
HAL Id: hal-00419196
https://hal.science/hal-00419196

Submitted on 22 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Periodicity in tilings
Emmanuel Jeandel, Pascal Vanier

To cite this version:
Emmanuel Jeandel, Pascal Vanier. Periodicity in tilings. Developments in Language Theory, 2010,
6224/2010, pp.243-254. �10.1007/978-3-642-14455-4_23�. �hal-00419196�

https://hal.science/hal-00419196
https://hal.archives-ouvertes.fr

Periodicity in tilings

Emmanuel Jeandel Pascal Vanier

September 22, 2009

Abstract

Tilings and tiling systems are an abstract concept that arise both as
a computational model and as a dynamical system. In this paper, we
characterize the sets of periods that a tiling system can produce. We
prove that up to a slight recoding, they correspond exactly to languages
in the complexity classes NSPACE(n) and NE.
Keywords: Computational and structural complexity, tilings, dynamical
systems.

Introduction

The model of tilings was introduced by Wang [16] in the 60s to study decison
problems on some classes of logical formulas. Roughly speaking, we are given
some local constraints (a tiling system), and we consider colorings of the plane
that respect these constraints (a tiling).

This model has been discovered to be quite interesting both as a computation
model [4] and as a two-dimensional analog of symbolic dynamics [14, 13]. In a
sense, the results we obtained are an answer to a question of symbolic dynamics
via a computational point-of-view.

In this paper we consider periods of tilings. A coloring of the plane is said to
be periodic of period p if it is invariant by a translation by a (horizontal/vertical)
distance of p. It is easy to build a tiling system so that there exists a tiling of
period 1 but no tiling of any other period. It is also routine to build a tiling
system for which there is no tiling, hence no periodic tiling. The first important
result on the theory of tilings [4] states the existence of a tiling system which
admits tilings, none of them being periodic. Our main result in this article is a
characterization of the sets of periods we can obtain with tilings.

Periods in tilings are fundamental in the context of symbolic dynamics [14].
One of the main purposes of multidimensional symbolic dynamics is to decide
whether two tiling systems generate rougly the same tilings or, more accurately,
if the two subshifts they generate are conjugated. One of the main tools is
conjugacy invariants, i.e. quantities that are preserved under conjugacy. The
set of periods is such an invariant. One other well known example is the entropy
which is a measure of the growth of the number of n×n squares that can appears
inside a tiling.

1

It turns out that a characterization of entropy in tilings, itself a combina-
torial quantity, is intimately linked with computational theory, more precisely
recursivity: entropy of tilings are exactly the (non-negative) right recursively
enumerable numbers [9]. This is merely an exception: most conjugacy invariants
are to be expressed in terms of recursivity theory [1, 15].

We prove a similar theorem for periods in tilings, answering a open problem
in [15]. For periodic tilings, which are truly finite objects, the good analog will
not be recursivity but rather complexity. We will see indeed in this article that
sets of tilings correspond to complexity classes, in particular to non-deterministic
exponential space and non-deterministic exponential time. These classes are not
unusual for a specialist in descriptive complexity [8]. This is not a coincidence;
the reader familiar with this topic may indeed see the results in this article as
an analog for tilings of the classical result of Jones and Selman [11] on spectra
of first order formulas.

1 Tilings, periodicity and computations

Usually when considering tiling systems, Wang rules are used. Wang rules
consider adjacent tiles only, whereas our set of rules will consider a neighborhood
of tiles. This makes constructions easier to explain, while keeping almost the
same properties as classical Wang tiling systems.

For any dimension d ≥ 1, a tiling of Z
d with a finite set of tiles T is a

mapping c : Z
d → T . A tiling system is the pair (T, I), where I is a finite set of

forbidden patterns I ⊂ T N , where N ⊂finite Z
d is the neighborhood. A tiling

c is said valid if and only if none of the patterns of I ever appear in c. Since
the number of forbidden patterns is finite, we could specify the rules by allowed
patterns as well. We give an example of such a tiling system with the tiles of
figure 1a and the forbidden patterns of figure 1b. The allowed tilings are showed
in figure 2.

a) b)

Figure 1: The set of tiles (a) and the forbidden patterns (b).

A tiling c of dimension d = 2 is said to be horizontaly periodic if and only if
there exists a period p ∈ N

∗ such that for all x, y ∈ Z, c(x, y) = c(x + p, y). A
tiling c of Z

d is periodic if it has the same period on all its dimensions:

c(x1, x2, . . . , xd) = c(x1 + p, x2, . . . , xd) = c(x1, x2, . . . , xd + p)

A tiling system is aperiodic if and only if it tiles the plane but there is no
valid periodic1 tiling. Such tiling systems have been shown to exist with Wang

1On none of the dimensions.

2

Figure 2: The only valid tilings of the system.

rules, and by extension for our set of rules. J. Kari and P. Papasoglu gave such
a tiling system with an interesting property: determinism. A tiling system is
NW-deterministic if given two diagonally adjacent tiles, there is only one way
to complete the square in order to form a valid tiling. This means the two tiles
force the next one, the mechanism is shown in figure 3.

Figure 3: Determinism in the Kari-Papasoglu aperiodic tiling system.

Since the tiling system was described with Wang rules, it is easy to transpose
it to our set of rules and change some details: instead of having the tiles to be
adjacent diagonally, we can have them simply adjacent, as in figure 4. The type
of determinism of this example will be called East-determinism. With such a
tiling system, if a column of the plane is given, the half plane on its right is then
determined.

Figure 4: East-determinism in a tiling system.

2 Turing machines

As said earlier, tilings and recursivity are intimately linked. In fact, it is quite
easy to encode Turing machines in tilings. We give in this section such an
encoding. Similar encodings can be found e.g. in [12, 7].

Given a (non-deterministic, with one semi-infinite tape) Turing machine M ,
we build a tiling system τM in figure 5. The tiling system is given by Wang

3

s

s

a

s′

a′

a

s

s

a

s′ a′

a

s

s

a

s′

a′

a

a

s

s a

a

a

s

s a

a

a

a

a

s0 as0

s′

a′

s0 a

s′ a′

s0

a

s

s

a

a

a

s0

h

h

a

a

a

a

h

h

a

h a

a

Figure 5: A tiling system, given by Wang tiles, simulating a Turing machine

4

tiles, i.e., we can only glue two tiles together if they coincide on their common
edge. We now give some details on the picture:

• s0 in the tiles is the initial state of the Turing machine.

• The first tile corresponds to the case where the Turing machine, given the
state s and the letter a chose to go to the left and to change from s to s′,
writing a′. The two other tiles are similar.

• h represents a halting state. Note that the only states that can appear
in the last step of a computation (before a border appears) are halting
states.

This tiling system τM has the following property: there is an accepting path
for the word u in time (less than) w using space (less than) h if and only if
we can tile a rectangle of size (w + 2) × h with white borders, the first row
containing the input.

Note that this method works for both deterministic and non-deterministic
machines. Using some usual tiling techniques, it is quite straightforward to build
a tiling system encoding computation paths of n-tape Turing machine. As a
consequence, complexity results stated below are also valid when the complexity
classes are defined over n-tape Turing machines rather than one-tape Turing
Machines.

3 Recognizing languages with tilings

We introduce here a way to recognize languages over N, by looking at the set
of periods of a given tiling system τ .

We define Lh
τ , the language recognized by a tiling system τ , as the set of

integers p such that there is a valid tiling of Z
2 by τ of horizontal eigenperiod p.

We mean by eigenperiod that p is the smallest non-zero period of the tiling, in
order to avoid also having all multiples of any recognized number in the langage.
We similarly note Lτ the set of eigenperiods of τ .

Definition 1. T is the set of all languages Lτ , where τ is any tiling system.
H is the set of all languages Lh

τ , where τ is any tiling system. T and H are
the classes of languages recognized by tiling and recognized horizontally by tiling
respectively.

We say that a language L is recognized by a tiling system τ if and only if
L = Lh

τ or L = Lτ , depending on the context.
A natural question that arises when studying languages concerns closure by

union, intersection and complementation. Closure by union is easy to prove:
take the disjoint union of the sets of tiles and forbid tiles from the first tiling
system to be neighbors of tiles from the second one. Closure by intersection
is not as straightforward, since the classical construction by cartesian product
of the two tiling systems would lead to a language containing the lcm of the
periods of each language.

5

In this paper, we prove the following:

Theorem 2. H is closed by union, intersection and complementation.

Theorem 3. T is closed by intersection. T is closed by complementation if
and only if NE = coNE.

Here NE is the class of languages recognized by a (one-tape) non-deterministic
Turing machine in time 2cn for some c > 0. Note that for theorem 3 we need to
work in any dimension d. That is, if L1,L2 are the set of periods of the tiling
system τ1, τ2, then there exists a tiling system τ ′ that corresponds to the set of
period L1 ∩ L2. However even if τ1 and τ2 are two-dimensional tiling systems,
τ ′ might be in dimension greater than 2.

To prove these theorems, we will actually give a characterization in terms
of structural complexity of our classes H and T . This will be the purpose of
the next two sections. For an introduction to structural complexity, we suggest
[2, 3].

4 H and NSPACE(2n)

To formulate our theorem, we consider sets of periods, i.e. subsets of N
⋆, as

unary or binary languages. If L ⊂ N
⋆ then we define un(L) = {1n−1|n ∈ L}. We

define bin(L) to be the set of binary representations (missing the leading one) of
numbers of L. As an example, if L = {1, 4, 9}, then un(L) = {ǫ, 111, 11111111}
and bin(L) = {ǫ, 00, 001}. Note that any language over the letter 1 (resp. the
letters {0, 1}) is the unary (resp. binary) representation of some subset of N

⋆.
We now proceed to the statement of the theorem:

Theorem 4. Let L be a language, the following statements are equivalent:

i) L ∈ H

ii) un(L) ∈ NSPACE(n)

iii) bin(L) ∈ NSPACE(2n)

Recall that NSPACE(n) is the set of languages recognized by a (one-tape)
non-deterministic Turing machine in space O(n).

The (ii) ⇔ (iii) is folklore from computational complexity theory. The
following two lemmas will prove the equivalence (ii) ⇔ (i) hence the result.

Lemma 5. For any tiling system τ , un(Lh
τ) ∈ NSPACE(n).

Proof. Let Lh
τ be the language recognized by τ . We will construct a non-

deterministic Turing machine accepting n if and only if it is a horizontal eigen-
period of τ . The machine has to work in space O(n), the input being given in
unary.

The tiling system has a finite number of finite rules, hence it has a ”radius”
of action r. A consequence of this is that if there exists a horizontally periodic
tiling of period n, then there is such a tiling of height at most |T |rn.

6

kth line
(k − 1)th line

1st line

n

Figure 6: The tape of the machine when treating the kth line: we keep the firt
line in memory to verify the validity of the last one, and we guess the next line
non-deterministically.

This means that with a Turing machine working in space n × |T |rn, it is
easy to verify if an integer n is a period of the tiling τ . We just guess non-
deterministically a rectangle n × |T |rn and check wether it is valid with copies
of itself as neighbors. To check if it is an eigenperiod we just have to keep in
memory a boolean for each integer smaller than n, and check for each of them
if they are not a possible period.

Actually, we only have to remember r lines of the tiling at once to check
the validity of some line. This allows us to bring the space back to O(n). The
method is the same as stated before, we check non-deterministically each line,
all the preceeding r − 1 lines being stored to be able to check validity. We also
keep the r − 1 first lines guessed, in order to check the validity of the last lines.
Figure 6 shows the state of the tape while checking the k-th line for r = 1.

The machine hereby constructed works in space O(n), therefore Lh
τ ∈ NSPACE(2n).

Lemma 6. For any unary language L ∈ NSPACE(n), then {n ∈ N
⋆, 1n−1 ∈

L} ∈ H.

Proof. Let L ∈ NSPACE(n). There exists then a non-deterministic Turing
machine M accepting L in linear space. Using traditional tricks from complexity
theory, we can suppose that, on input 1n the Turing machine uses exactly n+1
cells of the tape (i.e. the input, with one additional cell on the right) and works
in time cn for some constant c.

We will build a tiling system τ so that 1n ∈ L if and only if n+4 is a period
of the tiling τ . The modification to obtain n + 1 rather that n + 4, and thus
prove the lemma, is left to the reader (basically “fatten” the gray tiles presented
below so that they absorb 3 adjacent tiles), and is of no interest rather than
technical.

The tiling system will be made of several components, each of them having
a specific goal. The components and their rules are as follows:

• The first component A is composed of an aperiodic E-deterministic tiling
system, whose tiles will be called ”whites”. We take the one from section 1.
We add a ”gray” tile. The rules forbid any pattern containing a white tile

7

above or below a gray tile. Hence a column containing a gray tile can only
have gray tiles.

With this construction, an aperiodic tiling of period p will have gray
columns at distance p of each other. The reason for that is that the
white tile can only tile the plane aperiodically.

For the moment nothing forbids more than one gray column to appear
inside a period. Figure 7 shows a possible form of a periodic tiling at this
stage.

p p

Figure 7: A periodic tiling with the tiling system A.

• The second component D = P × {R, B} is a tile set that will allow us to
force the distance between gray columns to be always the same. Further-
more, if we call n this distance, then it will also force rows at distance cn

of each other. It is divided into two subcomponents P and {R, B}, which
are respectively a counter in base c and a marker for the rows. Let us focus
on the counter: it adds one on each row, which means, if the number is
delimited by two gray columns at distance n, it can go from 0 to cn − 1.
Such a counter, can be realized with a transducer corresponding to the
local operation.

0 1

1|1

0|0

0|1

1|0

0
1

1
0

0
0

Figure 8: Transducer corresponding to the operation of adding a bit and its
corresponding tiles. The states of the transducer correspond to the carry.

8

0 1 1

1
0

0
1

0
1

Figure 9: Example of a valid tiling with the transducer tiles.

The transducer of figure 8 corresponds to the counter in the case c = 2.

To make a set of tiles out of this, we only need tiles containing the carry
and the value at the same time. We forbid two tiles to be neighbors if
the one on the left is not the result of applying the transducer to the one
on the right. The gray columns being the delimiters, if a gray tile is on
the right of some white tile, it is always considered as a tile containing a
carry.

The rules on the {R, B} subcomponent are easy: a tile on the right or the
left of a R tile is always a R tile, the value inside R tiles can only be 0.
A gray tile is R if the tile below it was a c − 1, that is to say when the
number is reinitialized.

We made here rows of R distant of cn, which in conjunction with the gray
columns form regular rectangles on the plane.

Figure 10a shows some typical tiling at this stage: The aperiodic com-
ponent can still be different between two gray columns, so the distance
between these columns is not the period of the tiling.

• Component T is only a copy of A which allows us to synchronize the first
white columns after the gray columns: synchronising these columns en-
sures that the aperiodic components between two gray columns are always
the same, since the aperiodic tiles are E-deterministic. The rules are sim-
ple, two horizontal neighbors have the same value on this component and
a tile having a gray tile on its left has the same value in A as in T .

At this stage, we have regular rectangles on all the plane, whose width
correspond to the period of the tiling, as shown in figure 10b.

• The last component M is the component allowing us to encode Turing
machines in each rectangle. We use the encoding τM we described previ-
ously in section 1. We force the computation to appear inside the white
tiles : The white bottom borders must appear only in the row R, and the
row below will have top borders. And the two tiles between the row R and
the gray tiles are corner tiles. Finally, the input of the Turing machine
(hence the row above the row R) consist of only “1” symbols, with a final
blank symbol.

The Turing machines considered here being non-deterministic, there could
be different valid transitions on two horizontally adjacent rectangles, that

9

a)

2n

n n b)

2n

n n

Figure 10: a) The form after adding the component D, the aperiodic components
between two gray columns can be different. b) After adding also the component
T , the aperiodic components are exactly the same.

is why we synchronize the transitions on each row. The method for the
synchronization of the transition is almost the same as the method for the
synchronisation of the aperiodic components, and thus not provided here.

Now we prove that 1n ∈ L if and only if n+4 is a period of the tiling system
τ . First suppose that n + 4 is a period and consider a tiling of period n + 4.

• Due to component A, a gray column must appear. The period is a suc-
cession of either gray and white columns.

• Due to the component D, the gray columns are spaced by a period of p,
p < n + 4.

• Due to component T the tiling we obtain is (horizontally) p-periodic when
restricted to the components D, T, A.

• For the M component to be correctly tiled, the input 1p−4 (4 = 1 (gray)
+ 1 (left border) + 1 (right border) + 1 (blank marker)) must be accepted
by the Turing Machine, hence 1p−4 ∈ L

• Finally, due to the synchronization of the non-deterministic transition, the
M component is also p-periodic. As a consequence, our tiling is p-periodic,
hence n + 4 = p. Therefore 1n ∈ L

Conversely, suppose 1n ∈ L. Consider the coloring of period n + 4 obtained
as follows (only a period is described):

• The component A consist of n+3 correctly tiled columns of our aperiodic
E-deterministic tiling systems, with an additional gray column. As the
E-deterministic tiling system tiles the plane, such a tiling is possible

10

• The component M corresponds to a successful computation path of the
Turing machine on the input 1n, that exists by hypothesis.

• We then add all other layers according to the rules to obtain a valid
configuration, thus obtaining a valid tiling of period exactly n + 4.

Corollary 7. The languages recognized horizontally by tiling are closed under
intersection and complementation.

Proof. Immerman-Szelepczenyi’s theorem [10, 3] states that non-deterministic
space complexity classes are closed by complementation. The result is then a
consequence of theorem 4.

Note that if H is closed under complementation, then NSPACE(2n) is
closed under complementation by theorem 4. As a consequence, any proof
of corollary will translate into a proof that space complexity classes (greater
than 2n) are closed under complementation, hence give an alternate proof of
Immerman-Szelepczenyi’s result.

This theorem could be generalized to tilings of dimension d by considering
tilings having a period n on d − 1 dimensions, as explained in [6].

5 T and NE

We now proceed to total periods rather than horizontal periods. We will prove:

Theorem 8. Let L ⊂ N
⋆ be a language, the following statements are equivalent:

i) there exists a dimension d for which L ∈ T

ii) un(L) ∈ NP

iii) bin(L) ∈ NE

We will obtain as a corollary Theorem 3. Note the slight difference in for-
mulation between Theorem 3 and Theorem 4. While we can encode a Turing
machine working in time n in a tiling of size n2, we cannot check the validity of
the tiling in less than O(n2) time steps. And furthermore, we cannot, as far as
we know, check if n is an eigenperiod in time less than O(n3). More generally,
it is unclear that we can encode a Turing machine working in time nc in a tiling
of size less than n2c. So instead of considering the time class NTIME(n), we
consider the class NP on unary inputs. This will allow us to cover the gap. The
class NP for unary inputs corresponds to the class NE for binary inputs.

Proof. The statements (i) ⇒ (ii) ⇔ (iii) were already explained. So we only
have to prove (ii) ⇒ (i).

In order to get a periodic structure from the construction of lemma 6, we
only need to slightly modify it. We will detail the modification for d = 2, the
generalization being straightforward:

11

• in component A, we start from an aperiodic NW-deterministic tiling sys-
tem. We will consider 3 types of gray tiles: a crossing tile, a horizontal
tile and a vertical tile. The rules are simple:

– above or below a vertical tile one can only have a crossing or a vertical
tile,

– on the left or on the right of a horizontal tile, there can only be a
crossing or a horizontal tile,

– on the left and on the right of a crossing tile, there can only be a
crossing or a horizontal tile,

– above or below a crossing tile, there can only be a crossing or a
vertical tile.

With these rules, when a row and a column of gray tiles cross, the crossing
can only be a crossing tile.

• In component D, instead of using a counter, we only use a signal propagat-
ing in diagonal from each crossing tile, which can only end on a crossing
tile. Instead of having rectangles of size cn × n we now have squares of
size n × n. At this step in the proof, the reasoning is a follows: Take
a periodic tiling, then either a horizontal or a vertical tile must appear,
as the aperioc tiling system cannot tile the plane periodically. Then by
component D, an horizontal tile will force a vertical tile to appear, and
vice versa, so that every periodic tilings is composed of squares.

• The component T will synchronize the aperiodic component between all
squares, by propagating the first line and first column of a square to all
the neighbors. Indeed, a square of a NW-deterministic tiling system is
entirely fixed once we know the first line and the first column. This is
easily done by synchronising as shown in figure 11.

a)

p

p

p p b)

p

p

p p

Figure 11: Transmission of the first row in a) and of the first line in b).

• The Turing Machine component is the same as before.

12

Now this proves that every unary langage L ∈ NTIME(n) is the set of periods
of a tiling system.

To prove the result for any unary language L ∈ NP, we will need to work
in higher dimensions : we will encode a machine working in time nc in a tiling
with 2c dimensions (c dimensions for the space and c dimensions for the time).
The difficulty when generalising the dimension is not to keep the ”hypercubical”
structure, as the previously described structure can straightforwardly be trans-
posed in any dimension d, but to keep the constraints of the Turing machine’s
tiles local. That is to say, two tape positions i and i + 1 have to be neighbors.
The same goes for time, a content of a certain tape position at time t and its
content at time t + 1 have to be neighbors.

Therefore, we will bend time and space... Actually, we will fold it as shown
for dimension 3 in figure 12. Such a folding has already been described by

Figure 12: Folding of the tape in dimension 3.

Borchert [6] and can also be deduced from [11]. We do not detail the construction
which is technical and rather tedious. The construction we obtain here allows
us to code the Turing machine in a hypercube of dimension 2c, hence proving
the result.

Conclusion

We obtain in this paper a complete characterization of the sets of periods one
can accomplish with tilings. The result is based on structural complexity theory,
and is very different from the sets of periods we can obtain for 1-dimensional
tilings (subshifts of finite type, see [14]) or for continuous discrete dynamical
systems on the real line (Sharkovskii theorem, see e.g. [5]).

The next step is to characterize the number of tilings of period p for a given
tiling system τ . Not surprisingly, preliminary work suggests we can characterize
these functions via the class #P .

13

References

[1] Nathalie Aubrun and Mathieu Sablik. An order on sets of tilings corre-
sponding to an order on languages. In STACS, pages 99–110, 2009.

[2] J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I. Springer-
Verlag, 1988.

[3] J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity II. Springer-
Verlag, 1988.

[4] Robert Berger. The Undecidability of the Domino Problem. Number 66
in Memoirs of the American Mathematical Society. The American Mathe-
matical Society, 1966.

[5] Louis Block, John Guckenheimer, Michal Misiurewicz, and Lai Sang Young.
Periodic points and topological entropy of one dimensional maps. In Global
Theory of Dynamical Systems, pages 18–34.

[6] Bernd Borchert. Formal Language characterizations of P, NP, and
PSPACE. Journal of Automata, Languages and Combinatorics, 2009. to
appear.

[7] Gregory Chaitin. The Halting Probability via Wang Tiles. Fundamenta
Informaticae, 86(4):429–433, 2008.

[8] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer
Monographs in Mathematics. Springer, Berlin, 1995.

[9] Michael Hochman and Tom Meyerovitch. A characterization of the en-
tropies of multidimensional shifts of finite type. Annals of Mathematics,
2008.

[10] Neil Immerman. Nondeterministic space is closed under complementation,
1988.

[11] Neil D. Jones and Alan L. Selman. Turing machines and the spectra of first-
order formulas with equality. In STOC ’72: Proceedings of the fourth annual
ACM symposium on Theory of computing, pages 157–167, New York, NY,
USA, 1972. ACM.

[12] Jarkko Kari. Reversibility and surjectivity problems of cellular automata.
J. Comput. Syst. Sci., 48(1):149–182, 1994.

[13] Douglas Lind. Multidimensional Symbolic Dynamics. In Symbolic dynam-
ics and its applications, volume 11 of Proceedings of Symposia in Applied
Mathematics, pages 61–80, 2004.

[14] Douglas A. Lind and Brian Marcus. An Introduction to Symbolic Dynamics
and Coding. Cambridge University Press, New York, NY, USA, 1995.

14

[15] Tom Meyerovitch. Growth-type invariants for Z
d subshifts of finite type

and classes arithmetical of real numbers. arXiv:0902.0223v1.

[16] Hao Wang. Proving theorems by Pattern Recognition II. Bell Systems
technical journal, 40:1–41, 1961.

15

