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A Bayesian Real Option Approach to Patents and Optimal Renewal Fees 

Marc Baudry * 

and 

Béatrice Dumont ** 

This article aims at estimating the optimal profile of renewal fees patent offices should implement. It is at the 
crossroad of two strands of literature. The first strand is the theoretical literature analysing renewal fees as an 
optimal revelation mechanism. The second strand is the econometric literature developing real option models of 
patent renewal decisions to assess the value of patents. Using data from the French patent office, we find that 
there is little room to lower the social cost of patents without affecting the monetary incentives to apply for a 
patent and innovate. We show that a menu of optimally defined profiles helps to further discriminate among 
patents. 

JEL Classification : O31, O34, O38 
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1. Introduction 

Renewal fees are a common and important feature of the patent system in most 

countries. Indeed, through the payment of renewal fees, patent offices provide patentees with 

the entitlement to choose, subject to a maximum period
1
, the duration of protection actually 

granted to their inventions. However, one often notices a lack of interest of policy-makers in 

this facet of patent policy and a common but wrong wisdom that renewal fees play a limited 

role in the effectiveness of the patent system. An illustration of this lack of interest can be 

found in the diversity of patterns and frequencies of renewal fees charged by most patent 

offices. Looking first at the pattern of renewal fees, it is striking to note the lack of 

transparency with which renewal fees are set up. In France, for instance, after an experiment 

between 2001 and 2008 in which the profile of renewal fees was characterised by four stages, 

the patent office decided to re-implement the previous pattern which was more progressive 

but without giving any justification for such change. In the same way, in Italy, renewal fees 

were cancelled in 2006 and then re-introduced in 2007 again without explanation. In turn, 
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 Art. 33 of the TRIPS Agreement sets a minimum period of protection “the term of protection available 

shall not end before the expiration of a period of 20 years counted from the filing date” but this provision is 

often considered as the maximum period of protection. 
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renewal fees may consist of a basic fee or they may consist, like in Japan, of a basic fee plus a 

fee for each claim. As no extra service is provided at payment of the renewal fee to maintain a 

patent, one could argue that this may be the ultimate example of a levy or a tax. Lastly, 

frequencies of payment may also differ. Although in most European countries payment 

applies annually, in some countries renewal fees are payable less frequently. In the United 

States, for instance, payment is required at 3.5, 7.5 and 11.5 years after issue but force is to 

note that such payment is not tied to specific milestones in the patent life cycle. Obviously, 

the guidelines for setting renewal fees need to be clarified. Indeed, though they are essentially 

set at defraying the operational costs of patent offices and at subsidizing access to the patent 

system for SMEs, inconsistencies of the fees could be detrimental to the efficiency of the 

patent system
2
. 

Despite this apparent lack of interest, the justification of patent renewal mechanisms is 

well documented from a theoretical point of view in the economic literature. In their seminal 

articles, Scotchmer (1999) and Cornelli and Schankerman (1999) argue that renewal 

mechanisms work as optimal revelation mechanisms when a patent applicant has private 

information about his invention; information that is observed neither ex ante nor ex post by 

the patent office. However, little is said about the exact monetary values at which patent 

offices should set renewal fees. A reason for this is that theoretical works generally focus on 

ex ante heterogeneity among inventions (i.e. heterogeneity prior a patent is applied for), 

whereas heterogeneity arising ex post from the stochastic nature of the rent associated with a 

patent is disregarded. Cornelli and Schankerman (1999) or Gans, King and Lampe (2004) 

acknowledge that the stochastic dynamics of the rent plays a crucial role in practice but it is 

treated in a simplified way. 

From an empirical point of view, the importance of the stochastic dynamics of the rent 

has been stressed in the econometric literature. Among those econometric works that attempt 

to infer the value of patents from patents renewal decisions, the real option approach is 

probably the most convincing one. A key assumption of this approach is that, due to the 

stochastic dynamics of the rent, patent owners have imperfect but evolving information about 

the rent associated with their patents. As a result, the annual decision to renew a patent is 

assimilated to the exercise of a sequence of European type options; the exercise prices of 

which are the annual renewal fees whereas the stochastic rent is the underlying asset value. 

                                                
2
 Rassenfosse & van Pottelsberghe (2008) estimate that fee policies adopted over the past three decades 

explain, to a significant extent, the rising propensity to patent. 
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Pakes (1986) has been the first to propose this approach and to subsequently develop an 

estimation method of patent value by using data on observed renewal decisions. More 

recently, Baudry and Dumont (2006) have used estimation results of a real option model of 

patent renewal decisions to simulate the impact of a change of renewal fees. However, these 

authors confine themselves to comparative simulations rather than to fully determine the 

optimal profile of renewal fees. A reason for this is that real option models of patent renewal 

decisions lack an explicit link between the value of the rent on the one hand and the social 

surplus on the other hand. 

Clearly, there is a need for a model at the crossing point of the two strands of literature, 

i.e. combining both an analysis of patent renewals as a revelation mechanism and the 

assessment of the value of patents on the basis of a real option model. This article aims at 

developing such a model and at estimating the optimal profile of renewal fees. Two additional 

points are also addressed by the article. Firstly, should a sole optimal profile of renewal fees 

be proposed to patent applicants or should patent applicants rather face a menu of profiles and 

freely choose among the proposed profiles? Secondly, are standard Markovian processes used 

in real option models relevant to capture uncertainty affecting the dynamics of future markets 

or, should rather these standard processes be adapted to account for Bayesian learning? These 

two additional points deserve some comments. 

Regarding the first point, i.e. whether similar rules should apply to all patents or not, it 

is considered as a recurrent debate in intellectual property. The “one size fits all” principle is 

emblematic of this debate. It refers to the standard statutory life limit of twenty years used by 

most countries to conform with TRIPS agreements. However, an important but often 

neglected characteristic of the patent system is that patents are self-screened through the 

renewal mechanism. In other words, if in theory the “one size fits all” system prevails, in 

practice a patent holder will decide whether to keep its patent in force or to let it fall into the 

public domain. This means that if patent applicants have perfect private information about the 

time path of the rent associated to their patents, then the renewal mechanism may be 

interpreted as a menu. More precisely, at the date of application, each applicant has to choose 

the duration of the patent on the one hand and the sum of renewal fees to be paid on the other 

hand among a set of proposed combinations. The renewal mechanism then discriminates ex 

ante between patents. Cornelli and Schankerman (1999) as well as Scotchmer (1999) are in 

line with this interpretation. Conversely, if applicants have no private information at the date 

of their patent application but learn about the value of the rent as time goes, then the renewal 
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mechanism does not discriminate ex ante among patents. Discrimination occurs ex post and is 

contingent to the time path of the rent. Gans, King and Lampe (2004) are in line with this 

view. In practice, patent applicants have private but incomplete information at the date of 

patent application, a situation this article deals with. For this purpose, we denote by “one 

profile fits all” (in analogy with the “one size fits all” rule) the case of a sole profile of 

renewal fees proposed to all patent applicants. By contrast, we denote by “tailor-made 

profiles” the case of a menu of differentiated profiles of renewal fees among which patent 

applicants have to choose at the date of application. To our knowledge, “tailor-made profiles” 

have not yet been proposed nor investigated in the economic literature. They are intended to 

act as a relevant indirect revelation mechanism when patent applicants have initially private 

and incomplete information but learn more about the value of the rent as time goes whereas it 

is impossible or too costly for the patent office to directly obtain the corresponding 

information. An econometric test of how much could be gained in terms of social welfare by 

implementing an optimal “tailor-made profiles” mechanism rather than a “one profile fits all” 

mechanism is proposed in this article. 

Regarding the second point, i.e. the question whether standard Markovian processes are 

relevant to capture the stochastic nature of the dynamics of the rent that accrues from a patent, 

it may look, at a first glance, rather technical. However, this question does have some 

economic background once some important assumptions underlying the use of standard 

Markovian processes in real option models are specified. To be more explicit, recall that the 

use of Markovian processes in real options is inspired by the practice of financial options. 

Financial options are derivatives, the underlying asset of which is exchanged on a market 

since a sufficiently long period. As a result, sufficiently long time series data are available to 

allow an estimation of the objective probability distribution of identically and independently 

random shocks affecting the dynamics of the underlying asset. One of the difficulties we are 

facing here is that the case of the rent associated with a patent does not fit into this context. 

By definition, a patent involves a new invention so that the dynamics of the rent depends on at 

least one parameter, the exact value of which is not known with certainty. Uncertainty about 

the value of the parameters that govern the dynamics of the rent is represented by a subjective 

probability distribution on the set of possible values. Noisy messages arise from the 

observation of short term dynamics of the rent and help revising the subjective probability 

distribution of unknown parameters. Accordingly, this learning process affects expectations 

about the future values of the rent. The economic literature generally deals with this type of 

uncertain dynamics in a Bayesian way. Though the importance of learning for the dynamic 
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analysis of patents is outlined by Pakes (1986), Cornelli and Schankerman (1999) or Gans, 

King and Lampe (2004), it has never been explicitly modelled in a Bayesian way
3
. Therefore, 

our article goes one step further and proposes an adaptation of the Bayesian treatment of 

learning to real options models of patent renewal decisions that mixes Bayesian and 

Markovian dynamics. 

The article is structured as follows. Part 2 introduces the model in a general setting. The 

focus is on obtaining a real option model that provides a realistic representation of patent 

renewal decisions and allows for social welfare considerations. Formal definitions of the “one 

profile fits all” and “tailor-made profiles” optimal mechanisms are proposed. The addition of 

a revenue-generating constraint for the patent office is also examined. Part 3 presents the 

econometric model. An extensive discussion of the modelling of the Bayesian dynamics of 

the rent is proposed. The probability distribution of the optimal date of patents withdrawal is 

then obtained and serves as a basis for estimating the model. Data from the French patent 

office covering the period 1970-2006 are used. Estimation results are presented in Part 4. 

They include an estimate of the social cost per patent compared to the monetary incentive to 

innovate measured by the option value per patent. We also estimate the optimal “one profile 

fits all” renewal fees and an optimal “tailor-made profiles” menu with two alternative choices. 

Social gains of the two systems are compared and the incidence of a self-financing constraint 

for the patent office is examined. In Part 5, concluding remarks summarise the key findings 

and suggestions for orienting patent offices’ practices are made. 

2. Definition of an optimal profile of patents renewal fees 

An optimal profile of patent renewal fees is a profile that maximises or minimises some 

objective function of the patent office. The case of a social welfare maximising patent office 

is more specifically of interest. However, the decision to apply for a patent and then, to keep it 

in force in order to deter competitors from freely copying the invention is under the control of 

the inventor. The most recent approach to the modelling of this decision is based on the real 

option theory. In Section 2.1, we adapt the real option approach to obtain a model of patent 

renewal decisions more specifically convenient for the analysis of choice of optimal renewal 

fees by the patent office. Two types of profiles are examined. The first type is the usual “one 

                                                
3
 An exception is Crampes and Langinier (1998). These authors analyse strategic information disclosure 

in the renewal of patents with a Bayesian game between a patent holder and challengers but do not consider a 

learning process about the rent associated with the patent by the patent holder itself. 
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profile fits all” mechanism introduced in Section 2.2. The second type, presented in Section 

2.3, is a more complex menu of “tailor-made profiles” that act as an incentive mechanism. 

2.1. Patent renewal decisions as options 

A patent typically entitles its owner an exclusive right for a limited period to stop any 

third party from making, using, or selling the object of the patented invention without his 

permission. A common way to assess the value of a patent thus consists in defining its value 

as the additional discounted sum of monetary gains that accrue from this exclusive right. The 

existence of renewal fees that have to be paid to keep a patent in effect helps measuring the 

corresponding rent. Indeed, a sufficient condition for a patent to be renewed is that the annual 

rent exceeds the annual renewal fee. As a consequence, the decision to pay or not renewal 

fees conveys information about the value of the rent. This sufficient condition may also be a 

necessary condition when the time path of the rent is purely deterministic. Schankerman and 

Pakes (1986) have suggested an econometric method that builds on this property to estimate 

the distribution of the value of patent rights. If the time path of the rent is at least partly 

stochastic, it is no longer required that the annual rent exceeds the annual renewal fee for a 

patent to be profitably maintained. Indeed, as originally shown by Pakes (1986), the patent 

value then includes a speculative component and has to be defined as an option value. More 

precisely, a patent is assimilated to nested European call options with one year term, the total 

number of calls being fixed by the statutory life limit of patents. The underlying asset of these 

European call options is the patent’s rent whereas the annual renewal fees correspond to the 

exercise prices of the different calls.

Though the real option approach to patent renewal decisions has proved very useful to 

assess the value of patents, it is not directly suitable to determine a socially optimal profile of 

patent renewal fees. As already outlined in the introduction, a reason for this is that no explicit 

link is made in this approach between the value of the rent on the one hand and the surplus 

analysis on the other hand. Our article tries to fill this gap by assuming thereafter that each 

patent entitles its owner a monopolist position on the market for a new good resulting from 

the patented invention
4
. To keep things computationally tractable, it is more specifically 

assumed that each buyer of the new good has a linear inverse demand function qpp η−=
0

                                                
4
 As in Cornelli and Schankerman (1986) our presentation focuses on the case of a product innovation 

rather than a process innovation. This distinction is not a problem as such as a new process can be licensed and 

thus generate revenues in the same manner as described in our model. 
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where p
0
 and η  are invariant parameters whereas p  and q  respectively denote the price of 

the new good and the quantity purchased by each buyer. The number of buyers of this new 

good is supposed to follow a stochastic process N t . Without loss of generality, the marginal 

cost of production of each new good is supposed to be zero. As a result, the monopoly rent 

received at time t  by a patent holder is given by 

( ) ( ) NpNR tt η4
2

0
= (1.a) 

where N t  may be interpreted as a measure of market size. Meanwhile, the deadweight loss 

due to the monopoly position amounts to 

( ) ( ) NpNL tt η8
2

0
= (1.b) 

In the absence of patent protection, the monopoly position of an inventor could be 

contested by competitors through reverse engineering for instance. In the case of a competitor 

succeeding in entering the market, the market structure is supposed to shift to a Bertrand-Nash 

price equilibrium and the inventor’s profit to vanish. The threat of entry is not explicitly 

formalised but captured by an exogenous probability λ  that the monopolist’s rent drops to 

zero. Though profits fall to zero because of entry, competitors are assumed to be interested in 

supplying the new good either because the good at stake can be used as a loss leader to boost 

the sales of other products or to lower the inventor’s financial resources. In a discrete time 

context, the value of an invention in the absence of a patent system and prior the entry of a 

first competitor is then given by 

( ) ( )
( ) ( )[ ]

ρ

λ

t

tAt
ttA

NV
NRNV

+

Ε−
+= +

1

~1
1 (2) 

where Εt  stands for the mathematical expectation conditional on the information available at 

time t  and ρ t  is the interest rate at time t . Thereafter, a tilde above a variable is used to 

outline it is stochastic. The value function V A  is also the termination payoff of a patent owner 

when he decides not to renew his patent at time t . The alternative for the patent owner is to 

renew his patent for one more year by paying the renewal fee ct  in counterpart of the 

monopolist rent ( )NR t  with certainty at time t  plus the discounted expected value of the 

opportunity to renew the patent again at time 1+t . As long as a patent has not yet been 

withdrawn and before the statutory term limit T , the value V B  of the patented invention is 

given by the best alternative between renewing the patent for one more year and withdrawing 

the patent forever: 
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( ) ( )
( )[ ]

( )
�
�
�

�
�
�

+

+Ε
+−= ++ NV

cctNV
cNRMaxcctNV tA

t

TttBt
ttTttB ,

1

,,,1,~
,,,,

11

ρ

�
�

(3.a) 

At the statutory term limit T , the patent owner no longer holds exclusive rights on the 

invention and it becomes available to commercial exploitation by others. This means that the 

patent owner only receives the monopolist rent ( )NR T  plus the continuation value associated 

with the end of exclusivity in counterpart of the renewal fee cT .  

( ) ( )
( )[ ]

( )
�
�
�

�
�
�

+

Ε
+−= + NV

NV
cNRMaxcTNV TA

T

TAT
TTTTB ,

1

~
,, 1

ρ
 (3.b) 

In accordance with the aim of the article to define an optimal profile of renewal fees, the 

value function V B  is explicitly expressed as a function of the sequence { }cc Tt ,,�  of current 

and future renewal fees to be paid if the patent is renewed. Moreover, due to the existence of 

the statutory life limit T , the value function V B  also depends on time or, more precisely, on 

the time delay between the current date and the statutory life limit of the patent. The dynamic 

program (3) is solved backwards. The option value of the patent is the additional revenue 

generated by the legal protection compared with the absence of a patent system: 

( ) ( ) ( )NVcctNVcctNOV tATttBTtt −= ,,,,,,,, �� . (4) 

Given that the patent has not been withdrawn at time t , the optimal date of withdrawal of the 

patent is the random stopping time defined as 

( ) { } ( ){ }ccNTtccN TTtt ,,,~;,,inf,,,~* ��� ττ τττ Ω∉∈=  (5) 

where ( )cc T,,, �ττΩ  is the optimal waiting region. At each date τ , this region is defined as 

the set of values of the rent so that renewing the patent generates a higher value that 

withdrawing the patent: 

( ) ( ) ( ){ }NVccNVIRNcc ATBT >+∈=Ω ,,,,;,,, �� ττ ττ  (6) 

Both the optimal stopping time and the option value are not only affected by the initial value 

of the rent but also by the entire sequence of renewal fees to be paid to keep the patent in 

effect. This is at the core of the definition of an optimal profile for renewal fees. 
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2.2 The “one profile fits all” optimal renewal fees

Common wisdom holds that while a few patents are very valuable, the majority is 

worthless. This difference in terms of patent quality is accounted for in econometric works 

that attempt to assess the value of patents by assuming heterogeneity as regards the initial rent 

that accrues from a patent at the date it is granted. By contrast, most existing patent renewal 

systems are based on a “one profile fits all” mechanism of renewal fees
5
. The main feature of 

such a profile is that it discriminates ex post between patents but not ex ante. Indeed, all 

patents face the same profile of renewal fees at the date they are granted but, depending on the 

bad or good fortune of the patented invention, they are withdrawn more or less early so that 

the total amount of renewal fees effectively paid substantially varies across patents. In such a 

context, an optimal profile of renewal fees may be broadly defined as a fixed sequence of 

renewal fees that balances the social cost of patents on the one hand and the incentives to 

innovate they generate on the other hand. A comprehensive characterisation of an optimal 

profile would thus require analysing how the decision to invest in R&D is affected by the 

option value of a patent which, in turn, depends on the renewal fees sequence. This analysis is 

beyond the scope of this article. The focus is rather made on the characterisation of a second-

best optimal profile in the sense that it minimises the social cost implied by a patent with the 

constraint to provide a monetary incentive to innovate that amounts at least to an exogenously 

given value. 

The social cost of a patent is defined recursively. When the patent has been withdrawn 

and a competitor has entered the market, the social cost amounts to zero because the market 

structure shift to a Bertrand-Nash price equilibrium. When the patent has been withdrawn but 

no competitor has yet entered the market, the social cost is given by the following value 

function, the expression of which is close to (2): 

( ) ( )
( ) ( )[ ]

ρ

λ

t

tAt
ttA

NW
NLNW

+

Ε−
+= +

1

~1
1 (7.a) 

Indeed, the current deadweight loss is incurred but there is a probability λ  that it vanishes 

forever at the next date and a probability λ−1  that it lasts. As long as the patent has not yet 

been withdrawn, the social cost is finally given by

                                                
5
 The Japanese system based on a basic fee plus a per claim fee is a noticeable exception. 
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Expression (6) makes it explicit that the social cost of a patent depends on the renewal 

decision of the patent owner. Formally, the optimal profile is thus determined as the outcome 

of a Stackelberg game with an additional constraint. The patent office is assimilated to the 

leader and chooses the sequence of renewal fees that minimises the expected discounted sum 

of deadweight loss induced per a patent where expectation is computed at the date of 

application. For this purpose, the patent office needs to take into account the reaction function 

of patent holders as regards their decision to renew or not their patents. The optimal stopping 

time defined in (5) yields the reaction function for a patent holder facing the initial market 

size N 0  at the date of application. Though patents are assumed to be heterogeneous in terms 

of the initial market size N 0 , the patent office does not discriminate among patents according 

to this variable. Instead, its aim is to implement the optimal “one profile fits all” system of 

renewal fess that minimises the expected discounted sum of deadweight losses where 

expectation is taken over all possible values of N 0 . But, in doing so, the patent office tries to 

maintain the monetary incentive to innovate generated by the patent system at least equal to 

an exogenous level V . The expected option value of a patent, where expectation is taken over 

the set of possible values of N 0 , measures the monetary incentive to innovate provided by the 

patent system when there is no prior information about the initial market size N 0 . The 

optimal profile then solves the following optimisation program 

{ }
( )[ ]ccNWEMin

cc
TB

T

,,,0,~

,,
00

0

�

�

. (8.a) 

Subject to 

( )[ ] VccNV TB ≥Ε ,,,0,~
00
� (8.b) 

If 0=V , then constraint (8.b) may be interpreted as a participation constraint in the sense 

that, prior any information about the initial market size, an innovator anticipates he will apply 

for a patent. If V  amounts to the actual expected option value of patents, then constraint (8.b) 

is aimed at making sure the optimal profile is Pareto-improving compared with the actual 

situation. 
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At this stage, it is important to take into account the fact that the revenue-generating 

pressures on patent offices can lead to changes in the social benefits of the patent system. As 

shown by Gans, King and Lampe (2004), a socially optimal structure of renewal fees would 

encourage the maximal number of applications while reducing effective patent length. 

However, when patent offices are required to be self-funding, resources constraints can distort 

the fee structure. However, these authors consider a simplified two-period model where the 

fee structure is limited to an application fee at the first period and a single renewal fee at the 

second period. Imposing a revenue-generating requirement in the optimisation model (8) is 

straightforward. If F  denotes the per patent average cost incurred by the patent office, then 

the self-funding constraint is given by 

( )[ ] FccNF T ≥Ε ,,,0,~
00
� (9.a) 

where expectation is taken over all possible values of the initial market size N 0 . The value 

function F  is defined iteratively as follows 

( )

( )[ ]
( )

( )�
�

�

�
�

�

�
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+Ε+

=
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ccNt
cctNF

c

cctNF

Tttt

Tttt

Tttt
t

Ttt

,,,~*if

,,,~*if1

,,,1,~

,,,,

11

�

�

�

�

τ

τρ

(9.b) 

Expression (9.b) yields the discounted sum of renewal fees that is expected at time t  from a 

patent associated with a current market size N t . 

2.3. “Tailor-made optimal profiles” as an incentive mechanism 

A key assumption underlying the “one profile fits all” definition of an optimal profile of 

renewal fees is that an innovator applies for patent without having any knowledge about the 

state of nature. In reality, it is doubtful that an inventor does not have prior information about 

the initial market size associated with his patented invention, notably because divergence in 

industry perspectives on the values and uses of patents has been documented by large-scale 

R&D surveys conducted over several decades. Moreover, patent applicants also have private 

information about how much money has been spend to develop an innovation and whether it 

may be considered as a drastic innovation or an incremental innovation, a feature that clearly 

influences the magnitude of demand which again is different across sectors. This means that 
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the present “unitary” patent system is limited in its ability to account for the ways that patents 

are used and viewed in different sectors. But most importantly, this also means that it is not 

efficient for a social surplus maximising patent office to adopt a “one profile fits all” system 

when patent owners have private information. Instead, as shown by Cornelli and 

Schankerman (1999) and Scotchmer (1999), the patent office should rather try to design a 

renewal mechanism that aims at optimally screening patents. However, most of theoretical 

works that deal with such screening mechanisms disregard the stochastic nature of the 

dynamics of the rent associated to a patent. Stated another way, they consider that a patent 

owner is fully informed about the characteristics of his patent. The real option approach to 

patent renewal decisions allows a more realistic setting where a patent owner is only partially 

informed about the characteristics of the patent. Information is partial in the sense that the 

initial market size N 0  is known by the patent holder but not its exact future time path. The 

option to renew or not the patent is precisely aimed at introducing some flexibility in 

counterpart of this uncertainty. Because the role of uncertainty as regards the future values of 

the rent diminishes as the patent get closer to the statutory term limit, intuition suggests that 

renewal fees should vary with the age of the patent. Hence, what we try to determinate is a 

menu of renewal fees profiles in which an innovator will select a profile given the partial 

private information at his disposal at the date of his patent application. 

For the sake of simplicity, the optimal design of a menu of renewal fees profiles is 

developed in the context of a discrete distribution of the initial market size N 0  over a finite 

set of I  possible values. The probability of each possible value N i
0  ( { }Ii ,,1 �∈ ) of the 

market size is denoted by [ ]Npr i
0 . The patent office is still assumed to minimise the expected 

social cost of a patent where expectation is taken over all possible values N i
0  ( { }Ii ,,1 �∈ ) 

of the initial market size because the state of nature is a private information and is not known 

by the patent office. By doing so, the patent office now faces I  participation constraints or 

Pareto improvement constraints. Each of these constraints is similar to (8.b) except that the 

expected values on the left hand side and right hand side are replaced by exact realisations for 

each possible value of N 0 . Last but not least, incentive compatibility constraints have to be 

added. The optimal “tailor-made profiles” are thus obtained as the solution of the following 

optimisation program: 

{ }
[ ] ( )�

=

I

i

i
T

ii
B

i

I
T

I
T

ccNWNprMin
cccc 1

000

0
11

0

,,,0,

,,,,,,

�

���

. (10.a) 
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Subject to 

( ) IiVccNV ii
T

ii
B ,,1,,,0, 00 �� =∀≥  (10.b) 

( ) ( ) IjIiccNVccNV j
T

ji
B

i
T

ii
B ,,1and,,1,,,0,,,,0, 0000 ���� =∀=∀≥  (10.c) 

Constraints of type (10.b) are participation constraints (if 0=V
i ) or Pareto improvement 

constraints (if V
i  is the current option value for patents of type i ). Constraints of type (10.c) 

are incentive compatibility constraints. When patent offices are required to be self-funding, 

then the additional constraint reads 

[ ] ( ) FccNFNpr
I

i
T

ii ≥�
=1

000 ,,,0, � (11) 

This additional constraint does not depart from (9) because, as assumed by Gans, King and 

Lampe (2004), the administrative cost of a patent is considered as fixed, regardless the type of 

the patent. 

3. The econometric model 

So far, the concepts and definitions of the optimal “one profile fits all” and “tailor-made 

profiles” of renewal fees have been introduced in a rather general setting. More specifically, 

no assumption has been made about the exact form of the stochastic process used to describe 

the dynamics of the market size. However, such assumptions are necessary to proceed with an 

econometric application. As a result, Section 3.1 first introduces the stochastic process of the 

market size. Short term shocks affecting the dynamics of the market size are treated as 

informative messages (though noisy) that convey information about key parameters of the 

long term dynamics. Therefore, an emphasis is made on Bayesian learning about long term 

tendencies of the market size. Probability distributions of interest from an econometric point 

of view are then derived and presented in Section 3.2. Firstly, the probability distribution of 

future values of the market size conditional on the observed current market size is derived 

from the stochastic process defined in Section 3.1. Secondly, the probability distribution of 

optimal stopping times, conditional on the sequence of renewal fees, is obtained. This 

probability distribution is at the core of the econometric method presented in section 3.3 for 

the estimation of the parameters involved in the model. 
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3.1. Bayesian learning and market size dynamics 

A key idea in the analysis of patent renewals due to Pakes (1986) is that holding a 

patent is a bet on future but uncertain revenues. Accordingly, the dynamics of the associated 

rent is supposed to follow a Markovian stochastic process. Such a representation of the 

dynamics of the rent mimics the representation usually used for most financial or real assets. 

Markovian processes rely on the assumption that there exist identically and independently 

distributed random shocks that affect the evolution of the rent associated to a patent. 

Therefore, Markovian processes are adapted to the representation of risk affecting the 

dynamics of the rent but disregard a fundamental feature of the real option problem at stake 

here, namely uncertainty. Uncertainty does not refer to a situation where the value of the 

underlying asset changes as time goes but to a situation where the knowledge that economic 

agents have of this value changes with information over time. As information is often noisy, 

time is needed for a patent owner to learn about the correct value of the rent and to obtain a 

more accurate knowledge of it. The evolution of knowledge is represented by changes in 

subjective probabilities associated to each possible value of the rent. These changes obey 

Bayes’ theorem so that the dynamics underlying the option problem departs from more 

standard Markovian processes and the resulting real option problem may be referred to as a 

Bayesian real option problem by contrast with the usual Markovian real option problems 

extensively treated in the literature (see e.g. Dixit and Pindyck, 1994). 

The model of patent renewal choice developed in this article actually mixes Bayesian 

and Markovian dynamics
6
. Uncertainty affects the long term value N LT  of market size and, as 

a consequence, the long term value of the rent. Though the correct value of long term market 

size is invariant, it is not directly observed. The simple model considered here involves two 

possible long term market sizes denoted by N LT
max  and N LT

min  with NN LTLT
maxmin < . The two 

corresponding scenarios are respectively referred to as the optimistic scenario ( NN LTLT
max= ) 

and the pessimistic scenario ( NN LTLT
min= ). The short term or observed market size N t  at time 

t  is a discrete time stochastic process, the evolution of which is partly governed by the long 

term market size. We use the broad class of discrete time stochastic processes proposed by 

Baudry and Dumont (2006) to represent the link between short term and long term market 

sizes. Following Baudry and Dumont (2006), we assume that the time unit is one year and 

                                                
6
 Mixes of Markovian and Bayesian processes have already been used to analyse the optimal allocation of 

time between activities with uncertain returns in a continuous time approach (Bolton and Harris, 1999; 

Moscarini and Smith, 2001). Kelly and Kolstad (1999) used a discrete time equivalent of these mix processes in 

their study of optimal investment strategies to curve global warming. 
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divide each annual period [ ]1, +tt  in M  subintervals of equal length Mt 1=∆ . The 

dynamics of the short term market size is then defined by 

( )eNN hZt
ttt

∆−∆
∆+ = 12 (12.a) 

with 

NN
p

p
Z LTLT

t

t
t

max

max

max

if
1yprobabilitwith 0

yprobabilitwith 1
=

�
�
�

−
=∆  (12.b) 

NN
p

p
Z LTLT

t

t
t

min

min

min

if
1yprobabilitwith 0

yprobabilitwith 1
=

�
�
�

−
=∆  (12.c) 

and 

( )( )( )NNp tt
maxmax

exp11 −++= βα (12.d) 

( )( )( )NNp tt
minmin

exp11 −++= βα (12.e) 

h∆ , N
max  and N

min  are positive parameters whereas α  is a real parameter without 

predefined sign. The expected sign of β  will be discussed latter on. The functional form used 

in (12.d) and (12.e) satisfies three important properties. Firstly, it is consistent with the 

description of a probability. Indeed, the values of pt
max

 and pt
min

 range between zero and one 

whatever the value of parameters and the value of the short term market size. Secondly, the 

likelihood of a positive shock (i.e. the probability that 1=∆Z t ) on the short term market size 

is higher (respectively lower) than the likelihood of a negative shock (i.e. the probability that 

0=∆Z t ) if and only if ( ) 0>−+ NN tβα  (respectively ( ) 0<−+ NN tβα ) with NN =
max

or NN min= . The additional constraint 0>β  implies that the stochastic process described in 

(12) may be thought of as a mean reverting process with reversion to ( )βα−N
max  or 

( )βα−N
min , depending on the correct scenario. In this sense, the long term market sizes 

associated to each scenario are respectively given by ( )βα−= NN LT
maxmax  and 

( )βα−= NN LT
minmin . The gap between the short term and the long term market sizes then 

clearly influences the dynamics of the short term market size. If 0=β , then the dynamic 

process described in (12) resumes to a basic random walk and the distinction between the two 

scenarios no longer matters
7
. Thirdly, as long as 0>β , the likelihood of a positive shock on 

                                                
7
 Conversely, the case where 0<β  does not have much sense. It corresponds to what could be called a 

“mean repulsing” process (by analogy with the well known “mean reverting” process) with N LT
max

 and N LT
min

 as 

repulsing values of the short term market size. 
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the short term market size is always higher when the correct scenario is the optimistic one (i.e. 

NN LTLT
max= ) rather than the pessimistic one (i.e. NN LTLT

min= ). An important consequence of 

this third property is that shocks affecting the dynamics of the observed short term market size 

are noisy messages that convey information about the unobserved long term market size. This 

is a key element of the learning process. 

A patent owner is supposed to have beliefs about what is the correct value of the long 

term market size only. Thereafter, we denote by X t  (respectively X t−1 ) the subjective 

probability attributed by the patent owner at time t  that the correct scenario is the optimistic 

(respectively pessimistic) one. In order to reflect the absence of prior information at the initial 

time 0=t  we set 210 =X . Subjective probabilities are revised by implementing Bayes’ 

theorem to the noisy information provided by the observation of the random shocks affecting 

the short term market size on each subinterval of length t∆ . Using (12.b) (12.c) and Bayes’ 

theorem more specifically yields 

( )��

�
�
�

=∆−

=∆
=

=∆

=∆

∆+
0ifPr1

1ifPr
0max

1max

ZpX

ZpX
X

t
Z

X ttt

t
Z

X ttt
tt  (13.a) 

where 

( ) pXpX tttt
Z

X t

minmax1 1Pr −+==∆ (13.b) 

( ) ( )( )pXpX tttt
Z

X t

minmax0 111Pr −−+−==∆ (13.c) 

are the unconditional probabilities of observing respectively a positive and a negative shock 

given the sole beliefs at time t  and without full information as regards the correct scenario. 

3.2. Probability distribution of shocks and optimal stopping times 

All value functions in (2), (3), (7) and (9) involve mathematical expectations of future 

market size for which computation is not straightforward. Indeed, a distinctive feature of the 

stochastic process described in (13) compared to usual discrete time stochastic processes is 

that the probabilities of positive and negative shocks are themselves functions of the 

stochastic process. This difference apart, the usual tree form representation (Cox, Ross and 

Rubinstein, 1979) displayed in Figure 1 and used for the analysis of discrete time options 

applies to the dynamics of the number of positive shocks observed from time t  until time 

tKt ∆+ . 
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Insert Figure 1

Let define [ ]kZ
tKt

tt =� ∆
∆+

=τ τPr  as the probability of observing k  ( { }Kk ,,0 �∈ ) 

additional positive shocks forwards on K  subintervals of length t∆  given the number Z t  of 

positive shocks already observed at time t . This probability is computed backwards with the 

following iterative formula 

[ ] { }
�
�

�
�

�

=Π

−∈Π

=Π

==� ∆
∆+

=

0if

1,,1if

if

Pr

0 k

Kk

Kk

kZ k

K

tKt
tt �τ τ  (14.a) 

with 

( )[ ] ( )Pr1Pr
1

1

1 =∆
∆−+

∆−+
= −=� ∆=Π

Z
X tKt

tKt
ttK KZτ τ  (14.b) 
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( )[ ] ( )PrPrPr1Pr
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1

11

1

1 =∆
∆−+

∆−+
=

=∆
∆−+

∆−+
= =� ∆+−=� ∆=Π

Z
X tKt

tKt
tt

Z
X tKt

tKt
ttt kZkZ τ ττ τ  (14.c) 

( )[ ] ( )Pr0Pr
0

1

1
0

=∆
∆−+

∆−+
= =� ∆=Π

Z
X tKt

tKt
tt Zτ τ (14.d) 

Figure 1 illustrates formula (14.c). Observing two positive shocks on three subintervals 

of length t∆  (i.e. observing 23 =� ∆
∆+

=
tt

t Zτ τ ) arises as the outcome of two mutually exclusive 

events. The first event is a positive shock on the subinterval [ ]tttt ∆+∆+ 3,2  from a 

situation with 12 =� ∆
∆+

=
tt

t Zτ τ . The probability of this event is thus Pr
1

2

=∆
∆+

Z
X tt

 times the 

probability of 12 =� ∆
∆+

=
tt

t Zτ τ . The second event is a negative shock on the subinterval 

[ ]tttt ∆+∆+ 3,2  from a situation with 22 =� ∆
∆+

=
tt

t Zτ τ . The probability of this event is 

Pr
0

2

=∆
∆+

Z
X tt

 times the probability of 22 =� ∆
∆+

=
tt

t Zτ τ . The probability of observing 23 =� ∆
∆+

=
tt

t Zτ τ

is then obtained as the sum of these two events. Combined with expressions (12) and (13) 

defining the dynamics of market size and the dynamics of beliefs, the iterative formula (14) is 

more specifically of interest to compute the mathematical expectations characterising the 

value functions defined in (2), (3), (7) and (9) and solve the real option problem. In turn, as 

outlined by (5) and (6), the value functions defined in (2) and (3) directly affect the 

probability distribution of optimal stopping time. 

We follow the method proposed by Baudry and Dumont (2006) for computing the exact 

probability distribution of optimal stopping times in a discrete time real option model of 
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patent renewal decisions. Firstly, note that according to (12.a), the variation of the market size 

N t  from time t  until time tKt ∆+  only depends on the sum of positive shocks observed 

between the two dates. As a consequence, the market size N t  at time t  may be expressed as a 

function ( )ZN t  of the total number � ∆= =
t

t ZZ 0τ τ  of positive shocks observed between the 

initial date 0=t  and the current date. This property also induces that the optimal waiting 

region in (6) may be defined indifferently in terms of market size N t  or in terms of total 

number Z t  of positive shocks. Secondly, the following indicator variable is defined: 

( ) ( )
( ) ( )�

�
�

Ω∉

Ω∈
=

cctZN
cctZN

II
Ttt

Ttt
t

,,,if0

,,,if1

�

�
(15) 

where ( )cct Tt ,,, �Ω  is the optimal waiting region defined in (6). Subscript t  is used to 

stress that II t  depends on all the variables that appear in the left hand side of (15), and more 

specifically on Z t . Thirdly, we denote by Φ
−st

t  the probability of the event “the patent is 

renewed up to date t ” conditional on the information available at date st −  (i.e. conditional 

on the sum of observed positive shocks Z st− , on the current date st −  and on the sequence of 

renewal fees cc Tst ,,�− ). This probability is defined recursively as follows (See Baudry and 

Dumont, 2006): 
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M  is the number of shocks, either positive or negative, between two renewal dates. The 

probability distribution of the optimal stopping time (i.e. the optimal date of withdrawal of a 

patent) is then given by: 
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3.3. Data and estimation method

We use in this article data on French patent renewals for the period 1970-2006, broken 

down by patent application date (cohort)
8
. Our panel is balanced for about 16 cohorts (1970-

1986). For each cohort, the data include the number of patent applications, whatever the 

nationality of the patentee and the number of patent renewals at each available age
9
. 

Unfortunately, no information was available either on individual patents or on the breakdown 

of cohorts by technology field or type of patent. 

Renewal fee schedules in France are published in the Official Journal and were changed 

frequently during the sample period but most recent schedules apply to all patents regardless 

of the year in which the patent has been applied for. Renewal fees start at very low levels and 

rise monotonically as the patent ages (Cf. Figure 2). Since 2008, the French patent office 

(INPI) is using a renewal fee structure that is more progressive after seven years of 

experiment in which the profile of the renewal fees was characterised by four stages. For the 

needs of the article, these nominal renewal fees obtained in nominal domestic currency were 

converted to real costs by using the country’s own implicit GDP deflator and then converted 

into euros. 

Insert Figure 2

Looking now at patent renewals, one notices (Figure 3) that, contrary to all 

expectations, many patents are dropped out even for a small amount of renewal fees. Thus, 

more than 50% of the patents granted by the French patent office were dropped before the age 

of eight years and only 25% were maintained over the age of thirteen. Given the relatively 

low renewal fees, this clearly indicates a concentration of low-value patents. Two phenomena 

can lead to such a proportion of drop-out (mortality rate): 

� The first is technical. Every patent application will not automatically give rise to a 

patent grant. The patent office may refuse to grant a patent following the patent review 

                                                
8
 Data for the interest rate have been collected on the website of the French Finance Ministry. They 

correspond to the legal interest rate calculated as a moving average of French treasury bills rates. The 

corresponding values have been deflated by the national consumer price index. 
9
 We thank Dominique Deberdt from INPI who provided us with data. 



20

process by considering that the innovation at stake does not fulfil the criteria of 

patentability
10

.  

� The second is more of an economic nature. Failure to pay renewal fees results in an 

automatic lapse of the patent. 

Another important aspect underlined by Figure 3 is a tendency of decline in the 

frequencies of drop out by age (from around 8% in the first periods to 2% at the end of the 

patent life). The last value represents the percentage of patents renewed to the statutory 

maximum, i.e. approximately 8% in average with a drop to 6-7% for some cohorts. At this 

stage, it is important to take two aspects into consideration: first of all, a patent grant enters 

into force most of the time 24 to 48 months after a patent application. This means that the 

frequencies for the first four years encompass a component which is independent from the 

willingness of the patentee and which, in turn, may also explain the artificially high 

proportions of drop outs over this period. Secondly, it is worth noting that the proportion of 

renewals sensibly varies according to the cohort taken into consideration. 

Insert Figure 3

Because patent withdrawals may result either from a rejection of the application or from 

a voluntary decision by the applicant, the real option model developed in part 2 has to be 

slightly modified. More precisely, the value function of an invention for which a patent is 

pending is given by 

( ) ( ) ( ) ( ) ( ){ }NVcctNHNVMaxcctNV tATttttAtTttB ,,,,,1,,,, �� θθ −+=  (18.a) 

with 
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This value function is obtained by introducing the probability θ t  of rejection of the 

application at age t  in the value function (3.a) characterising a granted patent. We do not have 

                                                
10

 i.e. the criteria of novelty, inventiveness and industrial application in Europe. 
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detailed data on patent rejections by age but only aggregate data on patent rejections per 

cohort. For each cohort, the average rate of patent applications that are rejected by the patent 

office amounts to about 30%. This rate approximately corresponds to the sum of observed 

average frequencies of withdrawals for the first fourth ages (see Figure 2). This is consistent 

with the maximum delay of examination of about four years observed for a patent application 

to be accepted or rejected. Therefore, we assume that the average frequencies of withdrawal 

during the first fourth years correctly approximate the probability of rejection and set 

105.01 =θ , 083.02 =θ , 063.03 =θ , 064.04 =θ  and 0=θ t for all 4>t . Expression (18) is 

used in place of (3.a) to compute the probability distribution (17) of the optimal stopping 

time. Finally, the unconditional probability for a patent to be withdrawn at date t  on a 

voluntary basis or because of rejection is 
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The probability of observing for cohort i  some values n it  ( 1,,1 += Tt � ) of the theoretical 

number N it  of withdrawals at age t  can be written as 
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===  (20) 

This probability depends on observed renewal fees and is conditional on the unobserved 

initial market size N 0 . Therefore, a probability distribution has to be defined for N 0 . A 

discrete approximation of the log normal distribution has been chosen. A first reason for this 

choice is that, compared to continuous probability distributions, it has the advantage of not 

requiring time consuming simulation methods to compute the likelihood of observed 

withdrawal frequencies. An exact computation of this likelihood is possible instead. A second 

reason is that a discrete probability distribution for N 0  implies a finite number of alternative 

classes of patents and thus simplifies the computation of an optimal revelation mechanism. A 

discrete approximation of the log normal probability distribution has been obtained by 

dividing the range of values between 0 and the 995
th

 quantile in intervals of equal length and 

affecting the corresponding density f m  to the middle N m
0  of each interval. The likelihood of 

observed numbers n it  ( 1,,1 += Tt � ) of withdrawals at the different age for cohort i  if then 

given by 
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The treatment of renewal fees also deserves some comments. Indeed, as already outlined, 

changes of values for renewal fees are frequent and apply to all patents regardless of the date 

of application. Nevertheless, it does not seem possible to correctly forecast the date and 

magnitude of adjustments of patent renewal fees. Therefore, these changes have been dealt 

with by assuming that patent holders adjust instantaneously their decisions on the basis of 

current renewal fees rather than on expected future renewal fees. 

4. Results 

A major interest of the model developed in this paper is the contrast between its 

relatively low data requirement and the importance of numerical results that may be inferred 

from. Data on patent renewal frequencies by age and cohort are available in most developed 

countries. They have been extensively used to assess the value of patents, including on the 

basis of real option models of patent renewal decisions but, to our knowledge, they have never 

been used to assess the social cost imposed to consumers by the patent system. An immediate 

contribution of this part is to provide with estimates of not only parameters involved in the 

model but also estimates of the option value of patents, the social cost of patents and the 

revenues they generate for the patent office (section 4.1). Besides this first contribution, 

estimation results are also used to determine what the optimal “one profile fits all” renewal 

fees look like and examine implications in terms of social cost for consumers and revenues for 

the patent office (section 4.2)
11

. We finally give some insights about the interest and limits of 

a menu of optimal “tailor-made profiles” for renewal fees (section 4.3). 

4.1. Estimation results 

Given values of all parameters in the model, the exact value of the total likelihood of 

withdrawal obtained for cohorts 1970 to 2006 may be computed
12

. However, we are not able 

to find the analytical expression of the log-likelihood function. Following Pakes [1986] and 

Baudry and Dumont [2006], a numerical method has therefore been used. The steepest 

                                                
11

 Social effects are mainly characterised at two levels: at the level of the efficiency of the technical 

progress in the industry and at the level of the social surplus. Only the second aspect is studied here. 
12

 The number of shocks per year has been set to 4=M . 
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gradient method has been retained to maximise the likelihood
13

. Estimation results are 

displayed in Table 1. h∆ , α  and β  are parameters involved in expression (12) defining the 

dynamics of the rent. λ  is the probability of entry of competitors in the absence of a patent 

introduced in (2). According to expressions (1.a) and (1.b), both the rent that accrues to the 

patent holder and the corresponding deadweight loss are linear functions of the expression 

ηNp t
2

0
 which captures the state of demand for the new product. As a result, we do not need 

to distinguish between the different components of this expression and directly denote it S t . 

The dynamics of the rent and the deadweight loss are directly expressed in terms of S t  and all 

value functions as well. A discrete approximation of the log-normal probability distribution is 

assumed for S0  to capture heterogeneity between patents as regards initial conditions. 
0

Sµ

and σ S0
 stand for the expected value and standard deviation of this distribution. Ten threshold 

values, associated with eleven intervals of equal length, between 0 and the 995
th

 quantile of 

S0  have been used to obtain the discrete approximation. Due to the heterogeneity between 

patents as regards their initial conditions, it is easier to define N
max  and N

min , or equivalently 

S
max  and S

min , in (12.d) and (12.e) as ( )δ max
0 1+N  and ( )δ min

0 1−N  respectively where δ max

and δ min  are two parameters to be estimated. The expected option value and social cost of a 

patent are also reported in Table 1. The significance of estimated parameters is tested on the 

basis of log-likelihood ratios rather than usual t-statistics. The reason for this is that, as 

already outlined by Pakes [1986] and Baudry and Dumont [2006], implementing numerical 

methods to maximise the likelihood of real option models of patent renewal decisions yields 

excessively high standard deviations of estimated coefficients. Moreover, the null hypothesis 

retained to implement the log-likelihood ratio test is a restriction of the estimated coefficient 

to half its value rather than to zero. Indeed, setting coefficients to zero does not have much 

sense in the model for most of the parameters and may lead to a null likelihood due to some 

frequencies of withdrawal that subsequently amount to zero. 

Insert Table 1

All estimated coefficients are highly significant. Moreover, the assumption that 

coefficients β , δ min  and δ max  are simultaneously significantly different from half their 

                                                
13

 The steepest gradient method has actually first been implemented to minimise the mean square error of 

withdrawal frequencies. Results for this first estimation have then been used as initial values to maximise the 

likelihood. Indeed, a shortcoming of the maximum likelihood estimation method for real option models of patent 

renewal decisions is that the likelihood amounts to zero as long as at least one estimated frequency is equal to 

zero, a case which often appears with arbitrary values of parameters. 
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estimated value, and thus significantly different from zero, is strongly rejected. The log-

likelihood ratio statistic associated to the test amounts to 25325.09, which is higher than all 

conventional threshold values for the khi-square statistic with three degrees of liberty. We 

conclude that the stochastic process for the rent cannot be reduced to a simple random walk 

and that Bayesian learning about the long term market size actually takes place. From a policy 

point of view, it is particularly of interest to note that the estimated expected social cost of a 

patent reported in Table 1 is more that ten times the estimated value of the expected option 

value of a patent. The burden of the charge borne by society to give monetary incentives to 

private inventors to patent their inventions and diffuse knowledge is thus quite consequent. It 

is not compensated by revenues collected by the patent office through renewal fees paid by 

patent holders. Indeed, these revenues per patent are estimated to amount to one tenth of the 

option value. These results make it urgent to reflect upon the question of whether the gains to 

society in terms of promotion of innovation through intellectual property are sufficiently high 

to justify such a social cost. 

A convenient way to assess the global quality of the regression consists in plotting 

observed and predicted frequencies of withdrawals. This is done in Figure 4 for all cohorts 

and in Figure 5 for the cohort 1986 which is the last cohort in our database for which 

withdrawals are observed for all ages. In both cases, the general shape of withdrawal 

frequencies is correctly predicted. Average frequencies over all cohorts are slightly 

overestimated at middle ages of patents whereas they are slightly underestimated at the last 

ages. This tendency does not appear when examining predicted frequencies for the cohort 

1986. For this cohort, the ratio of patents that are renewed until the legal limit is almost 

perfectly predicted. Interestingly, Figure 5 suggests that error predictions are not 

systematically higher when examined for a specific cohort rather than across all cohorts. 

Insert Figure 4

Insert Figure 5
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4.2. Estimation of the optimal “one profile fits all” renewal fees 

Recent adjustments of renewal fees reveal that the French patent office is looking for a 

way to improve the system without apparently having a clear guideline to define its policy. 

The theoretical framework proposed in Part 2 offers such a guideline. The Pareto improving 

version of the optimal “one profile fits all” system defined in (8) more specifically allows the 

determination of alternative renewal fees that lower the social cost of patents without 

deterring innovation compared with the current profile. For this purpose, we need to solve 

program (8) where all coefficients in value functions are set at their estimated value and V  is 

given by the estimated current option value of a patent. However, because we do not have 

analytical expressions for the value functions involved in program (8), a numerical 

approximation of these functions is required. For this purpose, we limit the degrees of liberty 

for the general shape of profiles by focussing on those profiles with a constant rate of growth 

or decay denoted by γ . It is more specifically convenient for graphical purposes to express 

this rate of growth or decay as a function of the initial and final renewal fees (respectively c0

and cT ). We thus consider profiles of the form 

( )γ+= 10

t
cct  with ( ) 1

0

1

−=
c

cT T
γ  (22) 

As a result, value functions involved in program (8) only depend on c0  and cT  and the 

minimisation problem is solved only with respect to these two renewal fees. We do not 

impose that renewal fees increase with the age of a patent as currently observed (i.e. that 

cc T<0 ) but rather try to determine whether such a shape is optimal or not. Therefore we 

numerically approximate the value functions for cases with either cc T<0  (i.e. increasing 

profiles) or cc T>0  (i.e. decreasing profiles) but also cases with constant renewal fees. Cases 

with an annual subsidy to maintain the patent instead of an annual renewal fee are ruled out so 

that we only consider positive values for c0  and cT . More precisely, we use a lower bond of 

1€ for c0  and cT  because setting one of these two parameters to zero in (22) induces that all 

renewal fees also amount to zero so that patents are granted for free. 

Insert Figure 6

Insert Figure 7
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Insert Figure 8

Figures 6 and 7 display the expected social cost and the expected option value of a 

patent as functions of the initial and final renewal fees. A striking property of the two 

functions is that they co-vary. More precisely, both the expected social cost and the option 

value of a patent decrease with respect to the initial and final renewal fees. Though rather 

intuitive, this property implies that standard second order conditions for a solution of the 

constrained minimisation problem to be obtained as a solution of the first order conditions are 

not fulfilled. A corner solution is rather expected
14

. This is confirmed by Figure 8. The 

optimal solution is obtained at 10 =c  Euro and 07.3695=cT  Euros. As shown by Figure 9.a, 

compared to the current profile, the corresponding optimal profile is characterised by lower 

renewal fees until age 14 and then a sharp increase to reach a final renewal fee that amounts 

to six times the current one. Exact values of renewal fees at each date are reported in Table 2. 

The optimal “one profile fits all” renewal fees let the expected option value of patents 

unchanged but yield an expected social cost of 59881.80 Euros per patent which is 127.1 

Euros less than the current expected social cost. Conversely, the expected discounted sum of 

renewal fees paid to the patent office falls to 238.972 Euros per patent, which is less than half 

the value estimated for the current profile. Table 3 displays detailed simulation results for the 

option value, social cost for consumers and revenues raised by the patent office by class of 

patent. A detailed examination of these results reveals an important drawback of the optimal 

“one profile fits all” system of renewal fees: the expected option value of patents is let 

unchanged compared to the current system at the cost of an implicit monetary transfer from 

patents with initially high option values to patents with an initially low option value. Say 

another way, the suggested optimal “one profile fits all” system of renewal fees favours 

patents of low value compared to patents with high value. This seems rather inconsistent with 

the willingness to favour high value patents and to stop the current patent backlog to balloon 

further. 

If a revenue-generating constraint is imposed to make sure that revenues from renewal 

fees that accrue to the patent office do not fall behind their current level, the optimal profile 

becomes closer to the current one. The expected social cost of a patent then rises to 60022.40 

                                                
14

 We used Mathematica� software and the instruction Minimize to solve all constrained optimisation 

programs in this paper. 
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Euros which is slightly higher than the current one. This result follows on from the fact that 

optimal profiles are constrained to be exponentially increasing or decreasing functional forms 

of the age of a patent whereas current profiles have a more flexible form. Figure 10 shows 

how the revenue-generating constraint affects the optimal solution. A third iso-curve is added 

to Figure 8 to represent all couples of initial and final renewal fees that are compatible with 

the constraint. The new constraint is steeper than the iso-curve associated with the expected 

option value so that the solution depicted in Figure 8 is located behind the constraint. The 

minimal increase of c0  and decrease of cT  required to fulfil the constraint is given by the 

crossing point between the constraint and the iso-curve for the expected option value in 

Figure 10. Again, Table 3 highlights some distributional effects of the revenue-generating 

constraint. Interestingly, the effects as regards option values are opposite to those outlined in 

the unconstrained optimal profile. The optimal profile with revenue-generating constraint 

strengthens the asymmetry between patents in favour of high value patents compared with the 

current system and a fortiori compared with the unconstrained optimal profile. There are also 

distributional effects in terms of revenues raised by the patent office in spite of the constraint 

to let expected revenues unchanged compared with the current system. Indeed, the optimal 

profile with a revenue-generating constraint is characterised by slightly higher renewal fees at 

the first ages and lower renewal fees at the last ages compared with current renewal fees. It 

thus transfers the burden of financing the patent system from high option value patents to low 

option value patents. Stated another way, there is a transfer of the burden from high to low-

quality patents where quality is assessed by the option value of patents. Indeed, patents with a 

high option value are renewed for a long period whereas patents that are withdrawn early have 

a lower option value. 

Broadly speaking, the gain in terms of social cost from implementing the optimal “one 

profile fits all” system without imposing a revenue-generating constraint is low. Moreover, 

this system induces negative distributional ancillary effects that make it of little interest 

compared with the current system. By contrast, the optimal “one profile fits all” system with a 

revenue-generating requirement does not generate any gain in terms of expected social cost 

per patent but has positive distributional ancillary effects both in terms of option value of 

patents and on the burden of financing the patent office. As a result, one may wonder whether 

it is possible to conciliate the respective advantages of the unconstrained and constrained 

profiles. A way to do so could consist in discriminating between patents ex ante by proposing 

a menu of alternative profiles. This suggestion is examined in the next section. 
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Insert Figure 9

Insert Table 2

Insert Figure 10

Insert Table 3

4.3. Estimation of the optimal “tailor-made profiles” renewal fees 

The optimal system of “tailor-made profiles” for renewal fees defined in (10) assumes 

that one profile is determined for each class of patent. However, several problems have been 

encountered when trying to determine such an optimal system. First of all, it has not been 

possible to numerically find a solution to (10). More specifically, it seems particularly uneasy 

to find a solution that fulfils all constraints simultaneously. Secondly, when relaxing some of 

the constraints, it appears that the optimal profiles for most of the different classes of patents 

are very close. Therefore, we have finally opted for a system that involves only two different 

profiles. The first profile (profile A) is intended to be chosen by applicants if their patents 

belong to the first two classes of patents, those with the lowest initial market size. The second 

profile (profile B) is intended to be chosen by all other applicants. Program (10) has to be 

modified in accordance. There are now one Pareto improvement constraint (10.b) and one 

incentive compatibility constraint (10.c) for each class of patent. The Pareto improvement 

constraint states that the option value of a patent with the profile of renewal fees specially 

designed for its class is at least as high as its option value with the current system of renewal 

fees. At worst, the monetary incentives to innovate are thus let unchanged. The incentive 

compatibility constraint states that the value of a patented invention is higher with profile A 

than with profile B if the patent belongs to class 1 or class 2 and conversely if the patent 

belongs to other classes. As in the previous section, the analysis is restrained to the case of 

exponentially increasing or decreasing profiles for renewal fees. The expected social cost in 

(10.a) has thus to be minimised with respect to the initial and final renewal fees cA
0  and cA

T

characterising profile A and the initial and final renewal fees cB
0  and cB

T  characterising profile 

B. 
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Insert Figure 11

Insert Table 4

The solution for profile A and profile B are illustrated by Figure 11. The detailed 

renewal fees are reported in Table 4. Again, we consider both the case with and without a 

revenue-generating constraint. In each case, the general shape of profile A is close to that of 

the optimal “one profile fits all” system obtained in the previous section, except that renewal 

fees at the last ages are systematically higher. Unsurprisingly, profile A is thus clearly 

designed to encourage patent applications for inventions with initially low market size but, in 

counterparts, it imposes high renewal fees in case of success. Profile B without a revenue-

generating requirement is almost similar to the current profile of renewal fees. This profile 

imposes higher renewal fees than profile A at the first ages but compensates by lower renewal 

fees at the last ages. For this reason, it is expected to be chosen by applicants whose patents 

belong to classes 3 to 11, i.e. patents with a sufficiently high initial market size to justify the 

payment of renewal fees for a long period. The decrease of renewal fees characterising profile 

B with a revenue-generating constraint is more surprising. Nonetheless, the impact of the 

revenue-generating constraint on profile B is in line with the impact already observed for 

profile A and for the optimal “one profile fits all” system examined in section 4.2. Indeed, the 

revenue-generating constraint systematically flattens the profiles of renewal fees and 

increases initial renewal fees in counterpart. The impact of the constraint on profile B 

corresponds to an extreme version of this tendency. The resulting profile may be interpreted 

as a profile which is essentially intended to act as an application fee. Indeed, due to the 

exponential functional form used for the profile, it is not possible to obtain a system of 

application fees only but it is possible to approximate such a system by imposing decreasing 

renewal fees. Simulation results thus suggest that setting application fees to zero or at a low 

level and imposing increasing renewal fees is relevant for patents characterised by 

unfavourable initial conditions (i.e. low initial market size) whereas a system of application 

fees without renewal fees may be preferred for patents characterised by favourable initial 

conditions. 
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There is little to gain to expect from the optimal “tailor-made profiles” system 

compared to the optimal “one profile fits all” system in terms of expected option value, 

expected social cost and expected discounted sum of fees paid per patent when examined 

across all classes of patents. Indeed, there is a slight increase of both the expected option 

value and the expected revenue perceived per patent whereas the expected social cost per 

patent is very close to that obtained with the current system. Nevertheless, there are 

interesting distributional effects between classes of patents. Table 3 gives detailed results on 

the option value, social cost for consumers and revenues perceived per patent and by class of 

patent with profiles A and B. A comparison of option values with those obtained with current 

renewal fees helps identifying for which classes of patents the Pareto improvement constraint 

(10.b) is binding. The expected option value per patent obtained with the “tailor-made 

profiles” mechanism is equal to the expected option value per patent obtained with the current 

profile for class 2 (with profile A) and class 4 (with profile B) in the absence of a revenue-

generating constraint and class 2 (with profile A) and class 3 (with profile B) when a revenue-

generating constraint is imposed. All other classes have a net gain in terms of patent’s option 

value whether a revenue-generating requirement is imposed or not. More interestingly, the 

corresponding increase of the monetary incentive to innovate compared to the current system 

is higher for classes 5 to 11 when a revenue-generating constraint is imposed. Hence, the 

constraint does not affect the incentive to innovate for patented inventions with a high initial 

market size. Conversely, it lowers the monetary incentive to innovate for patented inventions 

with initially low market size, i.e. for patents belonging to class 1. Broadly speaking, similar 

tendencies are observed in terms of expected discounted sum of fees paid per patent: the 

revenue-generating constraint lowers the amount paid for patented inventions with an initially 

high market size and increases the amount paid for those with an initially low market size 

compared to both the optimal “tailor-made profiles” system with no revenue-generating 

requirement and the current system of renewal fees
15

. There are no important changes in terms 

of the social cost per patent observed by class of patents between the optimal “one profile fits 

all” system, the optimal “tailor-made profiles” system and the current system. 

                                                
15

 The evolution class by class is less smooth than the one observed for the option value or the social cost. 

A reason for this may be that, contrary to the option value or the social cost per patent, revenues generated by

renewal fees do not depend on the stochastic rent and may therefore be subject to some threshold effects. 
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6. Concluding Remarks 

Since the early 1980s, patent policy in most industrialised countries has been 

strengthened, broadened and extended to areas where earlier patenting was relatively low. A 

consequence of these reforms is that there is an increasing debate on how to improve patent 

quality and on the ways to reduce the backlog of most patent offices. The main difficulty in 

fixing the problems with the patent system is that by doing so, we need to preserve the 

essential innovation incentives which patent property rights were originally designed to 

provide and to formulate reforms that recognize the informational limitations under which 

patent offices will inevitably operate. Among the suggested directions for reform, a change in 

the profile of patent renewal fees is of particular importance. However, the main barrier to this 

reform is that patent offices in a variety of countries are self-financed and are therefore facing 

a revenue constraint which requires them to raise funds. If a patent office seeks to raise 

revenue, then it will not in general set the socially optimal schedule of patent renewal fees and 

may have an incentive to encourage too many patent renewals from a social point of view. 

Considering this constraint, the main objective of this article was to use renewal fees to 

improve the efficiency of the innovation incentives generated by the patent system and 

therefore to study alternative renewal fee structures to determinate the optimal renewal fees 

profile. The econometric analysis yields two important results. First, it is not possible to 

reduce the deadweight loss without reducing the incentive to innovate. This is a problem as 

such as the estimated expected social cost of a patent is more that ten times the estimated 

value of the expected option value of a patent. The burden of the charge borne by society to 

give monetary incentives to private inventors to patent their inventions and diffuse knowledge 

is thus quite consequent. We should hence consider the social costs of the patenting system as 

well as its advantages in order to guide decisions. Second, there is room for an improvement 

of the renewal fee structure if one adds some criteria of quality to the social cost. Indeed, for a 

given incentive to innovate and for a same social cost, a menu of profile rather than a “one 

profile fits all” system could increase the asymmetry between patents in terms of option value 

and, by doing so, it would clearly encompass a quality premium. 
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Figure 1
Tree form representation of the stochastic process for the number of 

positive shocks affecting market size 
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Figure 2
Observed profiles of renewal fees at different dates (in constant 2000 

euros) 
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Figure 3
Average Frequencies of withdrawals by age (cohorts 1970-1986) 
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Figure 4
Observed (continuous line) and predicted (dashed line) average 

frequencies of withdrawals by age (cohorts 1970-2006) 
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Figure 5
Observed (continuous line) and predicted (dashed line) frequencies of 

withdrawals by age (cohorts 1986) 
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Figure 6
Expected social cost (in Euros) of a patent as a function of the initial 

and final renewal fees 
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Figure 7
Expected option value (in Euros) of a patent as a function of the initial 

and final renewal fees 
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Figure 8
Iso-curves for the expected option value (continuous line) and 

expected social cost (dashed line) of a patent at the corner solution for 
the optimal “one profile fits all” system. 
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Figure 9
Current renewal fees (points) and optimal “one profile fits all” 

renewal fees (continuous line) 

a) without revenue-generating requirement 
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Figure 10
Iso-curve for the expected option value (slim continuous line), iso-

curve for the expected social cost (dashed line) of a patent and 
revenue-generating constraint (thick continuous line) at the solution 

for the optimal “one profile fits all” system with a revenue-generating 
constraint. 
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Figure 11
Current renewal fees (points), optimal profile A for the first two 

classes of patents (continuous line) and optimal profile B for other 
classes of patents (dashed line) 
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Table 1: estimated coefficients (cohorts 1970 to 2004) 

 coefficient Log likelihood ratio statistic 

h∆ 0.37477 477578.42 

α 0.542073 1.1006657�10
6

β 2.15401�10
-6 37105.65 

δ min 0.63837 44347.18 

δ max 0.22226 8054.90 

λ 0.0163875 39278.29 

µ S0
101153 97402.87 

σ S0 121275 74099.63 

Likelihood 9.88442499�10
-924031

Mean Square Error 0.345986 

Expected option value of a patent 

(in Euros) 
5767.76 

Expected social cost of a patent 

(in Euros) 
60008.9 

Expected revenues of the patent 

office from a patent (in Euros) 
520.262 
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Table 2: Comparison of renewal fees (in Euros) with the current 
system and the optimal “one profile fits all” system 

 Current renewal fee 

Optimal “one 

profile fits all” 

renewal fee 

Optimal “one 

profile fits all” 

renewal fee with a 

revenue-generating 

requirement 

Age 0 53.4894 1. 38.5463 

Age 1 28.8843 1.54088 44.0894 

Age 2 31.0239 2.37432 50.4296 

Age 3 33.1635 3.65855 57.6817 

Age 4 43.8613 5.63739 65.9765 

Age 5 57.7686 8.68656 75.4643 

Age 6 77.0248 13.385 86.3164 

Age 7 103.77 20.6247 98.7291 

Age 8 136.933 31.7802 112.927 

Age 9 166.887 48.9696 129.166 

Age 10 212.888 75.4564 147.741 

Age 11 249.261 116.269 168.987 

Age 12 295.262 179.158 193.288 

Age 13 332.704 276.061 221.083 

Age 14 369.077 425.377 252.876 

Age 15 430.055 655.457 289.241 

Age 16 469.637 1009.98 330.835 

Age 17 514.568 1556.26 378.411 

Age 18 571.267 2398.02 432.828 

Age 19 647.222 3695.07 495.07 
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Table 4: Comparison of renewal fees (in Euros) with the current system and the 
optimal “tailor-made profiles” system 

Current 

renewal fee 

Optimal “tailor-made profile” 

renewal fee 

Optimal “tailor-made profile” 

renewal fee with a revenue-

generating requirement 

  Profile A Profile B Profile A Profile B 

Age 0 53.4894 1.00077 30.4743 25.7315 271.047 

Age 1 28.8843 1.5768 35.8058 30.7909 235.455 

Age 2 31.0239 2.48439 42.0702 36.8451 204.536 

Age 3 33.1635 3.91437 49.4305 44.0897 177.678 

Age 4 43.8613 6.16744 58.0785 52.7587 154.346 

Age 5 57.7686 9.71735 68.2395 63.1323 134.078 

Age 6 77.0248 15.3105 80.1782 75.5456 116.472 

Age 7 103.77 24.1231 94.2057 90.3996 101.178 

Age 8 136.933 38.0081 110.687 108.174 87.8915 

Age 9 166.887 59.8851 130.052 129.444 76.3501 

Age 10 212.888 94.3542 152.805 154.895 66.3243 

Age 11 249.261 148.663 179.539 185.351 57.615 

Age 12 295.262 234.232 210.95 221.796 50.0493 

Age 13 332.704 369.054 247.857 265.406 43.4771 

Age 14 369.077 581.477 291.22 317.591 37.768 

Age 15 430.055 916.168 342.17 380.037 32.8085 

Age 16 469.637 1443.5 402.033 454.761 28.5003 

Age 17 514.568 2274.37 472.37 544.177 24.7578 

Age 18 571.267 3583.46 555.013 651.175 21.5068 

Age 19 647.222 5646.07 652.114 779.212 18.6826 


