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Abstract

Using the dielectric resonator method, we have investigated nonlinearities in the surface

impedance Zs = Rs + jXs of YBa2Cu3O7−δ thin films at 10 GHz as function of the incident

microwave power level and temperature. The use of a rutile dielectric resonator allows us to mea-

sure the precise temperature of the films. We conclusively show that the usually observed increase

of the surface resistance of YBa2Cu3O7−δ thin film as function of microwave power is due to local

heating.
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I. INTRODUCTION

High Temperature Superconductor (HTSC) films are suitable candidates for the improve-

ment of microwave receiver performance because of their low surface resistance.1–4 The sur-

face impedance of HTSC materials presents a strong dependence on the magnitude of the

incident microwave magnetic field, Hrf . Typically, a nonlinear behavior is observed above

a certain value of Hrf . This nonlinearity leads to unacceptable microwave power losses.

Microwave losses are characterized by a decrease of the quality factor Q of superconducting

resonators and filters and a downward shift of the resonant frequency of the former.5–7 The

surface impedance of HTSC has been studied by many groups, using either the dielectric

resonator technique or the stripline resonator technique. In spite of numerous experimental

studies the physical origin of the observed nonlinearities is still under debate and the subject

of present-day experimental investigation.8–12

It has been proposed that a simple way to differentiate among the mechanisms of non-

linearity of the surface impedance is the examination of the r parameter.13 This quantity

is defined as the ratio between the microwave field dependence of the surface reactance

∆XS(Hrf) and of the surface resistance ∆RS(Hrf),

r =
∆XS(Hrf)

∆RS(Hrf)
. (1)

Table 1 gives an overview of possible mechanisms leading to the nonlinear behavior of

the surface impedance.14–16 First is the intrinsic nonlinearity due to pair-breaking. The

nonlinearity is then related to the increase of the quasi-particle density nqp
17,18 when the

Hrf -induced current density is of the order of magnitude of the pair-breaking current density.

A nonlinearity based on this effect has been predicted and investigated using a phenomeno-

logical expression for a nonlinear penetration depth. If the nonlinearity is dominated by this

intrinsic mechanism, the r-parameter should be small and strongly frequency-dependent.

This differs from the experimentally observed nonlinearities. Hysteretic losses are also pro-

posed to be signifiant.19–21 The weakly coupled-grain model holds that the large surface

resistance of highly granular high-Tc superconductors as compared to single crystals can be

explained by the different morphology. The polycrystaline samples can be modeled as a

network of Josephson junctions. Nonlinear behavior is expected at rf-current densities that

are limited by critical current density of the constituant Josephson junctions. This model
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yields a very small r-parameter with a strong dependence on temperature and frequency.

In the case of granular films the coupled-grain model describes the microwave nonlinearities

fairly well. Nevertheless, it fails to describe strong nonlinearities in epitaxial films. Vortex

penetration and creep into grain boundaries and/or weak links are also proposed as a pos-

sible source of microwave hysteretic losses. Vortex generation by the microwave magnetic

field has been predicted22–24 and the Bean model has been extented to account for microwave

nonlinearity in HTSC films. The dependence of Rs on Xs is almost linear (with slope r).

Experimental values are close to those predicted by the model. The last possible effect to

explain nonlinearity is local or uniform heating.25–28 It has been proposed that heating can

occur in superconducting thin films. This effect appears in the microwave frequency range,

particularly in continuous mode, but also in pulsed mode, as function of the pulse period.

Heating is significant above a certain value of the incident microwave power, and causes the

transition to the normal state of weaker superconducting regions such as weak links or local

defects. Heating and heat transfer to the substrate are shown to play an important role.

We have used the dielectric resonator method in order to measure the surface impedance

of YBa2Cu3O7−δ thin films from various sources. We present a study of both the temperature

and the microwave power level dependence. The use of a rutile dielectric resonator allows us

to measure the precise temperature of the films. We show that the usually observed increase

of the surface resistance of YBa2Cu3O7−δ thin films as a function of microwave power is due

to local heating.

II. EXPERIMENTAL DETAILS

Measurements of the surface impedance Zs = Rs + jXs were performed on a series of

YBa2Cu3O7−δ thin films, denoted SY211 and obtained at THALES by inverted cylindical

hollow cathode dc sputtering. A second series, labelled TM MgO and TM LAO, was ac-

quired from THEVA Inc..29 This series was prepared by reactive thermal evaporation. Zs

was measured by the dielectric resonator method.30–34 The film thicknesses and the critical

temperatures as measured by ac-suceptibility are gathered in Table 2. Surface morphol-

ogy imaging is shown in Fig. 1 for the three studied samples. X-ray diffraction, using a

Bragg-Brentano diffractometer, showed all films to be epitaxial with the [001] orientation.

For the surface impedance measurements, we have used a cylindrically shaped rutile
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resonator of height 1 mm and diameter 7 mm, which is directly placed onto the sample. The

resonant frequency in the TE011 mode is near 10 GHz. Rutile is well-known for its small

tangent loss ( tan δ = 10−5 at 77 K, 10 GHz) and its very high dielectric constant (ǫ = 105

at 77 K).35,36 The resonator is excited by an adjustable coupling loop; the distance between

the resonator and the loop is controlled in order to maintain critical coupling during the

experiment. The whole assembly is placed inside an oxygen-free high conductivity copper

cavity, mounted onto a cryocooler cold head. Temperature stability is better than 1 mK

over the range 30 K-90 K.

For each sample, we measure the resonant frequency f0 and the loaded Q-factor of the

fundamental resonance of the resonator. At each microwave input power level, the reflection

coefficient from the resonator, or S11 parameter, is measured with a network analyser in

continuous mode, coupled to a microwave amplifier for the high power regime. This exper-

imental set-up allows us to measure the surface impedance over a input microwave power

ranging from 0.01 mW to 100 mW.

The loaded Q-factor of the resonator is given by:

QL =
f0

∆f
, (2)

where f0 and ∆f are, respectively, the resonant frequency and the -3 dB bandwidth in log

scale corresponding to the resonant peak, see Fig. 2.

The unloaded Q-factor is defined by :

Q0 = (1 + β)QL, (3)

with β the coupling constant. All measurements were performed under critical coupling

i.e β = 1, and the unloaded Q-factor Q0 = 2QL. The inverse Q−1
0 is the sum of different

contributions due to the resonator itself, the copper cavity, and the YBa2Cu3O7−δ thin film,

such that

1

Q0

=
1

Qresonator

+
1

QY BCO

+
1

QCu

. (4)

Here Q−1
resonator = A tan δT iO2

is due to the dielectric losses, Q−1
Cu = CRs,Cu to the microwave

losses in the copper, and Q−1
Y BCO = BRs,Y BCO arises from the microwave losses in the
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YBa2Cu3O7−δ film. The geometrical factors A=0.9871, B=1.75.10−2, C=3.665.10−5 are

calculated using a numerical simulation (HFSS software37).

The surface resistance is obtained as

Rs,Y BCO =
1

B

(

1

Q0

− A tan δT iO2
− CRs,Cu

)

. (5)

III. RESULTS

In order to understand the variation of the Q-factor and the resonant frequency with in-

creasing microwave power, we have measured the temperature dependence of the resonator’s

properties. Fig. 3(a) represents the temperature dependence of the TiO2 resonator resonant

frequency in the limit of small microwave power Prf , for three different configurations. In

the first configuration, the TiO2 resonator is directly placed on the copper cavity; in the

second, the resonator is placed on an MgO substrate; finally the resonator is placed on the

YBa2Cu3O7−δ film, itself deposited on MgO. The absolute value of the resonant frequency,

f0, depends on the distance between the resonator and the conducting wall of the copper

cavity or of the superconducting layer. The presence of dielectric MgO leads to a lower

resonant frequency than the presence of the conducting YBa2Cu3O7−δ layer. However, the

temperature dependence of the frequency shift of the rutile resonator does not depend on

the nature of the support. This shows that the thermal conductivity between the cryocooler

cold-head and the rutile resonator is not significantly affected by the intercalation of the 500

µm-thick MgO and the 400 nm-thick superconducting layer.

Fig. 3(b) represents the temperature dependence of the resonant frequency shift of the

rutile resonator and of a MgO resonator with f0 near 8 GHz. Clearly, the variation with

temperature of the MgO resonant frequency is much weaker than that of rutile. The temper-

ature dependence of the resonant frequency is the direct consequence of the increase (resp.

decrease) with temperature of the dielectric constant ǫ(T ) of rutile (resp. MgO).

In Fig. 4 (a,b) we present the surface resistance and the resonant frequency in the presence

of the investigated YBa2Cu3O7−δ films at a given temperature of 74 K, as function of an

effective microwave reactive power. This is defined by P̃rf = Pincident,rf × QL, a parameter

introduced to quantitatively compare data obtained on the different films. Namely, each

different film leads to a different values of QL and absorbed power for the same incident
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microwave power. The zero power limit is taken as those values of P̃rf below which Rs(P̃rf)

is essentially P̃rf -independent. Curves for different films present the same behavior, i.e

Rs(P̃rf) and f0(P̃rf) are independent of the microwave field in the zero field limit and

become nonlinear (increase rapidly) above a threshold value P̃rf .

Contrary to what is expected and usually observed by using sapphire or MgO resonators,

the resonant frequency f0 of the rutile resonator also increases with increasing microwave

power. We ascertain that the increase of f0(P̃rf) is due to the heating of the rutile resonator

by the YBa2Cu3O7−δ film. In order to demonstrate this effect, we have also measured the

temperature dependence of the surface resistance and resonant frequency in the limit of

small P̃rf . The surface resistance at P̃rf → 0 of the YBa2Cu3O7−δ films, shown by the

open symbols in Fig. 5(a), shows the usual monotonous increase with temperature for all

samples. Concerning the temperature dependence of the resonant frequency, we observe an

increase with temperature, as discussed previously, Fig.5(b). The only observed difference

is the nearly constant frequency offset between the three curves.

By fitting the T (f0) curve of Fig. 5(b) and substituting the interpolated values for the

f0-values measured in the swept-power experiment depicted in Fig. 4(b), we estimate the

temperature variation T (P̃rf) of the resonator in the latter. Fig. 6 shows the temperature

variation of the resonator obtained in this way, at nominal temperatures of 63 K (a) and 74

K (b). Fig. 7 shows the normalized resonant frequency f0 of the rutile resonator placed on

a superconducting layer (black square) and on a MgO substrate (black star) as a function

of the microwave reactive power. This graph shows that the contribution to the observed

nonlinearities arising from the losses in the dielectric material is negligible compared to the

losses in the superconductor.

We now compare the RS data obtained as function of the temperature increase due to

increasing dissipation in the swept-power experiments and the low-power RS(T ) data. Fig.

5(a) shows a superposition of RS(T ) obtained from swept-power experiments at nominal

temperatures of 63 K and 74 K (Fig. 6 closed symbols) and the low-power RS(T ) data (open

symbols).The data are perfectly superimposed, this means that no intrinsic P̃rf -dependence

of the surface resistance is measured, and that any observed nonlinearity is the consequence

of Joule heating.
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IV. DISCUSSION

The temperature dependence of the resonant frequency is the direct consequence of the

increase with temperature of the dielectric constant ǫ(T ) of rutile. Note that its behavior

is opposite to the decrease with temperature of the dielectric constant of more commonly

used sapphire or MgO resonators. Moreover, the variation with temperature of the MgO

resonant frequency is much weaker than that of rutile. By consequence, it is difficult to

separate the evolution of the intrinsic change of a MgO or sapphire resonator’s frequency

from that caused by the temperature variation of a superposed superconducting film: both

weakly decrease as function of temperature. However, the intrinsic evolution of the rutile

resonator’s frequency is opposite to that expected from the presence of the superconducting

film. A measurement of the rutile’s resonator frequency can thus unambiguously serve as a

local temperature measurement.

In general, superconducting thin films contain resistive defects such as conducting

precipitates and weak-links of Josephson junctions. In their experiments, Obara et al.38

show a correlation between the Hrf -dependence of the surface resistance and the value of

the dc critical current density. Their interpretation is these correlations indicate that the

power dependence of Rs is due to the intrinsic properties of the films, such as pair-breaking.

However, nonlinearities usually occur at much lower Hrf fields than those at which the

intrinsic nonlinearities are expected.39–42 Halbriter et al.43 show that at very low microwave

fields, nonlinearities can be explained by Josephson fluxon penetration along weak links; at

higher fields flux flow losses may also participate.44 Wosik et al. insist on the importance

of thermal effects as the root of the nonlinear behavior.45–47 They have used the pulsed

measurement method, which, in principle, prevents or at least reduces heating of the films.

These experiments were repeated using thermally isolated films as well as films that are ther-

mally connected through the substrate with the heat sink cooled at 20 K. The authors45–47

have shown that the temperature increase of an isolated sample can reach 30 K. For the

case of a film thermally connected to the heat sink the temperature rise will be of only 2.5 K.
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V. CONCLUDING REMARKS

In our experiment we have clearly shown that the use of the rutile dielectric material

is a good way for a direct measurement of the temperature of superconducting thin films,

because of the large temperature dependence of the dielectric constant. The behavior of

the resonant frequency, opposite to that of the commonly used sapphire or MgO resonators,

indicates that the resonant frequency shift observed as function of the applied microwave

power is mainly due to heating of superconducting films. The perfect superposition of the

temperature-dependent surface resistance obtained from swept-power experiments with the

temperature dependence of Rs measured in the limit of low microwave power shows that

intrinsic nonlinearities of the superconducting films do not contribute to heating. Therefore,

Joule heating must be due to either flux-flow losses or to quasi-particle resistive losses.
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TABLE I: Possible mechanisms causing nonlinearity of the surface impedance.

Mechanism Ref Rs and Xs microwave r value Temperature Frequency

field dependence dependence of r dependence of r

Intrinsic non linearity [17-18] ∝ H2
rf low power 10−2 Increase with T ∝ ω

Pairbreaking ∝ H4
rf high power

Weakly coupled grain [19-21] ∝ H2
rf 10−3 increase with T ∝ ω

Vortices in weak link [22-24] ∝ Hrf ≦ 1 T independent ω independent

Vortex penetration [22-24] ∝ Hn
rf n ∽ 4 const ∽ 1 T independent ω independent

to the grains

Uniform heating [25-28] ∝ H2
rf 10−2 increase with T ∝ ω

Heating of weak link [25-28] unknown ⋍ 1 T independent ω independent
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TABLE II: Basic properties of the studied samples.

Name Substrate Thickness(nm) Tc(K)

SY211 MgO 400 88

TM MgO MgO 700 88.5

TM LAO LaAlO3 700 88.3
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TABLE III: Rs and f0 for P̃rf = Pnl at 74 K and in the limit of small power regime at T = Tnl.

name P̃rf( W ) Rs(P̃rf < Pnl) f0(P̃rf < Pnl) Tnl(K) Rs(T < Tnl) f0(T < Tnl)

SY211 110.81 474.37 µΩ 9.9805 GHz 55.12 176.43 µΩ 9.8735 GHz

TM LAO 135.26 302.34 µΩ 9.9758 GHz 63.74 173.72 µΩ 9.9187 GHz

TM MgO 137.75 236.99 µΩ 9.9740 GHz 64.94 149.71 µΩ 9.9284 GHz
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FIG. 1: Scanning electron microscope images for the three studied samples

FIG. 2: Plot of the resonant peak of the rutile resonator on YBa2Cu3O7−δ film at different mi-

crowave input power levels.

FIG. 3: (a) Plot of the resonant frequency of the TiO2 resonator in three different configurations:

Open squares: TiO2 directly placed onto the copper cavity; closed stars: TiO2 placed on an MgO

substrate, itself placed in the copper cavity; open triangles TiO2 placed on the superconducting

layer deposited on MgO itself placed in the copper cavity. (b) Temperature dependence of the

resonant frequency of the TiO2 and MgO resonators.

FIG. 4: Dependence of the surface resistance (a) and of the resonant frequency (b) on microwave

reactive power P̃rf , at 74 K.

FIG. 5: Temperature dependence of the surface resistance (a). Open symbols denote the surface

resistance as function of the directly measured temperature in the limit of small microwave power;

closed symbols show the surface resistance measured in the swept-power experiment as a function

of the calculated temperature. (b) The resonant frequency in the regime of low microwave power;

the nearly constant offset between the three curves is due to the different values of the film and

substrate thickness .

FIG. 6: Estimated temperature of the films, as deduced from the variation of the resonant fre-

quency, as function of reactive microwave power, for a base (measurement) temperatures of (a) 63

K and (b) 74 K.

FIG. 7: Resonant frequency of the rutile resonator as function of the microwave reactive power

with the resonator placed on a superconducting layer (Black square) and on an MgO substrate

(Black star)
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Kermorvant et al. Fig. 2
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Kermorvant et al. Fig. 3
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Kermorvant et al. Fig. 4
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Kermorvant et al. Fig. 5
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Kermorvant et al. Fig. 6

21



Kermorvant et al. Fig. 7
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