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Maximum Entropy Estimation for Survey sampling

Fabrice Gamboa, Jean-Michel Loubes and Paul Rochet

Abstract

Calibration methods have been widely studied in survey sampling over the last

decades. Viewing calibration as an inverse problem, we extend the calibration tech-

nique by using a maximum entropy method. Finding the optimal weights is achieved

by considering random weights and looking for a discrete distribution which maxi-

mizes an entropy under the calibration constraint. This method points a new frame

for the computation of such estimates and the investigation of its statistical prop-

erties.

Keywords: Survey Sampling, Inverse Problems, Maximum Entropy Method
Subject Class. MSC-2000 : 62F12, 62D05, 94A17

Introduction

Calibration is a well spread method to improve estimation in survey sampling, using
extra information from an auxiliary variable. This method provides approximately unbi-
ased estimators with variance smaller than that of the usual Horvitz-Thompson estimator
(see for example [15]). Calibration has been introduced by Deville and Särndal in [2], ex-
tending an idea of [3]. For general references, we refer to [20], [19] and for an extension
to variance estimation to [17].
Finding the solution to a calibration equation involves minimizing an energy under some
constraint. More precisely, let s be a random sample of size n drawn from a population U
of size N , y is the variable of interest and x is a given auxiliary variable, for which the mean
tx over the population is known. Further, let d ∈ R

n be the standard sampling weights
(that is the Horvitz-Thompson ones). Calibration derives an estimator t̂y = N−1

∑

i∈s wiyi

of the population mean ty of y. The weights wi are chosen to minimize a dissimilarity (or
distance) D(., d) on R

n with respect to the Horvitz-Thompson weights di and under the
constraint

N−1
∑

i∈s

wixi = tx. (1)
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Following [18], we will view here calibration as a linear inverse problem. In this paper,
we use Maximum Entropy Method on the Mean (MEM) to build the calibration weights.
Indeed, MEM is a strong machinery for solving linear inverse problems. It tackles a
linear inverse problem by finding a measure maximizing an entropy under some suitable
constraint. It has been extensively studied and used in many applications, see for example
[1], [8], [7], [10], [6], [5] or [9].
Let us roughly explain how MEM works in our context. First we fix a prior probability
measure ν on R

n with mean value equal to d. Then, the idea is to modify the weights in the
sample mean in order to get a representative sample for the auxiliary variable x, but still
being as close as possible to d, which have the desirable property of yielding an unbiased
estimate for the mean. So, we will look for a posterior probability measure minimizing the
entropy (or Kullback information) with respect to ν and satisfying a constraint related to
(1). It appears that the MEM estimator is in fact a specific calibration estimator for which
the corresponding dissimilarity D(., d) is determined by the choice of the prior distribution
ν. Hence, the MEM methodology provides a general Bayesian frame to fully understand
calibration procedures in survey sampling where the different choices of dissimilarities
appear as different choices of prior distributions.
An important problem when studying calibration methods is to understand the amount of
information contained in the auxiliary variable. Indeed, it appears that the relationships
between the variable to be estimated and the auxiliary variable are crucial to improve
estimation (see for example [13] or [20]). When complete auxiliary information is
available, increasing the correlation between the variables is made possible by replacing
the auxiliary variable x by some function of it, say u(x). So, we consider efficiency issues
for a collection of calibration estimators, depending on both the choice of the auxiliary
variable and the dissimilarity. Finally, we provide an optimal way of building an efficient
estimator using the MEM methodology.

The article falls into the following parts. The first section recalls the calibration
method in survey sampling, while the second exposes the MEM methodology in a general
framework, and its application to calibration and instrument estimation. Section 3 is
devoted to the choice of a data driven calibration constraint in order to build an efficient
calibration estimator. It is shown to be optimal under strong asymptotic assumptions on
the sampling design. Simulations illustrate previous results in Section 4 while the proofs
are postponed to Section 5.

1 Calibration Estimation of a linear parameter

Consider a large population U = {1, ..., N} and an unknown characteristic y =
(y1, ..., yN) ⊂ R

N . Our aim is to estimate its mean ty := N−1
∑

i∈U yi when only a ran-
dom subsample s of the whole population is available. So the observed data are (yi)i∈s.
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The sampling design is the probability distribution p defined for each subset s ⊂ U as
the probability p(s) that s is observed. We assume that πi := p(i ∈ s) =

∑

s, i∈s p(s) is
strictly positive for all i ∈ U , so di = 1/πi is well defined. A standard estimator of ty is
given by the Horvitz-Thompson estimator:

t̂HT
y = N−1

∑

i∈s

yi

πi
= N−1

∑

i∈s

diyi.

This estimator is unbiased and is widely used for practical cases, see for instance [3] for
a complete survey.

Suppose that it exists an auxiliary vector variable x = (x1, ..., xN), that is entirely
observed and set tx = N−1

∑

i∈U xi ∈ R
k. If the Horvitz-Thompson estimator of tx,

t̂HT
x = N−1

∑

i∈s dixi is far from the true value tx, it may imply that the sample does
not describe well the behavior of the variable of interest in the total population. So, to
prevent biased estimation due to bad sample selection, inference on the sample can be
achieved by considering a modification of the weights of the individuals chosen in the
sample.

One of the main methodology used to correct this effect is the calibration method,
(see [2]). The bad sample effect is corrected by deriving new weights for the sample
mean, but still being close to the di’s to get a small bias. For this, consider a class of
weighted estimators N−1

∑

i∈U wiyi where the weights w = (wi)i∈s are selected to be close
to d = (di)i∈s under the calibration constraint

N−1
∑

i∈s

wixi = tx.

There are two basic components in the construction of calibration estimators, namely
a dissimilarity and a set of calibration equations. Let w 7→ D(w, d) be a dissimilarity
between some weights and the Horvitz-Thompson ones. Assume that this dissimilarity is
minimal for wi = di. The method consists in choosing weights minimizing D(., d) under
the constraint N−1

∑

i∈s wixi = tx.

A typical dissimilarity is the χ2 distance w 7→ ∑

i∈s(πiwi−1)2/(qiπi) for (qi)i∈s a posi-

tive smoothing sequence (see [2]). So the new estimator is defined as t̂y = N−1
∑

i∈s ŵiyi,
where the weights ŵi minimizes D(w, d) =

∑

i∈s(πiwi − 1)2/qiπi under the constraint
N−1

∑

i∈s ŵixi = tx. Denote by at the transpose of a, the solution of this minimization
problem is given by

t̂y = t̂HT
y + (tx − t̂HT

x )tB̂,

where B̂ =
[
∑

i∈s qidixix
t
i

]−1 ∑

i∈s qidiyixi. Note that this is a generalized regression esti-
mator. It is natural to consider alternative measures, which are given in [2]. We first point
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out that the existence of a solution to the constrained minimization problem depends on
the choice of the dissimilarities. Then, different choices can lead to weights with different
behaviors, different ranges of values for the weights that may be found unacceptable by the
users. We propose an approach where dissimilarities have a probabilistic interpretation.
This highlights the properties of the resulting estimators.

2 Maximum Entropy for Survey Sampling

2.1 MEM methodology

Consider the problem of recovering an unknown measure µ on a measurable space
X under moment conditions. We observe a random sample T1, ..., Tn ∼ µ. For a given
function x : X → R

k and a known quantity tx ∈ R
k, we aim to estimate µ satisfying

∫

X

x(t)dµ(t) = tx. (2)

This issue belongs to the class of generalized moment problems with convex constraints
(we refer to [4] for general references), which can be solved using maximum entropy on the
mean (MEM). The general idea is to modify the empirical distribution µn = n−1

∑n
i=1 δTi

in order to take into account the additional information on µ given by the moment equation
(2). For this, consider weighted versions of the empirical measure n−1

∑n
i=1 piδTi

for
weights pi properly chosen. The MEM estimator µ̂n of µ is a weighted version of µn,
where the weights are the expectation of a random variable P = (P1, ..., Pn), drawn from
a finite measure ν∗ close to a prior ν. This prior distribution conveys the information
that µ̂n must be close to the empirical distribution µn. More precisely, let first define
the relative entropy or Kullback information between two finite measures Q, R on a space
(Ω,A) by setting

K(Q, R) =

{

∫

Ω
log

(

dQ
dR

)

dQ − Q(Ω) + 1 if Q ≪ R

+∞ otherwise.

Since this quantity is not symmetric, we will call it the relative entropy of Q with respect
to R. Note also that, among the literature in optimization, the relative entropy is often
defined as the opposite of the entropy defined above, which explains the name of max-
imum entropy method, while with our notations, we consider the minimum of the entropy.

Given our prior ν, we now define ν∗ as the measure minimizing K(., ν) under the constraint
that the linear constraint holds in mean:

Eν∗ [n−1
∑n

i=1 Pixi] =
1

ν∗(Rn)

∫

Rn

[n−1
∑n

i=1 pixi] dν∗(p1, ..., pn) = tx,
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where we set xi = x(Ti). We then build the MEM estimator µ̂n = n−1
∑n

i=1 p̂iδTi
, where

p̂ = (p̂1, ..., p̂n) = Eν∗(P ).

This method provides an efficient way to estimate some linear parameter ty =
∫

X
ydµ

for y : X → R a given map. The empirical mean y =
∫

X
ydµn is an unbiased and

consistent estimator of ty but may not have the smallest variance in this model. We can
improve the estimation by considering the MEM estimator t̂y = n−1

∑n
i=1 p̂iyi, which has

a lower variance than the empirical mean and is asymptotically unbiased (see [7]).

In many actual situations, the function x is unknown and only an approximation
to it, say xm, is available. Under regularity conditions, the efficiency properties of the
MEM estimator built with the approximate constraint have been studied in [11] and [12],
introducing the approximate maximum entropy on the mean method (AMEM). More
precisely, the AMEM estimate of the weights is defined as the expectation of the variable
P under the distribution ν∗

m minimizing K(., ν) under the approximate constraint

Eν∗

m
[n−1

∑n
i=1 Pi xm(Ti)] = tx. (3)

It is shown that, under assumptions on xm, the AMEM estimator of ty obtained in this
way is consistent as n and m tends to infinity. This procedure enables to increase the
efficiency of a calibration estimator while remaining in a Bayesian framework, as shown
in Section 3.2.

2.2 Maximum entropy method for calibration

Recall that our original problem is to estimate the population mean ty = N−1
∑

i∈U yi

based on the observations {yi, i∈s} and auxiliary information {xi, i∈U}. We introduce
the following notations:

yi = nN−1diyi, xi = nN−1dixi, pi = πiwi.

Note that the variables of interest are rescaled to match the MEM framework. The weights
(pi)i∈s are now identified with a discrete measure on the sample s. The Horvitz-Thompson
estimator t̂HT

y = N−1
∑

i∈s diyi = n−1
∑

i∈s yi is the preliminary estimator we aim at
improving. The calibration constraint n−1

∑

i∈s pixi = tx stands for the linear condition
satisfied by the discrete measure (pi)i∈s. So, it appears that the calibration problem
follows the pattern of maximum entropy on the mean. Let ν be a prior distribution on
the vector of the weights (pi)i∈s. The solution p̂ = (p̂i)i∈s is the expectation of the random
vector P = (πiWi)i∈s drawn from a posterior distribution ν∗, defined as the minimizer
of the Kullback information K(., ν) under the condition that the calibration constraint
holds in mean

Eν∗

[

n−1
∑

i∈s Pixi

]

= Eν∗

[

N−1
∑

i∈s Wixi

]

= tx.
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We take the solution p̂ = Eν∗(P ) and define the corresponding MEM estimator t̂y as

t̂y = n−1
∑

i∈s

p̂iyi = N−1
∑

i∈s

ŵiyi,

where we set ŵi = dip̂i for all i ∈ s. Under the following assumptions, we will show
in Theorem 2.1 that maximum entropy on the mean gives a Bayesian interpretation of
calibration methods.

The random weights Pi, i ∈ s (and therefore the Wi, i ∈ s) are taken independent and
we denote by νi the prior distribution of Pi. It follows that ν = ⊗i∈sνi. Moreover, all
prior distributions νi are integrable with mean 1. This last assumption conveys that p̂i

must be close to 1, equivalently, ŵi = dip̂i must be close to the Horvitz-Thompson weight
di.
Let ϕ : R → R be a closed convex map, the convex conjugate ϕ∗ of ϕ is defined as

∀s ∈ R, ϕ∗(s) = sup
t∈R

(st − ϕ(t)).

For ν a probability measure on R, we denote by Λν the log-Laplace transform of ν:

Λν(s) = log

∫

esxdν(x), s ∈ R.

Its convex conjugate Λ∗
ν is the Cramer transform of ν. Moreover, denote by Sν the interior

of the convex hull of the support of ν and let D(ν) = {s ∈ R : Λν(s) < ∞}. In the sequel,
we will always assume that Λνi

is essentially smooth (see [14]) for all i, strictly convex
and that νi is not concentrated on a single point. The last assumption means that if
D(νi) = (−∞; αi), (αi ≤ +∞), then Λ′

νi
(s) goes to +∞ whenever αi < +∞ and s goes

to αi. Notice that, under these assumptions, Λ′
νi

is an increasing bijection between the
interior of D(νi) and Sνi

. Moreover, we have the functional equalities (Λ∗
νi

′)−1 = Λ′
νi

and
(Λ∗

νi
)∗ = Λνi

.

Definition : We say that the optimization problem is feasible if there exists a vector
δ = (δi)i∈s ∈ ⊗i∈sSνi

such that:

N−1
∑

i∈s

δixi = tx.

Under the last assumptions, the following proposition claims that the solutions (ŵi)i∈s

are easily tractable.

Theorem 2.1 (survey sampling as MEM procedure) Assume that the optimiza-
tion problem is feasible. The MEM estimator ŵ = (ŵ1, ..., ŵn) minimizes over R

n

(w1, ..., wn) 7→
∑

i∈s

Λ∗
νi

(πiwi)

under the constraint N−1
∑

i∈s ŵixi = tx.
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Hence, we point out that maximum entropy on the mean method leads to calibration
estimation, where the dissimilarity is determined by the Cramer transforms Λ∗

νi
, i ∈ s of

the prior distributions νi.

Remark : (relationship with Bregman divergences) Taking the priors νi in a cer-
tain class of measures may lead to specific dissimilarities known as Bregman divergences.
We refer to [9] for a definition. In the MEM method, there are two different kinds of
priors for which the resulting dissimilarity may be seen as a Bregman divergence. Let
ν be a probability measure with mean 1 and such that Λν is a strictly convex function.
Then, Λ∗

ν enables to define a Bregman divergence. It will play the role of the dissimilarity
resulting from the MEM procedure in the two following situations.
First, consider priors νi, i ∈ s all taken equal to ν. It is a simple calculation to see that
the assumptions made on ν imply that Λ∗

ν(1) = Λ∗
ν
′(1) = 0. The resulting dissimilarity

can thus be written as

D(w, d) =
∑

i∈s

Λ∗
ν(πiwi) =

∑

i∈s

[

Λ∗
ν(πiwi) − Λ∗

ν(1) − Λ∗
ν
′(1)(πiwi − 1)

]

.

Here, we recognize the expression of the Bregman divergence between the weights
{πiwi, i ∈ s} and 1 associated to the convex function Λ∗

ν .
Another possibility is to take prior distributions νi lying in some suitable exponential
family. More precisely, define the prior distributions as

∀i ∈ s, ∀x ∈ X , dνi(x) = exp(αix + βi)dν(dix),

where βi = −Λν(Λ
∗
ν
′(di)) and αi = diΛ

∗
ν
′(di) are properly chosen so that νi is a probability

measure with mean 1. Here we recover after some computation the following dissimilarity

D(w, d) =
∑

i∈s

[

Λ∗
ν(wi) − Λ∗

ν(di) − Λ∗
ν
′(di)(wi − di)

]

,

which is the Bregman divergence between w and d associated to Λ∗
ν .

2.3 Bayesian interpretation of calibration using MEM

In a classical presentation, calibration methods heavily rely on a distance choice.
Here, this choice corresponds to different prior measures (νi)i∈s. We now see the
probabilistic interpretation of some commonly used distances.

Stochastic interpretation of some usual calibrated survey sampling estimators

1. Generalized Gaussian prior.
For a given positive sequence qi, i ∈ s, let Wi having a Gaussian distributions
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N (di, diqi) which corresponds to νi ∼ N (1, πiqi). We get

∀t ∈ R, Λνi
(t) =

qiπit
2

2
+ t ; Λ∗

νi
(t) =

(t − 1)2

2πiqi

The calibrated weights in that cases minimize the criterion

D1(w, d) =
∑

i∈s

(πiwi − 1)2

qiπi

.

So, we recover the χ2 distance discussed in Section 1. This is one of the main
distance used in survey sampling. The choice of the qi can be seen as the choice of
the variance of the Gaussian prior. The larger the variance, the less stress is laid on
the distance between the weights and the original Horvitz-Thompson weights.

2. Exponential prior.
We take a unique prior ν with an exponential distribution with parameter 1. That
is, ν = ν⊗n. We have in that case

∀t ∈ R
∗
+, Λ∗

ν(t) = − log t + t − 1.

This corresponds to the following dissimilarity

D2(w, d) =
∑

i∈s

− log(πiwi) + πiwi.

We here recognize the Bregman divergence between (πiwi)i∈s and 1 associated to
Λ∗

ν , as explained in the previous remark. A direct calculation shows that this is also
the Bregman divergence between w and d associated to Λ∗

ν . The two distances are
the same in that case.

3. Poisson prior.
If we choose for prior νi = ν, ∀i ∈ s, where ν is the Poisson distribution with
parameter 1, then we obtain

∀t ∈ R
∗
+, Λ∗

ν(t) = t log t − t + 1.

So we have the following contrast

D3(w, d) =
∑

i∈s

πiwi log(πiwi) − πiwi.

So we recover the Kullback information where (πiwi)i∈s is identified with a discrete
measures on s.
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MEM leads to a classical calibration problem where the solution is defined as a minimizer
of a convex function subject to linear constraints. The following result gives another
expression of the solution for which the computation may be easier in practical cases.

Proposition 2.2 Assume that the optimization problem is feasible, the MEM estimator
ŵ is given by:

∀i ∈ s, ŵi = diΛ
′
νi

(λ̂tdixi) (4)

where λ̂ minimizes over R
k λ 7→ ∑

i∈s Λνi
(λtdixi) − λttx.

We endow y with new weights obtaining the MEM estimator t̂y = N−1
∑

i∈s ŵiyi. We
point out that calibration using maximum entropy framework turns into a general convex
optimization program, which can be easily solved. Indeed, computing the new weights
wi, i ∈ s, only involves a two step procedure. First, we find the unique λ̂ ∈ R

k such that

N−1
∑

i∈s

diΛ
′
νi

(λ̂tdixi)xi − tx = 0.

This is achieved optimizing a scalar convex function. Then, compute the new weights
ŵi = diΛ

′
νi

(λ̂tdixi).

2.4 Extension to generalized calibration and instrument estima-
tion

Proposition 2.2 shows that a calibration estimator is defined using a family of functions
Λ′

νi
, i ∈ s satisfying the property that the equation N−1

∑

i∈s diΛ
′
νi

(λtdixi)xi = tx has a
unique solution. A natural generalization, known as generalized calibration (GC) (see
[16]), consists in replacing the functions λ 7→ Λ′

νi
(λtdixi) by more general functions fi :

R
k → R, i ∈ s. Assume that the equation

F (λ) = N−1
∑

i∈s

difi(λ)xi = tx

has a unique solution λ̂. Assume also that the fi are continuously differentiable at 0, and
are such that fi(0) = 1 so that F (0) = t̂HT

x . Then, take as the solution to the generalized
calibration procedure, the weights:

∀i ∈ s, ŵi = difi(λ̂).

Calibration is of course a particular example of generalized calibration where we set
fi : λ 7→ Λ′

νi
(λtdixi) to recover a calibration problem seen in Section 2.2. Even though the

method enables a large choice of functions fi, most cases can not be given a probabilistic
interpretation.

9



However, an interesting particular choice is given by the functions λ 7→ 1 + zt
iλ for

zi, i ∈ s. This sequence of vectors of R
k is called instruments (see [16]). If the matrix

Xn := N−1
∑

i∈s dizix
t
i is invertible, then, the resulting estimator t̂y, referred to as the

instrument estimator obtained with the instruments zi, is given by:

t̂y = t̂HT
y + (tx − t̂HT

x )tX−1
n N−1

∑

i∈s diziyi. (5)

Remark : (dimension reduction) The estimator t̂y defined in (5) can be viewed as

the instrument estimator obtained with auxiliary variable B̂tx and instruments B̂tzi, i ∈ s

with B̂ =
[
∑

i∈s dizix
t
i

]−1 ∑

i∈s diyizi. Hence, in the frame of instrument estimation, the
original k-dimensional calibration constraint can be replaced by a one-dimensional linearly
modified one N−1

∑

i∈U wiB̂
txi = B̂ttx, without changing the value of the estimator. This

enables to reduce the dimension of the problem. Furthermore, it gives an interesting
interpretation of the underlying process of calibration. For instance, take the instruments
zi = xi, i ∈ s. The corresponding variable Btx is the quadratic projection of y onto
the linear space Ex, spanned by the components of x. In other words, Btx is a linear
approximation of y. As a result, the variable y − Btx has a lower variance than y, while
its mean over the population ξ is known up to ty. So, the variable y − Btx can be used

to estimate ty and will provide a more efficient estimator. Since B is unknown, we use B̂

to estimate it. Set ỹ = y − B̂tx, we have:

t̂y − B̂ttx = N−1
∑

i∈s

diỹi.

The calibrated estimator t̂y appears as the Horvitz-Thompson estimator (up to a known

additive constant, here B̂ttx) of a variable ỹ with a lower variance than y. This points out
that calibration relies on linear regression, since an estimator of ty is computed by first

constructing a linear projection B̂tx of y on a subspace Ex. Reducing the dimension of
the problem is made by choosing the proper real-valued auxiliary variable, and therefore,
the proper one-dimensional linear subspace on which y is projected.

Note also that the accuracy of the estimator heavily relies on the linear corre-
lation between y and the auxiliary variable. It appears that the accuracy could be
improved for some non-linear transformation, say u(x), of the original auxiliary vari-
able x, provided that y is more correlated with u(x) than x. This is discussed in Section 3.

Instrument estimators play a crucial role when studying the asymptotic properties
of generalized calibration estimation. A classical asymptotic framework in calibration
is to consider that n and N simultaneously go to infinity while the Horvitz-Thompson
estimators t̂HT

x and t̂HT
y converge at a rate of convergence of

√
n, as described in [2] and

[19] for instance. This will be our framework here. That is

‖t̂HT
x − tx‖ = OP(n

−1/2) and (t̂HT
y − ty) = OP(n

−1/2).
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In this framework, all GC estimators are
√

n-consistent, as seen in [2].

Definition We say that two GC estimators t̂y and t̃y are asymptotically equivalent if
(t̂y − t̃y) = oP(n

−1/2).

Proposition 2.3 Let t̂y and t̃y be the GC estimators obtained respectively with the func-
tions fi, i ∈ s and gi, i ∈ s. If for all i ∈ s, ∇fi(0) = ∇gi(0) = zi, and if the matrix
Xn := N−1

∑

i∈s dizix
t
i converges toward an invertible matrix X, then t̂y and t̃y are asymp-

totically equivalent. In particular, two MEM estimators are asymptotically equivalent as
soon as their prior distributions have the same respective variances.

This proposition is a consequence of Result 3 in [2]. It states that for all GC estimator,
there exists an instrument estimator having the same asymptotic behavior, built by taking
as instruments the gradient vectors of the criterion functions at 0: zi = ∇fi(0), i ∈ s.
Consequently, a MEM estimator t̂y built with prior distributions νi, i∈s with mean 1 and
respective variances πiqi for (qi)i∈s a given positive sequence, satisfies

t̂y = t̂HT
y + (tx − t̂HT

x )tB̂ + oP(n
−1/2)

where B̂ =
[
∑

i∈s diqixix
t
i

]−1 ∑

i∈s diqixiyi. The negligible term oP(n
−1/2) is zero for all

n for Gaussian priors νi ∼ N (1, πiqi), which stresses the important role played by the
corresponding χ2 dissimilarity (see Example 1 in Section 2.3). Note also that the Gaussian
equivalent t̃y = t̂HT

y +(tx − t̂HT
x )tB̂ is the instrument estimator built with the instruments

zi = qixi. This choice of instruments, and in particular the case qi = 1 for all i ∈ s, is
often used in practice due to its simplicity and good consistency.

3 Efficiency of calibration estimator with MEM

method

By using the auxiliary variable x in the calibration constraint, we implicitly assume
that x and y are linearly related. However, other relationships may prevail between the
variables and it may be more accurate to consider some other auxiliary variable u(x). Here,
we discuss optimal choices of function u : X → R

d to use in the calibration constraint. To
do so, we first define a notion of asymptotic efficiency in our model with fixed auxiliary
variable u(x). Then, we study the influence of the choice of the constraint function u
and find the optimal choice leading to the most efficient estimator. Finally, we propose
a method based on the approximate maximum entropy on the mean which enables to
compute an asymptotically optimal estimate of ty, taking into consideration both the
choice of the constraint function u and the instruments zi.
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3.1 Asymptotic efficiency

In order to choose between calibration estimators, we now define a notion of asymp-
totic efficiency for a given calibration constraint. Although a GC estimator is entirely
determined by a family fi, i ∈ s of functions, only the values zi = ∇fi(0), i ∈ s matter to
study the asymptotic behavior of the estimator, up to a negligible term of order oP(n

−1/2).
Let u : X → R

d be a given function, and consider:

tu = N−1
∑

i∈U

u(xi), t̂uπ = N−1
∑

i∈s

diu(xi).

We make the following assumptions.

A1: ξ := {(xi, yi), i ∈ U} are independent realizations of (X, Y ), with E(Y |X) 6= E(Y )
and E(|Y 3|) < ∞. Note respectively PX and PXY the distributions of X and (X, Y ).

A2: The sampling design p(.) does not depend on ξ.

A3: n and N/n tend to infinity. This will be denoted by (n, N/n) → ∞.

Furthermore, u is assumed to be measurable and such that E(‖u(X)3‖) < ∞. Given the
constraint function u and instruments zi, i ∈ s, we note t̂y(u) the resulting instrument
estimator, the dependency in zi is dropped for ease of notation. We now study the
asymptotic behavior of t̂y(u) with respect to the instruments zi, i ∈ s. Here, the weights
ŵ are adapted to the new calibration constraint N−1

∑

i∈U ŵiu(xi) = tu, yielding

t̂y(u) = N−1
∑

i∈U

ŵiyi = t̂HT
y + (tu − t̂uπ)tB̂u,

where B̂u =
[
∑

i∈s diziu(xi)
t
]−1 ∑

i∈s diyizi is assumed to be well defined and to converge
in probability towards a constant vector Bu as (n, N/n) → ∞.

In order to define a criterion of efficiency, we first need to construct an asymptotic
variance lower bound for instrument estimators. Note Eξ(ty − t̂y(u))2 the quadratic risk of
t̂y(u) under p, the population ξ being fixed, we aim to determine a lower bound for the limit
of nEξ(ty−t̂y(u))2 as (n, N/n) → ∞ (provided that the limit exists). The value of the limit
of course heavily relies on the asymptotic behavior of the sampling design. Without some
control on the Horvitz-Thompson weights πi, we can not derive consistency properties for
instrument estimators. Note πij =

∑

s: i,j∈s p(s) the joint inclusion probability of i and j
and let ∆ij = πijdidj − 1, we make the following technical assumptions.

A4:
∑

i∈U ∆2
ii = o(N4n−2),

∑

i∈U

∑

j 6=i ∆
2
ij = o(N3n−2).

A5: lim
n→∞

N/n→∞

nN−2
∑

i∈U ∆ii = − lim
n→∞

N/n→∞

nN−2
∑

i∈U

∑

j 6=i ∆ij = 1.

12



Assumption 4 is sufficient to ensure that the HT estimator of some variable a(xi, yi), i ∈ U
is

√
n-consistent provided that E(a(X, Y )2) < ∞. Furthermore, Assumption 5 ensures

the existence of its asymptotic variance. Note that these assumptions do not take into
consideration the population ξ, so that it makes them easy to check in practical cases.
For example, the assumptions are fulfilled for the uniform sampling design, that is when
p is such that every sample s ⊂ U has the same probability of being observed. In that
case, the Horvitz-Thompson weights are πi = n/N and πij = n(n − 1)/N(N − 1), ∀i 6= j,
yielding ∆ii = N/n− 1 and ∆ij = −(N −n)/n(N − 1). We can now state our first result.

Lemma 1: Suppose that Assumptions 1 to 4 hold. Then,

nEξ(ty − t̂y(u))2 ≥ var
(

Y − Bt
uu(X)

)

+ oP(1),

with equality if, and only if, Assumption 5 also holds.

We point out that an asymptotic lower bound for the variance can be defined for
instrument estimators as soon as Assumptions 1 to 4 hold. The lower bound (denoted by
V ∗(u)) is the minimum of var(Y − Btu(X)) for B ranging over R

d. It can be computed
explicitly if the matrix var(u(X)) is invertible:

V ∗(u) = var
(

Y − cov(Y, u(X))t [var(u(X))]−1 u(X)
)

.

We say that an estimator t̂y(u) is asymptotically efficient if its asymptotic variance is
V ∗(u). Note that this lower bound can not be reached if Assumption 5 is not true. We
now come to our second result.

Lemma 2: Suppose that Assumptions 1 to 5 hold. If var(u(X)) is invertible, t̂y(u) built
with instrument zi, i ∈ s is asymptotically efficient if, and only if,

lim
(n,N/n)→+∞

[
∑

i∈s diziu(xi)
t
]−1 ∑

i∈s diyizi = [var(u(X))]−1 cov(Y, u(X)). (6)

In an asymptotic concern and when the calibration function u is fixed, finding the
best instruments zi, i∈ s in order to estimate ty becomes a simple optimization problem

which depends only on the limit Bu of B̂u =
[
∑

i∈s diziu(xi)
t
]−1 ∑

i∈s diyizi. Asymptotic
efficiency is obtained by choosing instruments minimizing the asymptotic variance.
Hence, calculating Bu provides an efficient and easy way to prove the asymptotic
efficiency of an instrument estimator. Moreover, this criterion of asymptotic efficiency
can be extended to the set of all generalized calibration estimators, as a consequence
of Proposition 2.3. A GC estimator defined by the functions fi, i ∈ s is asymptotically
efficient if and only if the vectors zi = ∇fi(0), i∈s satisfy (6).
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Proof of Lemmas 1 and 2: First compute the quadratic risk of t̂y(u). Due to its non
linearity it is a difficult task. We rather consider its linear asymptotic expansion t̂y,lin(u) :=

t̂HT
y + (tu − t̂uπ)Bu where we recall that Bu is the limit (in probability) of B̂u. Note that

the random effect is due to the sampling design p, the population ξ is fixed. We obtain
after calculation the following expression for the quadratic risk

Eξ(ty − t̂y,lin(u))2 = N−2
∑

i,j∈U

∆ij (yi − Bt
uu(xi))(yj − Bt

uu(xj)).

Then, the results follow directly from Lemma 5.1, given in the Appendix.
We now see some examples of well-used estimators.

Asymptotic variance of some GC estimators

1. Optimal instruments.
Assume for sake of simplicity that u is real-valued. We denote by Bmin

u the value of
Bu achieving the minimal value of the quadratic risk:

Bmin
u =

∑

i,j∈U ∆ij u(xj)yi
∑

i,j∈U ∆ij u(xi)u(xj)
=

∑

i∈U yi(
∑

j∈U ∆ij u(xj))
∑

i∈U u(xi)(
∑

j∈U ∆ij u(xj))
.

The corresponding instruments are zi =
∑

j∈U ∆ij u(xj), ∀i. By Lemma 5.1, we see

that Bmin
u converges toward cov(Y, u(X))/var(u(X)) as (n, N/n) → ∞, Equation

(6) is thus true in that case. If the sampling design is uniform, we obtain after

calculation zi = N(N−n)
n(N−1)

(u(xi) − tu), and we have:

Bmin
u =

∑

i∈U yizi
∑

i∈U ziu(xi)
=

cove(y, u(x))

vare(u(x))

where cove and vare denote the empirical covariance and variance for the pop-
ulation ξ given by cove(y, u(x)) = N−1

∑

i∈U yi(u(xi) − tu) and vare(u(x)) =
cove(u(x), u(x)). Finally,

nEξ(ty − t̂y,lin)
2 = (1 − nN−1) vare

(

y − cove(y, u(x))

vare(u(x))
u(x)

)

+ o(1).

We have lim(n,N/n)→∞ nEξ(ty − t̂y,lin)
2 = V ∗(u), as expected. This estimator is thus

asymptotically efficient. Although, instruments used for its computation depend on
the whole population (xi)i∈U and therefore, they may be computationally expensive.

2. MEM estimators.
Take the instruments zi = qiu(xi), ∀i ∈ s for (qi)i∈s a positive sequence. As seen in
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Section 2.2, these instruments describe the asymptotic behavior of MEM estimators
built using prior distributions νi with respective variances πiqi. Even though this
choice is often used in practical cases, we see that it does not necessarily lead to an
asymptotically efficient estimator t̂y(u). Indeed, under regularity conditions on qi

which ensure the convergence of B̂u (basically, the assumptions of Proposition 3.1,
which are true for instance if we take qi = 1), we have:

B̂u =
[
∑

i∈s diqiu(xi)u(xi)
t
]−1 ∑

i∈s diqiyiu(xi)
P−→ [E(u(X)u(X)t)]

−1
E(Y u(X)).

These instruments satisfy Equation (6) only if

[

E(u(X)u(X)t)
]−1

E(Y u(X)) = [var(u(X)]−1 cov(Y, u(X)).

This is true when u(.) = E(Y |X = .) or for any u such that E(u(X)) = 0, MEM
estimators are thus asymptotically efficient in these cases. When this condition is
not fulfilled, an easy method to compute an efficient estimator consists in adding
the constant variable 1 in the calibration constraint. We then consider the MEM
estimator t̂y(v) where v = (1, u)t : X → R

d+1, the calibrated weights now satisfy
the constraints

N−1
∑

i∈s

wiu(xi) = tu, N−1
∑

i∈s

wi = 1.

Here, the matrix var(v(X)) is not invertible although we see after a direct calculation
that V ∗(v) = V ∗(u). So, the auxiliary variable is modified but the asymptotic lower
bound is unchanged. Furthermore, the MEM estimator t̂y(v) obtained in this way
is asymptotically efficient, as it is proved in the following proposition.

Proposition 3.1 Suppose that Assumptions 1 to 5 hold. Let (νi)i∈s be a family of prob-
ability measures with mean 1 and respective variance qiπi with (qi)i∈s a given positive se-
quence. Assume that there exists κ = κ(n, N) ∈ R such that κ

∑

i∈s qidi is bounded away
from zero and κ2

∑

i∈s(qidi)
2 → 0 as (n, N/n) → +∞. Let v = (1, v1, ..., vd) : X → R

d+1

be a map, where 1, v1, ..., vd are linearly independent. Then, the MEM estimator built
with prior distribution ν = ⊗i∈sνi and calibration constraint N−1

∑

i∈s wiv(xi) = tv is
asymptotically efficient.

3.2 Approximate Maximum Entropy on the Mean

We now turn on the optimal choice of the auxiliary variable u(x) defining the cali-
bration constraint. For a given constraint function u, we implicitly take asymptotically
optimal instruments zi, i∈s, that is, instruments such that the resulting estimator t̂y(u)
has asymptotic variance V ∗(u). Hence, minimizing the asymptotic variance of GC esti-
mators with respect to u and (zi)i∈s reduces to minimizing V ∗(u) with respect to u.
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In an asymptotic framework, u can be taken with values in R without loss of generality,
as discussed in Section 2.4. So, for a real valued constraint function u, V ∗(u) is defined
as:

V ∗(u) = inf
B∈R

var(Y − Bu(X)) = var

(

Y − cov(Y, u(X))

var(u(X))
u(X)

)

.

A function v for which V ∗(v) is minimal over the set σX of all real X-measurable functions
has the form v(.) = αE(Y |X = .) + β for some (α, β) ∈ R

∗ × R. Hence, the conditional
expectation Φ(x) = E(Y |X = x) (or any bijective affine transformation of it) turns out
to be the best choice for the auxiliary variable in term of asymptotic efficiency. In that
case, the asymptotic lower bound is given by:

V ∗ = min
u∈ σX

V ∗(u) = E(Y − E(Y |X))2.

For practical applications, this result is useless since the conditional expectation
Φ depends on the unknown distribution of (X, Y ). If Φ were known, the problem
of estimating ty would be easier since the observed value tΦ = N−1

∑

i∈U Φ(xi) is a√
N -consistent estimator of ty and is therefore much more efficient than any calibrated

estimator. When the conditional expectation Φ is unknown, a natural solution is to
replace Φ by an estimate Φm, and then plug it into the calibration constraint. Under
regularity conditions that will be made precise later, we show that this approach enables
to compute an asymptotically optimal estimator of ty, in the sense that its asymptotic
variance is equal to the lower bound V ∗ defined above.

For all measurable function u, we now denote by t̂y(u) the MEM estimator of ty ob-
tained with prior distributions νi ∼ N (1, πi) and auxiliary variables u(x) and 1. We recall
that t̂y(u) is

√
n-consistent with asymptotic variance V ∗(u), as shown in Proposition 3.1.

Moreover, we know that the asymptotic variance of MEM estimators t̂y(u) is minimal for
the unknown value u = Φ. The AMEM procedure consists in replacing Φ by its approx-
imation Φm in the calibration constraint. The so-obtained AMEM estimator t̂y(Φm) is
thus quite easily computable but still verifies interesting convergence properties as shown
in the next proposition.

Proposition 3.2 Suppose that Assumptions 1 to 5 hold. Let (Φm)m∈N be a sequence of
functions independent with ξ and such that

E(Φ(X) − Φm(X))2 = O(ϕ−1
m ) with lim

m→∞
ϕm = +∞.

Then, the AMEM estimator t̂y(Φm) is asymptotically optimal among all GC estimators
in the sense that nEξ(ty − t̂y(Φm))2 converges toward V ∗ as n, N/n, m → ∞.
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When applied to this context, approximate maximum entropy on the mean enables to
increase the efficiency of calibration estimators when an additional information is avail-
able, namely, an external estimate of the conditional expectation function Φ is observed.
Nevertheless, in our model, it is possible to obtain similar properties under weaker con-
ditions.

Corollary 3.3 Suppose that Assumptions 1 to 5 hold. Let (Φm)m∈N be a sequence of
functions satisfying

i) nEξ(t̂Φπ− tΦ − (t̂Φmπ − tΦm))2 P−→
(n,N/n,m)→∞

0 and ii) B̂Φm

P−→
(n,N/n,m)→∞

1.

Then, the estimator t̂y(Φm) is asymptotically efficient.

This corollary does not rule out that the functions Φm are estimated using the data,
which was not the case in Proposition 3.2. Hence, it becomes possible to compute an
asymptotically efficient estimator of ty without external estimator Φm of Φ. A data
driven estimator Φn provides as well an asymptotically efficient estimator of ty, as soon
as the two conditions of Corollary 3.3 are fulfilled.

Now consider an example of AMEM estimator for which the computation is particu-
larly simple, and that provides interesting interpretations. We assume for simplicity that
the sampling design is uniform, here t̂HT

y is simply equal to N−1
∑

i∈s yi. Let (φ1, φ2, ...)
be a linearly independent total family of L

2(PX). That is, for all measurable function
f : R

k → R such that E(f(X)2) < ∞, there exists a unique sequence (αn)n∈N such that

f(X) = E(f(X)) +
∑

i∈N

αi[φ
i(X) − E(φi(X))].

For all m, the projection Φm of Φ on vect {1, φ1, ..., φm} is given by

Φm(.) = E(Y ) + cov(Y, φm(X))t [var(φm(X))]−1 [φm(.) − E(φm(X))]

where φm = (φ1, ..., φm)t. When n is large enough in comparison to m, we can define a
natural projection estimator Φm,n of Φ as

Φm,n(.) = t̂HT
y + B̂t

φm

[

φm(.) − t̂φmπ

]

where B̂φm=
[
∑

i∈s yi(φm(xi)− t̂φmπ)
]t[∑

i∈s φm(xi)(φm(xi)− t̂φmπ)t
]−1

.

We now consider the AMEM estimator t̂(Φm,n):

t̂y(Φm,n) = t̂HT
y +

∑

i∈s yi(Φm,n(xi) − t̂Φm,nπ)
∑

i∈s Φm,n(xi)(Φm,n(xi) − t̂Φm,nπ)
(tΦm,n − t̂Φm,nπ)
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which, after simplification, gives

t̂y(Φm,n) = t̂HT
y + B̂t

φm
(tφm − t̂φmπ) = tΦm,n .

The objective is to find a path (m(n), n)n∈N for which the estimator Φn := Φm(n),n satisfies
the conditions of Corollary 3.3. We know that, for all m:

nEξ(t̂Φπ − tΦ − (t̂Φm,nπ − tΦm,n))2

= nEξ(t̂Φπ − tΦ + (tφm − t̂φmπ)tB̂φm)2

= nN−2
∑

i,j∈U ∆ij(Φ(xi) − Bt
φm

φm(xi))(Φ(xj) − Bt
φm

φm(xj)) + oP(1)

where Bφm = lim(n,N/n)→∞ B̂φm = cov(Y, φm(X))t [var(φm(X))]−1. By Lemma 5.1, we get:

∀m, nEξ(t̂Φπ − tΦ − (t̂Φm,nπ − tΦm,n))2 P−→
(n,N/n)→∞

var(Φ(X) − Φm(X)).

Since the convergence is true for all m, we can extract a sequence of integers (m(n))n∈N

such that Φn := Φm(n),n undergoes the first condition of Corollary 3.3:

nEξ(t̂Φπ − tΦ − (t̂Φnπ − tΦn))2 P−→
(n,N/n)→∞

0.

The second condition of Corollary 3.3 is verified for such a sequence (Φn)n∈N since for all
n, B̂Φn = 1. So finally we conclude that the AMEM estimator t̂(Φn) is asymptotically
optimal.

Remark : The AMEM estimator is obtained by plugging an estimator Φn of Φ in the
calibration constraint. Note that t̂y(Φn) is the MEM estimator we obtain with constraint

function (1, φt
m(n))

t. Indeed, t̂y(Φn) = t̂HT
y + B̂t

φm(n)
(tφm(n)

− t̂φm(n)π). This is a consequence

of the dimension reduction property relative to instrument estimators discussed in Section
2.4, Φn is an affine approximation of y by the components of φm(n)(x). By increasing
properly the number of constraints, the projection will converge toward the conditional
expectation Φ(x) yielding an efficient estimator of ty.
We can also rewrite the estimator as t̂y(Φn) = tΦn . In these settings, we can interpret the
AMEM procedure as building an estimator of tΦ instead of estimating ty. Because Φ(x) is
not a function of y, it can be estimated by the empirical mean over the whole population
U . An estimator of tΦ will asymptotically yield an estimate of ty as a consequence of the
relation E(E(Y |X)) = E(Y ).

4 Numerical simulations

We shall now give some numerical applications of our results. We made a simulation
of a population U of size N = 100000, where X is a uniform variable on the interval
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[1; 2], and we take Y = exp(X) + ε with ε ∼ N (0, σ2) an independent noise. So, the
conditional expectation Φ mentioned in the last section is simply the function exp(.).
The sampling design is uniform and the sample s is taken of size 121. We consider
six instruments estimators, t̂1 to t̂6, of which we make 50 realizations observed from 50
different samples drawn from the fixed population U , and we give for i = 1, ..., 6 an
estimator Vi of the variance calculated from the 50 observations. The first estimator
considered t̂1 is the Horvitz-Thompson estimator, and the last one t̂6 is the AMEM
estimator taken as example in Section 3.2, where we took the family {X i : i ∈ N} for
the base of L

2(PX), and we set the number m of constraint functions to m = 6. The
construction of the estimators are detailed in the following table. The results are given
for two different values of σ2, namely σ2 = 1 and σ2 = 0.1.

1. ε ∼ N (0, 1):

auxiliary variable instrument estimated variance

t̂1 (H-T estimator) none none V 1 = 2.07 × 10−2

t̂2 x (xi)i∈s V 2 = 7.8 × 10−3

t̂3 x = (1, x) (xi)i∈s V 3 = 7.6 × 10−3

t̂4 exp(x) (exp(xi))i∈s V 4 = 7.2 × 10−3

t̂5 x = (1, exp(x)) (xi)i∈s V 5 = 6.9 × 10−3

t̂6 (AMEM estimator) x = (1, x, x2, x3, x4, x5, x6) (xi)i∈s V 6 = 7.2 × 10−3

We observe that the calibrated estimators appear to be better than the Horvitz-Thompson
estimator. The choice of the auxiliary variable or the instrument does not seem to have
a significant effect on the efficiency.

2. ε ∼ N (0, 0.1):

auxiliary variable instrument estimated variance

t̂1 (H-T estimator) none none V 1 = 1.93 × 10−2

t̂2 x (xi)i∈s V 2 = 3.1 × 10−3

t̂3 x = (1, x) (xi)i∈s V 3 = 8.7 × 10−4

t̂4 exp(x) (exp(xi))i∈s V 4 = 6.8 × 10−4

t̂5 x = (1, exp(x)) (xi)i∈s V 5 = 6.7 × 10−4

t̂6 (AMEM estimator) x = (1, x, x2, x3, x4, x5, x6) (xi)i∈s V 6 = 7.0 × 10−4

Here, X explains almost entirely Y since the variance of ε is low (σ2 = 0.1). In that case,
the choice of the auxiliary variable and instrument appears to play a more important role.
We notice a significant difference between t̂2 and t̂3 which points out the importance of the
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instrument. More specifically, we see that the instrument (xi−t̂HT
x )i∈s (which is equivalent

to adding the constant 1 as an auxiliary variable) provides a better estimator than xi.
Furthermore, also note that using the auxiliary variable Φ(x) = exp(x) provides the best
estimator in term of minimal variance as we see that V 4 and V 5 are the smallest estimated
variances. These estimators can be viewed as oracles, since the auxiliary variable used in
that case is the optimal choice, but is in general unknown (see Section 3.2). The difference
between t̂4 and t̂5 is not significant, as expected, according to the second example of
Section 3.1. Finally, the AMEM estimator has its variance lying between that of the
standard calibrated estimator t̂3 and that of the oracles, which conveys that it is more
efficient than t̂3.

5 Appendix

5.1 Technical lemma

Lemma 5.1 Let F be the set of all functions f : (Rk × R) → R such that E(|f(X, Y )|3)
is finite (we set fi = f(xi, yi) for all i ∈ U). Under Assumptions 1, 2 and 4,

∀f ∈ F , nN−2
∑

i,j∈U

∆ij fifj ≥ var(f(X, Y )) + oP(1)

as (n, N/n) → ∞, with equality if and only if Assumption 5 also holds. In that case, the
quantity nN−2

∑

i,j∈U ∆ij figj converges in probability toward cov(f(X, Y ), g(X, Y )) for
all f, g ∈ F as (n, N/n) → ∞.

Proof of Lemma 5.1:
Assumptions 1, 2 and 4 yield for all f ∈ F :

nN−2
∑

i,j∈U ∆ij fifj = nN−2
∑

i∈U ∆ii f 2
i + nN−2

∑

i6=j ∆ij fifj

=
(

nN−2
∑

i∈U ∆ii

)

E(f(X, Y )2) +
(

nN−2
∑

i6=j ∆ij

)

E(f(X, Y ))2 + oP(1)

Let Pn(U) denote the set of all subsample s of U with n elements. By Jensen inequality,
we get

∑

i,j∈U ∆ij =
∑

s∈Pn(U)

(
∑

i∈s di

)2
p(s) − N2 ≥

[

∑

s∈Pn(U)

(
∑

i∈s di

)

p(s)
]2

− N2 ≥ 0

which implies that
∑

i6=j ∆ij ≥ −∑

i∈U ∆ii. Thus:

nN−2
∑

i,j∈U ∆ij fifj ≥
(

nN−2
∑

i∈U ∆ii

)

var(f(X, Y )) + oP(1).

Since
∑

i∈U πi = n, we know that nN−2
∑

i∈U ∆ii ≥ 1 − nN−1 by convexity of x 7→ 1/x
on R

∗
+. Hence

nN−2
∑

i,j∈U ∆ij fifj ≥ var(f(X, Y )) + oP(1).
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as (n, N/n) → ∞. Furthermore, it is not an equality for all f ∈ F if Assumption 5 is not
true. We show the second part of the lemma using the same pattern as in the beginning
of the proof applied to f and g. In particular, it holds when f = g.

5.2 Proofs

Proof of Theorem 2.1:
For all w ∈ R

n, let fw : R
n → R+ be the unique minimizer of the functional f 7→ K(fν, ν)

on the set Fw =
{

f :
∫

Rn(τ − πw)f(τ)dν(τ) = 0
}

. We have:

fw = argmin
f∈Fw

∫

Rn f(log(f) − 1)dν.

We calculate the Lagrangian L(λ, f) associated to the problem:

L(λ, f) =
∫

Rn [f(τ) log(f(τ)) − f(τ)]dν(τ) − λt
∫

Rn(τ − πw)f(τ)dν(τ)

where λ ∈ R
n is the Lagrange multiplier. The first order conditions are:

∀τ ∈ R
n, log(f(τ)) = λt(τ − πw).

Hence, ∀τ, fw(τ) = eλt
w(τ−πw) where λw verifies:

∫

Rn(τ − πw)eλt(τ−πw)dν(τ) = 0 ⇐⇒ λw = argmin
λ∈Rn

∫

Rn eλt(τ−πw)dν(τ)

Let S =
{

(wi)i∈s : N−1
∑

i∈s xiwi = tx
}

, we notice that

ŵ = Eν∗(W ) = argmin
w∈S

{

minf∈Fw

∫

Rn f(log(f) − 1)dν
}

= argmin
w∈S

{∫

Rn fw(log(fw) − 1)dν
}

= argmin
w∈S

{

λt
w

∫

Rn(τ − πw)eλt
w(τ−πw)dν(τ) −

∫

Rn eλt
w(τ−πw)dν(τ)

}

= argmin
w∈S

{

−minλ∈Rn e−λtπw
∫

Rn eλtτdν(τ)
}

.

by definition of λw. Recall that ν = ⊗i∈sνi. Since the function t 7→ − log t is decreasing,
we have that

min
λ∈Rn

{

e−λtπw
∫

Rn eλtτdν(τ)
}

= exp− sup
λ∈Rn

{
∑

i∈s[λiπiwi − log
∫

R
eλiτidνi(τi)]

}

The supremum being taken for λ ∈ R
n, we see that

sup
λ∈Rn

{
∑

i∈s[λiπiwi − log
∫

R
eλiτidνi(τi)]

}

=
∑

i∈s sup
λi∈R

{

λiπiwi − log
∫

R
eλiτidνi(τi)

}

Finally we obtain:

ŵ = argmin
w∈S

− exp
(

−∑

i∈s Λ∗
νi

(πiwi)
)

= argmin
w∈S

∑

i∈s Λ∗
νi

(πiwi).
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Proof of Proposition 2.2:
It is a classic convex optimization problem. Let L be the Lagrangian associated to the
problem:

L(λ, w) =
∑

i∈s Λ∗
νi
(wiπi) − λt

(
∑

i∈s wixi − Ntx
)

where λ ∈ R
k is the Lagrange multiplier. The solutions to the first order conditions satisfy

for all i ∈ s,
wi = di(Λ

∗
νi

′)−1(λtdixi),

where we recall that the functions Λ∗
νi

are assumed to be strictly convex, so that (Λ∗
νi

′)−1

exists for all i, and is equal to Λ′
νi

. Now it suffices to apply the solutions of the first order

conditions to the constraint to obtain an expression of the solution λ̂:

N−1 ∑

i∈s diΛ
′
νi

(λ̂tdixi)xi − tx = 0 ⇐⇒ λ̂ = argmin
λ∈Rk

∑

i∈s Λνi
(λtdixi) − λttx.

The equivalence is justified by the fact that Λνi
is strictly convex, and therefore, so is

λ 7→ ∑

i∈s Λνi
(λtdixi)− λttx. For that reason, λ̂ is uniquely defined. We finally obtain an

expression of the calibrated weights

∀i ∈ s, ŵi = diΛ
′
νi
(λ̂tdixi).

Proof of Proposition 2.3:
Let F : λ 7→ N−1

∑

i∈s difi(λ)xi, and G : λ 7→ N−1
∑

i∈s digi(λ)xi. We call respectively λ̂

and λ̃ the solutions to F (λ) = tx and G(λ) = tx. We have

F (λ̂) = F (0) + Xnλ̂ + o(‖λ̂‖)
and then (tx − t̂HT

x ) = Xnλ̂ + o(‖λ̂‖). By assumption, Xn is invertible for large values of
n since it converges towards an invertible matrix X. Thus, whenever t̂HT

x is close enough
to tx, there exists λ0 in a neighborhood of 0 such that F (λ0) = tx. By uniqueness of the
solution, we conclude that λ0 = λ̂. Hence, for large values of n,

λ̂ = X−1
n (tx − t̂HT

x ) + oP(n
−1/2).

A similar reasoning for λ̃ yields ‖λ̃ − λ̂‖ = oP(n
−1/2). Thus, λ̂ and λ̃ converge toward 0

and by Taylor formula:

fi(λ̂) = 1 + zt
i λ̂ + oP(n

−1/2) = 1 + zt
i λ̃ + oP(n

−1/2) = gi(λ̃) + oP(n
−1/2).

It follows that t̂y and t̃y are asymptotically equivalent.
We know that MEM estimation reduces to taking fi(.) = Λ′

νi
(dix

t
i.) in a GC procedure.

Hence, in that case, ∇fi(0) = diΛ
′′
νi

(0)xi. Since the variance of a probability measure
νi is given by Λ′′

νi
(0), two MEM estimators with prior distributions having the same

respective variances are asymptotically equivalent. Furthermore, a Gaussian prior νi ∼
N (1, qiπi) has a log-Laplace transform Λνi

: t 7→ πiqit
2/2+ t which corresponds to fi(λ) =

Λ′
νi

(dix
t
iλ) = 1 + qix

t
iλ. The resulting MEM estimator is thus the instrument estimator

obtained with instruments zi = qixi, i ∈ s.
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Proof of Proposition 3.1:
We set u = (v1, ..., vd), the matrix var(u(X)) is invertible. By assumption on (qi)i∈s, we
have

κ
∑

i∈s diqiyiv(xi) = (κ
∑

i∈s diqi)E(Y v(X)) + κ oP(1)

and
κ

∑

i∈s diqiv(xi)v(xi)
t = (κ

∑

i∈s diqi)E(v(X)v(X)t) + κ oP(1).

Since (κ
∑

i∈s diqi) is bounded away from zero, it follows that

B̂v =
[
∑

i∈s diqiv(xi)v(xi)
t
]−1 ∑

i∈s diqiyiv(xi)
P−→ [E(v(X)v(X)t)]

−1
E(Y v(X)) = Bv.

By simple algebra, we show the functional equality Bt
vv(.) = Bt

uu(.) + K, where K is
constant, and therefore does not modify the value of the variance. More precisely, the
asymptotic variance of t̂y(v) is

var(Y − cov(Y, u(X))t [var(u(X)]−1 u(X) + K) = V ∗(u),

which proves that the MEM estimator t̂y(v) is asymptotically efficient.

Proof of Proposition 3.2:
We decompose the AMEM estimator as follow

t̂y(Φm) = t̂HT
y + (tΦ − t̂Φπ) + (t̂Φπ− tΦ − (t̂Φmπ − tΦm)) + (B̂Φm− 1)(tΦm− t̂Φmπ).

We have by assumption

nEξ(t̂Φπ− tΦ − (t̂Φmπ − tΦm))2 = OP(ϕ
−1
m ) and (B̂Φm− 1) = OP(ϕ

−1/2
m )

as n, N/n → ∞ and uniformly for all m (see the proof of Lemma 1 in [12]). Hence, the
terms (t̂Φπ− tΦ − (t̂Φmπ − tΦm)) and (B̂Φm− 1)(tΦm− t̂Φmπ) are asymptotically negligible
in comparison to (tΦ − t̂Φπ) as n, N/n, m → ∞. We conclude using Result 2 and Lemma
5.1.

Proof of Corollary 3.3:
All conditions are fulfilled so that the proof of Proposition 3.2 remains valid in that case.
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