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Abstract. The distance of galactic Cepheids can be derived through the interferometric Baade-Wesselink method. The interfer-
ometric measurements lead to angular diameter estimations over the whole pulsation period, while the stellar radius variations
can be deduced from the integration of the pulsation velocity. The latter is linked to the observational velocity deduced from
line profiles by the so-called projection factor p. The knowledge of p is currently an important limiting factor for this method
of distance determination. A self-consistent and time-dependent model of the star δ Cep is computed in order to study the
dynamical structure of its atmosphere together with the induced line profile. Different kinds of radial and pulsation velocities
are then derived. In particular, we compile a suitable average value for the projection factor related to different observational
techniques, such as spectrometry, and spectral-line or wide-band interferometry. We show that the impact on the average pro-
jection factor and consequently on the final distance deduced from this method is of the order of 6%. We also study the impact
of a constant or variable p-factor on the Cepheid distance determination. We conclude on this last point that if the average value
of the projection factor is correct, then the influence of the time dependence is not significant as the error in the final distance is
of the order of 0.2%.
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1. Introduction

The period–luminosity (P–L) relation of the Cepheids is the
basis of the extragalactic distance scale, but its calibration is
still uncertain at a ∆M = ±0.10 mag level. In order to cal-
ibrate this relation, two procedures have been recently con-
sidered, both based on the Baade-Wesselink method (hereafter
BW), with distances deduced from the ratio of radius to angular
variations.

The first method is the near-infrared surface brightness
method introduced by Welch (1994), and later by Fouqué &
Gieren (1997). The angular diameter variation is photometri-
cally inferred from calibrations of the V light and (V −K) color
curves, and compared to the radius variation obtained spectro-
scopically. In the second method, called the interferometric ver-
sion of the Baade-Wesselink method (hereafter IBW), the an-
gular diameter variation is directly measured through the latest
generation of long-baseline interferometers in the visible and
in the IR, and then again compared to radius variations in order
to derive distances (Kervella et al. 2004a; Lane et al. 2002) and
then calibrate the P–L relation (Kervella et al. 2004b).

Both methods are in perfect agreement on the angular di-
ameter, with a discrepancy of less than 1.5% (Kervella et al.
2004c). However, a difficulty remains in the derivation of the
radius variation. The radius displacement is obtained through
the integration of the pulsation velocity curve, hereafter called
vpuls. But when one measures radial velocities from line pro-
files, hereafter called vrad, they include the integration in two
directions over the surface, through limb-darkening, and over
the radius, through velocity gradients in line forming regions.
Moreover, both the limb-darkening and velocity gradients de-
pend on the pulsation phase, as already pointed out by Marengo
et al. (2003). Therefore, the knowledge of the projection factor,
defined as vpuls = p ∗ vrad, is of crucial importance for deriv-
ing a correct estimate of the radius variation curves from the
integration of the pulsation velocity curve.

1.1. Previous work

The problem of the projection factor has been first stud-
ied by Eddington (1926), Carroll (1928) and Getting (1935).
These authors consider both effects of limb-darkening and
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atmospheric expansion at constant velocity on the line profile.
These studies led to a p-value of 24

17 = 1.41, which was used for
several decades in the Baade-Wesselink method.

Later, Van Hoof & Deurinck (1952) showed that when the
natural width of the line is much smaller than the shift induced
by the Doppler effect, the resulting profile must be distorted,
and the p-factor can be measured from the convolution of the
static line profile with this distortion function. Parsons (1972),
using a model atmosphere with uniform expansion, numeri-
cally determined p-values between 1.31 and 1.34 depending
on the width of the line.

Karp (1973, 1975) introduced a velocity gradient within the
line forming regions and computed the emerging flux for both
weak and strong lines. Weak lines, appear asymmetrical simi-
lar to the ones obtained by Van Hoof & Deurinck (1952), while
the distortion for the stronger lines is mainly due to the veloc-
ity gradient within the atmosphere. Albrow & Cottrell (1994)
determine values for p larger by 10% than those obtained by
Parsons (1972), a difference interpreted as due to the use of a
different limb-darkening law. Indeed, the p-factor depends on
many parameters, such as the wavelength (p is larger in the in-
frared, Sasselov & Lester 1990), or the effective temperature of
the star (Hindsley & Bell 1986; Montañés Rodriguez & Jeffery
2001).

From an observational point of view, Burki et al. (1982)
determined p = 1.36 from the measure of the centroid of the
correlation profile, a value which has been widely used in spec-
troscopy.

Finally, since p is determined both through geometrical ef-
fects and atmospheric dynamics, which change during the pul-
sation cycle, it should itself vary with the pulsation phase. In
particular, Sabbey et al. (1995) showed that this effect on p can
increase the BW radius by about 6%.

1.2. This work

We apply for δ Cep a nonlinear self-consistent hydrodynamical
model (Fokin 1990). In addition, radiative transfer is consid-
ered in the outer layers to produce a realistic atmosphere model.
The derived quantities have been found to be in good agree-
ment with observations for different classes of pulsators such as
RR Lyrae (Fokin & Gillet 1997), RV Tauri (Fokin 2001), post-
AGB (Jeannin et al. 1997), BL Herculis (Fokin & Gillet 1994)
and more recently βCephei stars (Fokin et al. 2004). In par-
ticular, this model has already been used in the case of δ Cep
(Fokin et al. 1996). Our model has some limitations (no con-
vection, no adaptive grid), but is able to reproduce the main
observational characteristics such as the presence of shocks or
the correct shape and amplitude of the velocity curve. Thus we
are confident that our model is valid for our study, and that the
results are consistent.

The influence of the projection factor on the distance deter-
mination of Cepheids can be safely studied in the context of the
IBW method. The main objectives of this paper are, firstly, to
have an idea of the best value of the p-factor for interferometric
observations, and to compare it with the generally used value of
p = 1.36, and secondly, to quantify the impact of a constant or

time-dependent projection factor on the distance determination
of the star.

The paper is organized as follows. In Sect. 2 we describe
our model of the prototype of the Cepheids, δCep, constrained
from observational parameters referenced in the literature. In
Sect. 3, we define the radial and pulsation velocities consid-
ered in the following. Section 4 deals essentially with the study
of the projection factor and Sect. 5 concerns the impact of the
choice of a time-varying p-factor on the distance determina-
tion. Finally, Sect. 6 presents the conclusions of this work.

2. The model of δCep

The model needs only 4 input parameters: the luminosity (L),
the effective temperature (Teff), the mass (M) and the chemical
composition (X and Y). The model is run until it reaches its
limit cycle (for δ Cep this is the fundamental mode). Radiative
transfer in the line is then solved in the frame of this hydro-
dynamical model to provide line profiles (Fokin 1991). For the
present study, which is a first step, we have arbitrarily consid-
ered the metallic line Fe I 6003.012 Å. Therefore, we can com-
pare the velocity in a given mass zone (vpuls) with the velocity
measured from the synthetic line profile (vrad). The latter was
determined by two methods: measuring the velocity associated
with the pixel at the minimum of the line profile (hereafter
called profile minimum), and the Gaussian method in which
we fit the whole profile with a Gaussian function. Note that
theoretical variations follow the usual convention in which the
pulsation phase φ = 0 corresponds to maximum luminosity.

Since the main stellar quantities of δCep (HD 213306) are
still uncertain, we tried several sets of luminosity L, effective
temperature Teff and mass M in order to get suitable obser-
vational quantities such as the pulsation period, the average
radius of the star, bolometric and radial velocity curves, and
line profiles. This leads to the following set for the 106-zone
model: M = 4.8 M�, L = 1995 L�, Teff = 5877 K. This latter
is in agreement with the one measured by Fernley et al. (1989).
Mass and luminosity are related through the M–L relation of
Chiosi et al. (1993):

log
L
L�
= −0.015 + 3.14Y − 10.0Z + 3.502 log

M
M�
+ 0.25

where Y = 0.28 and Z = 0.02 correspond to typical Pop. I
chemical composition. The inner boundary has been fixed at
about T = 1.0×106 K, corresponding to about 16% of the pho-
tospheric radius, so the model envelope with the atmosphere
contains about 7% of the stellar mass. The atmosphere itself
contains about 1.0×10−7 of the total stellar mass. In the hydro-
dynamical model we used the OPAL92 opacity table. Note that
in the following line transfer calculation for each chosen phase
we used the snapshots of the pulsating atmosphere given by the
nonlinear model. In addition, we used the relevant frequency-
dependent atomic opacities both in the continuum and in the
line.

We started the hydrodynamical calculations with an ini-
tial velocity profile with a value of 25 km s−1 at the sur-
face. At the limit cycle the pulsation period is 5.419 days,
very close (1%) to the observational value deduced by
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Fig. 1. Difference between the theoretical radial velocity curves mea-
sured by the profile minimum method (vrad|min) and the Gaussian fitting
method (vrad|gauss). The small difference induces a bias in the determi-
nation of the p-factor. The horizontal line is the zero velocity in the
stellar rest frame.

Szabados et al. (1980). Bolometric and radial velocity ampli-
tudes are respectively ∆mbol = 0.85 mag and ∆V = 35 km s−1.
The relative radius amplitude at the surface is ∆R/R = 10%.
The mean photospheric radius is about R = 43.5 R�, in agree-
ment with interferometric and parallax measurements obtained
by Mourard et al. (1997), Nordgren et al. (2000) and Benedict
et al. (2002).

We then generated a series of snapshots of the atmospheric
structure (about 60 per pulsation period) and after the line
profile computation we deduced the radial velocity variations.
For all phases we assume the same microturbulence velocity
of 1 km s−1, and we neglect the rotation (v sin i ∼ 5 km s−1,
Breitfellner & Gillet 1993).

3. Velocities

To study the projection factor, we now define different radial
and pulsational velocities.

3.1. The radial velocity

Theoretical line profiles deduced from the δCep model are
used to determine apparent radial velocities considering ei-
ther the minimum of the profile or the Gaussian fit. The maxi-
mum velocity difference between these two methods reaches
about 0.7 km s−1 during extrema phases (φ = 0.7−0.8 and
φ = 0.9−0.1), see Fig. 1. We will show later that such a differ-
ence is not negligible for the projection factor determination.

3.2. The pulsation velocity

The projection factor may have different definitions depending
on the pulsating layer considered. From a spectroscopic point
of view, one considers the gas velocity associated to the opti-
cal barycenter of the line forming region. However, the instru-
ments, spectrograph and interferometer, do not probe the same

layers of the star. For instance, with the IBW method, the layers
that are seen by the interferometer depend on the spectral reso-
lution. Indeed, a wide spectral band will rather probe the con-
tinuum (photospheric) region. Conversely, in a specific line, the
visibility function is the Fourier transform of the image of the
star in the considered line. Thus different cases, corresponding
to each type of observation, have to be considered.

Firstly, for spectroscopic observations the gas velocity is
that of the line-forming layers. However this region may rep-
resent an appreciable fraction of the height of the atmosphere.
Sabbey et al. (1995) determined the layer corresponding to the
optical center of gravity of the line from contribution functions.
In our case, we consider the standard definition in which the
line core is formed at an optical depth of τ = 2/3. Hence, we
use the definition:

vpuls(s) = v

(
τl =

2
3

)
(1)

where τl is the optical depth at the center of the line and “(s)”
means “Spectroscopy”.

Secondly, for interferometric observations in one particular
line, it is better to consider the velocity of optical layers cor-
responding to an optical depth of τl = 2/3. It is not the gas
velocity that is considered here but the velocity of the optical
layer deduced from the pulsation model, defined by:

vpuls(il) =
∂R(τl = 2/3)

∂φ
(2)

where “(il)” is for “Interferometry in one Line”.
Similarly, for interferometric observations in a wide band,

the most appropriate pulsation velocity is the one associated to
the photospheric layer that corresponds, by definition, to τ =
2/3 in the continuum:

vpuls(ic) =
∂R(τc = 2/3)

∂φ
(3)

where “(ic)” is for “Interferometry in the Continuum”.
Note that we consider here the continuum next to the line.

Figure 2 represents the different pulsation velocities defined
above. These three pulsation velocity curves are different by
a maximum of 5% during the extrema phases, because the at-
mosphere is not co-moving. The asymmetry in the profile is
maximum during the phases of extrema of the radial velocity
curve, thus there should be a large velocity gradient between
the different layers.

4. The projection factor

4.1. Combination of radial and pulsation velocities

It is now possible to combine the radial velocities (two cases)
with the pulsation velocities (three cases) to derive the projec-
tion factor. Figures 3a–c shows the three pulsation velocities
together with the radial velocity using the Gaussian method.
Note that the estimators of radial and pulsation velocities, in (s)
and (il) cases, are supposed to probe the same part of the star,
the line forming region. In other words the two curves should
cancel at the same phase respectively in Figs. 3a and 3b, which
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Fig. 2. Pulsation velocities vs. phase. The dashed curve shows the ve-
locity of the photospheric layer (τ = 2/3 in the continuum), the dot-
dashed curve the velocity of the layer corresponding to τ = 2/3 in the
spectral center of the line and the dotted curve the gas velocity corre-
sponding to τ = 2/3 in the line. The horizontal line is the zero velocity
in the stellar rest frame.

is actually the case with a good precision (φ ∼ 0.4). This is an
indication that our estimator of the optical barycenter τ = 2/3
is correct. The result should have been the same considering
the profile minimum as the velocity curve cancels at the same
phase (see φ = 0.4 in Fig. 1). However, we note in Fig. 3c
that the zero point of the photospheric velocity is at a slightly
later phase. This is the result of asynchronous motions in the
atmosphere.

All these curves, with their amplitude and shape, will have
an impact on the projection factor and its variation over the
pulsation. In the following section we compute a suitable av-
erage value of the projection factor for each case, considering
two estimators which are not simply the average of the ratio
of pulsation to radial velocities. In Sect. 5, we consider more
specifically the time dependence of the projection factor.

4.2. Two estimators of p

To determine a constant projection factor, we cannot simply
consider the mean value of the ratio of the pulsation to ra-
dial velocities. Due to the non-comoving character of the at-
mospheric motions, this would lead to a ratio of physical quan-
tities close to zero (φ ∼ 0.4) but not exactly at the same phase,
whatever the case considered in Fig. 3. Consequently, two more
suitable tests were used to estimate a constant value of p. The
first consists in applying a classical χ2 minimization algorithm
between the quantity vrad.pconst and the considered pulsation ve-
locity (hereafter estimator 1):

χ2 =
∑

i

(vrad(φi).pconst − vpuls(φi))2

σpuls(φi)2
(4)

where σpuls(φi) is the statistical error in the pulsation velocity,
arbitrarily fixed to a reasonable value of 1 km s−1, in order to
evaluate the corresponding error on p. The phases φi, in this
case, are sampled following the snapshots of the model. Here,

Fig. 3. Radial velocity curve deduced from the theoretical line profiles
by the Gaussian method together with a) the gas velocity correspond-
ing to τ = 2/3 in the line forming region according to Eq. (1), b) the
τ = 2/3 “optical layer” velocity according to Eq. (2), c) the velocity
of the photospheric layer (τ = 2/3 in the continuum, see Eq. (3)).

vrad is the radial velocity deduced from either the profile mini-
mum or the Gaussian fit, and vpuls is related to Eqs. (1)–(3).

The second estimator of the p-factor is directly based on
the radius variation of the star, obtained either by integration
of the radial velocity or directly by the position of the layer as
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Table 1. Optimal constant values for the p-factor for different cases
of interest. vrad|gauss and vrad|min are the radial velocity deduced from
theoretical line profiles using the Gaussian and minimum method re-
spectively. Estimator (1) and (2) of the constant projection factor cor-
respond to Eqs. (4) and (5) respectively. In each case the pulsational
velocity vpuls and radius ∆Rpuls used are indicated.

Estimator 1 Estimator 2

vpuls(s) = v(τl = 2/3) ∆Rpuls(s) =
∫
v(τl = 2/3)

vrad|gauss 1.35 ± 0.01 1.32 ± 0.01

vrad|min 1.31 ± 0.01 1.30 ± 0.01

vpuls(il) =
∂R(τl = 2/3)

∂φ
∆Rpuls(il) = ∆R(τl = 2/3)

vrad|gauss 1.33 ± 0.01 1.32 ± 0.01

vrad|min 1.30 ± 0.01 1.29 ± 0.01

vpuls(ic) =
∂R(τc = 2/3)

∂φ
∆Rpuls(ic) = ∆R(τc = 2/3)

vrad|gauss 1.28 ± 0.01 1.27 ± 0.01

vrad|min 1.24 ± 0.01 1.24 ± 0.01

provided by the radius of the mass zone involved. Hence, the
quantity defined by

∫
vrad.pconst is compared with the pulsating

radius (hereafter estimator 2):

χ2 =
∑

i

( ∫
vrad(φi).pconst − ∆Rpuls(φi)

)2
σpuls(φi)2

(5)

where σpuls(φi) is the statistical error in the pulsation radius,
fixed to 0.1 R� to obtain the same uncertainty in the p-factor for
both estimators. The quantity vrad is the same as in estimator 1.
The radius variation ∆Rpuls may be either:

∆Rpuls(s) =

∫
v(τl = 2/3) (6)

or

∆Rpuls(il) = ∆R(τl = 2/3) (7)

or

∆Rpuls(ic) = ∆R(τc = 2/3), (8)

with each case corresponding theoretically to the integration of
Eqs. (1)–(3). However, note that for Eqs. (7) and (8) the radius
variations are deduced directly from the model. An integration
algorithm was used to derive Eq. (6). We also define Rpuls =

Rpuls + ∆Rpuls for each case.

4.3. Results and discussion

Table 1 lists the computation results for the twelve cases con-
sidered, leading to the following conclusions.

Firstly, the p-factors obtained considering the two estima-
tors differ by 2% in extreme cases. This is expected for two
reasons. On the one hand, the two minimized quantities are dif-
ferent, so it is expected that the associated p-factor values will
also be different. On the other hand, when the radius is fitted,
the estimator may be less sensitive to velocity variation shapes.

Secondly, these results indicate a systematic shift of
0.02–0.04 (or 3%) in p-values between the radial velocities
associated with the Gaussian and the profile minimum meth-
ods. This is logically linked to the systematic difference in ve-
locity curves, as shown in Fig. 1. Therefore it is important to
choose the p-factor value that corresponds to the method that
was used to estimate the projected velocity. In addition, it is
best to use the method that is least sensitive to velocity gra-
dients and marginal effects, in order to obtain a value for the
p-factor that is generally applicable. That is why in the follow-
ing discussions, we consider only the radial velocity deduced
from the Gaussian method.

Thirdly, the difference between the pulsation layers con-
sidered should be related to the different observational tech-
niques, as we pointed out in Sect. 3. For spectroscopic mea-
surements of the gas velocity within the line, the recommended
value is p = 1.35, which is close to the classical value of
p = 1.36 (Burki et al. 1982). In this case, one should prefer-
ably consider the first estimator since one has to deal with the
pulsation velocity of the gas to account for the atmosphere
dynamics. Conversely, for interferometric observations in a
“photospheric” line, the best value is p = 1.32, and one should
consider the second estimator (this result will be confirmed in
the next section). For broadband interferometric observations,
one should use a lower value of p = 1.27. These results indicate
that an error of 6% can be made if one takes the usual value of
p = 1.36 regardless of the observational method used.

Finally, an initial error of 1 km s−1 in the pulsation velocity,
or 0.1 R� in the pulsation radius, leads to a final statistical error
in the p-factor of about 0.01 for both estimators.

5. The effect of a constant projection factor
on distance determination

The IBW method combines interferometric and spectrometric
observations to deduce the distance of the star (see Kervella
et al. 2004a). In the previous section we have obtained dif-
ferent average values for p, considering different kinds of ve-
locities and estimators. We now study the influence of the
time-dependence of p on distance determination. Since the def-
inition of p involves phase-dependent factors, p itself should be
time-dependent. This is illustrated in Fig. 4 which shows the
quantity vpuls− pconst ∗ vrad. As it has already been pointed out in
Sect. 4.2, plotting the p-factor against the phase is misleading
as the ratio of pulsation to radial velocities is not representative
when these quantities are close to zero (φ ∼ 0.4). Moreover, in
the framework of the IBW method, the quantity of interest is
the pulsation velocity rather than the projection factor itself.

On the one hand, we simulate angular diameters θobs, fixing
arbitrarily the distance of the star (d = 275 pc) and using the
radius variations provided by the pulsation model:

θobs(φi) = 9.305

(
Rpuls(φi)

275

)
[mas] (9)

where Rpuls (in R�) is one of the three quantities:

Rpuls(s) =

∫
v(τl = 2/3) (10)
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Fig. 4. The quantity vpuls − 1.35 ∗ vrad versus the phase in the case of
Fig. 3a: vpuls is the gas velocity corresponding to τ = 2/3 in the line
formation region according to Eq. (1), and vrad is the radial veloc-
ity curve deduced from the theoretical line profiles by the Gaussian
method. p = 1.35 is the optimum value obtained from the estimator 1,
as described in Sect. 4.2

Fig. 5. Simulated angular diameter points deduced from Eq. (9) with
Rpuls(ic) = R(τc = 2/3). Each point is shown with its arbitrary the-
oretical error bar of 0.01 mas. This curve simulates interferometric
observations used in the IBW method.

or

Rpuls(il) = R(τl = 2/3) (11)

or

Rpuls(ic) = R(τc = 2/3), (12)

as provided by the integration of Eqs. (1)–(3). The phases φi are
sampled from the snapshots of the model. Figure 5 shows the
simulated angular diameter curve considering Rpuls(ic) = R(τc =

2/3).
On the other hand, the IBW method is used as follows.

Firstly, a radial velocity curve is derived from the synthetic
spectra considering both the Gaussian fit and the minimum pro-
file methods. Then, a constant value for the p-factor is chosen
corresponding to one of the twelve cases of Table 1. Finally,

Table 2. Distance results corresponding to the mean p-factor results of
Table 1. The different expressions of the radius refer to Eqs. (10)–(12)
respectively and correspond to the quantity used in the Eq. (9) of the
simulated angular diameters.

Estimator 1 Estimator 2

Rpuls =
∫
v(τl = 2/3)

vrad|gauss 279.6 ± 7.2 274.6 ± 7.2

vrad|min 278.2 ± 7.2 274.8 ± 7.2

Rpuls = R(τl = 2/3)

vrad|gauss 278.2 ± 7.2 274.6 ± 7.2

vrad|min 276.9 ± 7.2 274.7 ± 7.2

Rpuls = R(τc = 2/3)

vrad|gauss 276.0 ± 7.2 274.9 ± 7.2

vrad|min 274.6 ± 7.2 274.8 ± 7.2

the integration of the pulsation velocity deduced from the ra-
dial velocity and the projection factor leads to an estimation of
the radius variation of the star. This leads to an angular varia-
tion curve:

θmodel(φi) = θ + 9.305

(
∆R(φi)

d

)
[mas], (13)

where ∆R(φi) =
∫
vrad(φi).pconst. Finally, applying a classi-

cal χ2 minimization algorithm, we fit both the average angu-
lar diameter θ and the distance d to the star. The minimized
quantity is:

χ2 =
∑

i

(θobs(φi) − θmodel(φi))2

σobs(φi)2
· (14)

The values for σobs(φi) are arbitrarily fixed to 0.01 mas which
is a realistic value considering the measurement precision
achieved recently by long-baseline interferometers (see Fig. 5).

Table 2 gives the computed distances using the p-factors
shown in Table 1. The mean angular diameters obtained cor-
respond to the anticipated values of θobs = 1.471 mas for the
(ic) case and θobs = 1.476 for (s) and (il) cases. The statistical
errors obtained are around 0.001 mas.

Since p is constant, we have ∆R ∼ ∆Rpuls, and any depar-
ture from the predefined distance (275 pc) is the result of the
time-dependence of the projection factor or the choice of the
estimator: there is no model effect. It appears that the com-
puted and reference distances are closer for estimator 2. Thus,
estimator 2 provides projection factors less biased than those
provided by estimator 1 in the frame of the IBW method.

An important conclusion is that for the best p-factor value,
the systematic error in the derived distance does not exceed
0.2%, independent of the radial and pulsation velocities con-
sidered. This important result indicates that a time-dependent
p-factor is not required at the moment since the final error of
0.2% is well below our best estimation of recent distance de-
termination.

Finally, note that the initial uncertainty of 0.01 mas in the-
oretical angular diameters leads to a final statistical error in the
distance of 7.2 pc.
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6. Conclusion

A self-consistent nonlinear model for δ Cephei was generated
reproducing the main observational features of this star.

On the basis of this model we studied the effect of the pro-
jection factor which links radial and pulsation velocity on the
IBW method for distance determination. Two methods were
considered for deriving the radial velocity curve: a Gaussian fit
and the profile-minimum method. Similarly, three pulsation ve-
locities were defined corresponding to different regions of the
stellar atmosphere: two concern the line forming region, while
the third corresponds to the photosphere. These three pulsation
velocities are linked to different observational techniques such
as spectrometry and wide-band or spectral-line interferometry.
An important result of this study is the very weak influence of
the time-dependence of the p-factor on distance determination.
The choice of a constant p-factor instead of one that is time-
dependent gives a systematic error in the final distance of the
order of 0.2%, which is below the best estimations of current
distance determination. More important, the projection factor
should be chosen depending on the observational techniques
used. For spectroscopic observations, if we use the Gaussian
method to derive the radial velocity, we propose p = 1.35.
For wide-band interferometry, the best value is p = 1.27, and
for interferometric observations in a specific (metal) line it is
p = 1.32. Note that this latter value has been determined for
a given line: considering lines formed in other atmospheric re-
gions should lead to different values. An extensive study of this
dependence, outside the scope of the present paper, is currently
in progress.

Note also that these values have been determined for δ Cep.
The generalization of our results to other classical Cepheids
will require the study of a larger sample of stars. The AMBER
instrument (Petrov et al. 2000) will also permit observations in
one particular line with a good resolution (“Interferometry in
one Line”). Cepheids are bright sources and observations in an
absorption line of their atmospheres appears feasible in terms
of signal to noise ratio of as long as one can use large tele-
scopes and adaptive optics. It will be then possible to compare
the same layer of the star with interferometry and spectrometry.
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