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Abstract 
In order to recover the movements of usually hidden 
articulators such as tongue or velum, we have developed a 
data-based speech inversion method. HMMs are trained, in a 
multistream framework, from two synchronous streams: 
articulatory movements measured by EMA, and MFCC + 
energy from the speech signal. A speech recognition 
procedure based on the acoustic part of the HMMs delivers 
the chain of phonemes and together with their durations, 
information that is subsequently used by a trajectory 
formation procedure based on the articulatory part of the 
HMMs to synthesise the articulatory movements. The RMS 
reconstruction error ranged between 1.1 and 2. mm. 
Index Terms: Speech inversion, augmented speech, 
automatic speech recognition, HTK, Electro-Magnetic 
Articulography (EMA), hidden Markov model (HMM), 
trajectory formation, HTS. 

1. Introduction 
There is strong evidence that human speakers/listeners exploit 
the articulatory origin of speech: the view of visible 
articulators, i.e. jaw and lips, improves speech intelligibility  

[1], speech imitation is faster when listeners perceive 
articulatory gestures [2], and the vision of hidden articulators 
still increases intelligibility [3]. More recently, brain studies 
have evidenced the recruitment of motor areas during speech 
perception, which supports the motor theory of speech 
perception [4].  Our laboratory is thus involved in the 
development of an inversion system that allows producing 
augmented speech from the speech sound signal alone, 
possibly associated with video images of the speaker’s face. 
Augmented speech consists of audio speech supplemented 
with signals such as the display of usually hidden articulators 
such (e.g. tongue or velum) by means of a virtual talking 
head, or with hand gestures as used in cued speech by 
hearing-impaired people. 

Speech inversion is a long-standing problem, as testified 
by the famous work by Atal et al. [5] in the seventies. Speech 
inversion was traditionally based on analysis-by-synthesis, as 
implemented by [6], or by [7] who optimised codebooks to 
recover vocal tract shapes from formants. But since a decade, 
more sophisticated learning techniques have appeared, thanks 
to the advent of the availability of large corpora of 
articulatory and acoustic data provided by devices such as the 
ElectroMagnetic Articulograph or marker tracking devices 
based on classical or infrared video. 

2. State-of-the-art 
Hiroya & Honda [8] have developed a method that 

determines articulatory movements from speech acoustics 
using a hidden Markov model (HMM)-based speech 
production model. After proper labelling of the training 

corpus, each allophone is modelled by a context-dependent 
HMM, and a separate linear regression mapping is trained at 
each HMM state between the observed acoustic and the 
corresponding articulatory parameters. The articulatory 
parameters of the statistical model are then determined for a 
given speech spectrum by maximising a posteriori estimation. 

Toda et al. [9] modelled the joint probability density of an 
articulatory parameter and an acoustic parameter using a 
Gaussian Mixture Model (GMM) based on a parallel 
acoustic–articulatory speech database, in order to establish 
both an articulatory-to-acoustic mapping and an acoustic-to-
articulatory inversion mapping without using phonetic 
information. 

Kjellström & Engwall [10] implemented audiovisual-to-
articulatory inversion using either simple multilinear 
regression or Artificial Neural Networks. Depending on the 
type of fusion (early or late) between the audio signal and the 
video signal (based on independent component images of the 
mouth region), they obtained RMS reconstruction errors for 
the tongue shape ranging from 2.5 to 3 mm. 

Katsamanis et al. [11] approximated the audiovisual-to-
articulatory mapping by an adaptive piecewise linear model. 
Model switching was governed by a Markovian discrete 
process which captures articulatory dynamic information. 
Each constituent linear mapping is effectively estimated via 
canonical correlation analysis. For facial analysis, active 
appearance models (AAMs) demonstrated fully automatic 
face tracking and visual feature extraction capabilities. 
Exploiting both audio and visual modalities in a multistream 
hidden Markov model based scheme, they found RMS errors 
ranging from 0.5 to 2.5 mm, depending on the articulator 
involved. 

This article evaluates a method for acoustic-to-articulatory 
inversion based on jointly trained acoustic and articulatory 
phone HMM models that proceeds in two steps: a procedure 
of phoneme recognition of the uttered acoustic speech signal 
by means of the acoustic part of the phone HMMs, followed 
by a procedure of speech synthesis by articulatory trajectory 
formation using the articulatory part of the phone HMMs. 

3. Articulatory and acoustic data 
3.1. The corpus 
Training phone HMMs necessitates an appropriate corpus of 
speech. For this preliminary study, a corpus already recorded 
was used [3]. It consists of a set of two repetitions of 224 
nonsense vowel-consonant-vowel (VCV) sequences (uttered 
in a slow and controlled way), where C is one of the 16 
French consonants and V is one of 14 French oral and nasal 
vowels; two repetitions of 109 pairs of CVC real French 
words, differing only by a single cue (the French version of 
the Diagnostic Rhyme Test); 68 short French sentences, 



9 longer phonetically balanced French sentences, and 11 long 
arbitrary sentences. The corpus was recorded on a single male 
French subject, which means that no speaker adaptation / 
normalisation problems will be dealt with in this study. 

The phones have initially been labelled for each utterance 
using a forced alignment procedure based on the audio signal 
and the corresponding phonetic transcription string based on 
HMMs. Subsequent manual correction of both phone labels 
and phone boundaries were performed using the Praat 
software [12]. The centre of each phone was automatically 
chosen as the average between its beginning and end. 
Altogether the corpus contained 7352 phones, i.e. about 12 
minutes of speech. The 36 phonemes are: [a ɛ e i y u o ø ɔ œ 
ɑ ̃ɛ ̃œ̃ ɔ ̃p t k f s ʃ b d g v z ʒ m n ʁ l w ɥ j ə _ __], where _ 
and __ are internal short and utterance initial and final long 
pauses respectively. 

3.2. The acoustic and articulatory data 
The articulatory data have been recorded by means of an 
ElectroMagnetic Articulograph (EMA) that allows tracking 
flesh points of the articulators thanks to small electromagnetic 
receiver coils. Studies have shown that the number of degrees 
of freedom of speech articulators (jaw, lips, tongue, …) for 
speech is limited, and that a small but sufficient number of 
carefully selected measurement locations can allow retrieving 
them with a good accuracy [3, 13]. In the present study, six 
coils are used: a jaw coil is attached to the lower incisors 
(jaw), whereas three coils are attached to the tongue tip (tip), 
the tongue middle (mid), and the tongue back (bck) at 
approximately 1.2 cm, 4.2 cm, and 7.3 cm, respectively, from 
the extremity of the tongue; an upper lip coil (upl) and a 
lower lip coil (lwl) are attached to the boundaries between the 
vermilion and the skin in the midsagittal plane. Extra coils 
attached to the upper incisor and to the nose served as 
references to compensate for head movements in the 
midsagittal plane. The audio-speech signal was recorded at a 
sampling frequency of 22050 Hz, in synchronization with the 
EMA coordinates, which were recorded at a 500 Hz sampling 
frequency. 

3.3. Overview of the data 
Before starting the modelling procedures, we explore the 
articulatory data by computing and displaying the dispersion 
ellipses of the six coils in the midsagittal plane for each 
phoneme corresponding to a standard deviation of one. The 
minimum and maximum number of instances per phoneme 
was 18 (for short pauses) and 348 (for /a/). This illustrates the 
coherence and the validity of the data. Figure 1 displays these 
ellipses for phoneme /t/, and shows for instance that the 
variability of the tongue tip coil is very low for /t/, as could be 
expected since the tongue is in contact with the hard palate 
for this articulation. It should however be reminded that the 
articulations were sampled at the instant midway between the 
phone boundaries, which does not completely ensure that this 
instant corresponds to the actual centre of the phone if the 
trajectories are not symmetrical. 

3.4. Grouping phonemes in context classes 
Due to coarticulatory effects, it is unlikely that a single 
context-independent HMM could optimally represent a given 
allophone. Therefore, context-dependent HMMs were trained. 
Rather than using a priori phonetic knowledge to define such 
classes, confusion trees have been built for both vowels and 
consonants, based on the matrix of Euclidian distances of the 
coils coordinates between each pair of phone. Each allophone 
was represented by its mean over all the associated instances. 

Using hierarchical clustering to generate dendrograms 
allowed to define six coherent classes for vocalic contexts ([a 
ɛ ɛ ̃| o ɔ ɑ ̃ɔ ̃| e i | u | ø œ œ̃ | y]) and eleven coherent classes 
for consonantal contexts ([p b m | ə _ | f v | ʁ | l | ʃ ʒ | t d s z 
n | j | ɥ | k g | w | __]). Using acoustic spectral distances did 
lead to classes less satisfactory from the point of view of 
phonetic knowledge. 

4. Articulatory and acoustic HMM models 
4.1. Feature vectors 
Acoustic feature vectors consist of the 12 Mel-Frequency 
Cepstral Coefficients (MFCC) and of the logarithm of the 
energy, along with their first time derivatives, computed from 
the signal down sampled to 16 kHz over 25 ms windows at a 
frame rate of 100 Hz. Articulatory feature vectors consist of 
the x and y coordinates of the six active coils. Their first time 
derivatives are also added. Note that the coils trajectories are 
down sampled to a frame rate of 100 Hz, synchronous with 
the MFCC + Log Energy frames. 

4.2. Various context for the phonemes 
Four different contextual schemes are tested: phonemes 
without context (no-ctx) (36 in the whole corpus), with left 
context (L-ctx) (392), with right context (ctx-R) (387) and 
with left and right contexts (L-ctx-R) (1376). For the 
determination of the contexts, the schwa and the short pause 
are supposed targetless, i.e. they are removed from the 
phonetic chain in order to take into account the next 
preceding or following target phoneme. 

4.3. Articulatory and acoustic HMM models 
Left-to-right with no skip, 3-state phone HMMs with one 
Gaussian per state and a diagonal covariance matrix are used. 
For training and test the HTK3.4 toolkit is used [14].  

The training is performed using the Expectation 
Maximization (EM) algorithm based on the Maximum 
Likelihood (ML) criterion.  

In order to ensure that acoustic and the articulatory 
HMMs have the same phone boundaries (and even same 
states boundaries within phone), the acoustic and articulatory 
features vectors are considered as two streams in the HTK 
multistream training procedure. Subsequently, the HMMs 
obtained are split into articulatory HMMs and acoustic 
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Figure 1. Dispersion ellipses of the original coordinates 
(thick lines) for phoneme /t/ for all contexts pooled. The 

reconstructed dispersion ellipses (thin lines), are also 
displayed for the no-ctx condition (top,) and for the L-ctx-R 
condition (bottom). The shape of the upper incisors and hard 

palate is displayed for reference purpose. 



HMMs (this is compatible with the choice of diagonal 
covariance matrices, since no correlations between the 
acoustic and articulatory variables are taken into account in 
this case). 

4.4. Language model 
A bigram language model was trained over the complete 
corpus, for each type of context. Thus, the recognised 
phoneme sequences respect French phonotactics. 

Due to the limited size of the training sets, some 
phonemes in context were missing. In order to overcome this 
problem, each missing L-ctx-R model inherits properties of 
the corresponding ctx-R model if it existed and by the no-ctx 
model if this latter model do not exist either. 

5. Inversion procedures and evaluation 
5.1. Phoneme recognition from acoustics 
The acoustic-to-articulatory inversion is achieved in two 
steps. The first step performs phoneme recognition, based on 
the acoustic HMMs. No duration model is used. The result is 
a sequence of recognised phonemes, with their durations. 

Two cases have been used to evaluate this procedure. The 
first evaluation uses the entire corpus for both training and 
recognition, and serves as maximum performance. The second 
evaluation, closer to reality, uses two third of the corpus for 
training (740 utterances, 4859 allophones) and the remaining 
third for testing (369 utterances, 2493 instances). The 
recognition results are given in the Table 1. The recognition 
performances are increased by the use of phonemes in 
context. Note however that, the good performance obtained 
for L-ctx-R when the whole corpus is used for training is due 
to overtraining: when the training set is reduced, the use of 
both left and right contexts decreases the recognition scores. 
Note however that the replacement of the missing HMMs, 
which aims to compensate for the too small size of the 
training sets (cf. 4.4), increases the recognition rate from 78.5 
to 84.8 %. 

Table 1. Recognition rates (Percent Correct, Accuracy) for 
the experiments with different types of contexts. The 
numbers of phones present in the training sets are 

displayed. The star * indicates the series of experiments for 
which missing HMMs were replaced by the closest model.  

Train - Test
Nb phones

Cor, Acc (%) Cor Acc Cor Acc Cor Acc Cor Acc

89,7 70,4 97,6 91,3 98,1 93,099,3 97,9

88.09 67.91 85.56 64.66 87.57 66.1976.90 68.59

89,1 72.3 91,5 77,2 84,0 75.69

no-ctx

36

36

Nb Nb

366 358

Nb

2/3 - 1/3

1 - 1

1159

L-ctx-Rctx-RL-ctx

392 1376387

Nb

2/3 - 1/3 *
385 379 1312

 
5.2. Articulatory synthesis by trajectory formation 
The second step of the inversion aims at reconstructing the 
articulatory trajectories from the chain of phoneme labels and 
boundaries delivered by the recognition procedure. As 
described in [15], the synthesis is performed as follows, using 
the software developed by the HTS group [16, 17]. A linear 
sequence of HMM states is built by concatenating the 
corresponding segmental HMMs. The proper state durations 
are estimated by z-scoring. A sequence of observation 
parameters is generated using a specific ML-based parameter 
generation algorithm [17]. No maximisation of variance is 
performed. 

Figure 2, that illustrates the measured and reconstructed time 
trajectories of the coil coordinates when training and testing 
sets are identical, for the no-ctx and L-ctx-R context 
conditions, shows that the use of both left and right contexts 
improves notably the inversion. Figure 1 confirms that the 
variability of the reconstructed coordinates is much closer to 
that of the original data when context is used. 
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a) HMMs without context 
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b) HMMs with left and right contexts 

Figure 2. Example of measured (thick lines) and 
reconstructed (thin lines) articulatory trajectories of the coil 
coordinates, in the case of training on the whole corpus for 
the sentence [maʃmizɛʁusi] (“Ma chemise est roussie”). For 

each plot, the phone boundaries are shown by the upper 
vertical bars for the measured trajectories, and by the lower 

vertical bars for the reconstructed ones. 

5.3. Evaluation 
In order to evaluate this second step, or in fact the complete 
inversion chain, we computed the RMS errors between the 
measured coils coordinates and the corresponding 
reconstructed ones over all the frames of the test set. Table 2 
gives these errors for the different cases. The case where the 
testing set is identical to the training set and that constitutes 
the upper boundary of possible level of errors lead to an RMS 
error of 1.05 mm, for phone HMMs with left and right 
contexts, of course higher than the errors for the phone 
HMMs with only one or no context. The error in the more 
realistic case where the training set is two third of the whole 
corpus amounts to 2.3 mm. Note that maximum errors are still 
very high (between 15 and 20 mm), mostly located at the 
beginning or the end of the sentences. In order to assess the 
contribution of the trajectory formation to RMS errors of the 
complete inversion method, we have synthesised these 
trajectories directly from the original labels, simulating a 



perfect acoustic recognition step, Table 2 shows the reduction 
of the RMS error. Note that the reduction is significant 
(p < 0.03) when the training set is two third of the whole 
corpus, and not significant (p > 0.65) when the training set is 
the whole corpus. We conclude that a significant part of the 
overall error is due to the trajectory formation step. 

For comparison purposes, note that Hiroya & Honda [8] 
found, using 5% of sentences as test set, an average RMS 
error of 1.5 mm for the inversion from the speech acoustics 
and the phonemic information in an utterance, and 1.7 mm 
from the speech acoustics only. More recently, Toda et al. [9] 
obtained, using a 1/5 cross-validation test, RMS errors of 
1.6 mm and 1.5 mm, for the female and male speaker of the 
MOCHA data bases respectively, when using an MMSE-
based mapping for 32 GMMs mixtures components. In the 
case of an MLE-based mapping, they found RMS errors of 
1.4 mm with 64 mixture components. They reported that 
Richmond et al. [18] obtained an RMS error of 1.6 mm for 
the same female speaker using a multilayer perceptron. Recall 
that Kjellström &  Engwall [10] obtained RMS errors 
between 2.5 to 3 mm, while Katsamanis et al. [11] found 
RMS errors between 0.5 to 2.5 mm. 

Considering the relatively small size of our corpus, and 
the relatively small size of our training test, our best result, 
i.e. 2. mm, compares well with these results. Note also that 
the upper bound reference of 1.1 mm for the close test is very 
promising. 

Table 2. RMS error and correlation coefficient for the 
experiments with different types of contexts. The star * indicates 

the series of experiments for which missing HMMs were 
replaced by the closest model. The ^ indicate that the synthesis 

is generated from the originals labels.  

Train - Test
RMS(mm), Corr RMS Corr RMS Corr RMS Corr RMS Corr 

1 - 1 2.26 0.72 1.62 0.82 1.62 0.831.05 0.90
2/3 - 1/3 2.32 0.70 2.15 0.71 2.06 0.73 2.31 0.69

2/3 - 1/3 * 2.07 0.72 1.96 0.75 2.08 0.73
1 - 1 ^ 2.16 0.76 1.64 0.81 1.70 0.771.11 0.89

2/3 - 1/3 *^ 2.21 0.75 1.87 0.75 1.86 0.771.74 0.82

L-ctx ctx-R L-ctx-Rno-ctx

 

6. Conclusions and perspectives 
These preliminary results are encouraging, as they are a 
number of issues to explore to improve the performance of 
our inversion system. A larger corpus will be recorded, in 
order to increase the representativity of the HMMs, especially 
for the L-ctx-R context condition. Classical improvements 
such as increasing the number of Gaussians per state, using 
tied states for the articulatory stream, as well as tied mixtures 
will be explored. As the major aim is not phonemic 
recognition per se, but acoustic-to-articulatory inversion, it 
would be very interesting to strengthen the links between the 
recognition and articulatory synthesis stages: using recognised 
state durations instead of z-scoring at the synthesis stage, and 
using reconstruction error as optimisation criterion in the 
training stage for instance. Learning state-level phasing 
models between acoustics and articulatory boundaries as done 
by Govokhina et al. [19] is also planed. Finally, the use of 
additional visual information, for instance as AAM, would 
surely be beneficial. 

7. Acknowledgements 
We sincerely thank Ch. Savariaux and C. Vilain for helping 
us with the EMA recordings. This work has been partially 
supported by the French ANR-08-EMER-001-02 grant. 

8. References 
[1] W. H. Sumby and I. Pollack, "Visual contribution to speech 

intelligibility in noise," Journal of the Acoustical Society of 
America, vol. 26, pp. 212-215, 1954. 

[2] C. A. Fowler, J. M. Brown, L. Sabadini, and J. Weihing, "Rapid 
access to speech gestures in perception: Evidence from choice 
and simple response time tasks," Journal of Memory & 
Language, vol. 49, pp. 396-413, 2003. 

[3] P. Badin, Y. Tarabalka, F. Elisei, and G. Bailly, "Can you “read 
tongue movements”?," presented at Proceedings of Interspeech 
2008, Brisbane, Australia, 2008. 

[4] J.-L. Schwartz, M. Sato, and L. Fadiga, "The common language 
of speech perception and action: a neurocognitive perspective," 
Revue Française de Linguistique Appliquée - Communiquer 
par la parole: des processus complexes, vol. XIII-2, pp. 9-22, 
2008. 

[5] B. S. Atal, J. J. Chang, M. V. Mathews, and J. W. Tukey, 
"Inversion of articulatory-to-acoustic transformation in the 
vocal tract by a computer-sorting technique," Journal of the 
Acoustical Society of America, vol. 63, pp. 1535-1555, 1978. 

[6] K. Mawass, P. Badin, and G. Bailly, "Synthesis of French 
fricatives by audio-video to articulatory inversion," Acta 
Acustica, vol. 86, pp. 136-146, 2000. 

[7] S. Ouni and Y. Laprie, "Modeling the articulatory space using a 
hypercube codebook for acoustic-to-articulatory inversion," 
Journal of the Acoustical Society of America, vol. 118, pp. 444-
460, 2005. 

[8] S. Hiroya and M. Honda, "Estimation of articulatory 
movements from speech acoustics using an HMM-based speech 
production model," IEEE Trans. Speech and Audio Processing, 
vol. 12, pp. 175-185, 2004. 

[9] T. Toda, A. W. Black, and K. Tokuda, "Statistical mapping 
between articulatory movements and acoustic spectrum using a 
Gaussian mixture model," Speech Communication, vol. 50, pp. 
215-227, 2008. 

[10] H. Kjellström and O. Engwall, "Audiovisual-to-articulatory 
inversion," Speech Communication, vol. 51, pp. 195-209, 2009. 

[11] A. Katsamanis, G. Papandreou, and P. Maragos, "Face Active 
Appearance Modeling and speech acoustic information to 
recover articulation," IEEE Transactions on Audio, Speech and 
Language Processing, vol. 17, pp. 411-422, 2009. 

[12] P. Boersma and D. Weenink, "Praat: doing phonetics by 
computer (Version 4.3.14) [Computer program]. Retrieved May 
26, 2005, from http://www.praat.org/," 2005. 

[13] P. Badin and A. Serrurier, "Three-dimensional linear modeling 
of tongue: Articulatory data and models," presented at 
Proceedings of the 7th International Seminar on Speech 
Production, ISSP7, Ubatuba, SP, Brazil, 2006. 

[14] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. A. 
Liu, G. Moore, J. Odell, D. Ollason, D. Povey, V. Valtchev, and 
P. Woodland, "The HTK Book. Revised for HTK Version 3.4 
December 2006," 2006. 

[15] O. Govokhina, G. Bailly, G. Breton, and P. Bagshaw, "TDA: A 
new trainable trajectory formation system for facial animation," 
presented at InterSpeech, Pittsburgh, PE, 2006. 

[16] M. Tamura, S. Kondo, T. Masuko, and T. Kobayashi, "Text-to-
audio-visual speech synthesis based on parameter generation 
from HMM," presented at EUROSPEECH'99, Budapest, 
Hungary, 1999. 

[17] H. Zen, K. Tokuda, and T. Kitamura, "An introduction of 
trajectory model into HMM-based speech synthesis," presented 
at Fifth ISCA ITRW on Speech Synthesis (SSW5), Pittsburgh, 
PA, USA, 2004. 

[18] K. Richmond, S. King, and P. Taylor, "Modelling the 
uncertainty in recovering articulation from acoustics," 
Computer Speech and Language, vol. 17, pp. 153-172, 2003. 

[19] O. Govokhina, G. Bailly, and G. Breton, "Learning optimal 
audiovisual phasing for a HMM-based control model for facial 
animation," presented at 6th ISCA Workshop on Speech 
Synthesis, Bonn, Germany, 2007. 

 


