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Abstract

In order to recover the movements of usually hidden
articulators such as tongue or velum, we have deeel a
data-based speech inversion method. HMMs are ttainea
multistream framework, from two synchronous streams
articulatory movements measured by EMA, and MFCC +
energy from the speech signal. A speech
procedure based on the acoustic part of the HMMisais

the chain of phonemes and together with their dhmaf
information that is subsequently used by a trajgcto
formation procedure based on the articulatory mdrthe
HMMs to synthesise the articulatory movements. RMS
reconstruction error ranged between 1.1 and 2. mm.

Index Terms. Speech inversion, augmented speech,
automatic speech recognition, HTK, Electro-Magnetic
Articulography (EMA), hidden Markov model (HMM),
trajectory formation, HTS.

1. Introduction

There is strong evidence that human speakers#istezxploit
the articulatory origin of speech: the view of bisi
articulators, i.e. jaw and lips, improves speedieliigibility
[1], speech imitation is faster when listeners pmae
articulatory gestures [2], and the vision of hid@eticulators
still increases intelligibility [3]. More recenthhrain studies
have evidenced the recruitment of motor areas dwspeech
perception, which supports the motor theory of sphee
perception [4]. Our laboratory is thus involved the
development of arnversion system that allows producing
augmented speeclirom the speech sound signal alone,
possibly associated with video images of the spéakace.
Augmented speechonsists of audio speech supplemented
with signals such as the display of usually hidddiculators
such (e.g. tongue or velum) by means of a virtadiing
head, or with hand gestures as used in cued spegch
hearing-impaired people.

Speech inversion is a long-standing problem, affiees
by the famous work by Atadt al. [5] in the seventies. Speech
inversion was traditionally based on analysis-bytlsgsis, as
implemented by [6], or by [7] who optimised codek®do
recover vocal tract shapes from formants. But sandecade,
more sophisticated learning techniques have appetivanks
to the advent of the availability of large corpoc
articulatory and acoustic data provided by deviwgzh as the
ElectroMagnetic Articulograph or marker trackingvides
based on classical or infrared video.

2. State-of-the-art

Hiroya & Honda [8] have developed a method that
determines articulatory movements from speech diosus
using a hidden Markov model (HMM)-based speech
production model. After proper labelling of the itiag

recognition

corpus, each allophone is modelled by a contexéaegnt
HMM, and a separate linear regression mappingaisdd at
each HMM state between the observed acoustic aed th
corresponding articulatory parameters. The arttonja
parameters of the statistical model are then détexdnfor a
given speech spectrum by maximising a posteridirnesion.

Todaet al.[9] modelled the joint probability density of an
articulatory parameter and an acoustic parametargua
Gaussian Mixture Model (GMM) based on a parallel
acoustic—articulatory speech database, in ordeestablish
both an articulatory-to-acoustic mapping and aruatic-to-
articulatory inversion mapping without using phadoet
information.

Kjellstrom & Engwall [10] implemented audiovisual-t
articulatory inversion using either simple multdar
regression or Artificial Neural Networks. Dependiag the
type of fusion (early or late) between the audgnal and the
video signal (based on independent component imaiggese
mouth region), they obtained RMS reconstruction rerfor
the tongue shape ranging from 2.5 to 3 mm.

Katsamaniset al. [11] approximated the audiovisual-to-
articulatory mapping by an adaptive piecewise lineadel.
Model switching was governed by a Markovian diseret
process which captures articulatory dynamic infdioma
Each constituent linear mapping is effectively raatied via
canonical correlation analysis. For facial analysastive
appearance models (AAMs) demonstrated fully autmmat
face tracking and visual feature extraction cajitasl
Exploiting both audio and visual modalities in altistream
hidden Markov model based scheme, they found RM&serr
ranging from 0.5 to 2.5 mm, depending on the aldioum
involved.

This article evaluates a method for acoustic-t@aldtory
inversion based on jointly trained acoustic andcalitory
phone HMM models that proceeds in two steps: aquioe
of phoneme recognition of the uttered acoustic clpesignal
by means of the acoustic part of the phone HMMkovied
by a procedure of speech synthesis by articulatajgctory
formation using the articulatory part of the phéidMs.

3. Articulatory and acoustic data

3.1. Thecorpus

Training phone HMMs necessitates an appropriatpusoof
speech. For this preliminary study, a corpus alreadorded
was used [3]. It consists of a set of two repeigiof 224
nonsense vowel-consonant-vowel (VCV) sequencesrédite
in a slow and controlled way), where C is one of it
French consonants and V is one of 14 French ocilnasal
vowels; two repetitions of 109 pairs of CVC real Ften
words, differing only by a single cue (the Frenarsion of
the Diagnostic Rhyme Test); 68 short French sengence



9 longer phonetically balanced French sentencek1ariong
arbitrary sentences. The corpus was recorded orgke snale
French subject, which means that no speaker adaptat
normalisation problems will be dealt with in thisdy.

The phones have initially been labelled for ea¢brahce
using a forced alignment procedure based on the aighal
and the corresponding phonetic transcription sttiaged on
HMMs. Subsequent manual correction of both phohelta
and phone boundaries were performed using Fmaat
software [12]. The centre of each phone was auioait
chosen as the average between its beginning and end
Altogether the corpus contained 7352 phones, beut12
minutes of speech. The 36 phonemes are:diyuo oo
dg®dptkfsfbdgvzzmnyglwyjo__], where _
and __ are internal short and utterance initial funal long
pauses respectively.

3.2. Theacoustic and articulatory data

The articulatory data have been recorded by me&rsno
ElectroMagnetic Articulograph (EMA) that allows ¢king
flesh points of the articulators thanks to smadcalomagnetic
receiver coils. Studies have shown that the nurobdegrees
of freedom of speech articulators (jaw, lips, tomgu.) for
speech is limited, and that a small but sufficientber of
carefully selected measurement locations can aiévieving
them with a good accuracy [3, 13]. In the presémdys six
coils are used: a jaw coil is attached to the lowmeisors
(jaw), whereas three coils are attached to the tornigu@p),
the tongue middle nfid), and the tongue backbdk at
approximately 1.2 cm, 4.2 cm, and 7.3 cm, respelgtifrom
the extremity of the tongue; an upper lip caipl) and a
lower lip coil (wl) are attached to the boundaries between the
vermilion and the skin in the midsagittal plane.tr&xcoils
attached to the upper incisor and to the nose deas
references to compensate for head movements in the
midsagittal plane. The audio-speech signal wasrdecbat a
sampling frequency of 22050 Hz, in synchronizatigth the
EMA coordinates, which were recorded at a 500 Hapiamg
frequency.

3.3. Overview of the data

Before starting the modelling procedures, we expldre
articulatory data by computing and displaying tligpdrsion
ellipses of the six coils in the midsagittal plafee each
phoneme corresponding to a standard deviation ef dhe
minimum and maximum number of instances per phoneme
was 18 (for short pauses) and 348 (for /a/). Thistrates the
coherence and the validity of the data. Figuresbldys these
ellipses for phoneme /t/, and shows for instanca the
variability of the tongue tip coil is very low fdt/, as could be
expected since the tongue is in contact with threl lpalate
for this articulation. It should however be remiddiat the
articulations were sampled at the instant midwayveen the
phone boundaries, which does not completely erthatethis
instant corresponds to the actual centre of then@hb the
trajectories are not symmetrical.

3.4. Grouping phonemesin context classes

Due to coarticulatory effects, it is unlikely that single
context-independent HMM could optimally represergiven
allophone. Therefore, context-dependent HMMs wexiaéd.
Rather than using a priori phonetic knowledge tange$uch
classes, confusion trees have been built for botkels and
consonants, based on the matrix of Euclidian digtamof the
coils coordinates between each pair of phone. B#chhone
was represented by its mean over all the assodiastahces.

Figure 1. Dispersion ellipses of the original canates
(thick lines) for phoneme /t/ for all contexts peal The
reconstructed dispersion ellipses (thin lines),sdse
displayed for the no-ctx condition (top,) and foe t_-ctx-R
condition (bottom). The shape of the upper incisord hard

palate is displayed for reference purpose.

Using hierarchical clustering to generate dendnogra
allowed to define six coherent classes for vooadistexts (§
e€loodd|ei|ule e &|y]) and eleven coherent classes
for consonantal contextsp(bm | o _|[fv |s|l|f3]|tdsz
nl|jlylkg]|w]|_]). Using acoustic spectral distances did
lead to classes less satisfactory from the poinviefv of
phonetic knowledge.

4. Articulatory and acoustic HMM models

4.1. Featurevectors

Acoustic feature vectors consist of the 12 Mel-bety
Cepstral Coefficients (MFCC) and of the logarithm oé th
energy, along with their first time derivativesgouted from
the signal down sampled to 16 kHz over 25 ms wirslatva
frame rate of 100 Hz. Articulatory feature vectomnsist of
the x andy coordinates of the six active coils. Their firishe
derivatives are also added. Note that the coi|sdtaries are
down sampled to a frame rate of 100 Hz, synchroivatls
the MFCC + Log Energy frames.

4.2. Various context for the phonemes

Four different contextual schemes are tested: phese
without context (no-ctx) (36 in the whole corpusjth left
context (L-ctx) (392), with right context (ctx-R) &3) and
with left and right contexts (L-ctx-R) (1376). Fohet
determination of the contexts, the schwa and tloet grause
are supposed targetless, i.e. they are removed fimwn
phonetic chain in order to take into account thextne
preceding or following target phoneme.

4.3. Articulatory and acoustic HMM models
Left-to-right with no skip, 3-state phone HMMs wittne
Gaussian per state and a diagonal covariance nza&insed.
For training and test the HTK3.4 toolkit is used][1

The training is performed using the Expectation
Maximization (EM) algorithm based on the Maximum
Likelihood (ML) criterion.

In order to ensure that acoustic and the articafato
HMMs have the same phone boundaries (and even same
states boundaries within phone), the acoustic amclkatory
features vectors are considered as two streamBeirHTK
multistream training procedure. Subsequently, thdMs$
obtained are split intoarticulatory HMMs and acoustic



HMMs (this is compatible with the choice of diagonal
covariance matrices, since no correlations betwéem
acoustic and articulatory variables are taken axtoount in
this case).

4.4. Language model

A bigram language model was trained over the coraple
corpus, for each type of context. Thus, the reczaphi
phoneme sequences respect French phonotactics.

Due to the limited size of the training sets, some
phonemes in context were missing. In order to aveeethis
problem, each missing L-ctx-R model inherits propserof
the corresponding ctx-R model if it existed and g ho-ctx
model if this latter model do not exist either.

5. Inversion proceduresand evaluation

5.1. Phoneme recognition from acoustics

The acoustic-to-articulatory inversion is achievied two
steps. The first step performs phoneme recognitased on
the acoustic HMMs. No duration model is used. Tésult is
a sequence of recognised phonemes, with theiridosat

Two cases have been used to evaluate this procethee
first evaluation uses the entire corpus for bo#ining and
recognition, and serves as maximum performance sébend
evaluation, closer to reality, uses two third of ttorpus for
training (740 utterances, 4859 allophones) and-dhmining
third for testing (369 utterances, 2493 instanceE)e
recognition results are given in the Table 1. Téeognition
performances are increased by the use of phonemes i
context. Note however that, the good performandaioéd
for L-ctx-R when the whole corpus is used for tnagnis due
to overtraining: when the training set is reducia, use of
both left and right contexts decreases the reciogngcores.
Note however that the replacement of the missingMs$M
which aims to compensate for the too small sizethaf
training sets (cf. 4.4), increases the recognitaie from 78.5
to 84.8 %.

Table 1.Recognition rates (Percent Correct, Accuracy) for

the experiments with different types of contexts. T
numbers of phones present in the training sets are

displayed. The star * indicates the series of expents for
which missing HMMs were replaced by the closestahod

Train - Test no-ctx L-ctx ctx-R L-ctx-R
Nb phones Nb Nb Nb Nb

Cor, Acc (%) | Cor | Acc| Cor| Acc| Cor| Acc| Corf Acd

1.1 36 392 387 1376
89,7] 70,4] 97,d 91,3 98] 93[099,3] 97,9

23-1/3 36 366 358 1159
88.09] 67.91 85.5p 64.46 87.57 66[1%.90]68.59

385 379 1312
2/3-1/3" 89,1 722 915] 77,2 840]75.6¢

5.2. Articulatory synthesis by trajectory formation

The second step of the inversion aims at recortstgi¢the
articulatory trajectories from the chain of phondateels and
boundaries delivered by the recognition proceduis.
described in [15], the synthesis is performed #evis, using
the software developed by the HTS group [16, 17]in&ar
sequence of HMM states is built by concatenating th
corresponding segmental HMMs. The proper statetidms
are estimated by z-scoring. A sequence of observati
parameters is generated using a specific ML-baseameter
generation algorithm [17]. No maximisation of vace is
performed.

Figure 2, that illustrates the measured and renacted time
trajectories of the coil coordinates when trainamg testing
sets are identical, for the no-ctx and L-ctx-R crnte
conditions, shows that the use of both left antitrigontexts
improves notably the inversion. Figure 1 confirrhattthe
variability of the reconstructed coordinates is matoser to
thagtsof the original data when context is used.
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Figure 2. Example of measured (thick lines) and

reconstructed (thin lines) articulatory trajectera# the coil
coordinates, in the case of training on the wholpuas for
the sentencenfafmizerusi] (“Ma chemise est roussie”). For

each plot, the phone boundaries are shown by therup
vertical bars for the measured trajectories, anthbyower

vertical bars for the reconstructed ones.

5.3. Evaluation

In order to evaluate this second step, or in faetdomplete
inversion chain, we computed the RMS errors betwiben
measured coils coordinates and the corresponding
reconstructed ones over all the frames of theseistTable 2
gives these errors for the different cases. The vdwre the
testing set is identical to the training set anat ttonstitutes
the upper boundary of possible level of errors leadn RMS
error of 1.05 mm, for phone HMMs with left and righ
contexts, of course higher than the errors for fi®ne
HMMs with only one or no context. The error in threre
realistic case where the training set is two thlifdhe whole
corpus amounts to 2.3 mm. Note that maximum eamsstill
very high (between 15 and 20 mm), mostly locatedhat
beginning or the end of the sentences. In ordersiess the
contribution of the trajectory formation to RMS as®f the
complete inversion method, we have synthesisedethes
trajectories directly from the original labels, siiating a

T
1 Z €
60




perfect acoustic recognition step, Table 2 showséduction
of the RMS error. Note that the reduction is sigaifit
(p <0.03) when the training set is two third of tiwvhole
corpus, and not significant (p > 0.65) when thantrg set is
the whole corpus. We conclude that a significamt pathe
overall error is due to the trajectory formatioepst

For comparison purposes, note that Hiroya & Hori]a [

found, using 5% of sentences as test set, an av&RMfS
error of 1.5 mm for the inversion from the speechustics
and the phonemic information in an utterance, arvdmm
from the speech acoustics only. More recently, Tetdal. [9]
obtained, using a 1/5 cross-validation test, RM®rsriof
1.6 mm and 1.5 mm, for the female and male speakére

MOCHA data bases respectively, when using an MMSE-
based mapping for 32 GMMs mixtures components.hin t
case of an MLE-based mapping, they found RMS erobrs
1.4 mm with 64 mixture components. They reportedt th
Richmondet al. [18] obtained an RMS error of 1.6 mm for

the same female speaker using a multilayer pemepRecall
that Kjellstrom &
between 2.5 to 3 mm, while Katsamamisal. [11] found
RMS errors between 0.5 to 2.5 mm.

Considering the relatively small size of our corpasd
the relatively small size of our training test, diest result,
i.e. 2. mm, compares well with these results. Nag® that
the upper bound reference of 1.1 mm for the cleseis very
promising.

Table 2.RMS error and correlation coefficient for the
experiments with different types of contexts. Tae*sndicates

the series of experiments for which missing HMM=ewe

replaced by the closest model. The ” indicate ttiasynthesis
is generated from the originals labels.

Train - Test no-ctx L-ctx Ctx-R L-ctx-R
RMS(mm), Corr| RMY Corf RM$ Cofr RMB Cofr RMS Carr
1-1 2.26] 072 162 0.8p 1.6p 0.431.05]0.90
2/3-1/3 2.32] 0.70] 2.1§ 0.71 2.06 | 0.73| 2.31] 0.69
2/3-1/3* _ 2.07] 0.72f 196 | 0.75( 2.08] 0.73
1-1n 2.16( 0.76] 1.64 0.8] 1.7p 0.471.11|0.89
2/3-1/3* 2211 075 1.87 0.7% 1.8 0.47L.74]0.82

6. Conclusionsand per spectives

These preliminary results are encouraging, as they a
number of issues to explore to improve the perforweaof
our inversion system. A larger corpus will be refgat, in
order to increase the representativity of the HMbtpecially
for the L-ctx-R context condition. Classical improems
such as increasing the number of Gaussians per, stsing
tied states for the articulatory stream, as wellied mixtures

will be explored. As the major aim is not phonemic

recognition per se, but acoustic-to-articulatoryeirsion, it
would be very interesting to strengthen the linksaeen the
recognition and articulatory synthesis stages:gissgognised

state durations instead of z-scoring at the syidtstage, and

using reconstruction error as optimisation criterim the
training stage for instance. Learning state-levélaging

models between acoustics and articulatory bounslagedone
by Govokhinaet al. [19] is also planed. Finally, the use of

additional visual information, for instance as AAMpuld
surely be beneficial.
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