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AUTOMATIC MODULAR ABSTRACTIONS FOR TEMPLATE

NUMERICAL CONSTRAINTS

DAVID MONNIAUX

Abstract. We propose a method for automatically generating abstract trans-
formers for static analysis by abstract interpretation. The method focuses on
linear constraints on programs operating on rational, real or floating-point
variables and containing linear assignments and tests. Given the specification
of an abstract domain, and a program block, our method automatically out-
puts an implementation of the corresponding abstract transformer. It is thus
a form of program transformation.

In addition to loop-free code, the same method also applies for obtaining
least fixed points as functions of the precondition, which permits the analysis
of loops and recursive functions.

The motivation of our work is data-flow synchronous programming lan-
guages, used for building control-command embedded systems, but it also
applies to imperative and functional programming.

Our algorithms are based on new quantifier elimination and symbolic ma-
nipulation techniques over linear arithmetic formulas. We also give less general
results for nonlinear constraints and nonlinear program constructs.

1. Introduction

Program analysis consists in, given a program, obtaining properties about its
possible executions. Example of interesting properties include: “the program always
terminates”; “the program never executes a division by zero”; “the program always
outputs a well-formed XML document”; “variable x always lies between 1 and 3”.
Abstract interpretation (§1.1) is a general framework in which to design sound
static analyzes — analyzes that produce correct results by construction. Most such
analyzes are neither modular nor optimal : they generally need the program to be
analyzed all at once, as opposed to being able to analyze parts of it separately, and
they may err on the pessimistic side — for instance, provide variation bounds on
variables that are not tight. In this article, we describe methods that are optimal in
some sense, and that allow parts of a program to be analyzed separately from their
execution environment. Our methods are based on quantifier elimination (§1.2), an
algorithmic property of certain logics.

This article is an expanded version of two conference articles [70, 71].

1.1. Abstract interpretation. It is well-known that, in the general case, fully
automatic program analysis is impossible for any nontrivial property.1 Thus, all
analysis methods must have at least one of the following characteristics:

1This result, formally given within the framework of recursive function theory, is known as
Rice’s theorem. [82, p. 34][80, corollary B] It is obtained by generalization from Turing’s halting
theorem. Interpreted upon program semantics, the theorem states that the only properties of the
denotational semantics of programs that can be algorithmically decided on the source code are
the trivial properties: uniformly “true” or uniformly “false”.
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int x, y;

boolean a;

if (x < y) a = false;

(a) Original program

boolean a;

if (choice()) a = false;

(b) Boolean program

Figure 1. Transformation of a program into a Boolean program
by erasing the numeric part and replacing tests over numerical
quantities by nondeterministic choice (choice() nondeterministi-
cally returns true or false).

• They may bound the memory size of the studied program, which then be-
comes a finite automaton, on which most properties are decidable. Explicit-
state model-checking works by enumerating all reachable states (which are
in finite number) while implicit state model-checking represents sets of
states using clever data structures. [22]
• They may restrict the programming language used, making it not Turing-

complete, so that properties become decidable. For instance, reachability
in pushdown automata is decidable even though their memory size is un-
bounded. [13]
• They may restrict the class of properties expressed to properties of bounded

executions; e.g., “within the first 10000 steps of execution, there is no divi-
sion by zero”, as in bounded model checking. [9]
• They may be unsound as proof methods: they may fail to detect that the

desired property is violated. Typically, bug-finding and testing programs
are in that category, because they may fail to detect a bug. Some such
analysis techniques are not based on program semantics, but rather on
finding patterns in the program syntax. [34]
• They may be incomplete as proof methods: they may fail to prove that a

certain property holds, and report spurious violations. Methods based on
abstraction fall in that category.

Abstraction by over-approximation consists in replacing the original problem,
undecidable or very difficult to decide, by a simpler “abstract” problem whose
behaviours are guaranteed to include all behaviours of the original problem.

An example of an abstraction is to erase from the program all constructs dealing
with numerical and pointer types (or replacing them with nondeterministic choices,
if their value is used within a test), keeping only Boolean types (Fig. 1). Obviously,
the behaviours of the resulting program encompass all the behaviours of the original
program, plus maybe some extra ones. Further abstraction can be applied to this
Boolean program: for instance, the “3-value logic” abstraction [79] which maps any
input or output variable to an abstract parameter taking its value in a 3-element
set: “is 0”, “is 1”, “can be 0 or 1”;2 for practical purposes it may be easier to
encode these values using a couple of Booleans, respectively meaning “can be 0”
and “can be 1”, thus the abstract values (1, 0), (0, 1) and (1, 1). The abstract value
(0, 0) obtained for any variable at a program point means that this program point
is unreachable. Given a vector of input abstract parameters, one for each input

2For brevity, we identify “false” with 0 and “true” with 1.
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double x, y, z;

/* x lies in [mx, Mx] */

y = x;

z = x-y;

(a) Original program

m′

y = mx;
M ′

y = My;
m′

z = mx −M ′

y;
M ′

z = Mx −m′

y;
(b) Abstract transformer program

Figure 2. The transformer for the interval domain obtained by
composition of locally optimal abstract transformers is imprecise.
For each statement (on the left) we use a corresponding optimal
transformer (on the right), but the composition of these trans-
formers is not optimal. For the sake of simplicity, all variables are
considered to be real numbers.

variable of the program, the forward abstract transfer function gives a correct vector
of output abstract parameters, one for each output variable of the program. Quite
obviously, in the absence of loops, it is possible to obtain a suitable forward abstract
transfer function by applying simple logical rules to the Boolean function defined by
the Boolean program. An effective implementation of the forward abstract transfer
function can thus be obtained by a transformation of the source program.

For programs operating over numerical quantities, a common abstraction is in-
tervals. [29, 30] To each input x, one associates an interval [mx, Mx], to each output
x′ an interval [m′

x, M ′

x]. How can one compute the (m′

v, M ′

v)v∈V bounds from the
(mv, Mv)v∈V ? The most common method is interval arithmetic: to each elemen-
tary arithmetic operation, one attaches an abstract counterpart that gives bounds
on the output of the operation given bounds on the inputs. For instance, if one
knows [ma, Ma] and [mb, Mb], and c = a + b, the one computes [mc, Mc] as follows:
mc = ma + mb and Mc = Ma + Mb. If a program point can be reached by several
paths (e.g. at the end of an if-then-else construct), then a suitable interval [mx, Mx]
can be obtained by a join of all the intervals for x at the end of these paths. Again,
for a loop-free program, one can obtain a suitable effective forward abstract transfer
function by a program transformation of the source code.

The abstract transfer function defined by interval arithmetic is always correct,
but is not necessarily the most precise. For instance, on example in Fig. 2(a), the
best abstract transfer function maps any input ranges to m′

z = M ′

x = 0, since the
output z is always zero, while the one obtained by applying interval arithmetic to
all program statements (Fig. 2(b)) yields, in general, larger intervals. The weakness
of the interval domain on this example is evidently due to the fact that it does not
keep track of relationships between variables (here, that x = y). Relational abstract
domains such as the octagons [64, 66, 67] or convex polyhedra [4, 32, 53] address this
issue. Yet, neither octagons nor polyhedra provide analyses that are guaranteed to
give optimal results.

Consider the following program:

int x;

if (x > 0) x= 1; else x= -1;

if (x == 0) x= 2;

Obviously, the second test can never be taken, since x can only be ±1; however an
interval, octagon or polyhedral analysis will conclude, after joining the informations
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P0

P1

P∞

Figure 3. The standard widening on convex polyhedra [32, 53],
here demonstrated on polyhedra in dimension 2 (polygons). The
widening operator observes the sets of reachable states P0 and P1

at two consecutive iterations, and keeps only the constraints (poly-
hedral faces, here polygon edges) that are stable across iterations.
The resulting P∞ polyhedron is then proposed as an invariant.

for both branches of the first test, that x lies in [−1, 1] and will not be able to exclude
the case x = 0.

This is the first problem that this article addresses: how to obtain, in general, ef-
fective, optimal abstract transfer functions for certain classes of loop-free programs
and numerical constraints.3

We have so far left out programs containing loops; when programs contain loops
or recursive functions, a central problem of program analysis is to find inductive
invariants. In the case of Boolean programs, given constraints on the input pa-
rameters, the set of reachable states can be computed exactly by model-checking
algorithms; yet, these algorithms do not give a closed-form representation of the
abstract transfer function mapping input parameters to output parameters for the

3Our analysis in that respect produces the same result as projecting over the output constraints
the results of an input-output relational analysis over the disjunctive completion of the convex

polyhedra; that is, computing the set of possible couples (σ, σ′) of input and output states as
an union of convex polyhedra, then projecting it over the template. The quantifier elimination
procedure can however avoid enumerating all the polyhedra in this disjunction, for instance by
performing projections at the same time. [69]
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3-value abstraction. In the case of numerical abstractions such as the intervals, oc-
tagons or polyhedra, the most common way to find invariants is through the use of
a widening operator. [30] Intuitively, widening operators observe the sets of reach-
able states after N and N +1 loop iterations and extrapolate them to a “candidate
invariant” (see Fig. 3 for an example: the standard widening operator on convex
polyhedra).

Let u0 be the set of initial states of a loop, and let →τ be transition relation
for this loop (σ →τ σ′ means that σ′ is reachable in one loop step from σ). The
set of reachable states at the head of the loop is the least fixed point of f : u 7→
u∪{σ′ | ∃σ ∈ u∧σ →τ σ′}, which is obtained as the limit of the ascending sequence
defined by un+1 = f(un). By abstract interpretation, we replace this sequence by

an abstract sequence u♯
n defined by u♯

n+1 = f ♯(u♯
n), such that for any n, u♯

n is an

abstraction of un. If this sequence is stationary, that is, u♯
N+1 = u♯

N for some N ,

then u♯
N is an abstraction of the least fixed point of f and thus of the least invariant

of the transition relation τ containing u0.
Again, widening operators provide correct results, but these results can be grossly

over-approximated. Much of the literature on applied analysis by abstract interpre-
tation discusses workarounds that give precise results in certain cases: narrowing
iterations [29, 30], widening “up to” [52, §3.2], “delayed” or with “thresholds” [11],
etc. Yet, such workarounds typically fail on other examples than the ones they were
designed to address.

This is the second problem that this article addresses: how to obtain, in general,
optimal invariants for certain classes of programs and numerical constraints. Fur-
thermore, our methods provide these invariants as functions of the parameters of
the precondition of the loop, thus, again, they provide effective, optimal abstract
transfer functions for loop constructs.

1.2. Quantifier elimination. Consider a set A of atomic formulas. The set U(A)
of quantifier-free formulas is the set of formulas constructed from A using operators
∧, ∨ and ¬; the set Q(A) of quantified formulas is the set of formulas constructed
from A using the above operators and the ∃ and ∀ quantifiers. Such formulas are
thus trees whose leaves are the atomic formulas. A literal is an atomic formula or
the negation thereof. The set of free variables FV (F ) of a formula F is defined as
usual. A quantifier-free formula without variables is said to be ground. A formula
without free variables is said to be closed ; the existential closure of a formula
F is F with existential quantifiers for all free variables prepended; the universal
closure is the same with universal quantifiers. A quantifier-free formula is said to
be in disjunctive normal form (DNF) if it is a disjunction of conjunctions, that
is, is of the form (l1,1 ∧ · · · ∨ l1,n1

) ∨ · · · ∨ (lm,1 ∧ · · · ∨ lm,nm
), and is said to

be in conjunctive normal form (CNF) if it is a conjunction of disjunctions. Any
quantifier-free formula can be converted into CNF or DNF by application of the
distributivity laws (A∨B)∧C ≡ (A∧C)∨(B∧C) and (A∧B)∨C ≡ (A∨C)∧(B∨C),
though better algorithms exist, such as ALL-SAT modulo theory [69].

1.2.1. Booleans. If A is a set V of variables, then U(A) is the set of propositional
formulas over these variables. A valuation m for a formula F is a mapping from
FV (F ) to {false, true}; it is said to be a model for F , noted m |= F , if F evaluates
to true after its variables have been replaced by Boolean values according to m.
We then say that we are considering the theory of Booleans. Two formulas F
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and G are said to be equivalent, noted F ≡ G, if they have the same models. A
formula is said to be satisfiable if it admits at least one model. Deciding whether
a propositional formula is satisfiable is known as the SAT-problem, the canonical
NP-complete problem; although it is conjectured that there exists no polynomial
algorithm for this problem, there exist many implementations capable of deciding
many large problems in practice. [57, ch. 2] Q(A) is the set of quantified Boolean
formulas. Deciding the satisfiability of such formulas is the canonical PSPACE-
complete problem, known as QBF; [45, §7.4] note that QBF is included in all the
quantified theories that we shall see further, which indicates that they are at least
as hard to decide!

The theory of Booleans admits algorithmic quantifier elimination: there exists
an algorithm that takes as an input any formula in Q(A) and outputs an equivalent
quantifier-free formula. One naive method to achieve this is to proceed by induction
over the structure of the formula and convert any ∀x F formula to F [true/x] ∧
F [false/x] and any ∃x F to F [true/x] ∨ F [false/x]. Such a method, replacing
∀x F by a finite conjunction of formulas of the form F [xi/x] and ∃x F by a finite
disjunction of formulas of the form F [xi/x], is known as a substitution method. It
is obvious that substitution methods are possible for quantification over any finite
domain, but we shall now see that they are also possible for certain logics over
infinite domains.

1.2.2. Linear real inequalities. Consider now A the set of linear inequalities with
integer or rational coefficients over a set of variables V . By elementary calculus, such
inequalities can be equivalently written in the following forms: l(v1, v2, . . . ) ≥ C or
l(v1, v2, . . . ) > C, with l a linear expression with integer coefficients over V and C
a constant. Let us first consider the theory of linear real arithmetic (LRA): models
of a formula F are mappings from F to the real field R, and notions of equivalence
and satisfiability follow. Note that satisfiability and equivalence are not affected by
taking models to be mappings from F to the rational field Q. Deciding whether a
LRA formula is satisfiable is, again, a NP-complete problem known as satisfiability
modulo theory (SMT) of real linear arithmetic. Again, practical implementations,
known as SMT-solvers , are capable of dealing with rather large formulas; examples
include Yices [41] and Z3 [37].4

The theory of linear real arithmetic admits quantifier elimination. For instance,
the quantified formula ∀x (x ≥ y =⇒ x ≥ 3) is equivalent to the quantifier-free
formula y ≥ 3. Quantified linear real arithmetic formulas are thus decidable: by
quantifier elimination, one can convert the existential closure of the formula to
an equivalent ground formula, the truth of which is trivially decidable by evalua-
tion. The decision problem for quantified formulas over rational linear inequalities
requires at least exponential time, thus quantifier elimination is at least exponen-
tial. [15, §7.4][44, Th. 3] Weispfenning [94] discusses complexity issues in more
detail.

Again, most quantifier elimination algorithm proceed by induction over the struc-
ture of the formula, and thus begin by eliminating the innermost quantifiers, pro-
gressively replacing branches of the formula containing quantifiers by quantifier-
free equivalent branches. By application of the equivalence ∀x F ≡ ¬∃x ¬F , one
can reduce the problem to eliminating existential quantifiers only. Consider now

4The yearly SMT-COMP competition has SMT-solvers compete on a large set of benchmarks.

http://www.smtcomp.org/
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x

y

Figure 4. The gray zone S is the set of (x, y) solutions of formula
F , whose atoms are the linear inequalities corresponding to the
lines ∆ drawn with dashes. For fixed y = y0, the set of x such
that F (x, y) is true is made of intervals whose ends lie within the
set I of intersections of the y = y0 line with the lines in ∆, drawn
with a small circle. y = y0 therefore has an intersection with
S if and only if a point in I, or an interval with both ends in
I ∪ {−∞, +∞}, lies within S. This condition can be tested using
x → ±∞ and all midpoints to intervals with both ends in I, as
per Ferrante and Rackoff [43], or, in addition to I ∪{−∞}, for any
element of I a point infinitesimally close to the right of it, as per
Loos and Weispfenning [60]. Both methods exploit the fact that
the coordinates of all points from I (intersection of y = y0 and a
line from ∆) can be expressed as affine linear functions of y0.

the problem of eliminating the existential quantifiers from ∃ x1 . . . xn F where
F is quantifier-free. We can first convert into DNF: ∃x1 . . . xn (C1 ∨ · · · ∨ Cm)
where the Ci are conjunctions, then to the equivalent formula (∃ x1 . . . xn C1) ∨
. . . (∃ x1 . . . xn Cm). We thus have reduced the quantifier elimination problem for
general formula to the problem of quantifier elimination for conjunctions of lin-
ear inequalities. Remark that, geometrically, this quantifier elimination amounts
to computing the projection of a convex polyhedron along the dimensions associ-
ated with the variables x1, . . . , xn, with the original polyhedron and its projection
being defined by systems of linear inequalities. The Fourier-Motzkin elimination
procedure [57, §5.4] converts ∃x1 . . . xn C into an equivalent conjunction.
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There exist more efficient quantifier elimination procedures than conversion to
DNF followed by Fourier-Motzkin elimination. Ferrante and Rackoff [43] proposed
a substitution method [15, §7.3.1][75, §4.2][94]: a formula of the form ∃x F where
F is quantifier-free is replaced by an equivalent disjunction F [e1/x]∨ · · ·∨F [en/x],
where the ei are affine linear expressions built from the free variables of ∃x F .
Note the similarity to the naive elimination procedure we described for Boolean
variables: even though the existential quantifier ranges over an infinite set of val-
ues, it is in fact only necessary to test the formula F at a finite number of points
(see Fig. 4). The drawback of this algorithm is that n is proportional to the square
of the number of occurences of x in the formula; thus, the size of the formula can
be cubed for each quantifier eliminated. Loos and Weispfenning [60] proposed a
virtual substitution algorithm5 [75, §4.4] that works along the same general ideas
but for which n is proportional to the number of occurences of x in the formula.
Our benchmarks show that Loos and Weispfenning’s algorithm is much more effi-
cient than Ferrante and Rackoff’s, despite the latter method being better known.
Another class of algorithms improve on the conversion to DNF then projection al-
gorithm, by combining both phases: we proposed an eager algorithm based on this
idea [69] and are working on a lazy version.

1.2.3. Presburger arithmetic. With the same language of formulas, consider now
models over the integers, thus the theory of linear integer arithmetic (LIA), also
known as Presburger arithmetic. We immediately notice that linear inequalities
are insufficient for quantifier elimination — we also need congruence constraints:
∃k x = 2k simplifies to x ≡ 0 (mod 2).

Decision of formulas in Presburger arithmetic is doubly exponential, and thus
quantifier elimination is very expensive in the worst case [44]. Presburger [77]
provided a quantifier elimination procedure, but its complexity was impractical;
Cooper [26] proposed a better algorithm [15, §7.2]; Pugh [78] proposed the “Omega
test” [57, §5.5]. Practical complexities are still high in practice .

Cooper and Pugh’s procedures are very geometrical in nature. Integers, however,
can also be seen as words over the {0, 1} alphabet, and sets of integers can thus be
recognized by finite automata [76, §8]. Addition is encoded as a 3-track automaton
recognizing that the number on the third track truly is the sum of the numbers on
the first two tracks; equivalently, this encodes subtraction. Existential quantifier
elimination just removes some of the tracks, making transitions depending on bits
read on that track nondetermistic. Negation is complementation (which can be
costly, thus explaining the high cost of quantifier alternation). Multiplication by
powers of two are also easily encoded, and multiplications by arbitrary constants
can be encoded by a combination of additions and multiplications by powers of two.
The same idea can be extended to real numbers written as their binary expansion,
using automata on infinite words.

This leads to an interesting arithmetic theory, with two sorts of variables: reals
(or rationals) and integers. This could be used to model computer programs, with

5This method replaces x by a formula that does not evaluate to a rational number, but to a
sum of a rational number and optionally an infinitesimal ε, taken to be a number greater than

0 but less than any positive real; the infinitesimals are then erased by application of the rules
governing comparisons. In practical implementations, one does both substitution and erasure of
infinitesimals in one single pass, and infinitesimals never actually appear in formulas; thus the
phrase virtual substitution.
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integers for integer variables and reals for floating-point variables (if necessary by
using the semantic transformations described in § 3.4). Boigelot et al. [12] described
a restricted class of ω-automata sufficient for quantifier elimination. Becker et al.
[8] implemented the Lira tool based on such ideas. Unfortunately, this approach
suffers from two major drawbacks: the practical performances are very bad for
purely real problems [69], and it is impossible to recover an arithmetical formula
from almost all these automata. We therefore did not pursue this direction.

1.2.4. Nonlinear real arithmetic. What happens if we do not limit ourselves to lin-
ear arithmetic, but also allow polynomials? Over the integers, the resulting theory
is known as Peano arithmetic. It is well known that there can exist no decision
procedure for quantified Peano arithmetic formulas;6 thus, since the ground formu-
las for this theory are trivially decidable, there can exist no quantifier elimination
algorithm.

The situation is wholly different over the real numbers. The satisfiability or
equivalence of polynomial formulas does not change whether the models are taken
over the real numbers, the real algebraic numbers, or, for the matter, any real closed
field ; this theory is thus known as the theory of real closed fields, or elementary
algebra. Tarski [90, 91] and Seidenberg [86] showed that this theory admits quan-
tifier elimination, but their algorithms had impractically high complexity. Collins
[23] introduced a better algorithm based on cyclindrical algebraic decomposition.
For instance, quantifier elimination on ∃x ax2 + bx + c = 0 by cylindrical algebraic
decomposition yields

(1)
(

c < 0 ∧
((

b < 0 ∧ a ≥ b2

4c

)

∨ (b = 0 ∧ a > 0) ∨
(

b > 0 ∧ a ≥ b2

4 c

)))

∨c = 0∨
(

c > 0 ∧
((

b < 0 ∧ a ≤ b2

4c

)

∨ (b = 0 ∧ a < 0) ∨
(

b > 0 ∧ a ≤ b2

4c

)))

Note the cylindrical decomposition: first, there is a case disjunction according to the
values of c, then, for each disjunct for c, a case disjunction for the value of b; more
generally, cylindrical algebraic decomposition builds a tree of case disjunctions over
a sequence of variables v1, v2, . . . , where the guard expressions defining the cases for
vi can only refer to v1, . . . , vi. This decomposition only depends on the polynomials
inside the formula and not on its Boolean structure, and computing it may be very
costly even if the final result is simple. This is the intuition why despite various
improvements [7, 20] the practical complexity of quantifier elimination algorithms
for the theory of real closed fields remain high. The theoretical space complexity is
doubly exponential [17, 36].

Minimal extensions to this formula language may lead to undecidability. This
is for instance the case when one adds trigonometric functions: it is possible to
define π as the least positive zero of the sine, then define the set of integers as

6One does not need the full language of quantified Peano formulas for the problem to be-
come undecidable; a single unbounded quantifier block is sufficient. The decision problem for
Σ0

1
formulas, that is, formulas of the form ∃n1 . . . nk φ where φ only has bounded quantifiers, is

undecidable. Following Cook [25] [95, ch. 7], the termination property of a program containing a

single loop and operating over unbounded integers (a model equivalent to Turing machines) can
be algorithmically encoded as a Σ0

1
formula, thus deciding the truth of such formulas would entail

deciding Turing’s halting problem.
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the numbers k such that sin(kπ) = 0, and thus one can encode Peano arithmetic
formulas into that language [2]. Also, naive restrictions of the language do not lead
to lower complexity. For instance, limiting the degree of the polynomials to two
does not make the problem simpler, since formulas with polynomials of arbitrary
degrees can be encoded as formulas with polynomials of degree at most two, simply
by introducing new variables standing for subterms of the original polynomials. For
instance, ∃x ax3 + bx2 + cx + d = 0 can be encoded, using Horner’s form for the
polynomial, as ∃x∃y∃z z = ax + b ∧ y = zx + c ∧ yx + d = 0. Certain stronger
restrictions may however work; for instance, if the variables to be eliminated occur
only linearly, then one can adapt the substitution methods described in §1.2.2.

2. Optimal Abstraction over Template Linear Constraint Domains

When applying abstract interpretations over domains of linear constraints, such
as octagons [64, 66, 67], one generally applies a widening operator, which may lead
to imprecisions. In some cases, acceleration techniques leading to precise results can
be applied [48, 49]: instead of attempting to extrapolate a sequence of iterates to
its limit, as does widening, the exact limit is computed. In this section, we describe
a class of constraint domains and programs for which abstract transfer functions of
loop-free codes and of loops can be exactly computed; thus the optimality. Further-
more, the analysis outputs these functions in closed form (as explicit expressions
combining linear expressions and functional if-then-else constructs), so the result
of the analysis of a program fragment can be stored away for future use; thus the
modularity. Our algorithms are based on quantifier elimination over the theory of
real linear arithmetic (§1.2).

2.1. Template Linear Constraint Domains. Let F be a formula over linear
inequalities. We call F a domain definition formula if the free variables of F
split into n parameters p1, . . . , pn and m state variables s1, . . . , sm. We note
γF : Qn → P(Qm) defined by γF (~p) = {~s ∈ Qm | (~p,~s) |= F}. As an example,
the interval abstract domain for 3 program variables s1, s2, s3 uses 6 parameters
m1, M1, m2, M2, m3, M3; the formula is m1 ≤ s1 ≤ M1 ∧m2 ≤ s2 ≤ M2 ∧m3 ≤
s3 ≤M3.

In this section, we focus on the case where F is a conjunction L1(s1, . . . , sm) ≤
p1∧· · ·∧Ln(s1, . . . , sm) ≤ pn of linear inequalities whose left-hand side is fixed and
the right-hand sides are parameters. Such conjunctions define the class of template
linear constraint domains [24]. Particular examples of abstract domains in this
class are:

• the intervals (for any variable s, consider the linear forms s and −s);
• the difference bound matrices (for any variables s1 and s2, consider the

linear form s1 − s2);
• the octagon abstract domain (for any variables s1 and s2, distinct or not,

consider the linear forms ±s1 ± s2) [64]
• the octahedra (for any tuple of variables s1, . . . , sn, consider the linear forms
±s1 · · · ± sn). [21]

Remark that γF is in general not injective, and thus one should distinguish the
syntax of the values of the abstract domain (the vector of parameters ~p) and their
semantics γF (~p). As an example, if one takes F to be s1 ≤ p1∧s2 ≤ p2∧s1+s2 ≤ p3,
then both (p1, p2, p3) = (1, 1, 2) and (1, 1, 3) define the same set for state variables
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s1 and s2. If ~u ≤ ~v coordinate-wise, then γF (~u) ⊆ γF (~v), but the converse is not
true due to the non-uniqueness of the syntactic form.

Take any nonempty set of states W ⊆ Qm. Take for all i = 1, . . . , m: pi =
sup~s∈W Li(~s). Clearly, W ⊆ γF (p1, . . . , pm), and in fact ~p is such that γF (~p) is the
least solution to this inclusion. pi belongs in general to R ∪ {+∞}, not necessarily

to Q∪ {+∞}. (for instance, if W = {s1 | s2
1 ≤ 2} and L1 = s1, then p1 =

√
2). We

have therefore defined an αF : P(Rm) → {⊥} ∪ (R ∪ {+∞})n, and (αF , γF ) form
a Galois connection: αF maps any set to its best upper-approximation. The fixed
points of αF ◦ γF are the normal forms. For instance, s1 ≤ 1∧ s2 ≤ 1∧ s1 + s2 ≤ 2
is in normal form, while s1 ≤ 1 ∧ s2 ≤ 1 ∧ s1 + s2 ≤ 3 is not.

2.2. Optimal Abstract Transformers for Program Semantics. We shall con-
sider the input-output relationships of programs with rational or real variables. We
first narrow the problem to programs without loops and consider programs consist-
ing in linear arithmetic assignments, linear tests, and sequences. Noting a, b, . . .
the values of program variables a, b . . . at the beginning of execution and a′, b′, . . .
the output values, the semantics of a program P is defined as a formula JP K such
that (a, b, . . . , a′, b′, . . . ) |= P if and only if the memory state (a′, b′, . . . ) can be
reached at the end of an execution starting in memory state (a, b, . . . ):

Arithmetic: Ja := L(a, b, . . . ) + KKF
△

= a′ = L(a, b, . . . ) + K ∧ b′ = b ∧ c′ =
c∧ . . . where K is a real constant and L is a linear form, and b, c, d . . . are
all the variables except a;

Tests: Jif c then p1 else p2K
△

= (c ∧ Jp1KF ) ∨ (¬c ∧ Jp2KF );

Non deterministic choice: Ja := randomK
△

= b′ = b ∧ c′ = c ∧ . . . , for all
variables except a;

Failure: JfailK
△

= false;

Skip: JskipK
△

= a′ = a ∧ b′ = b ∧ c′ = c ∧ . . .

Sequence: JP1; P2KF
△

= ∃a′′, b′′, . . . f1 ∧ f2 where f1 is JP1KF where a′ has
been replaced by a′′, b′ by b′′ etc., f2 is JP2KF where a has been replaced
by a′′, b by b′′ etc.

In addition to linear inequalities and conjunctions, such formulas contain dis-
junctions (due to tests and multiple branches) and existential quantifiers (due to
sequential composition).

Note that so far, we have represented the concrete denotational semantics exactly.
This representation of the transition relation using existentially quantified formulas
is evidently as expressive as a representation by a disjunction of convex polyhedra
(the latter can be obtained from the former by quantifier elimination and conversion
to disjunctive normal form), but is more compact in general. This is why we defer
quantifier elimination to the point where we compute the abstract transfer relation.

Consider now a domain definition formula F
△

= L1(s1, s2, . . . ) ≤ p1 ∧ · · · ∧
Ln(s1, s2, . . . ) ≤ pn on the program inputs, with parameters ~p and free variables ~s,

and another F ′ △

= L′

1(s
′

1, s
′

2, . . . ) ≤ p′1 ∧ · · · ∧ L′

n(s′1, s
′

2, . . . ) ≤ p′n on the program

outputs, with parameters ~p′ and free variables ~s′. Sound forward program analysis
consists in deriving a safe post-condition from a precondition: starting from any
state verifying the precondition, one should end up in the post-condition. Using
our notations, the soundness condition is written

(2) ∀~s, ~s′ F ∧ JP K =⇒ F ′
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The free variables of this relation are ~p and ~p′: the formula links the value of
the parameters of the input constraints to admissible values of the parameters for
the output constraints. Note that this soundness condition can be written as a
universally quantified formula, with no quantifier alternation. Alternatively, it can
be written as a conjunction of correctness conditions for each output constraint

parameter: C′

i

△

= ∀~s, ~s′ F ∧ JP K =⇒ L′

i(
~s′) ≤ p′i.

Let us take a simple example: if P is the program instruction z := x + y, F
△

=

x ≤ p1 ∧ y ≤ p2, F ′ △

= z ≤ p′1, then JP K
△

= z′ = x + y, and the soundness condition
is ∀x, y, z (x ≤ p1 ∧ y ≤ p2 ∧ z = x + y =⇒ z ≤ p′1). Remark that this soundness
condition is equivalent to a formula without quantifiers p′1 ≥ p1 + p2, which may
be obtained through quantifier elimination. Remark also that while any value for
p′1 fulfilling this condition is sound (for instance, p′1 = 1000 for p1 = p2 = 1), only
one value is optimal (p′1 = 2 for p1 = p2 = 1). An optimal value for the output

parameter p′i is defined by O′

i

△

= C′

i ∧∀q′i (C′

i[q
′

i/p′i] =⇒ p′i ≤ q′i). Again, quantifier
elimination can be applied; on our simple example, it yields p′1 = p1 + p2.

If there are n input constraint parameters p1, . . . , pn, then the optimal value for
each output constraint parameter p′i is defined by a formula O′

i with n + 1 free
variables p1, . . . , pn, p′i. This formula defines a partial function from Qn to Q, in
the mathematical sense: for each choice of p1, . . . , pn, there exist at most a single
p′i. The values of p1, . . . , pn for which there exists a corresponding p′i make up the
domain of validity of the abstract transfer function. Indeed, this function is in
general not defined everywhere; consider for instance the program:

if (x >= 10) { y = nondeterministic_choice_in_all_reals; } else { y = 0; }

If F = x ≤ p1 and F ′ = y ≤ p′1, then O′

1 ≡ p1 < 10 ∧ p′1 = 0, and the function is
defined only for p1 < 10.

At this point, we have a characterization of the optimal abstract transformer
corresponding to a program fragment P and the input and output domain definition
formulas as n formulas (where n is the number of output parameters) O′

i each
defining a function (in the mathematical sense) mapping the input parameters ~p to
the output parameter p′i.

Another example: the absolute value function y := |x|, again with the interval
abstract domain. The semantics of the operation is (x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y =
−x); the precondition is x ∈ [xmin, xmax] and the post-condition is y ∈ [ymin, ymax].
Acceptable values for (ymin, ymax) are characterized by formula

(3) G
△

= ∀x xmin ≤ x ≤ xmax =⇒ ymin ≤ |x| ≤ ymax

The optimal value for ymax is defined by G∧∀y′

max G[y′

max/ymax] =⇒ ymax ≤ y′

max.
Quantifier elimination over this last formula gives as characterization for the least,
optimal, value for ymax:

(4) (xmin + xmax ≥ 0 ∧ ymax = xmax) ∨ (xmin + xmax < 0 ∧ ymax = −xmin).

We shall see in the next sub-section that such a formula can be automatically
compiled into code such as:

if (xmin + xmax >= 0) {

ymax = xmax;

} else {

ymax = -xmin;

}
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2.3. Generation of the Implementation of the Abstract Domain. Consider
formula 4, defining an abstract transfer function. On this disjunctive normal form
we see that the function we have defined is piecewise linear : several regions of the
range of the input parameters are distinguished (here, xmin + xmax < 0 and xmin +
xmax ≥ 0), and on each of these regions, the output parameter is a linear function of
the input parameters. Given a disjunct (such as ymax = −xmin ∧ xmin + xmax < 0),
the domain of validity of the disjunct can be obtained by existential quantifier
elimination over the result variable (here ∃ymax (ymax = −xmin∧xmin +xmax < 0)).
The union of the domains of validity of the disjuncts is the domain of validity of the
full formula. The domains of validity of distinct disjuncts can overlap, but in this
case, since O′

i defines a function in the mathematical sense, the functions defined
by such disjuncts coincide on their overlapping domains of validity.

This suggests a first algorithm for conversion to an executable form:

(1) Put O′

i into quantifier-free, disjunctive normal form C1 ∧ · · · ∧ Cn.
(2) For each disjunct Ci, obtain the validity domain Vi as a conjunction of

linear inequalities and solve for p′i (obtain p′i as a linear function vi of the
p1, . . . , pn).

(3) Output the result as a cascade of if-then-else and assignments, as in the
example at the end of Sec. 2.2.

Algorithm 1 ToITEtree(F, z, T ): turn a formula defining z as a function of
the other free variables of F into a tree of if-then-else constructs, assuming that T
holds.

D(= C1 ∧ · · · ∧ Cn)← QElimDNFModulo({}, F, T )
for all Ci ∈ D do

Pi ← QElimDNFModulo(z, F, T )
end for

P ← Predicates(P1, . . . , Pn)
if P = ∅ then

Ensure: ∃z F is always true
O← Solve(D, z)

else

K ← Choose(P )
O← IfThenElse(K,ToITEtree(F, z, T ∧K),ToITEtree(F, z, T ∧ ¬K))

end if

An if-then-else cascade may be inefficient, since identical conditions may have
to be tested several times. We could of course factor out all conditions and assign
them to Boolean variables, but then, some of the tests performed may actually not
be needed. We therefore propose an algorithm for building an if-then-else tree. The
idea of the algorithm is as follows:

• Each path in the if-then-else tree corresponds to a conjunction C of condi-
tions (if one goes through the “if” branch of if (a) and the “else” branch
of if (b), then the path corresponds to a ∧ ¬b).
• The formula O′

i is simplified relatively to C, a process that prunes out
conditions that are always or never satisfied when C holds.
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• If the path is deep enough, then the simplified formula becomes a conjunc-
tion. One then solves this conjunction to obtain the computed variable
(here, ymax) as a function.

Our algorithm ToITEtree(F, z, T ) (Alg. 1) uses a function QElimDNFModulo

(~v, F, T ) that, given a possibly empty vector of variables ~v, a formula F and a for-
mula T , outputs a quantifier-free formula F ′ in disjunctive normal form such that
F ′ ≡T ∃~v F and no useless predicates are used. Predicates(F ) returns the set of
atomic predicates of F . Solve(D, z) solves a minimal disjunction D of inequalities
for variable z, assuming that there is at most one solution for z for each choice of
the other variables; one simple way to do that is to look for any constraint of the
form z ≥ L or z ≤ L and output z = L. Choose(P ) chooses any predicate in P
(one good heuristic seems to be to choose the most frequent in P1, . . . , Pn).

Let us take, as a simple example, formula 4. We wish to obtain ymax as a

function of xmin and xmax, so in the algorithm ToITEtree we set z
△

= ymax. C1

is the first disjunct xmin + xmax ≥ 0 ∧ ymax = xmax, C2 is the second disjunct
xmin +xmax < 0∧ymax = −xmin. We project C1 and C2 parallel to ymax, obtaining
respectively P1 = (xmin + xmax ≥ 0) and P2 = (xmin + xmax < 0). We choose K
to be the predicate xmin + xmax ≥ 0 (in this case, the choice does not matter, since
P1 and P2 are the negation of each other).

• The first recursive call to ToITEtree is made in the context of T
△

=
(xmin + xmax ≥ 0). Obviously, F ∧ T ≡ (ymax = xmax) ∧ T and thus
(∃ymaxF ) ∧ T ≡ T .

QElimDNFModulo(ymax, F, T ) will then simply output the formula
“true”. It then suffices to solve for ymax in ymax = xmax. This yields
the formula for computing the correct value of ymax in the cases where
xmin + xmax ≥ 0.

• The second recursive call is made in the context of T
△

= (xmin + xmax < 0.
The result is ymax = −xmin, the formula for computing the correct value of
ymax in the cases where xmin + xmax < 0.

These two results are then reassembled into an if-then-else statement, yielding the
program at the end of §2.2.

The algorithm terminates because paths of depth d in the tree of recursive calls
correspond to truth assignments to d atomic predicates among those found in the
domains of validity of the elements of the disjunctive normal form of F . Since
there is only a finite number of such predicates, d cannot exceed that number. A
single predicate cannot be assigned truth values twice along the same path because
the simplification process in QElimDNFModulo erases this predicate from the
formula.

2.4. Least Inductive Invariants. We have so far considered programs without
loops. We shall now see that not only can we compute the optimal abstract post-
condition of a block as a simple, executable function of the parameters of the pre-
condition, but we can also compute the parameters of the least inductive invariant
of a program block that is of the form specified by the abstract domain.7 Beware

7In order to specify the least invariant, we would have to quantify over all sets of states, then
filter those which are inductive invariants. This is second-order quantification, which we cannot
handle. By restricting ourselves to invariants of a certain shape, we replace it by first order
quantification.
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Figure 5. The least fixed point representable in the domain
(lfp(α ◦ f ◦ γ)) is not necessarily the least approximation of the
least fixed point (α(lfp f)) inside the abstract domain. For in-
stance, if we take a program initialized by x ∈ [−1, 1] and y = 0,
and at each iteration, we rotate the point by 45◦, the least invariant
is an 8-point star, and the best approximation inside the abstract
domain of intervals is the square [−1, 1]2. However, this square
is not an inductive invariant: no rectangle (product of intervals)
is stable under the iterations, thus there is no abstract inductive
invariant within the interval domain.

that this least inductive invariant found in the abstract domain is in general differ-
ent from the least element of the abstract domain that includes the least inductive
invariant of the system (Fig. 5).

2.4.1. Stability Inequalities. Consider a program fragment: while (c) { p; }.

We have domain definition formulas F
△

= L1(s1, . . . , sm) ≤ p1∧· · ·∧Ln(s1, . . . , sm) ≤
pn for the precondition of the program fragment , and F ′ △

= L′

1(s1, . . . , sm) ≤
p′1 ∧ · · · ∧ L′

n(s1, . . . , sm) ≤ p′n for the invariant.
Define G = JcK∧JpK. G is a formula whose free variables are s1, . . . , sm, s′1, . . . , s

′

m

such that (s1, . . . , sm, s′1, . . . , s
′

m) |= G if and only if the state (s′1, . . . , s
′

m) can be
reached from the state (s1, . . . , sm) in exactly one iteration of the loop. A set
W ⊆ Qm is said to be an inductive invariant for the head of the loop if ∀~s ∈
W, ∀~s′ (~s, ~s′) |= G =⇒ ~s′ ∈ W . We seek inductive invariants of the shape defined

by F ′, thus solutions for ~p′ of the stability condition:

(5) ∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s].

Not only do we want an inductive invariant, but we also want the initial states
of the program to be included in it. The condition then becomes

(6) H
△

= (∀~s, F =⇒ F ′) ∧ (∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s])

This formula links the values of the input constraint parameters p1, . . . , pn to ac-
ceptable values of the invariant constraint parameters p′1, . . . , p

′

n. In the same way
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that our soundness or correctness condition on abstract transformers allowed any
sound post-condition, whether optimal or not, this formula allows any inductive
invariant of the required shape as long as it contains the precondition, not just the
least one.

The intersection of sets defined by ~p′1 and ~p′2 is defined by min(~p′1, ~p′2). More
generally, the intersection of a family of sets, unbounded yet closed under inter-

section, defined by ~p′ ∈ Z is defined by min{p′ | p′ ∈ Z}. We take for Z the

set of acceptable parameters ~p′ such that ~p′ defines an inductive invariant and
∀~s, F =⇒ F ′; that is, we consider only inductive invariants that contain the set
I = {~s | F} of precondition states.

We deduce that p′i is uniquely defined by: p′i = min(∃p′1, . . . , p′i−1, p
′

i+1, . . . , p
′

n H)
which can be rewritten as

(7) (∃p′1, . . . , p′i−1, p
′

i+1, . . . , p
′

n H) ∧ (∀~q′ H [~q′/~p′] =⇒ p′i ≤ q′i)

The free variables of this formula are p1, . . . , pn, p′i. This formula defines a function
(in the mathematical sense) defining p′i from p1, . . . , pn. As before, this function
can be compiled to an executable version using cascades or trees of tests.

2.4.2. Simple Loop Example. To show how the method operates in practice, let
us consider first a very simple example (something happens is a nondeterministic
choice):

int i=0;

while (i <= n) {

if (something_happens) {

i=i+1;

if (i == n) {

i=0;

}

}

}

Let us abstract i at the head of the loop using an interval [imin, imax]. For
simplicity, we consider the case where the loop is at least entered once, and thus
i = 0 belongs to the invariant. For better precision, we model each comparison
x 6= y over the integers as x >= y + 1 ∨ x <= y − 1; similar transformations apply
for other operators. The formula expressing that such an interval is an inductive
invariant is:

(8) imin ≤ 0 ∧ 0 ≤ imax ∧ ∀i∀i′ ((imin ≤ i ∧ i ≤ imax∧
(((i + 1 ≤ n− 1 ∨ i + 1 ≥ n + 1) ∧ i′ = i + 1)∨
(i + 1 = n + 1 ∧ i′ = 0) ∨ i′ = i)) =⇒ (imin ≤ i′ ∧ i′ ≤ imax))

Quantifier elimination produces:

(9) (imin ≤ 0 ∧ imax ≥ 0 ∧ imax < n ∧ −imin + n− 2 < 0)∨
(imin ≤ 0 ∧ imax ≥ 0 ∧ imax − n + 1 ≥ 0 ∧ imax < n)

The formulas defining optimal imin and imax are:

imin ≥ 0 ∧ imin ≤ 0 ∧ n > 0(10)

(imax = 0 ∧ ∧n > 0 ∧ n < 2) ∨ (imax = n− 1 ∧ imax ≥ 1)(11)
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We note that this invariant is only valid for n > 0, which is unsurprising given
that we specifically looked for invariants containing the precondition i = 0. The
output abstract transfer function is therefore:

if (n <= 0) {

fail();

} else {

iMin = 0;

if (n < 2) {

iMax = 0;

} else /* n >= 2 */

iMax = n-1;

}

}

The case disjunction n < 2 looks unnecessary, but is a side effect of the use of
rational numbers to model a problem over the integers. The resulting abstract
transfer function is optimal, but on such a simple case, one could have obtained
the same using polyhedra [32] or octagons [64].

Let us now consider the same program, simply replacing n by the constant 20.
All implementations of intervals (and thus of octagons and polyhedra, since we only
have one variable), will overshoot the imax = 19 target when using the traditional
widening and narrowing strategies: they will compute i ∈ [0, 0], then ∈ [0, 1],
∈ [0, 2] and widen to [0, +∞[, and narrowing will not reduce the interval. Even if
we replaced i == 20 by i >= 20, narrowing would still fail to reduce the interval
due to the nondeterministic choice since the concrete transfer function f , mapping
sets of states at the head of the loop to sets of states at the next iteration, is
expansive: for all set of states W , W ⊆ f(W ). This is a well-known weakness of
the widening/narrowing approach, and the workaround is a syntactic trick known
as widening up to or widening with thresholds : for all variables, the constants to
which it is compared are gathered and used as widening steps [11, Sec. 7.1.2]. This
syntactic approach fails if tests are more indirect, whereas our semantic approach
is not affected.

2.4.3. Synchronous Data Flow Example: Rate Limiter. To go back to the original
problem of floating-point data in data-flow languages, let us consider the following
library block: a rate limiter. When compiled into C, such a block in inserted in a re-
active loop, as shown below, where assume(c) stands for if (c) {} else {fail();}:

while (true) {

...

e1 = random(); assume(e1 >= e1min && e1 <= e1max);

e2 = random(); assume(e2 >= e2min && e2 <= e2max);

e3 = random(); assume(e3 >= e3min && e3 <= e3max);

olds1 = s1;

if (random) {

s1 = e3;

} else {

if (e1 - olds1 < -e2) {

s1 = olds1 - e2;

}
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if (e1 - olds1 > e2) {

s1 = olds1 + e2;

}

}

...

}

We are interested in the input-output behavior of that block: obtain bounds on
the output s1 of the system as functions of bounds on the inputs (e1, e2, e3). Note
that in this case, s1, e1, e2, e3 are streams, not single scalars. One difficulty is that
the s1 output is memorized, so as to be used as an input to the next computation
step. The semantics of such a block is therefore expressed as a fixed point.

We wish to know the least inductive invariant of the form s1min ≤ s1 ≤ s1max

under the assumption that e1min ≤ e1max ∧ e2min ≤ e2max ∧ e3min ≤ e3max. The
stability condition yields, after quantifier elimination and projection on s1max the
condition s1max ≥ e1max ∧ s1max ≥ e3max. Minimization then yields an expression
that can be compiled to an if-then-else tree:

if (e1max > e3max) {

s1max = e1max;

} else {

s1max = e3max;

}

This result, automatically obtained, coincides with the intuition that a rate lim-
iter (at least, one implemented with exact arithmetic) should not change the range
of the signal that it processes. This program fragment has a rather more complex
behavior if all variables and operations are IEEE-754 floating-point, since rounding
errors introduce slight differences of regimes between ranges of inputs (Sec. 3.4,
2.5). Rounding errors in the program to be analyzed introduce difficulties for an-
alyzes using widenings, since invariant candidates are likely to be “almost stable”,
but not truly stable, because of these errors. Again, there exist workarounds so
that widening-based approaches can still operate [11, Sec. 7.1.4].

2.5. Implementations and Experiments. We have implemented the techniques
of Sec. 2 in quantifier elimination packages, including Mathematica8 and Re-

duce 3.89 + Redlog10 in addition to our own package, Mjollnir [69].11 We
ignore which exact techniques are implemented within Mathematica. 12 Red-

log appears to implement some virtual substitution method [40, 94].
As test cases, we took a library of operators for synchronous programming,

having streams of floating-point values as input and outputs. These operators are

8Mathematica is a commercial computer algebra package available under an unfree license
from Wolfram Research [96].

9Reduce is a computer algebra package from Anthony C. Hearn, now available under a mod-
ified BSD licence.

10Redlog is an extension to Reduce for working over quantified formulas.
11Mjollnir is available under a free license from the author’s home page. In addition

to the author’s own quantifier elimination techniques, it implements Ferrante and Rackoff and
Loos and Weispfenning’s.

12Loos and Weispfenning’s quantifier elimination procedure is used by Mathematica to per-
form simplifications over linear inequalities [96, §A.9.5], but we are unsure whether this is the
algorithm called by the Reduce function.

http://www.wolfram.com
http://www.reduce-algebra.com/
http://www.redlog.eu
http://www-verimag.imag.fr/~monniaux/mjollnir.html.en
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written in a restricted subset of C and take as much as 20 lines. A front-end
based on CIL [73] converts them into formulas, then these formulas are processed
and the corresponding abstract transfer functions are pretty-printed. Since for our
application, it is important to bound numerical quantities, we chose the interval
domain.

For instance, the rate limiter presented in Sec. 2.4.3 was extracted from that
library. Since this operator includes a memory (a variable whose value is retained
from a call to the operator to the next one), its data-flow semantics is expressed
using a fixed-point. When considered with real variables, the resulting expanded
formula was approximately 1000 characters long, and with floating point variables
approximately 8000 characters long. Despite the length of these formulas, they can
be processed by Mjollnir in a matter of seconds. The result can then be saved
once and for all.

Analyzers such as Astrée [10, 11, 33] must have special knowledge about such
operators, otherwise the analysis results are too coarse (for instance, the intervals
do not get stabilized at all). The Astrée development team therefore had to
provide specialized, hand-written analyzes for certain operators. In contrast, all
linear floating-point operators in the library were analyzed within a fraction of a
second using the method in the present article, assuming that floating-point values
in the source code were real numbers. If one considered instead the abstraction of
floating-point computations using real numbers from Sec. 3.4, computation times
did not exceed 17 seconds per operator; the formulas produced are considerably
more complex than in the real case. Note that this computation is done once and
for all for each operator; a static analyzer can therefore cache this information for
further use and need not recompute abstractions for library functions or operators
unless these functions are updated.

Our analyzer front-end currently cannot deal with non-numerical operations and
data structures (pointers, records, and arrays). It is therefore not yet capable of
directly dealing with the real control-command programs that e.g. Astrée accepts,
which do not consist purely of numerical operators. We plan to integrate our
analysis method into a more generic analyzer. Alternatively, we plan to adapt a
front-end for synchronous programming languages such as Simulink, a tool widely
used by control/command engineers.

The correctness of the methods described in this article does not rely on any
particularity of the quantifier elimination procedure used, provided one also has
symbolic computation procedures for e.g. putting formulas in disjunctive normal
form and simplifying them. The difference between the various quantifier elimina-
tion and simplification procedures is efficiency; experiments showed that ours was
vastly more efficient than the others tested for this kind of application. For in-
stance, our implementation of our quantifier elimination algorithm [69] was able to
complete the analysis of the rate limiter of Sec. 2.4.3, implemented over the reals,
in 1.4 s, and in 17 s with the same example over floating-point numbers, while
Redlog took 182 s for the former and could not finish the latter, and Mathe-

matica could analyze neither (out-of-memory). On other examples, our quantifier
elimination procedure is faster than the other ones, or can complete eliminations
that the others cannot.
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3. Extensions to the Admissible Domains and Operations

The class of domains and program constructs of the preceding section may seem
too limited. We shall see here a few extensions.

3.1. Infinities. Consider the interval abstract domain, defined by x ≤ p2 ∧ −x ≤
p1. The techniques explained in Sec. 2.1 allow only finite bounds. Yet, it makes
sense that p1 and p2 could be equal to +∞ so as to represent infinite intervals. This
can be easily achieved by a minor alteration to our definitions. Each parameter pi

is replaced by two parameters pb
i and p∞i . p∞i is constrained to be in {0, 1} (if

the quantifier elimination procedure in use allows Boolean variables, then p∞i can
be taken as a Boolean variable); p∞i = 0 means that pi is finite and equal to pb

i ,
p∞i = 1 means pi = +∞. Li ≤ pi becomes (p∞i > 0) ∨ (Li ≤ pb

i), Li < pi

becomes (p∞i > 0)∨(Li < pb
i). After this rewriting, all formulas are formulas of the

theory of linear inequalities without infinities and are amenable to the appropriate
algorithms.

3.2. Non-Convex Domains. Section 2.1 constrains formulas to be conjunctions
of inequalities of the form Li ≤ pi. What happens if we consider formulas that may
contain disjunctions?

The template linear constraint domains of section 2.1 have a very important
property: they are closed under (infinite) intersection; that is, if we have a family
~p ∈ W , then there exist p0 such that

⋂

~p∈W γF (~p) = γF (~p0) (besides, p0 = inf{~p |
~p ∈ W}). This is what enables us to request the least element that contains the
exact post-condition, or the least inductive invariant in the domain: we take the
intersection of all acceptable elements.

Yet, if we allow non-convex domains, there does not necessarily exist a least
element γF (~p) such that S ⊆ γF (~p). Consider for instance S = {0, 1, 2} and F
representing unions of two intervals ((−x ≤ p1∧x ≤ p2)∨(−x ≤ p3∧x ≤ p4))∧p2 ≤
p3. There are two, incomparable, minimal elements of the form γF (~p): p1 = p2 =
0 ∧ p3 = −1 ∧ p4 = 2 and p1 = 0 ∧ p2 = 1 ∧ p3 = −2 ∧ p4 = 2.

We consider formulas F built out of linear inequalities Li(s1, . . . , sn) ≤ pi as
atoms, conjunctions, and disjunctions. By induction on the structure of F , we
can show that γF : (R ∪ {−∞})n → P(Rn) is inf-continuous; that is, for any
descending chain (~pi)i∈I such that limi ~pi = ~p∞, then γF (~pi) is decreasing and
⋂

i∈I γF (~pi) = γF (~p∞). The property is trivial for atomic formulas, and is conserved
by greatest lower bounds (∧) as well as binary least upper bounds (∨).

Let us consider a set S ⊆ P(Rn), stable under arbitrary intersection (or at least,
greatest lower bounds of descending chains). S can be for instance the set of invari-
ants of a relation, or the set of over-approximations of a set W . γ−1

F (S) is the set
of suitable domain parameters; for instance, it is the set of parameters representing
inductive invariants of the shape specified by F , or the set of representable over-
approximations of W . γ−1

F (S) is stable under greatest lower bounds of descending
chains: take a descending chain (~pi)i∈I , then γF (limi ~pi) = ∩iγF (~pi) ∈ S by inf-
continuity and stability of S. By Zorn’s lemma, γ−1

F (S) has at least one minimal
element.

Let P [~p] be a formula representing γ−1
F (S) (Sec. 2.1 proposes formulas defining

safe post-conditions and inductive invariants). The formula G[~p]
△

= P [~p]∧∀~p′ P [~p′]∧
~p′ ≤ ~p =⇒ ~p ≤ ~p′ defines the minimal elements of γ−1(S).
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For instance, consider ~p = (a, b, c, d), F
△

= (−x ≤ a ∧ x ≤ b) ∨ (−x ≤ c ∧ x ≤ d),
representing unions of two intervals [−a, b]∪[−c, d]. We want upper-approximations

of the set {0, 1, 3}; that is P [~p]
△

= ∀x (x = 0 ∨ x = 1 ∨ x = 3 =⇒ F [~p, x]). We
add the constraint that −a ≤ b ∧ b ≤ −c ∧ −c ≤ d, so as not to obtain the same
solutions twice (by exchange of (a, b) and (c, d)) or solutions with empty intervals.
By quantifier elimination over G, we obtain (a = 0∧ b = 1∧ c = −3∧ d = 3)∨ (a =
0 ∧ b = 0 ∧ c = −1 ∧ d = 3), that is, either [0, 0] ∪ [1, 3] or [0, 1] ∪ [3, 3].

3.3. Domain Partitioning. Non-convex domains, in general, are not stable un-
der intersections and thus “best abstraction” problems admit multiple solutions as
minimal elements of the set of correct abstractions. There are, however, non-convex
abstract domains that are stable under intersection and thus admit least elements
as well as the template linear constraint domains of Sec. 2.1: those defined by par-
titioning of the state space. Consider pairwise disjoint subsets (Ci)i∈I of the state
space Qm, and abstract domains stable under intersection (Si)i∈I , Si ⊆ P(Ci).
Elements of the partitioned abstract domain are unions

⋃

i∈I si where si ∈ Si.

If (
⋃

i si,j ])j∈J
is a family of elements of the domain, then

⋂

j∈J

(
⋃

i∈I si,j ]
)

=
⋃

i∈I

⋂

j∈J si,j ; that is, intersections are taken separately in each Ci.

Take a family (Fi[~p])i∈I of formulas defining template linear constraint domains
(conjunctions of linear inequalities Li(s1, . . . , sn) ≤ pi) and a family (Ci)i∈I of
formulas such that for all i and i′, Ci ∧ Ci′ is equivalent to false and C1 ∨ · · · ∨ Cl

is equivalent to true. F = (C1 ∧ F1) ∨ · · · ∨ (Cl ∧ Fl) then defines an an abstract
domain such that γF is a inf-morphism. All the techniques of Sec. 2.1 then apply.

3.4. Floating-Point Computations. Real-life programs do not operate on real
numbers; they operate on fixed-point or floating-point numbers. Floating point
operations have few of the good algebraic properties of real operations; yet, they
constitute approximations of these real operations, and the rounding error intro-
duced can be bounded.

In IEEE floating-point [54], each atomic operation (noting ⊕, ⊖, ⊗, ⊘,
√

f
for

operations so as to distinguish them from the operations +, −, ×, /,
√

over the

reals) is mathematically defined as the image of the exact operation over the reals
by a rounding function.13 This rounding function, depending on user choice, maps
each real x to the nearest floating-point value rn(x) (round to nearest mode, with
some resolution mechanism for non representable values exactly in the middle of
two floating-point values), r−∞(x) the greatest floating-point value less or equal to
x (round toward −∞), r+∞(x) the least floating-point value greater or equal to x
(round toward +∞), r0(x) the floating-point value of the same sign as x but whose
magnitude is the greatest floating-point value less or equal to |x| (round toward 0).
If x is too large to be representable, r(x) = ±∞ depending on the size of x

The semantics of the rounding operation cannot be exactly represented inside the
theory of linear inequalities.14 As a consequence, we are forced to use an axiomatic

13We leave aside the peculiarities of some implementations, such as those of most C compilers
over the 32-bit Intel platform where there are “extended precisions” types used for some temporary
variables and expressions can undergo double rounding. [72]

14To be pedantic, since IEEE floating-point formats are of a finite size, the rounding operation
could be exactly represented by enumeration of all possible cases; this would anyway be impossible
in practice due to the enormous size of such an enumeration.
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over-approximation of that semantics: a formula linking a real number x to its
rounded version r(x).

Miné [65] uses an inequality |r(x) − x| ≤ εrel · |x| + εabs, where εrel is a relative
error and εabs is an absolute error, leaving aside the problem of overflows. The
relative error is due to rounding at the last binary digit of the significand, while
the absolute error is due to the fact that the range of exponents is finite and thus
that there exists a least positive floating-point number and some nonzero values
get rounded to zero instead of incurring a relative error.

Because our language for axioms is richer than the interval linear forms used by
Miné, we can express more precise properties of floating-point rounding. We recall
briefly the characteristics of IEEE-754 floating-point numbers. Nonzero floating
point numbers are represented as follows: x = ±s.m where 1 ≤ m < 2 is the man-
tissa or significand, which has a fixed number p of bits, and s = 2e the scaling factor
(Emin ≤ e ≤ Emax is the exponent). The difference introduced by changing the last
binary digit of the mantissa is ±s.εlast where εlast = 2−(p−1): the unit in the last
place or ulp. Such a decomposition is unique for a given number if we impose that
the leftmost digit of the mantissa is 1 — this is called a normalized representation.
Except in the case of numbers of very small magnitude, IEEE-754 always works
with normalized representations. There exists a least positive normalized number
mnormal and a least positive denormalized number mdenormal, and the denormals
are the multiples of mdenormal less than mnormal. All representable numbers are
multiples of mdenormal.

Consider for instance floating-point addition or subtraction x = ±a ± b. Sup-
pose that 0 ≤ x ≤ mnormal. a and b are multiples of mdenormal and thus a − b is
exactly represented as a denormalized number; therefore r(x) = x. If x > mnormal,
then |r(x) − x| ≤ εrel.x. The cases for x ≤ 0 are symmetrical. We can there-
fore characterize r(x) − x using linear inequalities through case analysis over x:
Round+(a⊕ b, a + b) (respectively, Round+(a⊖ b, a− b)) holds, where

(12) Round+(r, x)
△

= (x ≤ mnormal∧r = x)∨(x > mnormal∧−εrel.x ≤ r−x ≤ εrel.x

(13) Round(r, x)
△

= (x = 0 ∧ r = 0) ∨ (x > 0 ∧ r ≥ 0 ∧Round+(r, x))∨
(x < 0 ∧ r ≤ 0 ∧Round+(−r,−x))

To each floating-point expression e, we associated a “rounded-off” variable re,
the value of which we constrain using Round(re, e) or Round+(re, e). For instance, a
expression e = a⊕b is replaced by a variable re, and the constraint Round+(re, a+b)
is added to the semantics. In the case of a compound expression e = ab + c, we
introduce e1 = ab, and we obtain Round+(re, re1

+ c) ∧Round(re1
, ab). If we know

that the compiler uses a fused multiply-add operator, we can use Round(re, ab + c)
instead.

3.5. Integers. We have mentioned in § 1.2.3 that Presburger arithmetic admits
quantifier elimination. Conceivably, we could handle integer programs using quan-
tifier elimination techniques sur as Cooper’s. Problems over the integers are however
more difficult than problems over the reals, which are already costly, and we did
not follow this direction.

Instead, we used a relaxation approach: all integers are treated as reals; strict
inequalities a < b where both sides are integers are recoded a ≤ b − 1. In some
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cases, such as the McCarthy 91 function example from §4.2, it is necessary to
constraint the reasoning procedures so that they consider that the negation of
a ≤ b is a ≥ b+1. We hope that improvements of quantifier elimination algorithms
will be able to allow a more elegant approach.

Another issue is that in many programming languages, integers are bounded and
that arithmetic operations are actually performed modulo 2n (with n typically 8,
16, 32 or 64). The problem then lies within an enormous, but finite, state space.
Clever techniques for reasoning about bit-vector arithmetic are being investigated
by the SMT-solving community. Again, we hope that future work will provide good
quantifier elimination techniques for this arithmetic, or combinations thereof with
the linear theory of reals.

4. Complex control flow

We have so far assumed no procedure call, and at most one single loop. We shall
see here how to deal with arbitrary control flow graphs and call graph structures.

4.1. Loop Nests. In Sec. 2.4, we have explained how to abstract a single fixed
point. The method can be applied to multiple nested fixed points by replacing
the inner fixed point by its abstraction. For instance, assume the rate limiter of
Sec. 2.4.3 is placed inside a larger loop. One may replace it by its abstraction:

if (e1max > e3max) {

s1max = e1max;

} else {

s1max = e3max;

}

assume(s1 <= s1max);

/* and similar for s1min */

Alternatively, we can extend our framework to an arbitrary control flow graph
with nested loops, the semantics of which is expressed as a single fixed point. We
may use the same method as proposed by Gulwani et al. [51, §2] and other authors.
First, a cut set of program locations is identified; any cycle in the control flow graph
must go through at least one program point in the cut set. In widening-based fixed
point approximations, one classically applies widening at each point in the cut set.
A simple method for choosing a cut set is to include all targets of back edges in a
depth-first traversal of the control-flow graph, starting from the start node; in the
case of structured program, this amounts to choosing the head node of each loop.
This is not necessarily the best choice with respect to precision, though [51, §2.3];
Bourdoncle [14, Sec. 3.6] discusses methods for choosing such as cut-set.

To each point in the cut set we associate an element in the abstract domain,
parameterized by a number of variables. The values of these variables for all points
in the cut-set defines an invariant candidate. Since paths between elements of
the cut sets cannot contain a cycle, their denotational semantics can be expressed
simply by an existentially quantified formula. Possible paths between each source
and destination elements in the cut-set defined a stability condition (Formula 5).
The conjunction of all these stability conditions defines acceptable inductive invari-
ants. As above, the least inductive invariant is obtained by writing a minimization
formula (Sec. 2.4).

Let us take a simple example:
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i=0;

while(true) { /* A */

if (choice()) {

j=0;

while(j < i) { /* B */

/* something */

j=j+1;

}

i=i+1;

if (i==20) {

i=0;

}

} else {

/* something */

}

}

We choose program points A and B as cut-set. At program point A, we look for

an invariant of the form IA(i, j)
△

= imin,A ≤ i ≤ imax,A, and at program point B, for

an invariant of the form IB(i, j)
△

= imin,B ≤ i ≤ imax,B ∧ jmin ≤ j ≤ jmax ∧ δmin ≤
i − j ≤ δmax (a difference-bound invariant). The (somewhat edited for brevity)
stability formula is written:

(14) ∀j IA(0, j) ∧ ∀i∀j ((IB(i, j) ∧ j ≥ i ∧ (i + 1 ≤ 19∨
i + 1 = 20 ∨ i + 1 ≥ 21))⇒ If[i + 1 = 20, IA(0, j), IA(i + 1, j)])∧

∀i∀j (IA(i, j)⇒ IB(i, 0)) ∧ ∀i∀j ((IB(i, j) ∧ j < i)

⇒ IB(i, j + 1))

Replacing IA and IB into this formula, then applying quantifier elimination, we
obtain a formula defining all acceptable tuples (imin,A, imax,A, imin,B, imax,B, jmin, jmax, δmin, δmax).
Optimal values are then obtained by further quantifier elimination: imin,A = imin,B =
jmin = 0, imax,A = imax,B = 19, jmax = 20, δmin = 1, δmax = 19.

The same example can be solved by replacing 20 by another variable n as in
Sec. 2.4.2.

4.2. Procedures and Recursive Procedures. We have so far considered ab-
stractions of program blocks with respect to sets of program states. A program
block is considered as a transformer from a state of input program states to the
corresponding set of output program states. The analysis outputs a sound and
optimal (in a certain way) abstract transformer, mapping an abstract set of input
states to an abstract set of output states.

Assuming there are no recursive procedures, procedure calls can be easily dealt
with. We can simply inline the procedure at the point of call, as done in e.g.
Astrée [10, 11, 33]. Because inlining the concrete procedure may lead to code
blowup, we may also inline its abstraction, considered as a nondeterministic pro-
gram. Consider a complex procedure P with input variable x and output variable
x. We abstract the procedure automatically with respect to the interval domain
for the postcondition (mz ≤ z ≤ Mz); suppose we obtain Mz := 1000; mz := x
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then we can replace the function call by z <= 1000 && z >= x. This is a form of
modular interprocedural analysis: considering the call graph, we can abstract the
leaf procedures, then those calling the leaf procedures and so on. This method is
however insufficient for dealing with recursive procedures.

In order to analyze recursive procedures, we need to abstract not sets of states,
but sets of pairs of states, expressing the input-output relationships of procedures.
In the case of recursive procedures, these relationships are the least solution of a
system of equations.

To take a concrete example, let us consider McCarthy’s famous “91 function” [61,
62], which, non-obviously, returns 91 for all inputs less than 101:

int M(int n) {

if (n > 100) {

return n-10;

} else {

return M(M(n+11));

}

}

The concrete semantics of that function is a relationship R between its input n
and its output r. It is the least solution of

(15) R ⊇ {(n, r) ∈ Z2 | (n > 100 ∧ r = n− 10)∨
(n ≤ 100 ∧ ∃n2 ∈ Z(n + 11, n2) ∈ R ∧ (n2, r) ∈ R)}

We look for a inductive invariant of the form I
△

= ((n ≥ A)∧(r−n ≥ δ)∧(r−n ≤
∆)) ∨ ((n ≤ B) ∧ (r = C)), a non-convex domain (Sec. 3.2). By replacing R by I
into inclusion 15, and by universal quantification over n, r, n2, we obtain the set of
admissible parameters for invariants of this shape. By quantifier elimination, we
obtain (C = 91) ∧ (δ = ∆ = −10) ∧ (A = 101) ∧ (B = 100) within a fraction of a
second using Mjollnir (see Sec. 2.5).

In this case, there is a single acceptable inductive invariant of the suggested
shape. In general, there may be parameters to optimize, as explained in Sec. 2.4.
The result of this analysis is therefore a map from parameters defining sets of
states to parameters defining sets of pairs of states (the abstraction of a transition
relation). This abstract transition relation (a subset of X × Y where X and Y are
the input and output state sets) can be transformed into an abstract transformer
in X♯ → Y ♯ as explained in Sec. 2.2. Such an interprocedural analysis may also be
used to enhance the analysis of loops [63].

5. Optimal abstraction over polynomial constraint domains

We now consider the abstraction of program states (in RV ) using domains defined
by polynomial constraints, a natural extension of those seen previously (§2.1); the
orthogonal extensions from § 3 also apply. Instead of quantifier elimination in linear
real arithmetic, we shall use quantifier elimination in the theory of real closed fields.
One difference, though, is that we will not be able to produce nice, closed form
formulas.

5.1. Generalization. We generalize the constructs of §2, except those of § 2.3, to
formulas over polynomial inequalities.

The same results hold:



26 DAVID MONNIAUX

• For any loop-free program code, and any template polynomial abstract
domain with parameters p1, . . . , pn, there is a family of formulas F1, . . . , Fn

that uniquely defines the optimal parameters p′1, . . . , p
′

n of the postcondition
with respect those p1, . . . , pn in the precondition (the free variables of Fi

are among p1, . . . , pn, p′i).
• For any loop, and any template polynomial abstract domain with parame-

ters p1, . . . , pn, there is a family of formulas F1, . . . , Fn that uniquely defines
the optimal parameters p′1, . . . , p

′

n of the least inductive invariant for that
loop, with respect those p1, . . . , pn in the precondition (the free variables of
Fi are among p1, . . . , pn, p′i).

The main obstacle is the high cost of quantifier elimination in the theory of
real closed fields. The other crucial difference is that it is in general impossible to
move from such a formulas to a formula computing p′i from p1, . . . , pn, as we did
in § 2.3. By performing the cylindrical algebraic decomposition with the variable
p1, . . . , pn first, we could obtain the a tree structure with case disjunctions, as the
output of Algorithm 1. But at the leaves, we would obtain formulas defining p′i
as a specific root of a polynomial in the variable p′i, with coefficients themselves
polynomials in p1, . . . , pn. The Abel-Ruffini theorem, from Galois theory, states
that for polynomials in one variable of degrees higher or equal to 5, there is in
general no way to express the value of the roots using only arithmetic operations
(+, −, ×, /) and radicals ( n

√
). This implies that, in general, there is no way

to convert the leaves of the case disjunction tree into formulas giving the p′i as
expressions built from p1, . . . , pn, arithmetic operations (+, −, ×, /) and radicals
( n

√
).
Let us now assume that there are no precondition parameters p1, . . . , pn or,

equivalently, that we know exactly their value. Would it be at least possible to
compute the values of the p′i? Each of these numbers is defined as the unique
solution of a conjunction of polynomial equalities and inequalities. We shall now
see that it is possible to compute these numbers to arbitrary precision from such a
representation.

5.2. Computable reals. Our abstract domains will “compute” reals in an indirect
way: instead of computing the value of a real number (which is impossible to do
exactly in most cases), the abstract domain will define it as the unique solution of

a quantifier-free formula with one variable; for instance,
√

2 would be defined as
the unique x such that x2 = 2 ∧ x > 0. In this section, we show that given such
a characterization, one can algorithmically bound the real number with arbitrary
precision; that is, given ε ∈ Q, ε > 0, obtain m, M ∈ Q such that m ≤ x ≤M and
M−m ≤ ε. More generally, we shall show that for any quantifier-free formula in the
theory of real closed fields with one free variable, we can obtain a finite description
of its domain of validity, such that all numbers used inside the description are
computable with arbitrary precision.15

We define computable reals through approximation functions : instead of a real r,
which cannot be represented directly in a machine, we shall consider a computable
function r̃ taking a positive rational number ε as a parameter and outputting a

15This is a generalization of a result of Turing, that real algebraic numbers are computable
[92, §1.vi].
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couple (m, M) of rational numbers such that M −m ≤ ε and m ≤ r ≤ M , called
an ε-approximation.16

We shall give our algorithms in a “literate programming” or “proof-carrying
code” fashion, mixing each algorithm with a proof of its correctness. For the sake
of simplicity, we preferred to give all algorithms “from scratch” instead of relying
on advanced techniques.17

Let a and b be computable reals given by approximation functions ã and b̃. It is
straightforward to compare these two numbers, provided that we know that they
are different.

Algorithm 5.1 (Compare — Compare two computable reals known to be differ-
ent). If a 6= b, then there is an algorithm that decides whether a < b or a > b given

approximation functions ã and b̃: start with ε = 1; compare the intervals ã(ε) and

b̃(ε); if they do not overlap, the case is settled, otherwise divide ε by 10 and try
again. The algorithm will terminate at the latest when ε < |b− a|/2.

This algorithm loops forever if a = b. Throughout the rest of this section,
we shall take precautions so that we never use Compare on operands that could
be equal.18 We then define elementary arithmetic operators over approximation
functions:

Algorithm 5.2 (Plus — Add two computable reals). a + b is also a computable
real: for ε > 0, compute ε/2-approximations [ma, Ma] of a, [mb, Mb] of b, and
output [ma + mb, Ma + Mb] as a ε-approximation of a + b.

A similar algorithm works for a− b, defining Minus.

Algorithm 5.3 (Mult — Multiply two computable reals). • compute a 1/2-
approximation [ma, Ma] of a; if 0 ∈ [ma, Ma], then write a ·b = (a+1) ·b−b
and the problem is reduced to the case where a cannot be zero;
• decide whether a < 0 or a > 0 by testing whether ma < 0: if a < 0, write

a · b = −((−a) · b) and the problem is reduced to the case where a > 0; we
also have computed a upper bound La ∈ Q of a;
• do similarly with b and the problem is reduced to the case where b > 0; we

also have computed a upper bound Lb ∈ Q of b;
• compute a ε/(2Lb)-approximation [ma, M ′

a] of a and a ε/(2La)-approxima-
tion [mb, M

′

b] of b; let MA = min(M ′

A, La) and Mb = min(M ′

b, Lb) and out-
put [mamb, MaMb]; this is a ε-approximation of a.b since MaMb−mamb =
Ma(Mb −mb) + mb(Ma −ma) ≤ ε.

Now for three algorithms that will be later used as subroutines:

16Turing’s original characterization of the class of computable reals [92] [93, Def. 4.1.12] used
machines that enumerated the decimals of the number. The class of computable reals defined
in this fashion is identical to ours, but there are drawbacks to this representation: it may be
necessary in order to compute the n-th digit of a result to go arbitrarily far in the representation
of the operands. We thus rather use a representation very close to that of Weihrauch [93, §1.3.2]

17Alternatively, the same result may be reached using published algorithms [7, Alg. 10.4 to
10.17] for isolating roots of polynomials, pairs of polynomials or finding the sign of a polynomial
at the roots of another, together with a dichotomy solving method.

18This is actually an essential restriction of any representation of computable reals. [93,
Th. 4.1.16]
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Algorithm 5.4 (DecideSign — Decide the sign of P (x) if P (x) 6= 0). It follows
that if P ∈ Q[X ], and r is a real given by r̃ such that P (r) 6= 0, then we can
decide whether P (r) < 0 or P (r) > 0 using Plus and Mult over the polynomial
structure, then Compare.

Algorithm 5.5 (FindRoot — Find the unique root of P in an interval [r1, r2]
of monotonicity). Let r1 < r2, given by r̃1 and r̃2, and P a polynomial such
that P is strictly increasing over [r1, r2], P (r1) < 0 and P (r2) > 0. Let ε > 0.
Compute [m1, M1] a ε-approximation of r1 and [m2, M2] an ε-approximation of r2.
If P (M1) ≥ 0, then [m1, M1] is an ε-approximation of r0. If P (m2) ≤ 0, then
[m2, M2] is a ε-approximation of r0. We thus suppose P (M1) < 0 and P (m2) > 0
and apply a dichotomy algorithm between the two, until we reach the desired
precision.

Algorithm 5.6 (FindRootInf — Find the unique root of P in an interval
(−∞, r2] of monotonicity19). If we know that P is strictly increasing on (−∞, r2],
P (r2) > 0, noting r the root of P such that r < r2, then, similarly, let ε > 0;
compute [m2, M2] a ε-approximation of r2; if P (m2) ≤ 0 then [m2, M2] is a ε-
approximation of r. If P (m2) > 0 then take k ∈ N, −k < m2, k increasing until
P (−k) < 0; then apply the dichotomy algorithm between −k and m2.

Let us recall a familiar result, which we shall use with K = Q and K ′ = R:

Lemma 1. Let K be a field and K ′ an extension of K. If ξ ∈ K ′ is a common
root of nonzero polynomials P and Q from K[X ], then it is a root of their greatest
common divisor gcd(P, Q) in K[X ]. Thus, co-prime polynomials have no common
root.

Proof. K[X ] is a principal ring [59, Ch. 4, Th. 1.2], there exist polynomials A and
B in K[X ] such that gcd(P, Q) = A.P + B.Q. The result follows by applying both
members of the equation to ξ. �

Several of our algorithms operate on sign diagrams. A sign diagram for a nonzero
polynomial P ∈ Q[X ] is a sequence −, r̃1, +, r̃2,−, r̃3, +, . . . , r̃n, +, where the r̃i

are approximation functions for the roots of P . Such a diagram means that the
polynomial function P (x) is negative for large negative x, then passes a root r1

that can be approximated to arbitrary precision by r̃1, then becomes positive, etc.
Sign diagrams for polynomials of degrees 0 and 1 are straightforward to com-

pute, as are the first and final signs of the diagram for any polynomial, which are
obtained from the parity of the degree of the polynomial and the sign of the leading
coefficient. Given the diagram of P and a nonnegative exponent e, it is straightfor-
ward to compute the diagram for P e; and given the diagram for P and a coefficient
a ∈ Q, it is also straightforward to compute the diagram for aP .

Given two polynomials P and Q with no common roots, one obtains the sign
diagram for P.Q through a simple sorted list merging procedure using Compare.
This algorithm, however, does not apply in case P and Q have common roots.
We use the fact (Lem. 1) that the common roots of P and Q are the roots of
the greatest common divisor gcd(x, y) of these polynomials to work around this
difficulty. gcd(x, y) can be computed using Euclid’s algorithm.

19We note open intervals (a, b), closed intervals [a, b].
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Algorithm 5.7 (SignDiagram — Compute the sign diagram of a polynomial).
We shall now show how to compute the sign diagram of a polynomial P by induction
on the degree n of P . We have already noted that it is trivial to compute diagrams
for polynomials of degrees 0 and 1. We now shall suppose that we can compute the
sign diagrams of polynomials of degree less than n, and show that we can compute
the sign diagram of a polynomial of degree n. First, define a subroutine:

Algorithm 5.8 (SignDiagramProduct — ). Take as input a list (P1, e1), . . . ,
(Pm, em) of couples each formed of a polynomial of degree less than n and a positive
exponent, output the sign diagram of the product P e1

1 × · · · ×P em

m . We proceed by
induction on the sum of the degrees of P1, . . . , Pm. If this sum is 0 or 1, then the
case is trivial.

• Check whether there exist Pi and Pj (i 6= j) not co-prime; if so, compute
Qi = Pi/ gcd(Pi, Pj) and Qj = Pj/ gcd(Pi, Pj), then replace (Pi, ei) and
(Pj , ej) by (Qi, ei), (Qj , ej), (gcd(Pi, Pj), ei + ej) in the list. The sum of
the degrees has decreased by the degree of gcd(Pi, Pj), but the product
P e1

1 × · · · × P em

m has stayed the same, and thus we can solve the problem
through a recursive call.
• Otherwise, the Pi are pairwise co-prime. Since they all have degree less

than n, we can obtain their sign diagrams. We then apply the exponent
algorithm, then the algorithm for the sign diagrams of a product of poly-
nomials with no common roots.

Consider now a polynomial P of degree n.

• If P and its derivative P ′ are not co-prime, then let Q = P/ gcd(P, P ′). Q
and gcd(P, P ′) will have degree at most n− 1, so we can invoke SignDia-

gramProduct and obtain the sign diagram of their product P .
• If they are co-prime: P only has single roots. Compute the sign diagram

of P ′, which gives us intervals of monotonicity for P . Then, compute the
sign diagram of P as follows:

– The leftmost sign is deduced from the leading coefficient and parity
of the degree of P . Without loss of generality, we shall suppose it is
positive.

– Compute the sign of P (r1) (using DecideSign) where r1 is the first
root in the sign diagram of P ′; this is possible because r1 is not a root
of P . If it is negative, search for a root of P to the left of r1 using
FindRootInf.

– For each subsequent root rk of P ′, compute the sign of P (rk) (using
DecideSign), and if it is different from the sign of P (rk−1), search
for a root of P in [rk−1, rk] using FindRoot.

For a system S of polynomial equalities or inequalities over a real variable x, we
call validity diagram a sequence b0, r1(B1), b1, r2(B2), . . . , rm(Bm) where r1, . . . , rm

are given by approximation functions r̃1, . . . , r̃m, and the bi and Bi are booleans; b0

says whether S is always or never satisfied over (−∞, r1), B1 whether S is satisfied
at r1, b1 whether S is always or never satisfied over (r1, r2) and so on.

Algorithm 5.9 (Domain — Domain of validity of a quantifier-free formula with
one free variable). Consider now a quantifier-free formula F with one free variable,
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made up of of polynomial equalities and inequalities Pi ⊲⊳ 0. Similarly as in SignDi-

agramProduct, take greatest common divisors until obtaining a base Bk of pair-
wise co-prime polynomials such that for all i, Pi can be written Pi = Be1

1 ×· · ·×Bem

m .
Compute the sign diagrams of all Bk. The validity diagram of F can be computed
from the Bk using, as previously, a variant of the merging of sorted lists and the
fact the Bk, pairwise, have no common roots.

By preprocessing formulas through quantifier elimination, we can algorithmically
approximate to arbitrary precision any (algebraic) real defined by a formula in the
theory of real closed fields.

Corollary 2. If F is a formula of the theory of real closed fields with one free
variable, such that F defines a single real, then this real is algebraic and can be
algorithmically approximated to arbitrary precision.

6. Related work

There is a sizeable amount of literature concerning relational numerical abstract
domains; that is, domains that express constraints between numerical variables.
Convex polyhedra were proposed in the 1970s [32, 53], and there have been since
then many improvements to the technique; a bibliography was gathered by Bag-
nara et al. [4]. Algorithms on polyhedra are costly and thus a variety of do-
mains intermediate between simple interval analysis and convex polyhedra were
proposed [21, 64, 85]. All these domains compute invariants using a widening op-
erator [30, 31, 32], as described in §1.1. There is, however, no guarantee that the
resulting invariant is the best representable in the abstract domain, even with the
use of narrowing iterations; this is one difference with our proposal, which computes
the best representable inductive invariant.

Another difference is that these domains are designed to work with numerical
values for the input constraints, thus the computation must be done for every value
of the input constraints parameters. Using simple program transformations, they
may also apply to symbolic input constraints (constraint parameters being taken as
extra variables), but in general this will lead to bad results; for instance, the input-
output relationship for the rate limiter of Sec. 2.4.3 is not convex, while numerical
abstract domains in the literature are convex. In comparison the algorithm in this
article can be run once to obtain a formula that gives the best invariant depending
on the input constraints, allowing modular analysis.

Several methods have been proposed to synthesize invariants without using
widening operators [24, 28, 84]. In common with us, they express as constraints the
conditions under which some parametric invariant shape truly is an invariant, then
they use some resolution or simplification technique over those constraints. Again,
these methods are designed for solving the problem for one given set of constraints
on the inputs, as opposed to finding a relation between the output or fixed-point
constraints and the input constraints. In some cases, the invariant may also not be
minimal.

Bagnara et al. [5, 6] proposed improvements over the “classical” widenings on
linear constraint domains [53]. Gopan and Reps [50] introduced “lookahead widen-
ings”: standard widening-based analysis is applied to a sequence of syntactic restric-
tions of the original program, which ultimately converges to the whole programs;
the idea is to distinguish phases or modes of operation in order to make the widening
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more precise. Gonnord [48], Gonnord and Halbwachs [49] have proposed accelera-
tion techniques for linear constraints. These do not replace widenings altogether,
but they alleviate the need for some of the costly workarounds to the imprecision
introduced by widenings, such as delayed widening [11, Sec. 7.1.3]. These address
a different problem from ours. On the one hand, neither improved widenings nor
acceleration guarantee that the inductive invariant obtained at the end is the least
one (indeed, they can yield the top element ⊤). 20 Furthermore, the invariant that
these methods obtain is not parametric in the precondition, contrary to the one
that our method obtains. On the other hand, improved widenings work regardless
of the form of the transition relation, which our method constrains to be piecewise
linear. Some of the cited methods operate on general polyhedra, while our method
constrains the shape of the polyhedra that are found to a certain template.

Gawlitza and Seidl [47] proposed replacing the usual widening / narrowing it-
eration techniques by a policy iteration (or strategy iteration) approach. Their
approach converges on a fixed point, but not necessarily the least one. Their idea
is to replace computing the least fixed point of a complex abstract operator (the
point-wise minimum of a family of simpler operators) by a sequence of least fixed
point computations for these simple operators. Their technique anyway needs to
compute these latter least fixed points, and it is possible that our method can help
in that respect. Adjé et al. [1], Costan et al. [27], Gaubert et al. [46] proposed a
different policy iteration approach, by downwards iterations providing successive
over-approximations of the least fixed point.

Gulwani et al. [51] have also proposed a method for generating linear invari-
ants over integer variables, using a class of templates. The methods described in
the present article can be applied to linear invariants over integer variables in two
ways: either by abstracting them using rationals (as in examples in Sec. 2.4.2, 4.1),
either by replacing quantifier elimination over rational linear arithmetic by quanti-
fier elimination over linear integer arithmetic, also known as Presburger arithmetic
(§3.5). Gulwani et al. instead chose to first consider integer variables as rationals,
so as to be able to compute over rational convex polyhedra, then bound variables
and constraint parameters so as to model them as finite bit vectors, finally obtain-
ing a problem amenable to SAT solving. Program variables are finite bit vectors in
most industrial programming languages, and parameters to useful invariants over
integer variables are often small, thus their approach seems justified. We do not
see, however, how their method could be applied to programs operating over real
or floating-point variables, which are the main motivation for the present article.

The idea of producing procedure summaries [88] as formulas mapping input
bounds to output bounds is not new. Rugina and Rinard [83], in the context of
pointer analysis (with pointers considered as a base plus an integer offset), proposed
a reduction to linear programming. This reduction step, while sound, introduces
an imprecision that is difficult to measure in advance; our method, in contrast,
is guaranteed to be “optimal” in a certain sense. Rugina and Rinard’s method,
however, allows some nonlinear constructs in the program to be analyzed. Martin
et al. [63] proposed applying interprocedural analysis to loops.

20There exist exact acceleration techniques but these rather apply to discrete automata.
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Seidl et al. [87] also produce procedure summaries as numerical constraints.
Our procedure summaries are implementations of the corresponding abstract trans-
former over some abstract domain, while theirs outputs a relationship between in-
put and output concrete values. Their analysis considers a convex set of concrete
input-output relationships, expressed as a simplices, a restricted class of convex
polyhedra. This restriction trades precision for speed: the generator and constraint
representations of simplices have approximately the same size, while in general poly-
hedra exponential blowup can occur. Tests by arbitrary linear constraints cannot
be adequately represented within this framework. Seidl et al. [87, Sec. 4] propose
deferring those constraints using auxiliary variables; this, however, loses some preci-
sion. Their analysis and ours are therefore incomparable, since they make different
choices between precision and efficiency.

Lal et al. [58] proposed an interprocedural analysis of numerical properties of
functions using weighted pushdown automata. The “weights” are taken in a finite
height abstract domain, while the domains we consider have infinite height.

In earlier works we have proposed a method for obtaining input-output rela-
tionships of digital linear filters with memories, taking into account the effects of
floating-point computations [68]. This method computes an exact relationship be-
tween bounds on the input and bounds on the output, without the need for an
abstract domain for expressing the local invariant; as such, for this class of prob-
lems, it is more precise than the method from this article. This technique, however,
cannot be easily generalized to cases where the operator block contains tests and
other nonlinear constructs; the semantics of nonlinear constructs must be approxi-
mated by e.g. interval analysis.

There have been several published approaches to finding nonlinear relationships
between program variables. One approach obtains polynomial equalities through
computations on ideals using Gröbner bases [81]. This work only deals with equal-
ities (not inequalities), uses a classical approach of computing output constraints
from a set of input constraints (instead of finding relationships between the two sets
of constraints), and deals with loops using a widening operator. In comparison, our
approach abstracts whole program fragments, and is modular — it is possible to
“plug” the result of the analysis of a procedure at the location of a procedure call.

Kapur [56] also proposed to use quantifier elimination to obtain invariants: he
considers program invariants with parameters, and derives constraints over those
parameters from the program. Our work improves on his by noting that least
invariants of the chosen shape can be obtained, not just any invariant; that the
abstraction can be done modularly and compositionally (a program fragment can
be analyzed, and the result of its analysis can be plugged into the analysis of a larger
program), or combined into a “conventional” abstract interpretation framework (by
using invariants of a shape compatible with that framework), and that the resulting
invariants can be “projected” to obtain numerical quantities.

7. Conclusion and future prospects

Writing static analyzers by hand has long been found tedious and error-prone.
One may of course prove an existing analyzer correct through assisted proof tech-
niques, which removes the possibility of soundness mistakes, at the expense of
much increased tediousness. In this article, we proposed instead effective meth-
ods to synthesize abstract domains by automatic techniques. The advantages are
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twofold: new domains can be created much more easily, since no programming is
involved; a single procedure, testable on independent examples, needs be written
and possibly formally proved correct. To our knowledge, this is the first effective
proposal for generating numerical abstract domains automatically, and one of the
few methods for generating numerical summaries. Also, it is also the only method
so far for computing summaries of floating-point functions.

We have shown that floating-point computations could be safely abstracted using
our method. The formulas produced are however fairly complex in this case, and
we suspect that further over-approximation could dramatically reduce their size.
There is also nowadays significant interest in automatizing, at least partially, the
tedious proofs that computer arithmetic experts do and we think that the kind of
methods described in this article could help in that respect.

We have so far experimented with small examples, because the original goal of
this work was the automatic, on-the-fly, synthesis of abstract transfer functions
for small sequences of code that could be more precise than the usual composition
of abstract of individual instructions, and less tedious for the analysis designer
than the method of pattern-matching the code for “known” operators with known
mathematical properties. A further goal is the precise analysis of longer sequences,
including integer and Boolean computations. We have shown in Sec. 3.3 how it
was possible to partition the state space and abstract each region of the state-space
separately; but naive partitioning according to n Booleans leads to 2n regions,
which can be unbearably costly and is unneeded in most cases. We think that
automatic refinement and partitioning techniques [55] could be developed in that
respect.

The main practical application that we envision is to be able to analyze numerical
operator blocks from synchronous programming languages such as Simulink,21

Scicos,22 Lustre,23 Scade24 or Sao,25 which are widely used for programming
control systems [3], particularly in the automative and avionic industries. In order
to obtain good analysis precision, such blocks often have to be analyzed as a whole
instead of decomposing them into individual components and applying individual
transfer functions, as in our rate limiter example. The static analysis tool Astrée

[11, 33, 34, 35, 39, 89] outputs few, if any, false alarms on some classes of control
programs because it has specific specialized transfer functions for certain operator
blocks or coding patterns. Such transfer functions had to be implemented by hand;
the techniques described in the present article could have been used to implement
some of them automatically and even on-the-fly.

21Simulink is a graphical dataflow modeling tool sold as an extension to the Matlab numerical
computation package. It allows modeling a physical or electrical environment along the comput-
erized control system. A code generator tool can then provide executable code for the control
system for a variety of targets, including generic C. Simulink is available from The Mathworks.

22Scicos is a graphical dataflow modeling tool coming with the Scilab numerical computation
package, similar in use to Simulink. [18] It is available from INRIA under the GNU General Public
License and also has code generation capabilities.

23Lustre is a synchronous programming language, from which code can be generated for a
variety of platforms [19].

24Scade is a graphical synchronous programming language derived from Lustre. It is available
from Esterel Technologies. It was used for implementing parts of the Airbus A380 fly-by-wire
systems, among others. [39, 89]

25Sao is an earlier industrial graphical synchronous programming language, used, for imple-
menting parts of the Airbus A340 fly-by-wire systems [16], among others.

http://www.mathworks.com/
http://www.scicos.org/
http://www.esterel-technologies.com/
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There are two important drawbacks to our method. One is the high cost of
quantifier elimination. Despite our work on new algorithms [69], in which we are
still making progress, scalability remains an issue. The other one is the necessity to
provide templates with a fixed number of parameters; in comparison to polyhedral
analysis [32, 53], this means that we have to decide in advance the directions of the
faces of the polyhedron, whereas polyhedral analysis discovers them. Possible so-
lutions could include running the polyhedral analysis first, obtaining the directions
of the faces in the resulting invariant, then using these directions in the template;
the resulting parameters could be tighter than the ones obtained by polyhedral
analysis.
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interprétation abstraite. PhD thesis, École polytechnique, Palaiseau, 1992.
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par les variables d’un programme. State doctorate thesis, Université scientifique
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[65] Antoine Miné. Relational abstract domains for the detection of floating-
point run-time errors. In David Schmidt, editor, Programming Languages
and Systems (ESOP), number 2986 in LNCS, pages 3–17. Springer, 2004.
ISBN 3-540-21313-9. doi: 10.1007/b96702.
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