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Abstract. We compute and justify rigorous geometric optics expansions for linear hyperbolic
boundary value problems that do not satisfy the uniform Lopatinskii condition. We exhibit an

amplification phenomenon for the reflection of small high frequency oscillations at the bound-

ary. Our analysis has two important consequences for such hyperbolic boundary value problems.
Firstly, we make precise the optimal energy estimate in Sobolev spaces showing that lossesof

derivatives must occur from the source terms to the solution. Secondly, we are able to derive a

lower bound forthe finite speed of propagation, showing that waves may propagate faster than for
the propagation in free space. We illustrate our analysis with some examples.

1. Introduction

The aim of this article is to construct geometric optics expansions of solutions to hyperbolic initial
boundary value problems in the high frequency regime. For the linear Cauchy problem, geometric
optics expansions are constructed and justified by Lax [13]. The complete justification of weakly
nonlinear geometric optics expansions is due to the second author [9] in the case of a single phase
and to Joly, Métivier, Rauch [11] in the case of several phases. We refer to these articles for an
extensive discussion and further references.

In this article, we are interested with oscillatory initial boundary value problems. This problem is
studied by Chikhi [5], Williams [21, 22], Marcou [17] in the noncharacteristic case, and by Lescarret
[14] in the characteristic case. Compared to the propagation in free space, the main additional
difficulty is the reflection of oscillations at the boundary. In particular, the construction of a formal
asymptotic expansion involves a so-called reflection coefficient. All the above mentioned works deal
with problems that satisfy either a dissipation assumption or a strong stability condition. The latter
condition is known as the uniform Lopatinskii (or Kreiss-Lopatinskii) condition, see Kreiss [12].
When this condition is satisfied, the reflection coefficient is finite; incident and reflected oscillations
have the same amplitude. In this framework, the above mentioned authors are able to construct
and justify weakly nonlinear asymptotic expansions.

We investigate here the case where the reflection coefficient may become infinite, namely when
the uniform Lopatinskii condition breaks down in the hyperbolic region. To our knowledge, the
construction of formal geometric optics expansions in this context goes back to the contributions by
Majda, Rosales and Artola [16, 1]. The main new feature is the amplification of the solution with
respect to the oscillatory source terms. More precisely, suitably polarized source terms of frequency
O(1/ε) and amplitude O(ε) give rise to a solution of frequency O(1/ε) and amplitude O(1). This
amplification phenomenon justifies the formation of some singularities in fluid dynamics such as
Mach stems in reacting gases, see [16]. The main points of the analysis in [16, 1] are summarized
and illustrated in the review article [15].
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In this article, we give a rigorous justification of such geometric optics expansions with ampli-
fication in a general framework. Our work is an extension of [6] where the first author proves the
well-posedness of hyperbolic initial boundary value problems when losses of derivatives occur due to
the failure of the uniform Lopatinskii condition. Our analysis is restricted here to linear problems
in order to underline the structural assumptions that are needed in the symbolic analysis. Weakly
nonlinear oscillations will be addressed in a future work. Our results on oscillatory initial boundary
value problems have some important consequences. The first application of our work is to make pre-
cise the optimal loss of regularity for problems that do not satisfy the uniform Lopatinskii condition
in the hyperbolic region; we prove that the loss of one tangential derivative in the main result of
[6] is optimal in the scale of Sobolev spaces. In particular, such problems can not have maximally
dissipative boundary conditions. The second application of our work deals with the finite speed of
propagation. As already shown for some scalar second order hyperbolic equations, see the works
by Chazarain, Piriou and Ikawa [4, 10], the speed of propagation for some initial boundary value
problems may be greater than the speed of propagation in free space. We prove that this property
extends to the case of systems of equations under general conditions. Eventually, we make the
regularity of coefficients precise for the theory of such weakly well-posed problems.

Notation. Throughout this article, we let Mn,N (K) denote the set of n×N matrices with entries
in K = R or C, and we use the notation MN (K) when n = N . We let I denote the identity matrix,
without mentioning the dimension. The norm of a vector X ∈ CN is |X| := (X∗X)1/2, where
X∗ denotes the conjugate transpose of X. If X,Y are two vectors in CN , we let X · Y denote the
quantity

∑
j Xj Yj , which coincides with the usual scalar product in RN when X and Y are real.

The letter C always denotes a constant that may vary from line to line or within the same line.

2. Assumptions and main result

In this article, we are interested in solving oscillatory hyperbolic initial boundary value problems.
The space domain is the half-space Rd

+ := {x ∈ Rd/xd > 0}. The space variable x is decomposed as
x = (y, xd). We fix once and for all a time T > 0, and we define the sets ΩT :=]−∞, T ]× Rd

+ and
ωT :=]−∞, T ]× Rd−1. We shall study problems of the form:

L(∂)uε := ∂tu
ε +

∑d
j=1Aj ∂xj

uε +Duε = fε , in ΩT ,

B uε|xd=0 = gε , on ωT ,

uε|t<0 = 0 .
(1)

The matrices A1, . . . , Ad, D belong to MN (R), the matrix B belongs to Mp,N (R), and the unknown
uε takes its values in RN . The (small) parameter ε > 0 represents the typical wavelength of the
oscillatory source terms fε, gε. The integer p is made precise below.

Our purpose is to describe the asymptotic behavior of the solution uε to (1) as ε tends to zero.
The assumptions fall in two categories:

(i) We first make assumptions on the principal part of the operator L(∂) and the boundary
conditions encoded by the matrix B. Our goal is to prove results that are independent of
the zero order term D in the operator L(∂). This first set of assumptions constitutes our
so-called weak stability condition.

(ii) Then we describe the oscillations in the source terms fε and gε.

2.1. The weak stability condition. In all this article, the matrices A1, . . . , Ad in (1) are constant
and we make the following hyperbolicity assumption.

Assumption 1. There exist an integer q ≥ 1, some real functions λ1, . . . , λq that are analytic on
Rd \ {0} and homogeneous of degree 1, and there exist some positive integers ν1, . . . , νq such that:

∀ ξ = (ξ1, . . . , ξd) ∈ Rd \ {0} , det
[
τ I +

d∑
j=1

ξj Aj

]
=

q∏
k=1

(
τ + λk(ξ)

)νk .

Moreover the eigenvalues λ1(ξ), . . . , λq(ξ) are semi-simple (their algebraic multiplicity equals their
geometric multiplicity) and satisfy λ1(ξ) < · · · < λq(ξ) for all ξ ∈ Rd \ {0}.
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For simplicity, we restrict our analysis to noncharacteristic boundaries and therefore make the fol-
lowing:

Assumption 2. The matrix Ad is invertible and the matrix B has maximal rank, its rank p being
equal to the number of positive eigenvalues of Ad (counted with their multiplicity). Moreover, the
integer p satisfies 1 ≤ p ≤ N − 1.

In the normal modes analysis for (1), one first performs a Laplace transform in the time variable t
and a Fourier transform in the tangential space variables y, see Benzoni and Serre [3, chapter 4] for
a complete description. We let τ − i γ ∈ C and η ∈ Rd−1 denote the dual variables of t and y, and
we introduce the symbol

A (ζ) := −i A−1
d

(τ − iγ) I +
d−1∑
j=1

ηj Aj

 , ζ := (τ − iγ, η) ∈ C× Rd−1 .

For future use, we also define the following sets of frequencies:

Ξ :=
{

(τ − iγ, η) ∈ C× Rd−1 \ (0, 0)/γ ≥ 0
}
, Σ :=

{
ζ ∈ Ξ/τ2 + γ2 + |η|2 = 1

}
,

Ξ0 :=
{

(τ, η) ∈ R× Rd−1 \ (0, 0)
}

= Ξ ∩ {γ = 0} , Σ0 := Σ ∩ Ξ0 .

Two key objects in our analysis are the hyperbolic region and the glancing set that are defined as
follows.

Definition 1. • The hyperbolic region H is the set of all (τ, η) ∈ Ξ0 such that the matrix
A (τ, η) is diagonalizable with purely imaginary eigenvalues.

• Let G denote the set of all (τ, ξ) ∈ R × Rd such that ξ 6= 0 and there exists an integer
k ∈ {1, . . . , q} satisfying

τ + λk(ξ) =
∂λk

∂ξd
(ξ) = 0 .

If π(G) denotes the projection of G on the d first coordinates (in other words π(τ, ξ) =
(τ, ξ1, . . . , ξd−1) for all (τ, ξ)), the glancing set G is G := π(G) ⊂ Ξ0.

We recall the following result that is due to Kreiss [12] in the strictly hyperbolic case (when all
integers νj in Assumption 1 equal 1) and to Métivier [18] in our more general framework.

Theorem 1 ([12, 18]). Let Assumptions 1 and 2 be satisfied. Then for all ζ ∈ Ξ\Ξ0, the matrix A (ζ)
has no purely imaginary eigenvalue and its stable subspace Es(ζ) has dimension p. Furthermore, Es

defines an analytic vector bundle over Ξ\Ξ0 that can be extended as a continuous vector bundle over
Ξ.

For all (τ, η) ∈ Ξ0, we let Es(τ, η) denote the continuous extension of Es to the point (τ, η). Away
from the glancing set G ⊂ Ξ0, Es(ζ) depends analytically on ζ, see [18] and the following section.
In particular, it follows from the analysis in [18], see similar arguments in [2, 7], that the hyper-
bolic region H does not contain any glancing point, and Es(ζ) depends analytically on ζ in the
neighborhood of any point (τ , η) ∈ H . We now make our weak stability condition precise.

Assumption 3. • For all ζ ∈ Ξ \ Ξ0, KerB ∩ Es(ζ) = {0}.
• The set Υ := {ζ ∈ Σ0/KerB ∩ Es(ζ) 6= {0}} is nonempty and included in the hyperbolic

region H .
• There exists a neighborhood V of Υ in Σ, a real valued C∞ function σ defined on V , a

basis E1(ζ), . . . , Ep(ζ) of Es(ζ) that is of class C∞ with respect to ζ ∈ V , and a matrix
P (ζ) ∈ GLp(C) that is of class C∞ with respect to ζ ∈ V , such that

∀ ζ ∈ V , B
(
E1(ζ) . . . Ep(ζ)

)
= P (ζ) diag

(
γ + i σ(ζ), 1, . . . , 1

)
.

As we shall see later on, hyperbolic boundary value problems that satisfy Assumptions 1, 2 and 3
belong to the WR class defined by Benzoni-Gavage, Rousset, Serre and Zumbrun [2]. As shown in [2],
this class of problems is stable with respect to small perturbations of the coefficients A1, . . . , Ad, B,
while other classes of weakly stable problems - those for which the Lopatinskii determinant vanishes
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in Ξ0 \H or has double roots - are not. We emphasize that the formal geometric optics expansions
with amplification derived in [16, 1, 15] correspond to problems in the WR class.

The following paragraph is devoted to the description of the oscillatory source terms fε and gε

in (1).

2.2. The oscillations. We consider a planar real phase ϕ defined on the boundary

∀ (t, y) ∈ ωT , ϕ(t, y) := τ t+ η · y , (τ , η) ∈ Ξ0 . (2)

As follows from earlier works, see for instance [15, section 1], oscillations on the boundary ωT

associated with the phase ϕ give rise to oscillations in the domain ΩT associated with some planar
phases ϕm. These phases are characteristic for the hyperbolic operator L(∂) and their trace on ωT

equals ϕ. For concreteness, we make from now on the following:

Assumption 4. The phase ϕ defined by (2) satisfies (τ , η) ∈ Υ. In particular, (τ , η) ∈ H .

Thanks to Assumption 4, we know that the matrix A (τ , η) is diagonalizable with purely imaginary
eigenvalues. These eigenvalues are denoted i ω1, . . . , i ωM , where the ωm’s are real and pairwise
distinct. The ωm’s are the roots (and all the roots are real) of the dispersion relation

det
[
τ I +

d−1∑
j=1

η
j
Aj + ωAd

]
= 0 .

To each ωm there corresponds a unique integer km ∈ {1, . . . , q} such that τ + λkm(η, ωm) = 0. We
can then define the following real1 phases and their associated group velocity:

∀m = 1, . . . ,M , ϕm(t, x) := ϕ(t, y) + ωm xd , vm := ∇λkm
(η, ωm) . (3)

Let us observe that each group velocity vm is either incoming or outgoing with respect to the space
domain Rd

+: the last coordinate of vm is nonzero. This property holds because (τ , η) does not belong
to the glancing set G . We can therefore adopt the following classification as in [15]:

Definition 2. The phase ϕm is causal if the group velocity vm is incoming (∂ξd
λkm

(η, ωm) > 0),
and it is noncausal if the group velocity vm is outgoing (∂ξd

λkm
(η, ωm) < 0).

In all what follows, we let C denote the set of indices m ∈ {1, . . . ,M} such that ϕm is a causal
phase, and N C denote the set of indices m ∈ {1, . . . ,M} such that ϕm is a noncausal phase. We
shall show later on that both sets C and N C are nonempty.

Eventually, we make the following assumption for the source terms fε, gε in (1):

Assumption 5. The source term gε has the form

gε := ε g(t, y) ei ϕ(t,y)/ε ,

where the amplitude g ∈ H+∞(ωT ) is independent of ε ∈ ]0, 1], and the source term fε has the form

fε := ε
M∑

m=1

fm(t, x) ei ϕm(t,x)/ε ,

where the amplitudes f1, . . . , fM ∈ H+∞(ΩT ) are independent of ε ∈ ]0, 1]. Moreover, g, f1, . . . , fM

vanish for t < 0.

Given the source terms (fε, gε)ε∈ ]0,1], in Assumption 5, we raise the question of the asymptotic
behavior of the solution uε to (1) as the small parameter ε tends to zero. In particular, what is
the asymptotic amplitude of the solution uε in L2 ? Our main result is described in the following
paragraph. Observe that more general source terms can be considered by using the linearity of (1).

1If (τ, η) does not belong to the hyperbolic region H , some of the phases ϕm may be complex, see e.g. [21, 22, 14,

17]. Moreover, glancing phases introduce a new scale
√

ε as well as boundary layers, and we do not want to combine

this technical difficulty with the amplification phenomenon that is our main point of interest here.
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2.3. Main result. We recall the following classical definition in geometric optics.

Definition 3. Let K ∈ N, and let (vε)ε∈ ]0,1] denote a family of functions in H+∞(ΩT ). We say
that (vε)ε∈ ]0,1] is O(εK) in H+∞

ε (ΩT ) if for all α ∈ N1+d, there exists a constant Cα satisfying

∀ ε ∈ ]0, 1] , ε|α|
∥∥∂α

t,xv
ε
∥∥

L2(ΩT )
≤ Cα ε

K .

Our main result is the following:

Theorem 2. Let Assumptions 1-5 be satisfied, and let D ∈ MN (R). Then there exists a unique
family (un,m)n≥0,m=1,...,M in H+∞(ΩT ) such that

(i) all functions un,m vanish for t < 0,
(ii) the cascade of equations (12), (13) below is satisfied.

In particular, u0,m = 0 for m ∈ N C and the traces u0,m|xd=0 for m ∈ C are given by the relation
(17) where the function α0 satisfies the transport equation (19). Given an integer N0, we can define
an approximate solution uε

app,N0
to (1) by the formula

uε
app,N0

:=
N0∑

n=0

εn
M∑

m=1

un,m(t, x) ei ϕm(t,x)/ε .

For all ε ∈ ]0, 1], there exists a unique solution uε ∈ H+∞(ΩT ) to (1) that vanishes for t < 0.
Moreover, for all integer N0, (uε − uε

app,N0
)ε∈ ]0,1] is O(εN0+1) in H+∞

ε (ΩT ).

Theorem 2 shows that uε has amplitude O(1) in L2, and in L∞, asymptotically as ε tends to zero.
This corresponds to an amplification phenomenon of one power of ε from the source terms fε, gε to
the solution uε.

The rest of this article is organized as follows: in section 3, we prove Theorem 2. As it is rather
common in geometric optics, the proof is based on two main steps. In the first step, we determine
the so-called WKB expansion of uε as a formal series solving (12), (13). In the second step, we show
that the exact solution uε to (1) is close to the asymptotic expansion. The latter step is a stability
problem and is based on the well-posedness result of [6]. In section 4, we prove some results on the
nonoscillatory initial boundary value problem (36). Section 5 is devoted to some examples where
we clarify the determination of the principal term in the expansion of uε, and we also make some
comments on the necessity of Assumption 3.

3. Proof of Theorem 2

In all this section, we use the notation

L1(τ, ξ) := τ I +
d∑

j=1

ξj Aj ,

for the symbol of the principal part of L(∂). For each phase ϕm, dϕm denotes the differential of the
function ϕm with respect to its arguments (t, x). Following [2], we shall say that a complex vector
space is of real type if it admits a basis of real vectors.

3.1. A few preliminary results. We begin with a first Lemma that gives a decomposition of the
extended stable subspace at the hyperbolic frequency (τ , η).

Lemma 1. The stable subspace Es(τ , η) admits the decomposition

Es(τ , η) = ⊕m∈C Ker L1(dϕm) , (4)

and each vector space in the decomposition (4) is of real type. In particular, C is nonempty.

Proof of Lemma 1. The proof follows from some arguments of [18], but we give it here both for
the sake of clarity and because we shall use some of the arguments below in our analysis. Using
Assumption 1, we know that the real analytic function λkm(η, ω) admits an extension that is real
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analytic in η and holomorphic in ω in a sufficiently small neighborhood of (η, ωm). For all z, ω ∈ C
and η ∈ Rd−1, we have the relation

det [A (z, η)− i ω I] = det(−i Ad) det

z I +
d−1∑
j=1

ηj Aj + ωAd

 . (5)

For (z, η) = (τ , η), the roots in ω of the dispersion relation (5) are the ωm’s and are real. Moreover,
we have τ +λkm

(η, ωm) = 0, and the partial derivative ∂ξd
λkm

(η, ωm) is nonzero. The eigenspace of
A (τ , η) associated with the eigenvalue i ωm coincides with the kernel of L1(dϕm) and has dimension
νkm

, see Assumption 1.
The Weierstrass preparation Theorem shows that for (z, η, ω) ∈ C × Rd−1 × C sufficiently close

to (τ , η, ωm), there holds a factorization

z + λkm(η, ω) = ϑ(z, η, ω)
(
ω − ωm(z, η)

)
,

where ϑ is an analytic function of (z, η, ω) that does not vanish near (τ , η, ωm), and ωm is a
function that is holomorphic with respect to z and analytic with respect to η defined on a suf-
ficiently small neighborhood of (τ , η). Moreover, ωm satisfies ωm(τ , η) = ωm. Consequently, for
(z, η) sufficiently close to (τ , η), the eigenvalues of the matrix A (z, η) are the complex numbers
i ω1(z, η), . . . , i ωM (z, η), each with algebraic multiplicity νk1 , . . . , νkM

. These eigenvalues are pair-
wise distinct.

Let z = τ − i γ with γ > 0 small enough, and η = η. Then a Taylorexpansion shows that the real
part of i ωm(z, η) is negative if and only if ∂ξd

λkm
(η, ωm) > 0. Moreover, the sign of the real part of

i ωm(z, η) does not depend on η as long as γ is positive, see Theorem 1. In other words, i ωm(z, η)
is a stable eigenvalue of A (z, η) for γ > 0 small enough if and only if the phase ϕm is causal.

Following the arguments of [18], which we shall not repeat here, we can show that for all (z, η) ∈ Ξ
close to (τ , η), the eigenvalue i ωm(z, η) is semi-simple and the associated eigenspace varies holomor-
phically with respect to z and analytically with respect to η. Then for all (z, η) ∈ Ξ \ Ξ0 close to
(τ , η), we have the decomposition

Es(z, η) = ⊕m∈C Ker
(
A (z, η)− i ωm(z, η) I

)
= ⊕m∈C Ker

(
z I +

d−1∑
j=1

ηj Aj + ωm(z, η)Ad

)
. (6)

Using Theorem 1, we can pass to the limit in (6) as γ tends to zero and the claim follows. The vector
spaces in the decomposition (4) are of real type because each matrix L1(dϕm) has real coefficients
and is diagonalizable with real eigenvalues. �

A second preliminary result is the following:

Lemma 2. The following decompositions hold

CN = ⊕M
m=1 Ker L1(dϕm) = ⊕M

m=1Ad Ker L1(dϕm) , (7)

and each vector space in the decompositions (7) is of real type. In particular, N C is nonempty.
We let P1, . . . , PM , resp. Q1, . . . , QM , denote the projectors associated with the first, resp. second,

decomposition in (7). Then for all m = 1, . . . ,M , there holds Im L1(dϕm) = Ker Qm.

Proof of Lemma 2. The first decomposition in (7) follows from the diagonalizability of the matrix
A (τ , η):

CN = ⊕M
m=1 Ker

(
A (τ , η)− i ωm I

)
= ⊕M

m=1 Ker L1(dϕm) .

The second decomposition in (7) follows from the first one because Ad is invertible.
Let m0 ∈ {1, . . . ,M} and let X ∈ CN . From the diagonalizability of A (τ , η), we have

τ I +
d−1∑
j=1

η
j
Aj = −

M∑
m=1

ωmAd Pm ,
M∑

m=1

Pm = I .
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We can thus write

L1(dϕm0)X =

τ I +
d−1∑
j=1

η
j
Aj + ωm0

Ad

 X = ωm0
AdX −

M∑
m=1

ωmAd PmX

=
∑

m6=m0

(ωm0
− ωm)Ad PmX ∈ ⊕m6=m0 Ad Ker L1(dϕm) = Ker Qm0 .

The dimensions of Im L1(dϕm0) and Ker Qm0 are the same, so we have an equality between these
two vector spaces. The proof of Lemma 2 is complete. �

Using the projectors Pm, Qm, we can define in a unique way the partial inverse Rm of the matrix
L1(dϕm) by the relations

Rm L1(dϕm) = I − Pm , PmRm = RmQm = 0 . (8)

The decompositions (7) involve spaces of real type, so all the matrices Pm, Qm, Rm have real coeffi-
cients2. Moreover, each projector Qm induces an isomorphism from Im Pm to Im Qm.

Using Assumption 3, we know that the vector space Ker B ∩ Es(τ , η) is one-dimensional, and we
also know that this vector space is of real type because B has real coefficients. This vector space is
therefore spanned by a vector e ∈ RN \{0} that we can decompose in a unique way by using Lemma
1:

Ker B ∩ Es(τ , η) = Span e , e =
∑
m∈C

em , Pm em = em . (9)

Each vector em in (9) has real coefficients. We also know that the vector space B Es(τ , η) is (p− 1)-
dimensional and is of real type. We can therefore write it as the kernel of a real linear form

B Es(τ , η) =
{
X ∈ Cp , b ·X = 0

}
, (10)

for a suitable vector b ∈ Rp \ {0}.
Eventually, we can introduce the partial inverse of the restriction of B to the vector space Es(τ , η).

More precisely, we choose a supplementary vector space of Span e in Es(τ , η):

Es(τ , η) = Span e⊕ Ěs(τ , η) . (11)

The matrix B then induces an isomorphism from Ěs(τ , η) to the hyperplane B Es(τ , η).

3.2. Determination of the WKB expansion.

3.2.1. The cascade of equations. We first write the solution uε to (1) as a formal series

uε(t, x) =
∑
n≥0

εn
M∑

m=1

un,m(t, x) ei ϕm(t,x)/ε .

We plug this formal expression of uε into the equations (1) and collect the powers of ε. The result
is the following cascade of equations in the domain ΩT , see e.g. Rauch [19]:

L1(dϕm)u0,m = 0 , (12a)

i L1(dϕm)u1,m + L(∂)u0,m = 0 , (12b)

i L1(dϕm)u2,m + L(∂)u1,m = fm , (12c)

∀n ≥ 2 , i L1(dϕm)un+1,m + L(∂)un,m = 0 . (12d)

2As a matter of fact, (7) also holds with RN instead of CN and if we consider the kernel in RN of each matrix

instead of the kernel in CN .
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The equations (12) should hold separately for all m = 1, . . . ,M . The boundary conditions are the
following:

B
∑

1≤m≤M

u0,m|xd=0 = 0 , (13a)

B
∑

1≤m≤M

u1,m|xd=0 = g , (13b)

∀n ≥ 2 , B
∑

1≤m≤M

un,m|xd=0 = 0 . (13c)

Since uε vanishes for t < 0, we look for solutions un,m to (12), (13) that also vanish for t < 0.

3.2.2. The amplitudes for noncausal phases. The interior equations (12) are sufficient to determine
the amplitudes un,m when ϕm is a noncausal phase. More precisely, we use the projectors Pm, Qm

and the partial inverse Rm satisfying (8) to rewrite the cascade (12) into the equivalent form (see
Lax [13] or [19] for similar calculations)

u0,m = Pm u0,m , (14a)

Qm L(∂)u0,m = 0 , (14b)

(I − Pm)u1,m = i Rm L(∂)u0,m , (14c)

Qm L(∂)u1,m = Qm fm , (14d)

(I − Pm)u2,m = i Rm

(
L(∂)u1,m − fm

)
, (14e)

∀n ≥ 2 , Qm L(∂)Pm un,m = −Qm L(∂) (I − Pm)un,m , (14f)

∀n ≥ 2 , (I − Pm)un+1,m = i Rm L(∂)un,m . (14g)

The crucial observation for solving the cascade (14) is the following:

Lemma 3 ([13]). Let m ∈ {1, . . . ,M} and let the projectors Pm, Qm be defined in Lemma 2. Then
there holds the relation

Qm L(∂)Pm = (∂t + vm · ∇x)Qm Pm +QmDPm ,

where the group velocity vm is defined in (3).

Lemma 3 shows that amplitudes polarized on the kernel of L1(dϕm) are propagated at the group
velocity vm. Let us now observe that when ϕm is a noncausal phase, the following initial boundary
value problem {

(∂t + vm · ∇x)Qm Pm w +QmDPm w = F , in ΩT ,

Pm w|t<0 = 0 ,
(15)

is strongly well-posed for any matrix D ∈ MN (R), and any source term F ∈ H+∞(ΩT ) vanishing
for t < 0 and satisfying Qm F = F . Since the group velocity vm is outgoing, the initial boundary
value problem (15) does not require any boundary condition, see [3, chapter 3]. In this case, there
exists a unique solution Pm w ∈ H+∞(ΩT ) solution to (15) that vanishes for t < 0. This solution
can be computed by first decomposing all vectors on a basis of Im Qm then by integrating along the
characteristics defined by vm.

With this well-posedness result in mind, the equations (14a), (14b) show that the principal term
u0,m is zero for m ∈ N C . Then (14c) gives u1,m = Pm u1,m. The equation (14d) determines
Pm u1,m by solving an initial boundary value problem of the form (15) with the source term Qm fm.
Observe that u1,m does not vanish because the source term Qm fm does not necessarily vanish.
The component (I − Pm)u2,m is then determined by (14e), while again Pm u2,m satisfies an initial
boundary value problem of the form (15). Inductively, we determine (I − Pm)un,m by using the
relation (14g), and we determine Pm un,m by solving an initial boundary value problem of the form
(15). The source term for this initial boundary value problem is obtained from (14f). The procedure
is entirely analogous to the construction of WKB expansions for the Cauchy problem in free space.
Eventually, we have proved:
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Proposition 1. Let m ∈ N C , and let fm ∈ H+∞(ΩT ) vanish for t < 0. Then there exists a unique
sequence (un,m)n≥0 in H+∞(ΩT ) such that

(i) all functions un,m vanish for t < 0,
(ii) the cascade (14), or equivalently (12), is satisfied.

Moreover, there holds u0,m = 0 and u1,m = Pm u1,m. In the particular case fm = 0, all functions
un,m are zero.

3.2.3. The principal term for causal phases. For causal phases, the equations in ΩT are again (14),
since the cascade (14) is decoupled for each phase. However, in this case, the group velocity vm is
incoming and the determination of the amplitudes un,m in the domain ΩT requires first to determine
the traces un,m|xd=0 on ωT . More precisely, when ϕm is a causal phase, the initial boundary value
problem 

(∂t + vm · ∇x)Qm Pm w +QmDPm w = F , in ΩT ,

Pm w|xd=0 = G , on ωT ,

Pm w|t<0 = 0 ,
(16)

is strongly well-posed for any matrix D, and for any source terms (F,G) ∈ H+∞(ΩT ) ×H+∞(ωT )
vanishing for t < 0 and satisfying Qm F = F , PmG = G. This well-posedness result holds because
the Dirichlet boundary conditions are strictly dissipative, see again [3, chapter 3]. We therefore need
to determine the trace of the functions Pm un,m on ωT .

Let us detail how we can determine the trace of each u0,m, m ∈ C . We recall that u0,m = 0 if
m ∈ N C , see Proposition 1. Together with the polarization condition (14a), (13a) reads

B
∑
m∈C

Pm u0,m|xd=0 = 0 .

Using Lemma 1, we know that the vector
∑

m∈C Pm u0,m|xd=0 belongs to the stable subspace
Es(τ , η). Using (9), we obtain that there exists a scalar function α0 defined on ωT such that

∀m ∈ C , u0,m|xd=0 = α0 em . (17)

Let us now consider the boundary condition (13b), that reads

B
∑
m∈C

Pm u1,m|xd=0 = g −B
∑

m∈N C

u1,m|xd=0 −B
∑
m∈C

(I − Pm)u1,m|xd=0

= g −B
∑

m∈N C

u1,m|xd=0 − i B
∑
m∈C

(
Rm L(∂)u0,m

)
|xd=0 , (18)

where we have used (14c) to get the last equality. The vector on the left hand-side of (18) belongs
to B Es(τ , η) thanks to Lemma 1. Consequently, (18) implies a solvability condition: the vector on
the right hand-side of (18) should be orthogonal to b, see (10). The following result is the crucial
point in our analysis.

Proposition 2. Let the projectors Pm, Qm be defined in Lemma 2, and let Rm denote the partial
inverse of L1(dϕm) satisfying (8). Then we have RmAd Pm = 0 for all m = 1, . . . ,M . Consequently,
the operator

∑
m∈C Rm L(∂)Pm is tangent to the boundary ωT .

Let the vector b satisfy (10). Then there exists a nonzero real number β such that the following
relation holds:

b ·B
∑
m∈C

Rm L(∂) em = β

∂τσ(τ , η) ∂t +
d−1∑
j=1

∂ηjσ(τ , η) ∂xj

+ b ·B
∑
m∈C

RmDem .

Moreover, the coefficient ∂τσ(τ , η) equals 1.

Let us first admit the result of Proposition 2, and see how we can determine the function α0 in
(17). If we apply the first result in Proposition 2, (18) reads

B
∑
m∈C

Pm u1,m|xd=0 = g −B
∑

m∈N C

u1,m|xd=0 − i B
∑
m∈C

Rm

∂t +
d−1∑
j=1

Aj ∂xj

 (u0,m|xd=0) .
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We multiply the latter relation by b and use (17). Applying Proposition 2, we obtain a first order
equation for α0 that reads

∂tα0 +
d−1∑
j=1

∂ηj
σ(τ , η) ∂xj

α0 + D α0 =
−i
β
b ·

(
g −B

∑
m∈N C

u1,m|xd=0

)
. (19)

The real number D in (19) is defined as

D :=
1
β
b ·B

∑
m∈C

RmDem .

The equation (19) is a Cauchy problem that determines a unique α0 ∈ H+∞(ωT ) that vanishes for
t < 0. The Cauchy problem (19) is well-posed because σ is a real valued function so (19) is a scalar
transport equation that can be integrated along the characteristics.

Once we have determined α0, the function u0,m = Pm u0,m is obtained by solving an initial
boundary value problem of the form (16), see (14b) and Lemma 3:

(∂t + vm · ∇x)Qm Pm u0,m +QmDPm u0,m = 0 , in ΩT ,

Pm u0,m|xd=0 = α0 em , on ωT ,

Pm u0,m|t<0 = 0 .

Before proving Proposition 2, let us observe that generically, the function α0 is nonzero, and
therefore the u0,m’s are nonzero. If we anticipate a little and take for granted that the WKB
expansion of uε is a good approximation of uε as ε tends to zero, we observe that the amplitude of
uε is asymptotically O(1) as ε tends to zero. This is the main amplification phenomenon that we
exhibit in this article. We refer to section 4 for further discussions on this subject.

Proof of Proposition 2. The proof splits in several steps.
• Let us first prove the relation RmAd Pm = 0 for all m = 1, . . . ,M . Let X ∈ CN . We have

Ad PmX ∈ Ad Ker L1(dϕm) = Im Qm ,

see Lemma 2. We thus have RmAd PmX = RmQmAd PmX = 0 where we use (8) to conclude. We
have thus proved that the operator

∑
m∈C Rm L(∂)Pm is tangent to the boundary ωT . In particular,

we have

b ·B
∑
m∈C

Rm L(∂) em =

(
b ·B

∑
m∈C

Rm em

)
∂t +

d−1∑
j=1

(
b ·B

∑
m∈C

RmAj em

)
∂xj

+ b ·B
∑
m∈C

RmDem . (20)

It remains to make the coefficients in the transport operator (20) more explicit.
• We now give two possible definitions of the so-called Lopatinskii determinant near (τ , η). As

shown in the proof of Lemma 1, we know that for (z, η) close to (τ , η), the eigenvalues i ωm(z, η) of
A (z, η) are determined by solving (5). They depend holomorphically on z and analytically on η.
These eigenvalues are semi-simple and the corresponding eigenspaces also depend holomorphically
on z and analytically on η. Moreover, the decomposition (6) holds. We can therefore construct
a basis F1(z, η), . . . , Fp(z, η) of the stable subspace Es(z, η) such that the vectors Fj(z, η) depend
holomorphically on z and analytically on η in a neighborhood of (τ , η). There is no loss of generality
in assuming F1(τ , η) = e where e satisfies (9). The basis F1, . . . , Fp of Es allows us to define a first
Lopatinskii determinant by the formula

∆1(z, η) := det
(
B F1(z, η), . . . , B Fp(z, η)

)
. (21)

Using Assumption 3, we can define a second Lopatinskii determinant by using the basis E1, . . . , Ep

of Es that is defined in a neighborhood of (τ , η):

∆2(z, η) := det
(
BE1(z, η), . . . , B Ep(z, η)

)
. (22)
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Assumption 3 shows that the Lopatinskii determinant ∆2 satisfies

∆2(z, η) =
(
γ + i σ(z, η)

)
detP (z, η) . (23)

Let us observe that ∆1 depends holomorphically on z and analytically on η, while ∆2 is “only”
a C∞ function of (z, η). Since the Ej ’s and the Fj ’s both span the stable subspace Es(z, η), the
Lopatinskii determinants ∆1 and ∆2 in (21), (22) are proportional one to the other. Namely, there
exists a complex valued C∞ function ϑ(z, η), that does not vanish in a neighborhood of (τ , η), and
that satisfies

∆1(z, η) = ϑ(z, η) ∆2(z, η) . (24)
• Differentiating (23) with respect to the real and imaginary parts of z then with respect to the

ηj ’s, we obtain the relations

∂γ∆2(τ , η) = (1 + i ∂γσ(τ , η)) detP (τ , η) ,

∂τ∆2(τ , η) = i ∂τσ(τ , η) detP (τ , η) , (25)

∀ j = 1, . . . , d− 1 , ∂ηj
∆2(τ , η) = i ∂ηj

σ(τ , η) detP (τ , η) .

In particular, we have ∂γ∆2(τ , η) 6= 0 because ∂γσ(τ , η) is a real number. The first Lopatinskii
determinant ∆1 depends holomorphically on z = τ − i γ, so we have

∂z∆1(τ , η) = ∂τ∆1(τ , η) = i ∂γ∆1(τ , η) .

We now differentiate (24) and use (25) to obtain

∂τσ(τ , η) = 1 ,

∂z∆1(τ , η) = i ϑ(τ , η) detP (τ , η) 6= 0 , (26)

∀ j = 1, . . . , d− 1 , ∂ηj ∆1(τ , η) = ∂z∆1(τ , η) ∂ηjσ(τ , η) .

The only remaining task is to find a relation between the derivatives in (26) and the coefficients of
the transport operator in (20).
• Due to our construction of the basis (F1, . . . , Fp) of Es, the first column vector in the determinant

(21) vanishes for (z, η) = (τ , η). Moreover, the vector space B Es(τ , η) is spanned by the vectors
B Fj(τ , η), j = 2, . . . , p. Let us now observe that the kernel of both linear forms

X ∈ Cp 7−→ b ·X , and X ∈ Cp 7−→ det
(
X,B F2(τ , η), . . . , B Fp(τ , η)

)
,

is the hyperplane B Es(τ , η) ⊂ Cp, see (10). Consequently, there exists a nonzero complex number
β1 such that the following relation holds

∀X ∈ Cp , det
(
X,B F2(τ , η), . . . , B Fp(τ , η)

)
= β1 b ·X . (27)

To complete the proof of Proposition 2, let us differentiate (21) with respect to z and use (27):

∂z∆1(τ , η) = det
(
B ∂zF1(τ , η), B F2(τ , η), . . . , B Fp(τ , η)

)
= β1 b ·B ∂zF1(τ , η) . (28)

Using the decomposition (6), we can decompose the vector F1(z, η) as

F1(z, η) =
∑
m∈C

F1,m(z, η) ,
(
z I +

d−1∑
j=1

ηj Aj + ωm(z, η)Ad

)
F1,m(z, η) = 0 .

Differentiating the latter relation with respect to z and applying the matrix Rm, we get3

Rm em + (I − Pm) ∂zF1,m(τ , η) = 0 .

Summing with respect to m ∈ C and using Lemma 1, we obtain

∂zF1(τ , η) +
∑
m∈C

Rm em ∈ Es(τ , η) ,

so (28) yields

b ·B
∑
m∈C

Rm em = −
∂z∆1(τ , η)

β1
=: β . (29)

3Recall the relation F1(τ , η) = e, so F1,m(τ, η) = em. We also use the relation Rm Ad em = 0.
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If now we differentiate with respect to ηj instead of differentiating with respect to z, we obtain

b ·B
∑
m∈C

RmAj em = − 1
β1
∂ηj

∆1(τ , η) = β ∂ηj
σ(τ , η) ,

where we have used (26). We have thus obtained the expression of the coefficients in the transport
operator (20). The number β in (29) is necessarily real because the left hand-side of (29) involves
only real matrices and real vectors. The proof of Proposition 2 is now complete. �

3.2.4. The higher order terms for causal phases. The construction of the amplitudes un,m, n ≥ 1
and m ∈ C , follows from an induction argument that we explain in this paragraph. Let us first of
all rewrite the cascade of boundary conditions (13) as

B
∑
m∈C

u0,m|xd=0 = 0 , (30a)

B
∑
m∈C

Pm u1,m|xd=0 = g −B
∑

m∈N C

u1,m|xd=0 −B
∑
m∈C

(I − Pm)u1,m|xd=0 , (30b)

∀n ≥ 2 , B
∑
m∈C

Pm un,m|xd=0 = −B
∑

m∈N C

un,m|xd=0 −B
∑
m∈C

(I − Pm)un,m|xd=0 . (30c)

We are now going to construct the amplitudes u1,m, m ∈ C . We use the decomposition (11) and
write ∑

m∈C

Pm u1,m|xd=0 = α1 e+ v1 , v1 ∈ Ěs(τ , η) . (31)

The boundary condition (30b) reads

B v1 = g −B
∑

m∈N C

u1,m|xd=0 − i B
∑
m∈C

(Rm L(∂)u0,m)|xd=0 . (32)

In the previous paragraph, we have seen that the equation (19) is the compatibility condition that
ensures that the right hand-side of (32) belongs to the vector space B Es(τ , η). Since B induces an
isomorphism from Ěs(τ , η) to B Es(τ , η), the equation (32) determines a unique v1 ∈ H+∞(ωT ) that
vanishes for t < 0. We are now going to determine the scalar function α1 in (31). We use (30c) for
n = 2, and combine with (14c), (14e):

B
∑
m∈C

Pm u2,m|xd=0 = −B
∑

m∈N C

u2,m|xd=0 − i B
∑
m∈C

Rm (L(∂)u1,m − fm)|xd=0

= −B
∑

m∈N C

u2,m|xd=0 + i B
∑
m∈C

Rm fm|xd=0

− i B
∑
m∈C

Rm L(∂) (I − Pm)u1,m|xd=0 − i B
∑
m∈C

Rm L(∂)Pm u1,m|xd=0

= −B
∑

m∈N C

u2,m|xd=0 + i B
∑
m∈C

Rm fm|xd=0

+B
∑
m∈C

Rm L(∂)Rm L(∂)u0,m|xd=0 − i B
∑
m∈C

Rm L(∂)Pm u1,m|xd=0 .

The above equation implies a compatibility condition: the vector on the right hand-side must be
orthogonal to b. Applying Proposition 2 and using the decomposition (31), we obtain a transport
equation for α1 of the form

∂tα1 +
d−1∑
j=1

∂ηjσ(τ , η) ∂xjα1 + D α1 = g1 , (33)

where the source term g1 belongs to H+∞(ωT ) and vanishes for t < 0, and D ∈ R is the same as in
(19). The expression of g1 involves u0,m, fm’s, m ∈ C , v1 etc. and can be deduced from above, but
we omit it. We solve (33) and obtain a solution α1 ∈ H+∞(ωT ) that vanishes for t < 0.

With v1 defined by (32) and α1 satisfying (33), we determine the traces Pm u1,m|xd=0, m ∈ C ,
in (31). Then Pm u1,m satisfies a transport equation in ΩT that we obtain from (14d). We can
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therefore determine the amplitude u1,m in ΩT by solving an initial boundary value problem of the
form (16).

The construction of higher order amplitudes for causal phases follows from a straightforward
induction argument that we shall omit. Our construction is summarized in the following:

Proposition 3. Let the family (un,m)n≥0,m∈N C in H+∞(ΩT ) solve (14), with all functions un,m

vanishing for t < 0. Then there exists a unique family (un,m)n≥0,m∈C in H+∞(ΩT ) such that

(i) all functions un,m vanish for t < 0,
(ii) the cascade (14), (13) is satisfied.

In particular, the trace of u0,m on ωT , m ∈ C , satisfies (17) with α0 solution to the transport
equation (19).

3.3. Justification of the WKB expansion. We first recall the following well-posedness result
that was proved in [6].

Theorem 3 ([6]). Let Assumptions 1-3 be satisfied and let T > 0. Then for all functions f ∈
L2(R+

xd
;H1

t,y(ωT )) and g ∈ H1(ωT ) vanishing for t < 0, there exists a unique u ∈ L2(ΩT ) that is
a weak solution to (36), whose trace on ωT belongs to L2(ωT ), and that vanishes for t < 0. In
addition, there exists a constant C and a parameter γ0 ≥ 1 such that for all γ ≥ γ0, the following
estimate holds

γ ‖e−γ t u‖2L2(ΩT ) + ‖e−γ t u|xd=0‖2L2(ωT ) ≤ C

{
1
γ
‖e−γ t f‖2L2(ΩT ) +

1
γ3
‖e−γ t∇t,yf‖2L2(ΩT )

+‖e−γ t g‖2L2(ωT ) +
1
γ2
‖e−γ t∇g‖2L2(ωT )

}
. (34)

Theorem 3 shows that the initial boundary value problem (1) is well-posed with a loss of one
tangential derivative from the source terms fε, gε to the solution uε (tangential means with respect
to the boundary {xd = 0}). Theorem 3 holds independently of the zero order term D in the operator
L(∂). We shall use without proof that for smooth source terms, that is when fε ∈ H+∞(ΩT ) and
gε ∈ H+∞(ωT ), the solution uε to (1) belongs to H+∞(ΩT ).

The last thing to prove in Theorem 2 is that the remainder (uε − uε
app,N0

)ε∈]0,1] is O(εN0+1) in
H+∞

ε (ΩT ). Let us therefore consider an integer N0. Some computations using (12), (13) show that
the remainder uε − uε

app,N0+2 is a solution to the system
L(∂) (uε − uε

app,N0+2) = −εN0+2
∑M

m=1 ei ϕm/ε L(∂)uN0+2,m , in ΩT ,

B (uε − uε
app,N0+2)|xd=0 = 0 , on ωT ,

(uε − uε
app,N0+2)|t<0 = 0 .

(35)

We can then apply the energy estimate (34) of Theorem 3 and obtain

‖uε − uε
app,N0+2‖L2(ΩT ) ≤ C εN0+1 ,

for a suitable constant C that does not depend on ε. The derivation of energy estimates for higher
order derivatives follows the classical procedure described for instance in [3, chapter 9]. We first
commute (35) with tangential derivatives ε|α| ∂α

t,y and apply the energy estimate of Theorem 3 to
obtain

ε|α| ‖∂α
t,y(uε − uε

app,N0+2)‖L2(ΩT ) ≤ C εN0+1 .

Then normal derivatives are estimated by using the interior equation in (35) which shows that
∂xd

(uε − uε
app,N0+2) is a linear combination of tangential derivatives and other source terms that

can be easily estimated. Eventually, we obtain that the remainder uε − uε
app,N0+2 is O(εN0+1) in

H+∞
ε (ΩT ). The triangle inequality implies that uε − uε

app,N0
is also O(εN0+1) in H+∞

ε (ΩT ). This
completes the proof of Theorem 2.
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4. Applications

In this section, we consider the nonoscillatory initial boundary value problem
L(∂)u := ∂tu+

∑d
j=1Aj ∂xju = f , in ΩT ,

B u|xd=0 = g , on ωT ,

u|t<0 = 0 .
(36)

The goal of this section is to give both quantitative and qualitative information on the solution to
(36) when Assumptions 1-3 are satisfied by the operator L(∂) and the boundary condition B. To
begin with, we do not consider zero order terms in L(∂) for simplicity, but the same results hold
independently of the zero order term.

4.1. Optimal energy estimates for WR problems and consequences. Our first result in this
paragraph is the following:

Theorem 4. Let Assumptions 1-3 be satisfied and let T > 0. Let s1, s2 ≥ 0, and assume that for
all functions f ∈ L2(R+

xd
;Hs1

t,y(ωT )) and g ∈ Hs2(ωT ) that vanish for t < 0, there exists a unique
u ∈ L2(ΩT ) vanishing for t < 0 that is a weak solution to (36), and that satisfies an estimate of the
form

‖u‖L2(ΩT ) ≤ C
(
‖f‖L2(R+

xd
;Hs1 (ωT )) + ‖g‖Hs2 (ωT )

)
, (37)

where the constant C = C(T ) depends on T but not on f, g, u. Then s1 ≥ 1 and s2 ≥ 1.

Theorem 4 shows that the loss of regularity in Theorem 3 from the source terms to the solution
is optimal in the scale of Sobolev spaces with tangential regularity.

Proof of Theorem 4. • Let us argue by contradiction and assume s2 < 1. We consider the initial
boundary value problem (36) with f = 0 and a highly oscillatory source term gε on the boundary
ωT . We thus consider a source term gε satisfying Assumption 5 with a plane phase ϕ satisfying
Assumption 4. We further assume that the amplitude function g in Assumption 5 is of the form

g(t, y) = ψ(t, y) b ,

where the vector b ∈ Rp satisfies (10) and ψ is a real valued nonzero C∞ function with compact
support in ωT ∩ {t ≥ 0}.

Since ‖gε‖L2(ωT ) is O(ε) and ‖gε‖H1(ωT ) is O(1), interpolation inequalities yield

∀ ε ∈ ]0, 1] , ‖gε‖Hs2 (ωT ) ≤ C ε1−s2 ,

with a constant C that depends on ψ,ϕ, T but not on ε. In particular, gε tends to 0 in Hs2(ωT )
as ε tends to 0 since we have assumed s2 < 1. The energy estimate (37) shows that the solution
uε ∈ L2(ΩT ) to the oscillatory initial boundary value problem

∂tu
ε +

∑d
j=1Aj ∂xj

uε = 0 , in ΩT ,

B uε|xd=0 = gε , on ωT ,

uε|t<0 = 0 ,
(38)

tends to 0 in L2(ΩT ) as ε tends to 0. Theorem 2 shows that (38) has a unique smooth solution
vε ∈ H+∞(ΩT ) that vanishes for t < 0 and that is well approximated by its WKB expansion. Since
smooth solutions are weak solutions, vε coincides with the weak solution uε given by the assumption
of Theorem 4. Moreover, we know that the difference

uε −
M∑

m=1

u0,m ei ϕm/ε ,

tends to 0 in L2(ΩT ) as ε tends to 0. The triangle inequality then shows that the approximate
solution

M∑
m=1

u0,m ei ϕm/ε ,

tends to 0 in L2(ΩT ) as ε tends to 0. It remains to apply the following:
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Lemma 4. Let v1, . . . , vM ∈ L2(ΩT ). Then the sum
∑M

m=1 vm ei ϕm/ε tends to 0 in L2(ΩT ) as ε
tends to 0 if and only if all functions vm vanish.

Applying Lemma 4, we obtain that all functions u0,m are zero. In particular, the trace of all
u0,m’s, m ∈ C , vanish and the function α0 in (17) is zero. This is obviously in contradiction with
the equation (19) since we know that all noncausal amplitudes un,m are zero (see Proposition 1) so
the source term in (19) reduces to a −i |b|2 β−1 ψ which is not identically zero. We are therefore led
to a contradiction and we get s2 ≥ 1.
• It remains to show s1 ≥ 1. Again we argue by contradition and assume s1 < 1. Then we choose

a zero source term on the boundary ωT in (36) and a highly oscillatory source term fε in the domain
ΩT . More precisely, we choose the source term fε of the form

fε(t, x) = εψ1(t, x) ei ϕ1(t,x)/εX ,

where X ∈ Im P1 is a constant vector, and ψ1 is a real valued nonzero C∞ function with compact
support in ΩT ∩ {t ≥ 0}. Up to reordering the phases, we can always assume that ϕ1 is a noncausal
phase.

Applying the same arguments as above, we obtain that the solution uε ∈ L2(ΩT ) to the problem
∂tu

ε +
∑d

j=1Aj ∂xj
uε = fε , in ΩT ,

B uε|xd=0 = 0 , on ωT ,

uε|t<0 = 0 ,

tends to zero in L2(ΩT ) as ε tends to zero. Lemma 4 then implies that all functions u0,m and α0

vanish. For the source term fε defined above, the right hand-side of equation (19) reduces to

b ·B u1,1|xd=0 = 0 , (39)

since for m ∈ N C with m 6= 1, the amplitudes un,m’s are zero (Proposition 1). Observe that
the relation (39) holds independently of the function ψ1 and of the vector X in the definition of
the oscillatory source term fε. By our previous analysis, we know that the function u1,1 satisfies
P1 u1,1 = u1,1 and is a solution to the transport equation

(∂t + v1 · ∇x)Q1 u1,1 = ψ1Q1X .

We integrate along the characterstics and derive

Q1 u1,1(t, x) =
(∫ t

0

ψ1(s, x+ (s− t)v1) ds
)
Q1X .

Let us now recall that Q1 induces an isomorphism from Im P1 to Im Q1, so we get

u1,1(t, x) =
(∫ t

0

ψ1(s, x+ (s− t)v1) ds
)
X ,

because both u1,1 and X belong to Im P1. Using (39) we obtain

∀X ∈ Im P1 , b ·BX = 0 .

The same argument can be reproduced for all noncausal phases. In the end, we have proved

∀X ∈ ⊕m∈N C Im Pm , b ·BX = 0 .

Combining with (10) and Lemma 1, we find that the vector b · B is orthogonal to all vectors of
CN and is therefore equal to zero. However, this is in contradiction with the result of Proposition
2 which shows in particular that b · B is not zero. We have thus obtained s1 ≥ 1. The proof of
Theorem 4 is now complete. �

By the way we have proved the following result, which will be useful later.

Lemma 5. One can always find m0 ∈ N C and X ∈ kerL1(dϕm0) such that b ·BX 6= 0.

It remains to prove Lemma 4 above.
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Proof of Lemma 4. We extend all functions vm by zero outisde of ΩT so we consider the vm’s as
elements of L2(R1+d). We have∥∥∥∥∥

M∑
m=1

vm ei ϕm/ε

∥∥∥∥∥
2

L2(R1+d)

=
M∑

m=1

‖vm‖2L2(R1+d)

+ 2 Re
∑

m1<m2

∫
R1+d

vm1(t, x) · vm2(t, x) ei (ωm1
−ωm2

) xd/ε dtdx .

From Fourier’s analysis, we know that the scalar products in the right hand-side converge to zero
as ε tends to zero because vm1 · vm2 belongs to L1(R1+d). Passing to the limit, we get

M∑
m=1

‖vm‖2L2(R1+d) = 0 ,

and the proof is complete. �

The following result is in the same spirit as Theorem 4.

Theorem 5. Assume that there exists a symmetric positive definite matrix S such that all matrices
S Aj are symmetric. If Assumptions 1-3 hold, then the boundary conditions defined by the matrix B
are not maximally dissipative. In other words, there exists some vector X ∈ RN such that BX = 0
and X · S AdX > 0.

Proof of Theorem 5. We argue by contradiction and assume that the boundary conditions are maxi-
mally dissipative. Theorem 3.2 in [3] shows that the initial boundary value problem (36) is well-posed
for g = 0. More precisely, for all f ∈ L1([0, T ];L2(Rd

+)), there exists a unique u ∈ C ([0, T ];L2(Rd
+))

solution to the problem (36) with g = 0, and the solution u satisfies the estimate

sup
t∈[0,T ]

‖u(t)‖L2(Rd
+) ≤ CT

∫ T

0

‖f(s)‖L2(Rd
+) ds .

Extending u and f by 0 for negative times, we obtain the estimate

‖u‖L2(ΩT ) ≤ CT ‖f‖L2(ΩT ) .

Then we can proceed as in the proof of Theorem 4 and get a contradiction. �

An alternative proof of Theorem 5 that uses the result of [2] rather than energy estimates is pre-
sented in Appendix A. The consequence of Theorem 5 is that for maximally dissipative problems,
the uniform Lopatinskii condition can break down only at glancing points or because of the exis-
tence of surface waves. Examples of such problems, for instance the well-known Rayleigh waves in
elastodynamics, can be found in Domański [8], see also [3, chapter 7].

4.2. Lower bound for the finite speed of propagation. To our knowledge, there is no general
result on the finite speed of propagation for initial boundary value problems in the WR class. Here
we shall not prove that such problems obey the property of finite speed of propagation. We shall
rather assume that the property of finite speed of propagation holds and we shall derive a lower
bound for the maximal propagation speed. The result was suggested by the remarks in [3, chapter
8]. Our result is the following:

Theorem 6. Let Assumptions 1-3 be satisfied. Assume moreover that there exists a constant V > 0
such that the following property holds: for all R1, R2 ≥ 0, for all x0 ∈ Rd

+ and for all y0 ∈ Rd−1, if
the source terms (f, g) ∈ L2(R+

xd
;H1

t,y(ωT ))×H1(ωT ) have compact supports satisfying

supp f ⊂ {(t, x) ∈ ΩT /t ≥ 0 , |x− x0| ≤ R1} ,
supp g ⊂ {(t, y) ∈ ωT /t ≥ 0 , |y − y0| ≤ R2} ,

then the solution u ∈ L2(ΩT ) to (36) given by Theorem 3 satisfies

suppu ⊂ {(t, x) ∈ ΩT /t ≥ 0 , |x− x0| ≤ R1 + V t} ∪ {(t, x) ∈ ΩT /t ≥ 0 , |x− (y0, 0)| ≤ R2 + V t} .
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Then we have V ≥ max(VCauchy, Vboundary) where the velocities VCauchy, Vboundary are defined by

VCauchy := max
ξ∈Rd,|ξ|=1

max
(
|λ1(ξ)|, . . . , |λq(ξ)|

)
, Vboundary := max

(τ,η)∈Υ
|∇ησ(τ, η)| .

There are reasons to believe that the lower bound in Theorem 6 is sharp. When Vboundary >
VCauchy, the speed of propagation for (36) is greater than the speed of propagation for the Cauchy
problem. Examples of this kind already appeared in [4, 10, 3]. We also refer to Section 5 for some
examples in two space dimensions.

Proof of Theorem 6. The speed VCauchy corresponds to the speed of propagation for the Cauchy
problem. Choosing first g = 0 in (36) and source terms f whose support lies far from the boundary,
we can apply the result of finite speed of propagation for the Cauchy problem (see e.g. [3, chapter
2]) and derive the lower bound V ≥ VCauchy. It remains to prove the lower bound V ≥ Vboundary for
which we argue by contradiction. We thus assume from now on that V satisfies V < Vboundary. We
consider the initial boundary value problem (36) with f = 0, and a highly oscillatory source term
gε on the boundary. More precisely, we consider a hyperbolic frequency (τ , η) ∈ Ξ0 verifying

σ(τ , η) = 0 , Vboundary = |∇ησ(τ , η)| .

We define the phase ϕ as in (2). Then we consider a source term gε defined as follows:

gε(t, y) := εψ1(t)ψ2(y) b ei ϕ(t,y)/ε ,

with b as in (10). The functions ψ1, ψ2 are nonnegative and C∞ with compact support. More
precisely, we assume that ψ1 is supported in [0, T ] and is positive in the open interval ]0, T [. Similarly
we assume that ψ2 is supported in the closed unit ball of Rd−1 and is positive in the open unit ball
of Rd−1.

Let us now state the following Lemma, which will be proved later on.

Lemma 6. Under the assumptions of Theorem 2 and using the same notation, there exists a constant
C ≥ 0 such that

∀ ε ∈ ]0, 1] , ‖uε − uε
app,N0

‖L∞(ΩT ) ≤ C εN0+1 .

Since the source term in the domain ΩT is zero here, all the amplitudes for noncausal phases in
the WKB expansion vanish (Proposition 1). Moreover, the scalar function α0 in (17) satisfies the
transport equation (19). In our case, we have D = 0 and the source term in the right hand-side of
(19) reduces here to −i |b|2 ψ1 ψ2/β. Integrating along the characteristics, we find

α0(t, y) =
−i |b|2

β

∫ t

0

ψ1(s)ψ2

(
y + (s− t)∇ησ(τ , η)

)
ds . (40)

Since we have assumed V < Vboundary, we can consider some constant δ > 0 such that 1+V T+δ <
1 + Vboundary T − δ. The source term gε satisfies the assumption of Theorem 6 with R2 = 1 and
y0 = 0. Let us now consider a point Y ∈ Rd−1 with |Y | ≥ 1 + V T + δ. From the assumption
of Theorem 6, we have uε(T, Y, 0) = 0 for all ε ∈ ]0, 1]. Moreover, the functions uε and uε

app,0 are
continuous on ΩT , so we have

‖uε − uε
app,0‖L∞(ωT ) ≤ ‖uε − uε

app,0‖L∞(ΩT ) ≤ C ε ,

where we use Lemma 6. In particular, the pointwise value uε
app,0(T, Y, 0) tends to zero as ε tends to

zero. However, relation (17) shows that we have

uε
app,0(T, Y, 0) =

∑
m∈C

u0,m(T, Y, 0) ei ϕ(T,Y )/ε = ei ϕ(T,Y )/ε α0(T, Y ) e .

The only possibility for uε
app,0(T, Y, 0) to tend to zero is that α0(T, Y ) vanishes.

We have therefore proved that α0(T, ·) is identically zero outside the ball of radius 1+V T +δ. In
particular, α0(T, ·) vanishes on the sphere of radius 1 + Vboundary T − δ, and this is in contradiction
with the expression (40). The proof of Theorem 6 is thus complete. �

Let us now prove Lemma 6.
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Proof of Lemma 6. We first fix an integer N1 > (d+ 1)/2. We have

uε − uε
app,N0

=
(
uε − uε

app,N0+N1

)
+ εN0+1

N0+N1∑
n=N0+1

εn−N0−1
M∑

m=1

un,m ei ϕm/ε .

We recall that all amplitudes un,m belong to H+∞(ΩT ) and are therefore bounded. Using the
triangle inequality, it is thus sufficient to prove the estimate

∀ ε ∈ ]0, 1] , ‖uε − uε
app,N0+N1

‖L∞(ΩT ) ≤ C εN0+1 ,

for a suitable constant C. Let us define rε := uε − uε
app,N0+N1

. Theorem 2 shows that rε satisfies
an estimate of the form

∀ ε ∈ ]0, 1] ,
∑

|α|≤N1

ε|α| ‖∂α
t,xr

ε‖L2(ΩT ) ≤ C εN0+N1+1 ,

with a constant C that does not depend on ε. We now apply the Sobolev imbedding in the Hs
ε

norms, see e.g. [19], and obtain

‖rε‖L∞(ΩT ) ≤
C

ε(1+d)/2

∑
|α|≤N1

ε|α| ‖∂α
t,xr

ε‖L2(ΩT ) ≤ C εN0+1 .

The proof of Lemma 6 is complete. �

4.3. Reflection of oscillating waves: amplification of initial data. In this paragraph, we
consider a zero order term D in the operator L(∂). Let m0 ∈ N C and let ϕm0 be the corresponding
noncausal phase. Using the classical results of linear geometric optics for the Cauchy problem (Lax
[13]), we know there exist on the domain ]−1,+∞[×Rd solutions uε(t, x) of L(∂)uε = 0 of the form

uε(t, x) = eiϕm0/ε
N0∑

n=1

εn un,m0
+ O(εN0+1) , (41)

in the sense of H+∞
ε (]− 1, T [×Rd) for all T > 0, and such that the restriction of uε to ]− 1, 0[×Rd

is supported in the region xd ≥ 0:

supp
(
uε|]−1,0[×Rd

)
⊂
{
xd ≥ 0

}
.

Introduce for any T ≥ 0, Ω̃T := ΩT ∩ {−1 < t < T} and ω̃T := ωT ∩ {−1 < t < T}. It follows from
the support property that uε is a solution of the homogeneous boundary value problem

L(∂)uε = 0 in Ω̃0, B uε|xd=0 = 0 on ω̃0 .

Now we consider the following initial boundary value problem for a given T > 0:
L(∂)uε = 0 , in Ω̃T ,

B uε|xd=0 = 0 , on ω̃T ,

uε|Ω̃0
= uε ,

(42)

which is interpreted as an oscillatory high frequency wave defined in the past that hits the boundary
{xd = 0} in the future, producing a family of reflected oscillating waves that we want to describe.
The goal is to exhibit an amplified reflected wave: uε has amplitude O(ε) in Ω̃0 and we are going
to show that the solution uε to (42) has amplitude O(1) in Ω̃T . There are several ways to do the
analysis. For instance one can search the solution of the form uε = uε + vε and use the previous
sections to find a rigorous asymptotic expansion of vε. However we prefer a direct approach which
can be made rigorous by following the proof of Theorem 2.

We look for an approximate solution to (42) of the form

uε
app :=

N0−1∑
n=0

εn
M∑

m=1

un,m(t, x) ei ϕm(t,x)/ε .

The expected response to the oscillatory initial condition uε has size O(1) if at least one of the u0,m

is not zero, see Lemma 4. In the interior domain Ω̃T , the cascade of BKW equations is exactly the
cascade (12) written down in paragraph 3.2.1, for which the analysis is almost done. Only the data
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are different: there are no source terms (fm = 0, g = 0) but the amplitude u1,m0 is no more null in
the past. Let us repeat rapidly the construction of the first un,m for n = 0, 1, the construction of
the higher order terms being similar.

Let us consider first the noncausal modes. For m ∈ N C , u0,m = Pm u0,m is null because uε has
amplitude O(ε) so the initial condition for u0,m vanishes. Consequently u1,m = Pm u1,m is given by
the equation {

(∂t + vm · ∇x)Qm Pm u1,m +QmDPm u1,m = 0 , in Ω̃T ,

Pm u1,m|Ω̃0
= u1,m .

(43)

The same arguments as in section 3 apply, showing that all the terms un,m are zero when m ∈
N C \ {m0} (because the incident oscillatory wave uε is polarized on the phase ϕm0 and has no
component on any other phase). The term u1,m0 is given by equation (43) with m = m0 and is
nonzero in general because the data u1,m0

is not.
Consider now the causal modes. The polarization u0,m = Pm u0,m and the boundary condition

B

(∑
m∈C

Pmu0,m

)∣∣
xd=0

= 0 ,

still imply the relation (17). The real function α0 is determined by the transport equation (19),
which now simply reads

∂tα0 +
d−1∑
j=1

∂ηj
σ(τ , η) ∂xj

α0 + D α0 =
i

β
b ·B u1,m0 |xd=0 , in ω̃T ,

α0|t<0 = 0 .

(44)

Note that the source term in (44) actually vanishes in t < 0 because of the condition on the support
of u1,m0

. Hence the function α0, or equivalently the trace of u0,m, is not identically zero on ω̃T if
and only if there exists (t, y) ∈ ]0, T [×Rd−1 such that

b ·B u1,m0(t, y, 0) 6= 0 .

Lemma 5 tells that one can always choose m0 and X ∈ kerL1(dϕm0) such that b ·BX 6= 0. Conse-
quently one has just to choose u1,m0

such that the solution u1,m0 to (43) satisfies u1,m0(t0, y0, 0) = X
at some point of the boundary with 0 < t0 < T . Integrating backwards along the characteristics,
the latter condition can be achieved provided the initial condition u1,m0

|t=0 is suitably chosen. The
details are left to the reader. To summarize we can state the following result:

Theorem 7. One can always find m0 ∈ N C, an incident wave of size O(ε) of the form (41) such
that the solution to the problem (42) is of size O(1) and of the form

uε =
∑
m∈C

u0,m(t, x) ei ϕm(t,x)/ε + O(ε) in H∞
ε (Ω̃T ) ,

with at least one nonzero profile u0,m in t > 0.

We emphasize that this behavior is very different from what happens for the system of linear
elastodynamics with homogenous Neumann boundary conditions where the uniform Lopatinskii
condition also fails but in the ”elliptic region”, see [3, 20, 17]. For this system, an incident oscilla-
tory wave coming from the interior of the domain and hitting the boundary cannot reach the bad
frequency and excite the ”singular mode”4. In other words, an incident oscillatory wave cannot pro-
duce a Rayleigh wave. This is not surprising because there is no loss of derivative from the interior
source term f to the solution u when the Lopatinskii condition fails in the elliptic region.

As an example, let us consider the case d = N = 2 and the operator

L1(∂) = ∂t +
(

1 0
0 −1

)
∂x1 +

(
0 1
1 0

)
∂x2 ,

4This singular mode is responsible for the existence of boundary waves called ”Rayleigh waves”.
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with boundary conditions defined by a matrix B =
(√

3/2 −
√

1/2
)
. This example is detailed in

subsection 5.2 and is adapted from Madja-Artola [15]. We are also preparing for the next subsection
where we will consider this example again. The phase on the boundary is ϕ = 2 t+ x1 because the
uniform Lopatinskii condition degenerates at the point (τ = 2, η = 1). Assumptions 1, 2, 3, 4, are
satisfied. There are two characteristic phases in play (M = 2), one causal ϕ1 and one noncausal
ϕ2 that satisfy dim kerL1(dϕ1) = dim kerL1(dϕ2) = 1. In this case, the meaning of Lemma 5 is
m0 = 2 and

∀ a ∈ kerL1(dϕ2) \ {0} , b ·B a 6= 0 .
As a consequence, we see that an incident wave oscillating with respect to ϕ2 of the form (41) is
always amplified by reflection on the boundary for this system.

4.4. Dependence of energy estimates on zero order terms. The important estimate (34) in
Theorem 3 is proved in [6] under some more general assumptions on the systems and in the case of
variable coefficients. More precisely, existence and uniqueness of a weak solution u ∈ L2(ΩT ) to (36)
with the continuity estimate (34) can be achieved for zero order coefficients D that are Lipschitzean.
This regularity is needed in [6] in order to apply symbolic calculus rules. The problem we raise is
to determine whether Lipschitzean regularity for D is necessary for (34) to hold.

We show by a counter-example that the energy estimate (34) is no longer true under the weaker
assumption that the matrix D is only bounded. In other words, the well-posedness result with loss
of regularity of Theorem 3 is independent of Lipschitzean zero order terms but is not independent of
bounded zero order terms. This is in sharp contrast with the uniformly stable case where bounded
zero order terms are completely harmless. This is also surprising compared with the situation for
the Cauchy problem.

For our counter-example we choose d = N = 2 and use again the symmetric hyperbolic operator

L1(∂) = ∂t +
(

1 0
0 −1

)
∂x1 +

(
0 1
1 0

)
∂x2 ,

with boundary conditions defined by the matrix B =
(√

3/2 −
√

1/2
)
. If Theorem 3 was indepen-

dent of bounded zero order terms, there would exist a constant C0 such that for all D ∈ L∞(ΩT )
with ‖D‖L∞(ΩT ) ≤ 1, for all source term f ∈ L2(R+;H1(ωT )) vanishing in the past, there exists a
unique u ∈ L2(ΩT ) solution to 

L1(∂)u+D(t, x)u = f , in ΩT ,

B u|xd=0 = 0 , on ωT ,

u|t<0 = 0 .
(45)

Moreover, the energy estimate

‖u‖L2(ΩT ) ≤ C0 ‖f‖L2(R+;H1(ωT )) (46)

holds. Let us now prove that the constant C0 can not be independent of D in the unit ball of L∞.

Theorem 8. Let L1(∂) and B be fixed as above. Then for all C0 > 0, there exists a matrix
valued function D ∈ C∞(R3,M2(R)) that is bounded with all derivatives bounded and that satisfies
‖D‖L∞(ΩT ) ≤ 1, and there exists a function f ∈ H∞(ΩT ) vanishing for t < 0 such that the solution
u ∈ H∞(ΩT ) to (45) does not satisfy the inequality (46).

Proof of Theorem 8. The idea is to introduce a matrix Dε containing high frequency oscillations in
ϕm0/ε with respect to a noncausal mode m0 ∈ N C that is characteristic for L1(∂). Oscillations
of Dε will be transmitted to the solution uε by resonance. The oscillating wave uε will propagate
towards the boundary and will be amplified by reflection as in the previous subsection. The reflection
creates a wave of size O(1/ε) while the source term f of the equation remains bounded in all Sobolev
spaces of arbitrarily high order. The energy estimate (46) will collapse as ε → 0 provided that
‖Dε‖L∞(ΩT ) ≤ 1 for all ε.

Let us now detail the construction. We keep the notations of the example at the end of the
previous subsection. The boundary phase is ϕ = 2 t + x1 and the planar phases in the interior are
ϕ1 which is causal and ϕ2 which is noncausal (M = 2). Let C0 > 0 be fixed. Fix a real number
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0 < T1 < T and a nonnegative function χ ∈ C∞
0 (R,R) supported in [0, T1] and positive on [ 13T1,

2
3T1].

Take the matrix Dε of the form

Dε(t, x) := χ(t) ei ϕ2(t,x)/ε P2 ,

where P2 is the projector on kerL1(dϕ2) introduced in Lemma 2. Up to multiplying χ by a small
positive constant, we can assume that Dε satisfies ‖Dε‖L∞(ΩT ) ≤ 1 for all ε ∈ ]0, 1]. Let f ∈
H+∞(R3) satisfy f |t<0 = 0 and the support property

supp f ⊂
{
(t, x) ∈ R3 / 0 < t < T1 , δ < x2

}
,

for some parameter δ > 0 to be fixed later.
Let vε denote the solution of the oscillatory initial value problem{

L1(∂) vε +Dεvε = f , in ]−∞, T ] × R2 ,

vε
|t<0 = 0 .

The classical results of linear geometric optics [13, 11, 19] show that vε admits a WKB expansion
at any order of the form

vε(t, x) =
k∑

n=0

εn Vn

(
t, x,

ϕ2(t, x)
ε

)
+ εk+1Rε , (47)

where Rε is O(1) in H+∞
ε (] −∞, T ] × R2) in the sense of Definition 3. In the expansion (47), the

profiles Vn(t, x, θ) ∈ H+∞(]−∞, T ]×R2 ×R/2π Z) are smooth and 2π-periodic with respect to θ.
One can always choose f such that ∂θV0 is not identically zero, which means that the first term in
the expansion is actually oscillating. These oscillations are created by the oscillations of D, which
are transmitted by resonance to vε. Every profile splits into its ”average part”

V n(t, x) :=
1

2π

∫ 2 π

0

Vn(t, x, θ) dθ

and its ”oscillating part”
V ∗n (t, x, θ) := Vn(t, x, θ)− V n(t, x) .

In the region {t ≤ T1} the matrix Dε vanishes, so vε is an oscillating solution of a linear hyperbolic
system with constant coefficients, in the sense of Lax [13]. In this region, the equation for the
profiles Vn decouple into equations for the average part and equations for the oscillating part. For
the leading profile V0 the evolution equations read

L1(∂)V 0 = 0 (t > T1)

and
P2V

∗
0 = V ∗0 , (∂t + v2 · ∇x)V ∗0 = 0 (t > T1) .

The function vε is solution of a Cauchy problem, but one can choose the parameter δ and the support
of f in order that the support of the restriction vε|t<T1 is contained in {x2 > 0} and satisfies

dist
(
supp(vε|]−∞,T1[×R2) , ]−∞, T1[×R2

−
)
> 0 , (48)

where R2
− := {x ∈ R2 , x2 ≤ 0}.

Consider then the solution uε to the initial boundary value problem
L1(∂)uε +Dε uε = f , in ΩT ,

B uε|xd=0 = 0 , on ωT ,

uε|t<0 = 0 .
(49)

Local (in time) uniqueness and the support condition (48) imply that there exists T2, with T1 < T2 ≤
T such that uε = vε on ΩT2 . Choosing δ small enough, one can assume that the integral curves in
R3 of the field ∂t +v2 ·∇x passing through the support of f hit the boundary {x2 = 0} in the region
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{T1 < t < T}. We know that uε is the solution of the following initial boundary value problem for
the simple operator L1(∂), where we denote Ω′T := ΩT ∩ {T1 < t} and ω′T := ωT ∩ {T1 < t}:

L1(∂)uε = 0 , in Ω′T ,
B uε|xd=0 = 0 , on ω′T ,
uε|ΩT2

= vε .

(50)

This problem (50) is now similar to the problem of reflection of waves (42) treated in subsection 4.3.
The only difference is that the data vε of problem (50) has an expansion of the form (47) with general
periodic profiles Vn(t, x, θ), while the data uε in the problem (41) has a simpler monochromatic
expansion where the profiles are pure exponentials functions un,m0

ei θ. However the construction of
WKB solutions of geometric optics work as well in this more general case and are directly presented
in this form in several articles or lecture notes, see e.g. [19]. We shall not repeat this construction
which is completely analogous to the one given in subsections 3.2 and 4.3, leaving the details to the
interested reader. Hence the remark at the end of subsection 4.3 still applies in the case of problem
(50), yielding a solution uε of the form

uε(t, x) =
1
ε
W−1(t, x, ϕ1/ε) +

∑̀
n=0

εn
{
Wn

(
t, x,

ϕ1

ε

)
+ Vn

(
t, x,

ϕ2

ε

)}
+ ε`+1R′ε , (51)

for some integer ` < k that can be taken arbitrarily large. In the formula (51), the profiles Wn(t, x, θ)
belong to the space H+∞(ΩT ×R/2π Z) and are associated with oscillations on the phase ϕ1. They
are created by the interaction with the boundary, and satisfy Wn|t<T2 = 0. The remainder term R′ε
is O(1) in H+∞

ε (ΩT ).
The energy inequality (46) for all ε ∈ ]0, 1] only if the principal term W−1 in (51) vanishes.

Otherwise, the norm ‖uε‖L2(ΩT ) does not remain bounded as ε goes to zero. However, W−1 can
not be identically zero due to the result of the previous paragraph. Recall that for our particular
example, all incident waves are amplified at the boundary because of the condition

∀ a ∈ kerL1(dϕ2) \ {0} , b ·B a 6= 0 .

�

Note that a consequence of the proof of Theorem 8 is the following stronger result:

Theorem 9. Let L1(∂) and B be fixed as above. Let C0 > 0 and let s ≥ 1. Then there exists a
matrix valued function D ∈ C∞(R3,M2(R)) that is bounded with all derivatives bounded and that
satisfies ‖D‖L∞(ΩT ) ≤ 1, and there exists a function f ∈ H∞(ΩT ) vanishing for t < 0 such that the
solution u ∈ H∞(ΩT ) to (45) does not satisfy the inequality

‖u‖L2(ΩT ) ≤ C0 ‖f‖L2(R+;Hs(ωT )) .

5. Examples and comments

5.1. Computation of the transport operator on the boundary. We begin with a simplifica-
tion of Proposition 2 in the case d = 2.

Lemma 7. Let d = 2. Under the assumptions of Proposition 2, we have η 6= 0 and

b ·B
∑
m∈C

Rm L(∂) em =

(
b ·B

∑
m∈C

Rm em

) (
∂t −

τ

η
∂x1

)
+ b ·B

∑
m∈C

RmDem .

Lemma 7 shows that in the case d = 2, the group velocity ∇ησ coincides with the phase velocity of
the oscillations on the boundary. This is no surprise because we consider here a transport equation
in one space dimension.

Proof of Lemma 7. First of all, we have η 6= 0 for otherwise, the Lopatinskii condition would break
down at some point (τ , 0) ∈ Ξ0. By homogeneity, this implies that the Lopatinskii condition breaks
down at all points (z, 0) ∈ Ξ so there exists a frequency ζ ∈ Ξ \ Ξ0 where the kernel of B intersects
the stable subspace Es(ζ). This is in contradiction with Assumption 3. We thus have η 6= 0.
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We recall that for all m = 1, . . . ,M , we have proved in Proposition 2 the relation RmA2 Pm = 0.
We also recall that for all m ∈ C , the vector em in the decomposition (9) belongs to the kernel of
L1(dϕm). Starting from the relation

L1(dϕm) em = τ em + η A1 em + ωmA2 em = 0 ,

we multiply by Rm, sum over m ∈ C , then multiply by b ·B, and we obtain

b ·B
∑
m∈C

RmA1 em = −τ
η
b ·B

∑
m∈C

Rm em .

�

We recall that the hyperbolic region H always contains the projection of the forward cone, see
[3, chapter 8]. In particular, H contains all vectors of the form (1, η) with η sufficiently small. The
velocity in the transport operator on the boundary can therefore be arbitrarily large if the uniform
Lopatinskii condition breaks down at a point (1, η) with η arbitrarily small. In particular, we can
find examples where the velocity Vboundary in Theorem 6 is larger than the speed of propagation for
the Cauchy problem VCauchy, see the following paragraph.

5.2. A wave-type system. Our first example is the problem studied by Majda and Artola [15,
section 3.C] that we rewrite in our framework. We consider the following system that is equivalent
to the 2D wave equation:

∂tu
ε +

(
1 0
0 −1

)
∂x1u

ε +

(
0 1
1 0

)
∂x2u

ε = 0 , (t, x1, x2) ∈ ΩT ,

B uε|x2=0 = ε g(t, x1) ei ϕ(t,x1)/ε , (t, x1) ∈ ωT ,

uε|t<0 = 0 .

(52)

For simplicity, we choose a zero source term in the interior equations and no zero order term in the
hyperbolic operator. The symmetric hyperbolic operator in (52) has characteristic speeds

λ1(ξ1, ξ2) := −
√
ξ21 + ξ22 , λ2(ξ1, ξ2) :=

√
ξ21 + ξ22 .

There are one outgoing characteristic (λ1(0, 1) < 0) and one incoming characteristic (λ2(0, 1) > 0),
so B should be a nonzero row matrix. The precise definition of B will be given later on in order to
satisfy some specific requirements. The function g in (52) is assumed to vanish for t < 0 and to have
C∞ regularity with compact support for simplicity. We choose a planar phase ϕ for the oscillations
of the boundary source term gε in (52):

ϕ(t, x1) := τ t+ η x1 , (τ , η) 6= (0, 0) .

The so-called hyperbolic region H can be explicitly computed, see e.g. [2, 7]:

H =
{
(τ, η) ∈ R× R / |τ | > |η|

}
.

We thus fix from now on a parameter µ ∈ R such that 0 < |µ| < 1, and we assume that (τ , η)
satisfies τ > 0 and µ τ = η. The case τ < 0 is entirely similar. The boundary condition B will be
required to make the uniform Lopatinskii condition degenerate at (τ , η).

We first determine the planar characteristic phases whose trace on {x2 = 0} equals ϕ. We thus
need to determine the roots ω to the dispersion relation

det
[
τ I + η

(
1 0
0 −1

)
+ ω

(
0 1
1 0

)]
= 0 .

We obtain two real roots5, that are given by

ω1 := −
√

1− µ2 τ , ω2 := −ω1 .

5This is not surprising because (τ , η) belongs to the hyperbolic region.
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The associated (real) phases are ϕm(t, x) := ϕ(t, x1) + ωm x2, m = 1, 2. The following relations are
straightforward6:

τ + λ1(η, ω1) = τ + λ1(η, ω2) = 0 ,
and we can then compute the group velocity vm := ∇λ1(η, ωm) associated with each phase ϕi. A
simple calculation shows that the only incoming velocity is v1, so ϕ1 is a causal phase while ϕ2 is a
noncausal phase.

The following relations are easy to obtain

Ker L1(dϕ1) = Span
(
−ω1

τ + η

)
︸ ︷︷ ︸

E1

, Ker L1(dϕ2) = Span
(
−ω2

τ + η

)
︸ ︷︷ ︸

E2

.

As in Lemma 2, we let P1, P2 ∈ M2(R) denote the projectors associated with the decomposition

R2 = Span E1 ⊕ Span E2 = ⊕2
m=1 Ker L(dϕm) .

Let us now define the vectors Fi := A2Ei, i = 1, 2, which form a basis of R2. We let Q1, Q2 ∈ M2(R)
denote the projectors associated with the decomposition

R2 = Span F1 ⊕ Span F2 .

The reader can check that the image of L1(dϕm) is spanned by the vector F3−m, m = 1, 2, as shown
in Lemma 2. In particular, F2 coincides with the first column vector of L1(dϕ1).

We now introduce the partial inverse R1 of the matrix L1(dϕ1), that is the unique matrix verifying

R1 L(dϕ1) = I − P1 , R1Q1 = 0 .

We wish to compute the vector R1E1. To do this, we first decompose E1 on the basis of the Fm’s
and obtain

E1 = µ1 F1 + µ2 F2 , µ2 :=
1
2

(√
1− µ

1 + µ
−
√

1 + µ

1− µ

)
. (53)

We compute

R1E1 = µ2R1 F2 = µ2R1 L(dϕ1)
(

1
0

)
= µ2 (I − P1)

(
1
0

)
=
(
µ2

0

)
+ θ E1 , (54)

where θ is a suitable real number whose exact value is not useful.
Let us assume from now on that the uniform Lopatinskii condition degenerates at the point

(τ , η). This corresponds to a boundary condition B that satisfies BE1 = 0. (Recall that B is a 1×2
matrix.) Equivalently, B should be proportional to the matrix B0 defined by

B0 :=
(√

1 + µ −
√

1− µ
)
.

We claim that the vectors R1E1 and E1 are linearly independent. This can be seen from (54)
because the coefficient µ2 is nonzero7, see (53). Therefore the row matrix B automatically satisfies
BR1E1 6= 0. The transport equation (19) on ωT is of the form

∂tα−
1
µ
∂x1α = G .

We recover the fact that the speed of propagation on the boundary is 1/|µ|, which is larger than the
maximal speed of propagation for the Cauchy problem, see [4, 10] and the discussion in [3, chapter
8].

The property BR1E1 6= 0 is linked to the size of the system. Here, we can not have simultaneously
BE1 = BR1E1 = 0. In the next paragraph, we shall see an explicit example of a system of three
equations for which BE1 = BR1E1 = 0. As predicted from the general theory, this situation
occurs only when (τ , η) is a double root of the Lopatinskii determinant. For the problem (52),
the boundary conditions defined by B0 yield boundary value problems for which Assumption 3 is
satisfied. The roots of the corresponding Lopatinskii determinant are exactly the points (τ, µ τ) ∈ H

6Observe that there is no real root ω to the equation τ + λ2(η, ω) = 0, which is due to the fact that (τ, η) belongs

to the projection of the forward cone, see [7] for more details.
7We recall that the parameter µ is nonzero, otherwise the uniform Lopatinskii condition would degenerate at all

points (z, 0) with Im z ≤ 0, which would contradict the weak stability condition.
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with τ ∈ R \ {0}. Following our analysis, we can then determine all terms in the WKB expansion
and justify that the exact solution uε to (52) is close to this expansion when ε goes to zero.

5.3. The linearized Euler system. We now consider the linearized isentropic Euler equations in
two space dimensions8:

∂tV
ε +A1 ∂x1V

ε +A2 ∂x2V
ε = 0 , (t, x1, x2) ∈ ΩT ,

B V ε|x2=0 = ε g(t, x1) eiϕ(t,x1)/ε , (t, x1) ∈ ωT ,

V ε|t<0 = 0 ,
(55)

where the 3× 3 matrices A1, A2 are given by

A1 :=

 0 −v 0
−c2/v 0 0

0 0 0

 , A2 :=

 u 0 −v
0 u 0

−c2/v 0 u

 .

The parameters v, u, c are chosen so that

v > 0 , u < 0 , |u| < c .

This assumption corresponds to the linearization of the Euler equations at a given specific volume
v > 0 with sound speed c, and a subsonic outgoing velocity (0, u). For such parameters, the operator
∂t +A1 ∂x1 +A2 ∂x2 in (55) is strictly hyperbolic with characteristic speeds

λ1(ξ1, ξ2) := u ξ2 − c
√
ξ21 + ξ22 , λ2(ξ1, ξ2) := u ξ2 , λ3(ξ1, ξ2) := u ξ2 + c

√
ξ21 + ξ22 .

There are two outgoing characteristics and one incoming characteristic, so B is a nonzero row matrix.
We choose a planar phase ϕ for the oscillations of the boundary source term in (55):

ϕ(t, x1) := τ t+ η x1 , (τ , η) 6= (0, 0) .

The so-called hyperbolic region H can be explicitly computed, see e.g. [7], and is given by

H =
{

(τ, η) ∈ R× R / |τ | >
√
c2 − u2 |η|

}
.

For concreteness, we fix from now on the parameters (τ , η) such that η > 0 and τ = c η. In this way,
we have9 (τ , η) ∈ H .

Our first goal is to determine the planar characteristic phases whose trace on {x2 = 0} equals ϕ.
This amounts to finding the roots ω of the dispersion relation

det
[
τ I + η A1 + ωA2

]
= 0 .

We obtain three real roots that are given by

ω1 :=
2M

1−M2
η , ω2 := 0 , ω3 := − 1

M
η , M :=

u

c
∈ ]− 1, 0[ .

The associated (real) phases are ϕi(t, x) := ϕ(t, x1) + ωi x2, i = 1, 2, 3. The relations

τ + λ1(η, ω1) = τ + λ1(η, ω2) = τ + λ2(η, ω3) = 0 ,

yield the group velocity vi associated with each phase ϕi. A simple calculation shows that the only
incoming velocity is v1, so ϕ1 is a causal phase while ϕ2, ϕ3 are noncausal.

8The original equations before linearization are written in the variables v = 1/ρ,u, where ρ denotes the density
and u ∈ R2 denotes the velocity.

9As a matter of fact, it can even be shown that (τ, η) belongs to the projection of the forward cone, see [7], but

this will be of no use here.
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The following relations are obtained from the definition of the matrices A1, A2:

Ker L(dϕ1) = Span


1 +M2

1−M2
c

v
2M c

(1−M2) v


︸ ︷︷ ︸

E1

, Ker L(dϕ2) = Span

vc
0


︸ ︷︷ ︸

E2

,

Ker L(dϕ3) = Span

 0
1
M


︸ ︷︷ ︸

E3

.

We let P1, P2, P3 ∈ M3(R) denote the projectors associated with the decomposition

R3 = Span E1 ⊕ Span E2 ⊕ Span E3 = ⊕i Ker L1(dϕi) .

Let us now define Fi := A2Ei, i = 1, 2, 3, and denote Q1, Q2, Q3 ∈ M3(R) the projectors associated
with the decomposition

R3 = Span F1 ⊕ Span F2 ⊕ Span F3 .

For future use, we give the expressions

F1 =

 −cM
c2M/v
−c2/v

 , F2 =

v cMc2M
−c2

 , F3 =

−vMcM
cM2

 .

The reader can check that the image of each matrix L1(dϕi) is spanned by the vectors Fj , j 6= i, as
shown in Lemma 2. In particular, we have the following relations that are useful below:

1
c
F2 =

1−M2

(1 +M2) η
L(dϕ1)

 0
M
−1

 , F3 =
1−M2

(1 +M2) η
L(dϕ1)

 0
M
M2

 . (56)

We now introduce the partial inverse R1 of the matrix L(dϕ1), that is the unique matrix verifying

R1 L(dϕ1) = I − P1 , P1R1 = 0 , R1Q1 = 0 .

We wish to compute the vector R1E1. To do this, we first decompose E1 on the basis of the Fi’s:

E1 = − 1 +M2

cM (1−M2)
F1 +

1
vM (1−M2)

(
1
c
F2 + F3

)
.

Using (56), we obtain

R1E1 =
1

vM (1−M2)
R1

(
1
c
F2 + F3

)
=

1
vM (1−M2)

1−M2

(1 +M2) η
R1 L(dϕ1)

 0
2M

M2 − 1


=

1
vM (1 +M2) η

(I − P1)

 0
2M

M2 − 1

 =
1

vM (1 +M2) η

 0
2M

M2 − 1

+ θ E1 ,

where θ is a suitable real number.
The uniform Lopatinskii condition fails at (τ , η) if and only if we have BE1 = 0. In this case a

degenerate situation occurs when we also have BR1E1 = 0. Then the transport equation on the
boundary degenerates and does not determine anymore the trace of the main incoming amplitude
in the WKB expansion. Observe that the vectors E1 and R1E1 are linearly independent so we may
have BE1 = BR1E1 = 0 for a unique nonzero row matrix B0, up to a multiplicative constant,
whose kernel is spanned by E1 and R1E1. The matrix B0 can be computed explicitly:

B0 :=
(
−1−M2 v

c
(1−M2) 2M

v

c

)
. (57)
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We now examine the failure of the uniform Lopatinskii condition for this specific matrix B0. We
first need to compute the stable subspace Es(z, η) when z has negative imaginary part and η is real.
This amounts to finding the roots ω of positive imaginary part to the dispersion relation

det
[
z I + η A1 + ωA2

]
= 0 .

When η is real and z has negative imaginary part, there exists a unique root ω of positive imaginary
part to the equation

(z + uω)2 = c2 (ω2 + η2) , (58)
and the stable subspace Es(z, η) is the one-dimensional10 space that is spanned by the eigenvector
associated with the eigenmode ω. We obtain

Es(z, η) = Span

z + uω
c2 η/v
c2 ω/v

 .

The Lopatinskii determinant ∆(z, η) for the boundary condition B0 in (57) is

∆(z, η) = cM (1−M2)ω + c (1−M2) η − (1 +M2) z .

Let us first check that the Lopatinskii condition is satisfied in Ξ \Ξ0. Assume that thereexists some
(z, η) ∈ Ξ \ Ξ0 such that ∆(z, η) = 0. Eliminating z in the polynomial equations

z

c
=

1−M2

1 +M2
M ω +

1−M2

1 +M2
η ,

(z
c

+M ω
)2

= ω2 + η2 .

we end up with

ω =
2M

1−M2
η ∈ R , z = c η ∈ R .

These relations show that the Lopatinskii condition is satisfied in Ξ \ Ξ0, and also that the only
possible roots of ∆ are the points (c η, η) ∈ H . Extending the stable subspace to all points (τ, η) ∈
Ξ0, we find indeed that ∆ vanishes at points (c η, η) and at no other values of (τ, η). Let us now
compute the derivative of ∆ with respect to z at a root (c η, η). We have

∂∆
∂z

(τ , η) = cM (1−M2)
∂ω

∂z
(τ , η)− (1 +M2) .

The derivative ∂zω is computed by differentiating the equation (58) satisfied by ω (this is possible
because (τ , η) is not a glancing point so ω depends holomorphically on z in a neighborhood of τ):

∂ω

∂z
(τ , η) =

τ + uω

(c2 − u2)ω − u τ
=

1 +M2

cM (1−M2)
.

We obtain that (τ , η) is a double root of the Lopatinskii determinant ∆ associated with the matrix
B0 in (57). In this case, the transport equation (19) that should determine the trace α0 of the main
incoming amplitude in the WKB expansion degenerates. The correct ansatz for the WKB solution
corresponds to an amplification of the boundary source term with a factor 1/ε2.

At this stage, it is not very hard to show the following converse property: let us assume that
the boundary condition B is such that BE1 = 0, meaning that the uniform Lopatinskii condition
fails at the hyperbolic point (τ , η). If ∂z∆ vanishes at (τ , η), then the matrix B equals B0 up to a
multiplicative constant and BR1E1 = 0.

When the row matrix B satisfies BE1 = 0, and B is not proportional to B0, it can also be
checked (we omit the details here) that the boundary value problem (55) satisfies Assumption 3.
The transport equation that determines the trace of the main term in the WKB expansion reads

∂tσ − c ∂x1σ = G .

The speed of propagation on the boundary is c. In this example, it is not larger than the speed
of propagation for the Cauchy problem (with our assumption on the parameter u, the speed of
propagation for the hyperbolic operator in (55) is |u|+ c).

10Recall that the dimension of Es(z, η) equals the number of incoming characteristics counted with their multi-

plicity, which is one here.
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On our example, we can formally check that the WR class is stable with respect to small pertur-
bations of B. More precisely, the set of row matrices B such that BE1 = 0 is a plane. On this plane,
there is a straight line spanned by B0 for which the Lopatinskii determinant has a double root (the
set of such matrices is a closed set of zero measure). The complementary set of the straight line
spanned by B0 is the union of two open half-planes, and if B belongs to one of these half-planes,
the Lopatinskii determinant has simple roots in the hyperbolic region.

Appendix A. Another proof of Theorem 5

In this appendix, we give an alternative proof of Theorem 5. We know from the result of [2]
that problems in the WR class are stable with respect to small perturbations of the coefficients
A1, . . . , Ad, B. Moreover problems satisfying Assumptions 1-3 belong to the WR class.

Let us argue by contradition and assume that there exists a Friedrichs symmetrizer S such that
the boundary conditions are maximally dissipative for this symmetrizer. For small δ > 0, let us
consider the initial boundary value problem

Lδ(∂)u := ∂tu+
∑d

j=1A
δ
j ∂xj

u = f , in ΩT ,

B u|xd=0 = g , on ωT ,

u|t<0 = 0 ,
(59)

where the matrices Aδ
j are defined as follows:

Aδ
j :=

{
Aj , if j = 1, . . . , d− 1,
Ad − δ I , if j = d.

The operator Lδ(∂) satisfies Assumptions 1 and 2 for sufficiently small δ, and S is a Friedrichs
symmetrizer for Lδ(∂). Let X ∈ RN \ {0} satisfy BX = 0. Then we have

X · S Aδ
dX = X · S AdX − δ X · S X ≤ −δ X · S X < 0 .

Therefore the boundary conditions in (59) are strictly dissipative for all δ > 0. From the results in
[3, chapter 4], the initial boundary value problem (59) satisfies the uniform Lopatinskii condition.
This is in contradiction with the result of [2] since for sufficiently small δ, (59) belongs to the WR
class and the Lopatinskii determinant must vanish somewhere in the hyperbolic region. We have
thus proved Theorem 5.
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