x 2 0; 2 and 2 S f0g in order to prove (76). For this we rely again on the variational structure of the problem; writing u(t; ) := R(A(t); )f with u(t; ) 2 D(A(t)) and arguing exactly as in the proof of Lemma 6 we eventually get the relation a t; @u(t; ) @t ; w + { @u(t; ) @t ; w 2 @u(t; ) @t ; w

2 = d X i;j=1 Z D dx @k i;j (x; t) @t u xi (x; t; )w xj (x)
valid for every t 2 [0; T ] and every w 2 H 1 (D; C), which reduces to a t; @u(t; ) @t ; @u(t;

) @t + { @u(t; ) @t 2 2 @u(t; ) @t 2 2 = d X i;j=1 Z D dx @k i;j (x; t) @t u xi (x; t; ) @ u(x; t; ) @t xj ( 78 
)
by choosing w = @u(t; ) @t . We …rst prove (76) for arg with Re > 0, Im > 0; for this we take the real and imaginary parts of (78) to obtain Re @u(t; ) @t 2 2 = a t; @u(t; ) @t ; @u(t;

) @t + { @u(t; ) @t 2 2 + Re d X i;j=1 Z D dx @k i;j (x; t) @t u xi (x; t; ) @ u(x; t; ) @t xj ( 79 
)
and

Im @u(t; ) @t 2 2 = Im d X i;j=1 Z D dx @k i;j (x; t) @t u xi (x; t; ) @ u(x; t; ) @t xj ; (80) 
respectively. From (79), (80), the fact that the form a+{ is coercive on H 1 (D; C) and from the boundedness of the @ki;j @t 's we then get k @u(t; ) @t 

; that is, @ @t R(A(t); )f 1;2 c kR(A(t); )f k 1;2 (81) 
for every t 2 [0; T ] and every f 2 L 2 (D; C). But from standard estimates for the resolvent of time-dependent sectorial operators (see, for instance, [START_REF] Tanabe | Equations of Evolution[END_REF]) we have in this case kR(A(t); )f k 1;2 c j j

1 2 kf k 2 (82)
so that (76) indeed follows from (81) and (82). The proof of (76) when arg with Re > 0, Im < 0, or when Re 0 with 6 = 0, follows from similar arguments and is thereby omitted.

It remains to verify Hypotheses (B2)-(B4) and (D). As far as (B2) and (B3)

are concerned, it is su¢ cient to prove that the function t 7 ! B(t) is continuously di¤erentiable with respect to the norm-topology of L(L 2 (D; C)) and that its derivative dB(t) dt is Hölder continuous there, for then the result follows from Lemma 6 and (77), respectively; but these required properties of B(t) are immediate consequences of Hypothesis (M 0 ).

As for Hypothesis (B4), the semigroup generated by B(t) is the multiplication operator exp [ sB(t)] f = exp [ sm(:; t)] f on L 2 (D; C) and is clearly holomorphic and contractive since B(t) is self-adjoint and m(:; t) 0 for every t 2 [0; T ]; consequently, the only point that requires attention is the continuity of t 7 ! R(B(t); ), although we can easily establish the continuity of (58) directly in this case since the B(t)'s are bounded. However, we wish to present an independent argument which easily carries over to the case of certain unbounded B(t)'s. For this we assume without restricting the generality that m := inf (x;t)2D [0;T ] m(x; t) > 0.

Lemma 8. The mapping t 7 ! R(B(t); ) is Lipschitz continuous on [0; T ] in the norm-topology of L(B) uniformly in 2 S for every 2 4 ; 2 .

Proof. Let us write Ran m for the range of m; if 2 C Ran m then from the relation

R(B(t); )f (x) = f (x) m(x; t)
and the fact that t 7 ! m(x; t) is Lipschitz continuous uniformly in x as a consequence of Hypothesis (M 0 ) we readily obtain

kR(B(t); )f R(B(s); )f k 2 c jt sj d 2 m; kf k 2 (83) 
for every f 2 L 2 (D; C) and every s; t 2 [0; T ], where

d m; := inf (x;t)2D [0;T ] jm(x; t) j > 0
is the distance between and Ran m. In order to get the desired uniformity in (83), it is thus su¢ cient to prove that

d m := inf 2S d m; > 0. (84) 
Let us …x 2 4 ; 2 ; we …rst prove (84) for arg with Re > 0, Im > 0. On the one hand, if Re 2 (0; m) we have

d 2 m; (Im ) 2 + (m Re ) 2 (Re ) 2 tan 2 + m 2 2m Re (Re ) 2 tan 2 + m 2 1 1 29
for every 2 R + by using Cauchy's interpolated inequality, so that by choosing = tan 2 we obtain

d 2 m;
m 2 1 tan 2 > 0 thanks to our choice of . On the other hand, if Re 2 [m; +1) we get

d m; Im Re tan m tan > 0:
The remaining cases when arg with Re > 0, Im < 0, or when Re 0 can be dealt with in a similar way, thereby proving (84).

Finally, Hypothesis (D) is a straightforward consequence of (K 0 ), (M 0 ) and Gauss'divergence theorem if we choose, for instance, D = C 2 0 (D; C), the space of all complex-valued, twice continuously di¤erentiable functions with compact support in D.

Remarks. (1) The statement of Proposition 2 is, therefore, a direct consequence of the above considerations and our main theorem since (K 0 ) obviously implies (K) while (M 0 ) implies (M). Indeed, by uniqueness, the evolution systems U A (t; s) 0 s t T and U A+B" (t; s) 0 s t T of Proposition 2 are then exactly the same as those de…ned by ( 9) and ( 17), respectively. But the natural question that is now emerging is whether the product formula (67) might hold under (K) and (M) alone; this is not immediate for Hypothesis (D) is not necessarily veri…ed under these two conditions and, furthermore, some aspects of our proof of (32) are not completely independent of the existence proof for U A+B (t; s) 0 s t T . In fact, a rigorous proof of (67) under the sole set of conditions (K) and (M) is lacking at the moment, though we conjecture that this result is true. In any case, this brings us back to the third remark following the statement of the theorem.

(2) The fact that (67) holds with U A+B" (t; s) given by [START_REF] Hardy | Divergent Series[END_REF] where G A+B" is now the parabolic Green's function associated with the di¤erential operator in (65) allows one to express the solution to this problem in the form of a Feynman-Kac formula. This is of course invaluable information for what regards the analysis of solutions to related semilinear initial-boundary value problems. However, we will not dwell on this any further in this paper, as we want to defer such detailed applications to a separate publication.

The above conjecture is all the more reinforced by the fact that some of the hypotheses of the preceding section are not necessary for our formulae to be valid in some simpler models. A case in point is the following example, which is a particular case of (65), namely, the class of parabolic initial-value problems of the form @u(x; t) @t = k(t)4u(x; t) {u(x; t); (x; t) 2 D (0; T ] ; u(x; 0) = u 0 (x); x 2 D; @u(x; t) @n(x) = 0; (x; t) 2 @D (0; T ] ;

where k 2 C 1 ([0; T ] ; R + ). Hypothesis (K) is here trivially satis…ed and the selfadjoint, positive operator

A(t) := k(t)4 + { in L 2 (D; C) is de…ned on the time-independent domain D(A(t)) = v 2 H 2 (D; C) : (rv(x); n(x)) C d = 0; x 2 @D
since k is a scalar function. Furthermore, Hypothesis (A1) holds if { is su¢ciently large but Hypothesis (A2) does not since we cannot expect [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] to be satis…ed without requiring the derivative k 0 to be Hölder continuous. Nevertheless, there exists an evolution system U A (t; s) 0 s t T for (85), namely,

U A (t; s) = e {(t s) exp Z t s dyk(y)4 ; (86) 
and our point with this example is to show that we can also reconstruct (86) by means of [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF]. In fact, on the one hand we have

0 Y =n 1 exp t s n A s + n (t s) = e {(t s) exp " t s n n 1 X =0 k s + n (t s) 4 # ; (87) 
and on the other hand we may write

n 1 X =0 k s + n (t s) = Z n 1 0 dyk s + y n (t s) + 1 2 k(s) + k s + n 1 n (t s) + t s n Z n 1 0 dy y [y] 1 2 k 0 s + y n (t s) (88) 
by Euler's summation formula, with [y] the integral part of y (see, for instance, [START_REF] Hardy | Divergent Series[END_REF]). Regarding the …rst term on the right-hand side of (88) we have

lim n!+1 t s n Z n 1 0 dyk s + y n (t s) = Z t s dyk(y) (89) 
since k is smooth, while for the remaining two terms we get

lim n!+1 t s 2n k(s) + k s + n 1 n (t s) = lim n!+1 t s n 2 Z n 1 0 dy y [y] 1 2 k 0 s + y n (t s) = 0; (90)
the last equality in the preceding expression being a consequence of the boundedness of y 7 ! y [y] 1 2 and k 0 . Consequently, owing to (87)-( 90) and to the C 0 -continuity of the underlying di¤usion semigroup generated by the Laplacian we get exp

Z t s dyk(y)4 = lim n!+1 exp " t s n n 1 X =0 k s + n (t s) 4 # (91) 
in the strong topology of L(L 2 (D; C), as desired.

Along with (91), we remark that in the preceding example Hypothesis (D) also holds if we choose once more D= C 2 0 (D; C). Since that hypothesis plays an important rôle in the proof of ( 32) and ( 33) within our abstract setting, we may then tend to believe that it is also necessary for those product formulae to hold. We now show that even this is not the case by considering a third example related to one very brie ‡y mentioned at the end of [START_REF] Kato | Abstract Evolution Equations of Type in Banach and Hilbert Spaces[END_REF]. Let us consider the initial value problem

du(x; t) dt = u(x; t) (t x) 2 ; (x; t) 2 (0; 1) (0; 1] ; u(x; 0) = u 0 ; x 2 (0; 1) (92) 
in L 2 ((0; 1); C), that is, ( 21) with T = 1, B(t) = 0 and the A(t)'s self-adjoint, multiplication operators de…ned by

A(t)v(x) := v(x) (t x) 2 (93) 
on the maximal, time-dependent domains

D(A(t)) = ( v 2 L 2 ((0; 1); C) : Z 1 0 dx jv(x)j 2 (t x) 4 < +1 ) (94) 
where t 2 [0; 1]. In this case Hypothesis (D) does not hold since we have the rather extreme opposite situation where

\ t2[0;1] D(A(t)) = f0g : (95) 
In fact, let v 2 \ t2[0;1] D(A(t)) and 2 R + su¢ ciently small; on the one hand, by using Schwarz inequality we have

(2 ) 1 Z t+ t dx jv(x)j (2 ) 1 Z t+ t dx(t x) 4 1 2 kA(t)vk 2 c 3 2 kA(t)vk 2 ! 0 (96)
for every t 2 (0; 1) as ! 0 + . On the other hand, we infer from standard one-dimensional Lebesgue integration theory that lim !0+

(2 )

1 Z t+ t dx jv(x)j = jv(t)j
for almost every t 2 (0; 1), which, together with (96), indeed implies v = 0 in L 2 ((0; 1); C). In spite of this fact and by means of yet another application of Euler's summation formula, we now prove that (33) holds for all s; t with 0 s t 1 in the strong topology of L 2 ((0; 1); C), thereby showing that the reconstruction of the full evolution system from the semigroups generated by the A(t)'s is possible in this case as well. On the one hand, the holomorphic semigroup generated by A(t) is the contraction semigroup given by

exp [ sA(t)] v(x) = exp " s (t x) 2 # v(x) (97) 
for every s 2 R + and any v 2 L 2 ((0; 1); C). On the other hand, an explicit calculation from (92) shows that the corresponding evolution system U A (t; s) 0 s t 1 in B = L 2 ((0; 1); C) also exists in the form of the multiplication operators

U A (t; s)v(x) = ( exp h (t x) 1 (s x) 1 i v(x) if x 2 (0; s) [ (t; 1) ; 0 if x 2 (s; t) : ) (98)
We begin our analysis of the reconstruction with the following auxiliary result. Proposition 3. For every v 2 L 2 ((0; 1); C) and all s; t with 0 s < t 1 we have

lim n!+1 Z t s dx exp " 2n(t s) n 1 X =0 1 ( (t s) n(x s)) 2 # jv(x)j 2 = 0. Proof. It is su¢ cient to prove that Z t s dx exp " 2n(t s) n 1 X =0 1 ( (t s) n(x s)) 2 # jv(x)j 2 exp 4n t s kvk 2 2 : (99) 
In order to achieve this we write Therefore we obtain the estimate

Z t s dx exp " 2n(t s) n 1 X =0 1 ( (t s) n(x s)) 2 # jv(x)j 2 (100) = n 1 X =0 Z s+( +1) (t s) n s+ (t s) n dx exp " 2n(t s) n 1 X =0 1 ( (t s) n(x s)) 2 # jv(x)
n 1 X =0 1 ( (t s) n(x s)) 2 = X =0 1 ( (t s) n(x s)) 2 + n 1 X = +1 1 ( (t s) n(x s)) 2 > 1 (t s) 2 0 @ X =0 1 ( 1) 2 + n 1 X = +1 1 ( ) 2 1 A > 2 (t s) 2
uniformly in x, and n, so that the substitution of the preceding inequality into the right-hand side of (100) indeed leads to

Z t s dx exp " 2n(t s) n 1 X =0 1 ( (t s) n(x s)) 2 # jv(x)j 2 exp 4n t s n 1 X =0 Z s+( +1) (t s) n s+ (t s) n dx jv(x)j 2 exp 4n t s kvk 2 2 ;
which is (99).

It is more complicated to get the relevant estimates when x 2 (0; s) [ (t; 1). To this end let us introduce the functions f n;t;s (:; x) : [0; n 1] 7 ! R + de…ned by f n;t;s (y; x) := 1 (y(t s) n(x s)) 2 (101) for every n 2 N + \ [2; +1), along with the function f t;s : (0; s) [ (t; 1) 7 ! R given by

f t;s (x) := (t x) 1 (s x) 1 : (102) 
Our second auxiliary result is the following.

Proposition 4. For every v 2 L 2 ((0; 1); C) and all s; t with 0 s < t 1 we have

lim n!+1 Z s 0 dx exp " n(t s) n 1 X =0 f n;t;s ( ; x) # exp [f t;s (x)] 2 jv(x)j 2 = 0 and lim n!+1 Z 1 t dx exp " n(t s) n 1 X =0 f n;t;s ( ; x) # exp [f t;s (x)] 2 jv(x)j 2 = 0:
The proof of this proposition rests on one crucial lemma. We …rst remark that the f n;t;s (:; x)'s are well-de…ned and continuously di¤erentiable on [0; n 1] for every x 2 (0; s) [ (t; 1) since their denominators do not vanish there. Consequently, we may write 

as a variant of Euler's summation formula, where we have de…ned

(y) := Z y 0 dz z [z] 1 2 : 
We remark that satis…es the inequalities The result then follows from a simple dominated convergence argument.

It is now plain that (33) emerges as a consequence of Propositions 3 and 4; in fact, thanks to (97) and ( 101) we have

0 Y =n 1 exp t s n A s + n (t s) v(x) = exp " n(t s) n 1 X =0 f n;t;s ( ; x) # v(x)
for every v 2 L 2 ((0; 1); C), almost every x 2 (0; 1) and all s; t with 0 s < t 1. Therefore, from (98), (102) along with Propositions 3 and 4 we indeed get

U A (t; s)v 0 Y =n 1 exp t s n A s + n (t s) v 2 2 = Z s 0 dx exp " n(t s) n 1 X =0 f n;t;s ( ; x) # exp [f t;s (x)] 2 jv(x)j 2 + Z t s dx exp " 2n(t s) n 1 X =0 f n;t;s ( ; x) # jv(x)j 2 + Z 1 t dx exp " n(t s) n 1 X =0 f n;t;s ( ; x) # exp [f t;s (x)] 2 jv(x)j 2 ! 0
as n ! +1.

Our last example is motivated by some questions related to the theme of singular perturbations of self-adjoint operators. It also illustrates the fact that the theory we developed in the preceding section can be applied to evolution problems de…ned on unbounded domains of Euclidean space and, of course, to the case of unbounded B(t)'s. Thus, let us consider the parabolic initial-value problem

@u(x; t) @t = d 2 dx 2 s(t) x { "m(x; t) u(x; t); (x; t) 2 R (0; T ] ; u(x; 0) = u 0 (x); x 2 R; (112) 
corresponding to a time-dependent, zero-range perturbation at x 2 R involving Dirac's distribution x , with u 0 2 L 2 (R; R) and {; " 2 R + parameters as before.

Problems such as (112) with one or several perturbations supported on a discrete set of points in one or several space dimensions may play an important rôle in the mathematical analysis of the dynamics of one particle di¤using through a set of very small obstacles varying with time (see, for instance, [START_REF] Dell'antonio | A Limit Evolution Problem for Time-Dependent Point Interactions[END_REF] for further information on the subject).

Regarding the strength of the zero-range perturbation we introduce the following condition:

(S) The function s : [0; T ] 7 ! R + is di¤erentiable, and its derivative s 0 is Hölder continuous with Hölder exponent 0 2 (0; 1].

As for the lower order term we impose the following hypothesis: (M 00 ) The function m : R [0; T ] 7 ! R + is measurable with

x 7 ! M(x) := sup t2[0;T ] m(x; t) 2 L 2 (R; R + ): (113) 
Furthermore, the function t 7 ! m(x; t) is di¤erentiable on [0; T ] for every x 2 R and there exist a constant c 0 2 R + , a function H 2 L 2 (R; R + ) such that the Hölder continuity estimate @m(x; t) @t @m(x; s) @s c 0 H(x) jt sj 0 (114) holds for every x 2 R and every s; t 2 [0; T ], where 0 2 (0; 1] may be chosen to be the same as in Hypothesis (S). Finally, we have

x 7 ! N(x) := sup t2[0;T ] @m(x; t) @t 2 L 2 (R; R + ): (115) 
As above, it is here also possible to construct a self-adjoint, positive realization of the operator

A(t) := d 2 dx 2 + s(t) x + { (116) 
in L 2 (R; C), this time as a form sum by considering the Hermitian sesquilinear form a:[0

; T ] H 1 (R; C) H 1 (R; C) 7 ! C de…ned by a(t; v; w) := Z R dxv 0 (x)w 0 (x) + s(t)v(x )w(x ) + { Z R dxv(x)w(x): (117) 
In this case, the corresponding time-dependent domain for (116) is given by

D(A(t)) = v 2 H 1 (R; C)\H 2 (R fx g ; C) : v 0 (x + ) v 0 (x ) = s(t)v(x )
for every t 2 [0; T ], where

v 0 (x + ) := lim y&0 v 0 (x + y) and v 0 (x ) := lim y&0 v 0 (x y)
(see, for instance, [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF]).

From Hypothesis (S) and standard one-dimensional Sobolev theory, it follows that (117) satis…es estimates similar to ( 5) and [START_REF] Chernoff | Note on Product Formulas for Operator Semigroups[END_REF]. Consequently, since s(t) 0 for every t 2 [0; T ] we infer from the general theory of [START_REF] Tanabe | Equations of Evolution[END_REF] that A(t) generates a holomorphic semigroup of contractions exp [ sA(t)] s 0 in L 2 (R; C), which means that Hypotheses (A1) and (A4) hold provided we choose again { su¢ ciently large, for instance { 1. Furthermore, A(t) also generates an evolution system U A (t; s) 0 s t T in L 2 (R; C).

Therefore, in order to prove [START_REF] Sayapova | The Evolution Operator for Time-Dependent Potentials of Zero Radius[END_REF] for (112) we can begin by verifying (A2), (A3) and for this we wish to exploit the fact that the resolvent operator for (116) is known quite explicitly, rather than rely on the variational structure of the problem. More precisely, for every 2 C R + we write k 2 := { with Re k > 0 and then have by Krein's formula for resolvents (see, for instance, [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF])

R(A(t); )f (x) = d 2 dx 2 + s(t) x + k 2 1 f (x) (118) = 1 2k Z R dye kjx yj f (y) s(t) 2k (s(t) + 2k) Z R dye kjx yj f (y) e kjx x j
for every f 2 L 2 (R; C) and almost every x 2 R, from which we obtain

@ @t R(A(t); )f (x) = s 0 (t) (s(t) + 2k) 2 Z R dye kjx yj f (y) e kjx x j (119) 
thanks to the di¤erentiability of s. From this we …rst get the following result.

Lemma 10. Assume that Hypothesis (S) holds; then, there exists a constant a 2 2 R + such that the Hölder continuity estimate

d dt A 1 (t)f d ds A 1 (s)f 2 a 2 jt sj 0 kf k 2 (120) 
holds for all s; t 2 [0; T ] and every f 2 L 2 (R; C), with 0 the Hölder exponent in (S).

Proof. Relation (119) with = 0 reduces to

d dt A 1 (t)f (x) = s 0 (t) (s(t) + 2 p {) 2 Z R dye p {jx yj f (y) e p {jx x j , (121) 
and furthermore we infer from Hypothesis (S) that the function

t 7 ! s 0 (t) (s(t) + 2 p {) 2 
is Hölder continuous on [0; T ] with Hölder exponent 0 . Moreover, we can estimate the integral in (121) by means of Schwarz inequality, so that we eventually get

d dt A 1 (t)f d ds A 1 (s)f 2 c jt sj 0 Z R dxe 2 p {jxj 1 2 kf k 2 c jt sj 0 kf k 2
for every s; t 2 [0; T ] and every f 2 L 2 (R; C).

While it is plain that (120) leads to Hypothesis (A2), we now turn to the veri…cation of (A3). For this we have the following result.

Lemma 11. Assume that Hypothesis (S) holds; then, there exists a constant a 3 2 R + such that the estimate

@ @t R(A(t); )f 2 a 3 j j 1 kf k 2 (122) 
holds for every t 2 [0; T ], any f 2 L 2 (R; C) and each 2 S f0g.

Proof. From (119) we easily obtain

@ @t R(A(t); )f 2 c js(t) + 2kj 2 Z R dye 2 Re kjyj kf k 2 c jkj 2 Re k kf k 2 (123) 
for every f 2 L 2 (R; C) and every 2 C R + , where the last inequality follows from an explicit evaluation of the integral and the fact that s 0, Re k > 0.

Without restricting the generality we now take 2 4 ; 2 and …rst prove the existence of a constant c 2 R + such that the inequality

jkj 2 c (1 + j j) (124) 
holds for every 2 S f0g; this is obvious with a constant independent of if Re 0 (with 6 = 0 when Re = 0) since

k 2 2 = { 2 2{ Re + j j 2 :
Furthermore, if arg with Re > 0, Im > 0, or if arg with Re > 0, Im < 0 we get from the preceding relation and Cauchy's interpolated inequality the estimate

k 2 2 1 1 { 2 + 1 tan 2 j j 2 (125) 
for every 2 R + , so that by choosing for instance = 1 2 1 + tan 2 we can make the two terms in (125) positive, which indeed leads to (124).

We proceed by proving that inf

2S f0g

Re k > 0:

We have

Re k = Re k 2 + jkj 

A direct calculation shows that F is monotone increasing, so that the comparison of (127) and ( 129) gives

(Re k) 2 F (Re ) F ({) tan 2 > 0
and thereby indeed a bound identical to (128). Therefore (126) holds, which, together with (123) and (124), gives (122).

We proceed with the veri…cation of (B1)-(B4). The is valid for every t 2 [0; T ], any f 2 L 2 (R; C) and each 2 S . Thus, the B " (t)'s satisfy (B1) for every " 2 R + su¢ ciently small.

Proof. From (118), (130) and estimates similar to those carried out in the proofs of the last two lemmas we easily obtain kB(t)R(A(t); )f k of which (131) is a consequence because of (113), (124) and (128). The remaining statement of the lemma is then immediate by setting v = R(A(t); )f in (131) for every v 2 D(A(t)).

Next, we have the following result whose proof is relatively long but similar to the last three and therefore omitted. is valid for all s; t 2 [0; T ] and every f 2 L 2 (R; C). Moreover, the function t 7 ! @ @t (B(t)R(A(t); )) 1 is continuously di¤ erentiable on [0; T ] with respect to the norm-topology of L(L 2 (R; C)) and there exists a constant c 2 R + such that the inequality @ @t B(t)R(A(t); )f 2 c (kMk 2 + kNk 2 ) kf k 2 holds for every t 2 [0; T ], any f 2 L 2 (R; C) and each 2 S . Thus, the B " (t)'s satisfy (B2) and (B3) for every " 2 R + .

As for the veri…cation of (B4), we can either proceed as in Lemma 8 or prove (58) directly by observing that Finally, Hypothesis (D) can be veri…ed with

D = v 2 C 2 0 (R fx g ; C) : v(x ) = 0 (132) 
which is dense in L 2 (R; C); indeed ( 27) and ( 29) trivially hold, as does (28) since the restriction of (116) to the domain (132) coincides with the time-independent operator d 2 dx 2 + { (see, for instance, [START_REF] Albeverio | Solvable Models in Quantum Mechanics, Texts and Monographs in Physics[END_REF] or [START_REF] Dell'antonio | A Limit Evolution Problem for Time-Dependent Point Interactions[END_REF]).

The preceding considerations thus lead to the following result.

Proposition 5. Assume that Hypotheses (S) and (M 00 ) hold ; then, all the conclusions of the theorem are valid for (112) for every " 2 R + su¢ ciently small. In particular, the Trotter-Kato formula (32) and the reconstruction formula [START_REF] Schnaubelt | Semigroups for Nonautonomous Cauchy Problems, in: One-Parameter Semigroups for Linear Evolution Equations[END_REF] hold in the strong topology of L(L 2 (R; C)). Remark. The preceding example shows that in the particular case where the B(t)'s are self-adjoint multiplication operators on a Hilbert space, there is a much more direct way of proving the strong continuity of r 7 ! exp [ (r s)B(r)] than that stemming from Hypothesis (B4), as it is su¢ cient to invoke the spectral theorem. However, in the general case the full force of (B4) is indeed deemed appropriate according to the proof of Lemma 5.

We conclude this article by establishing a connection between the above theory and the corresponding evolution problems for Schrödinger-type equations of quantum mechanics, namely, i du(t) dt = (A(t) + B(t))u(t); t 2 (s; T ] ; u(s) = u s (133) de…ned in a complex and separable Hilbert space H, with A(t)+B(t) self-adjoint there. In this case, only partial results regarding the existence of dynamics are known, for example when the domain of A(t) + B(t) is independent of time (see, for instance, [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF], [START_REF] Simon | Quantum Mechanics Hamiltonians De…ned as Quadratic Forms[END_REF] and the references therein); but to the best of our knowledge a Trotter-Kato product formula for this is not available. For instance, in the case of (112) the corresponding quantum mechanical equation reads exists in L(L 2 (R; C)) and describes the true dynamics generated by (134) seems to be an open problem at this time. The same remark applies to other unitary evolution systems generated by Schrödinger equations in the presence of timedependent singular perturbations of zero-range, such as those constructed in [START_REF] Sayapova | The Evolution Operator for Time-Dependent Potentials of Zero Radius[END_REF] and more recently in [START_REF] Correggi | Ionization for Three Dimensional Time-Dependent Point Interactions[END_REF] and [START_REF] Dell'antonio | The Schrödinger Equation with Moving Point Interactions in Three Dimensions[END_REF]. Away from the one-dimensional case, these constructions rest essentially on von Neumann's theory of self-adjoint extensions for symmetric operators.

(

  L) Each component of the vector-…eld l : D [0; T ] 7 ! R d satis…es l i 2 L 1 (D (0; T ); R) and the Hölder continuity estimate max i2f1;:::;dg jl i (x; t) l i (x; s)j c jt sj holds for every x 2 D and every s; t 2 [0; T ]. (M) We have m 2 L 1 (D (0; T ); R + ) along with jm(x; t) m(x; s)j c jt sj for every x 2 D and every s; t 2 [0; T ].
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 02 (exp [ kA(r)] I) A(r)U A+B (r; s)w since U A+B (r; s)w 2 D(A(r)) for every r 2 [s + ; t] and each w 2 D as a consequence of[START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]. Therefore we obtain the inequality kE(h; r)U A+B (r; s)wk sup k2[0;h] k(exp [ kA(r)] I) A(r)U A+B (r; s)wk ; so that in order to get the …rst relation in (47) it is su¢ cient to havelim h!0 sup r2[s+ ;t] k(exp [ hA(r)] I)A(r)U A+B (r; s)wk = 0(48)for every w 2 D uniformly in . To this end let us de…ne R(h; r) and K byR(h; r) = exp [ hA(r)] I(49)andK = fv 2 B : v = A(r)U A+B (r; s)w; r 2 [s + ; t]grespectively; since the semigroup in (49) is contractive, it is clear that R(h; r) satis…es (41). Furthermore we also have lim uniformly in ; in fact, from (28), (49) and for every v 2 D we obtain the estimate kR(h; r)vkZ h 0 dk kexp [ kA(r)] A(r)vk h sup r2(0;T ]kA(r)vk ! 0 as h ! 0 uniformly in r and , which then leads to (50) since D B is dense. Finally, in order to prove the compactness of K it is su¢ cient to prove the continuity of the mapping r 7 ! A(r)U A+B (r; s)w in the strong topology of B for r 2 [s + ; t]; but this is an immediate consequence of Hypothesis (B2), (40) and Statement (1) of the theorem since we have A(r)U A+B (r; s)w = I B(r)A 1 (r)D(r) (A(r) + B(r))U A+B (r; s)w:

  r)U A+B (r; s)w valid for every w 2 D, which leads to the inequality kF (h; r)U A+B (r; s)wk sup k2[0;h] k(exp [ hA(r)] exp [ kB(r)] I) B(r)U A+B (r; s)wk : (51) This time we de…ne R(h; r) and K by R(h; r) = exp [ hA(r)] exp [ kB(r)] I (52) and K = fv 2 B : v = B(r)U A+B (r; s)w; r 2 [s + ; t]g respectively; from the contractive properties of the semigroups involved it follows again that (52) satis…es (41), while the relation lim case a consequence of the identity R(h; r) = exp [ hA(r)] (exp [ kB(r)] I)+ exp [ hA(r)] I: In fact, by using the same kind of integral representation as above along with (29) we obtain kexp [ hA(r)] (exp [ kB(r)] I)vk Z k 0 dl kexp [ lB(r)] B(r)vk h sup r2(0;T ] kB(r)vk ! 0 (54) as h ! 0 uniformly in r and for every v 2 D and hence for every v 2 B, while from the …rst part of the proof we get sup r2[s+ ;t] k(exp [ hA(r)] I) vk ! 0 (55) as h ! 0 for every v 2 B, both (54) and (55) implying (53) for every such v. Finally, for the same reasons as above K is compact, so that from Lemma 3 we infer that the relation lim h!0 sup r2[s+ ;t] k(exp [ hA(r)] exp [ kB(r)] I) B(r)U A+B (r; s)wk = 0 holds for every w 2 D uniformly in ; together with (51) this implies the desired result. The proof of the third relation in (46) follows a slightly di¤erent line, the starting point being the identity
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 5 Assume that Hypotheses (A1), (A2), (A4), (B4) and (D) hold. Then, the functions r 7 ! exp [ (r s)A(r)] (57) and r 7 ! exp [ (r s)B(r)] (58) are continuous on the interval [s; t] in the strong topology of L(B).

  r & s; since D is dense and the semigroup exp [ sB(t)] s 0 contractive, the desired right-continuity at r = s follows.As for the proof of the continuity away from the left endpoint, we …nd it more convenient to choose the integration path := 1 [ 2 in (59) rather than the path r;s , where

  Re { we get Re k 2 0 and hence Re k c (128) from (124) and (127). In order to get a similar bound for the case Re > {, it is su¢ cient to prove that Re k is bounded from below by a function of Re having a positive minimum at Re = {; to this end, let us de…ne F :[{; +1) 7 ! R + by F ( ) := { + { 2 2{ + 2 (1 + tan 2 )
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 12 multiplication operators B " (t) := "B(t) de…ned byB(t)v := m(:; t)v(130)are in this case self-adjoint and positive on the maximal, time-dependent domainsD(B(t)) = v 2 L 2 (R; C) : Z R dx jm(x; t)v(x)j 2 < +1for every t 2 [0; T ] and, although the B(t)'s are in general unbounded, the crucial fact that entails the validity of (B1) is the boundedness of the operators B(t)R(A(t); ) on L 2 (R; C). More precisely we have the following result. Assume that Hypothesis (S) and (113) hold; then, there exists a constant c 2 R + such that the inequality kB(t)R(A(t); )f k 2 c kMk 2 kf k 2 (131)
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 13 Assume that Hypothesis (S) and (113)-(115) hold; then, there exists a constant c 2 R + depending on , kMk 2 , kHk 2 and kNk 2 such that the Hölder continuity estimate

2 c

 2 exp [ (r s)B(r)] f = exp [ (r s)m(:; r)] f in L 2 (R; C). Then, for any r 2 [s; t] and any sequence (rn ) n2N + [s; t] such that r n ! r we have exp [ (r n s)m(x; r n )] f (x) ! exp [ (r s)m(x; r)] f (x)for almost every x 2 R when n ! +1, as well asjexp [ (r n s)m(x; r n )] f (x) exp [ (r s)m(x; r)] f (x)j jf (x)j 2 uniformly in n. Therefore, we get lim n!+1 exp [ (r n s)B(r n )] f = exp [ (r s)B(r)] fstrongly in L 2 (R; C) by dominated convergence, which is the desired property.

  and there exists a constant a 2 2 R + such that the Hölder continuity estimate T ] and every f 2 L 2 (D; C), with 0 the Hölder exponent in (66).

	and proceed by showing that these two terms each go to zero when h ! 0. For the …rst one this follows from Hypothesis (K 0 ) and dominated convergence since the estimate which, together with (66) and arguments similar to those we just used, leads to the estimate holds for all s; t 2 [0; Proof. Let us write u(s) := A 1 (s)f with u(s) 2 D(A(s)); from (8) we then have a(s; u(s); w) + {(u(s); w) 2 = (f; w) 2 (69) and a(t; u(t); w) + {(u(t); w) 2 = (f; w) 2 k i;j (x; t + h) k i;j (x; t) h @k i;j (x; t) @t du(t) dt du(s) ds ; w 1;2;t ju xi (x; t)j w xj (x) c jt sj 0 kf k 2 kwk 1;2;t c ju xi (x; t)j w xj (x) (70) (70) we obtain a(t; u(t) u(s); w) +{ (u(t) u(s); w) 2 d X i;j=1 D dx h ju xi (x; t + h) u xi (x; t)j w xj (x) k i;j (x; t + h) k i;j (x; t) Z uniform Lipschitz continuity of t 7 ! k i;j (x; t). For the second one we have for all s; t 2 [0; T ] and every w 2 H 1 (D; C), so that by subtracting (69) from holds uniformly in h as a consequence of the boundedness of @ki;j (x;t) @t and the and thereby to (68).
	= a(s; u(s); w) a(t; u(s); w): c ku(t + h) u(t)k 1;2;t kwk 1;2;t ;	(71)
	so that it remains to prove the relation
							lim h!0	ku(t + h) u(t)k 1;2;t = 0.	(75)
	But going back to (73) we have
						u(t + h) u(t) h	; w	1;2;t
	= from which equality we now want to prove that d X i;j=1 Z lim h!0 u(t + h) u(t) h ; w = d X i;j=1 Z D dx @k i;j (x; t) u xi (x; t)w xj (x): 1;2;t Therefore, there exists du(t) dt 2 H 1 (D; C) such that du(t) dt ; w 1;2;t = d X i;j=1 Z D dx @k i;j (x; t) @t u h!0 u(t + h) u(t) h du(t) = dt @t Subtracting the right-hand side of (74) from (73) we have u(t + h) u(t) h ; w 1;2;t + d X i;j=1 strongly in L we have Z D dx @k i;j (x; t) @t u xi (x; t)w xj (x) du(t) dt du(s) ; w ds 1;2;t	(73) (74)
	d X i;j=1	Z D =	dx	k i;j (x; t + h) k i;j (x; t) h d X i;j=1 Z D dx @k i;j (x; t) @t	@k i;j (x; t) @t @k i;j (x; s) @s	ju xi (x; t)j w xj (x) u xi (x; t)w xj (x)
	+	d X i;j=1	Z D	d dt dx A 1 (t)f k i;j (x; t + h) k i;j (x; t) d ds A 1 (s)f 1;2 h d X i;j=1 Z D dx @k i;j (x; s) @s (u xi (x; t) u xi (x; s)) w xj (x); a 2 jt sj 0 kf k 2 ju xi (x; t + h) u xi (x; t)j w xj (x) (68)

Next, for every t 2 [0; T ] we introduce the shorthand notation (v; w) 1;2;t := a(t; v; w) + {(v; w) 2 (72) and observe that these new sesquilinear forms de…ned on H 1 (D; C) H 1 (D; C) induce norms k:k 1;2;t equivalent to k:k 1;2 on H 1 (D; C) by virtue of the boundedness of the k i;j 's and (3), the equivalence constants being independent of t. Then, …x t and set h = s t in (71); owing to (4) and (72) this gives D dx k i;j (x; t + h) k i;j (x; t) h u xi (x; t + h)w xj (x); (u(t + h) u(t); w) 1;2;t c jhj A 1 (t + h)f 1;2;t kwk 1;2;t c jhj kf k 2 kwk 1;2;t from which (75) follows immediately, thereby completing the proof of (74). xi (x; t)w xj (x) for every t 2 [0; T ] and every w 2 H 1 (D; C), which implies that lim 2 (D; C) by virtue of the compact embedding H 1 (D; C) ,!L 2 (D; C). Hence, the function t 7 ! A 1 (t)f is indeed strongly di¤erentiable in L 2 (D; C) with d dt A 1 (t)f 2 H 1 (D; C) for every f ; furthermore,

  j

	hold for every x and every ; 2 f0; :::; n 1g in each of the integrals on the right-hand side of (100). Consequently, if we get the lower bound
		1 ( (t s) n(x s)) 2 >	(		1 1) 2 (t s) 2
	while if	+ 1 we have		
		1 ( (t s) n(x s)) 2 >	(	1 2 (t s) 2 )	:
					2
	and observe that the inequalities		
	(	1) (t s) < (t s) n(x s) < (	) (t s)

  + s(t) x + { + "m(x; t) u(x; t);(x; t) 2 R (0; T ] ; u(x; 0) = u 0 (x); x 2 R;(134)and under Hypotheses (S), (M 00 ) there exist the unitary groups exp [ isA(t)] s2R and exp [ isB " (t)] s2R for every t 2 [0; T ], where the A(t)'s, B " (t)'s are given by (116), (130), respectively. However, whether the strong limit

	i n!+1 @u(x; t) @t dx 2 lim d 2 = 0 Y =n 1 exp i t s n	A s + n	(t s) exp i	t s n	B " s + n	(t s)
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