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Mathematical Analysis for some Hyperbolic-Parabolic Coupled Problems

We deal with the mathematical analysis of the coupling problem in a bounded domain of R n , n ≥ 1, between a purely quasilinear first-order hyperbolic equation set on a subdomain and a parabolic one, set on its complementary. We start by providing the definition of a weak solution through an entropy inequality on the whole domain. The uniqueness property relies on a pointwise inequality along the interface between the two subdomains and on the method of doubling variables. The existence proof is based on a vanishing viscosity method.

Introduction 1.Presentation

Let Ω be a bounded domain of R n with a Lipschitz boundary Γ = ∂Ω, n ≥ 1, such that Ω = Ω h ∪ Ω p . We suppose that Ω h (the hyperbolic zone) and Ω p (the parabolic one) are two disjoint bounded domains with Lipschitz boundaries Γ l ≡ ∂Ω l , l ∈ {h, p}. We denote the interface by Γ hp = Γ h ∩ Γ p and assume that for l in {h, p}, the set (Γ hp ∩ (Γ l \ Γ hp )) has a zero H n-1 -measure. Let T be a finite positive real number: we are interested in the uniqueness and existence of a measurable and bounded function u on Q ≡ (0, T ) × Ω satisfying (at least in a distributional sense)   

∂ t u + div x (b(x)f (u)) + g(t, x, u) = div x (I Ωp (x)∇φ(u)) in Q, u = 0 on Σ ≡ (0, T ) × Γ, u(0, .) = u 0 on Ω, (1) 
for discontinuous fluxes and reaction terms given by:

b(x)f (u) = b h (x)f h (u)I Ω h + b p (x)f p (u)I Ω p , g(t,
x, u) = g p (t, x, u)I Ω p (x) + g h (t, x, u)I Ω h (x).

Here for each set A ⊂ Ω, I A (x) = 1 if x ∈ A, 0 else. With these notations, the equation in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] is reduced to the hyperbolic first-order equation

∂ t u + div x (b h (x)f h (u)) + g h (t, x, u) = 0 in Q h ≡ (0, T ) × Ω h , 1
and to the parabolic one

∂ t u + div x (b p (x)f p (u)) + g p (t, x, u) = ∆φ(u) in Q p ≡ (0, T ) × Ω p .
Furthermore it implicitly contains the (formal) transmission condition along the interface:

b p f p (u) -b h f h (u) • ν h = ∇φ(u) • ν h on Σ hp .
(

) 2 
As mentioned in [START_REF] Gastaldi | Coupling of two-dimensional hyperbolic and elliptic equations, Comput[END_REF], this type of problem arises from several physical applications that are modelled by a global advection-diffusion-reaction in the whole Ω. However, in these problems, the diffusive term may be relevant only in a subregion Ω p (which clearly depends on the problem in hands) while it can be neglected in the rest of the domain Ω, without affecting the solution in a sensible way.

Fluid dynamics is among the field that benefit largely from a coupling approach of the type considered here. For example, we may consider viscous-compressible flows around a rigid profile (e.g. an aerofoil). Physical evidence suggests that viscosity effects are negligible apart from a small region close to the rigid body. So that the mathematical modelling of the problem may lead to use equations with different character (precisely Euler, Navier-Stokes equations) in separate regions, by dropping viscous terms when they are very small.

Another example is provided by a heat transfer problem such as a forced incompressible flow over a heated plate. In such a case, the thermal diffusivity is much more important in the boundary layer than elsewhere (here the reduced equation of conservation of energy can be assumed to describe the flows field). The velocity field can be evaluated independently from the temperature while the latter is the solution to an advection-diffusion equation in which the transport field is given precisely by the (known) velocity. Away from the boundary layer, the diffusive term may be neglected.

We complete this introduction with a last example, within the framework of infiltration processes through a stratified subsoil viewed as an heterogeneous porous medium with different geological characteristics in each layer, and such that, depending of the physical properties of the rocks, the diffusivity effects may be neglected with respect to the transport ones. This approach has mainly motivated the previous studies in [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF], [START_REF] Aguilar | Analysis of a nonlinear parabolic-hyperbolic problem[END_REF], and [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF].

Notations and main assumptions on data

Throughout this paper, we give by a subscript h when referring to the hyperbolic zone and a subscript p for the parabolic one. Then, for l ∈ {h, p},

• the coefficients b l are elements of W 2,∞ (Ω l ) and the vector flux function f l = (f l,1 , . . . , f l,n ) belongs to W 2,∞ (R) n . For i = 1, . . . , n, the positive real M f i denotes the Lipschitz constant of f i and set

M f = max i=1,...,n M f i , • the source term g l is in W 1,∞ (]0, T [×Ω l × R), such that ∃ M g l ∈ R + , a.e. on ]0, T [×Ω l × R, |∂ u g l | ≤ M g l .
We set M g = M g h + M gp .

• the diffusion term φ is an increasing function of W 1,∞ (R). By normalization, we suppose that φ(0) = 0. In addition, we assume that φ -1 exists on Im(φ). That means that the second order operator set on the parabolic area is weakly degenerated. This is in particular fulfilled when {x ∈ R, φ (x) = 0} has a zero Lebesgue measure.

• in order to deal with bounded solutions, the initial datum u 0 belongs to L ∞ (Ω) and takes values in [m, M ] where m and M are two fixed real numbers and we introduce a nondecreasing smooth function M 1 of the time variable and a nonincreasing smooth function M 2 of the time variable such that

   M 1 (0) ≥ M, ∀t ∈ (0, T ) M 1 (t) + ∇b(.) • f (M 1 (t)) + g(t, ., M 1 (t)) ≥ 0 a.e. on Ω L ∪ Ω R ,
and

   M 2 (0) ≤ m, ∀t ∈ (0, T ) M 2 (t) + ∇b(.) • f (M 2 (t)) + g(t, ., M 2 (t)) ≤ 0 a.e. on Ω L ∪ Ω R .
Observe that one can propose

M 1 : t ∈ [0, T ] -→ M 1 (t) = ess sup Ω u + 0 e N 1 t + N 2 N 1 (e N 1 t -1),
and

M 2 : t ∈ [0, T ] -→ M 2 (t) = ess inf Ω (-u - 0 )e N1t - N 2 N 1 (e N1t -1),
with

N 1 = max( ∇b h L ∞ (Ω h ) n , ∇b p L ∞ (Ω p ) n ) n i=1 M f i + M g ,
and

N 2 = l=h,p max [0,T ]×Ω |g(t, x, 0) + ∇b l (x) • f (0)|.
• Since Γ p \ Γ hp has a non zero H n-1 -measure we may consider the Hilbert space

V = {v ∈ H 1 (Ω p ), v = 0 a.e. on Γ p \ Γ hp }, endowed with the norm v V = ∇v L 2 (Ω p ) n , which is equivalent to the classical H 1 (Ω p )-norm.
Then we denote ., . the duality pairing between V and V .

• The notation |.| n stands for the Euclidian norm on R n .

• For any real numbers a, b, we set I(a, b) is the closed interval bounded by a and b.

• The function sgn η stands for the Lipschitzian approximation of the function sgn given for any positive η and any nonnegative real number x by sgn η (x) = min( x η , 1) and sgn η (-x) = -sgn η (x). Lastly, for any real numbers τ, k, we introduce the classical Otto flux [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] which is now a standard and useful tool to transcript -through an integral inequality -the boundary condition along the hyperbolic frontier (see (5) below)

F h (τ, k) = 1 2 {sgn(τ )(f h (τ ) -f h (0)) -sgn(k)(f h (k) -f h (0)) + sgn(τ -k)(f h (τ ) -f h (k))}.
This paper is organized as follows. In Section 2 we give the definition of a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. We show in Section 3 the uniqueness of such a solution while Section 4 is mainly devoted to the proof of the existence property, by the vanishing viscosity method.

A notion of weak entropy solution

We want to take into account not only the coexistence of known hyperbolic and parabolic areas in the studied field but also the unknown ones in Ω p coming from the degeneracy of the second order operator set in Ω p . With this view we define a weak solution to (1) through a global entropy inequality on the whole domain Q in the same spirit as in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF].

To this end we introduce the next mollified entropy pairs:

I η (a, b) = a b sgn η (φ(τ ) -φ(b))dτ and F l,η (a, b) = φ(a) φ(b) f l • φ -1 (τ )sgn η (τ -φ(b))dτ.
Moreover we set F η = F h,η I Ω h + F p,η I Ω p . Then it will be said that

Definition 1. A measurable function u on Q is a weak entropy solution to (1) if (i) u ∈ L ∞ (Q), φ(u) ∈ L 2 (0, T ; V ), (ii) ∀ϕ ∈ D(Q) with ϕ ≥ 0, ∀k ∈ R, Q I η (u, k)∂ t ϕdxdt - Q sgn η (φ(u) -φ(k))∇φ(u) • ∇ϕdxdt + Q b(x){sgn η (φ(u) -φ(k))f (u) -F η (u, k)} • ∇ϕdxdt - Q {sgn η (φ(u) -φ(k))g(t, x, u) + ∇b(x) • F η (u, k)}ϕdxdt + Σ hp (b h (σ)F h,η (u, k) -b p (σ)F p,η (u, k))ϕ • ν h dtdH n-1 σ ≥ 0 (3) 
(iii) u satisfies the initial condition in the L 1 -sense i.e.

ess lim

t→0 + Ω |u(t, x) -u 0 (x)|dx = 0. ( 4 
) (iv) For any ζ in L 1 (Σ h \Σ hp ), ζ ≥ 0, ∀k ∈ R, ess lim s→0 - Σ hp b(σ)F h (u(σ + sν h ), k) • ν h dtdH n-1 σ ≥ 0, ( 5 
)
where σ = (t, σ) ∈ Σ.

Entropy inequality (3) is expressed with a mollification of the classical Kruzhkov entropy pairs. This will be used in Lemma 2 to transcript an entropy jump condition across the interface Σ hp for a weak entropy solution. This regularization was not needed in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF], where the characteristics along Σ hp were known so that this jump condition was automatically fulfilled. This is the main feature and contribution of this work in comparison with the previous ones [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF][START_REF] Aguilar | Analysis of a nonlinear parabolic-hyperbolic problem[END_REF][START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF] Remark 1. When we take the limit with respect to η in (3), since for l = h, p,

lim η→0 + F l,η (u, k) = sgn(φ(u) -φ(k))f l (k) = sgn(u -k)f l (k),
φ being nondecreasing, we obtain an entropy inequality written with the standard Kruzhkov entropy pairs

Q |u -k|∂ t ϕdxdt - Q ∇|φ(u) -φ(k)| • ∇ϕdxdt + Q b(x)Φ(u, k) • ∇ϕdxdt - Q sgn(u -k)(g(t, x, u) + ∇b(x) • f (k))ϕdxdt + Σ hp sgn(φ(u) -φ(k))(b h f h (k) -b p f p (k)) • ν h ϕdtdH n-1 ≥ 0 (6) where Φ(u, k) = sgn(u -k)(f (u) -f (k)) is the Kruzhkov flux. Remark 2.
If u is a weak entropy solution then u is a solution to (1) in the sense of distributions, that is to say, for all ϕ ∈ D(Q),

Q (u∂ t ϕ + (b(x)f (u) -I Ωp ∇φ(u)) • ∇ϕ -g(t, x, u)ϕ)dxdt = 0, ( 7 
)
so that u fulfills ∂ t u + div x (b h (x)f h (u)) + g h (t, x, u) = 0 in D (Q h ), ∂ t u + div x (b p (x)f p (u)) + g p (t, x, u) = ∆φ(u) in D (Q p ).
and the transmission condition (2) in a formal sense at this stage.

Our aim is to establish a time-Lipschitzian dependence in L 1 (Ω) of a weak entropy solution u to (1) with respect to its corresponding initial datum. The idea of the proof is to derive from (3) two local formulations, one in Q h and one in Q p and an entropy jump condition along the interface Σ hp . To transcript the latter, we need to define, in a certain way, a trace for u coming from the hyperbolic zone.

Observe that a trace for u coming from the parabolic zone is given by the trace of φ(u) that belongs to L 2 (0, T ; H 1/2 (Γ p )). So we assume now that the flux function satisfies a non-degeneracy condition i.e. for almost all x ∈ Ω h , for all ξ ∈ R n with ξ = 0, the function

λ -→ ξ • b h (x)f h (λ) is not linear on any nondegenerated interval included in [M 2 (T ), M 1 (T )]. (8) 
Assumption ( 8) will allow us to define strong traces as explained in Section 2 (see Lemma 1). Indeed, following the works of E. Yu. Panov [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF] or A. Vasseur [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF], it comes:

Lemma 1. Let u be a function of L ∞ (Q) satisfying (3). Under (8) there exists a function u τ of L ∞ (Σ h )
such that, for every compact K of Σ h and every regular Lipschitz deformation Ψ of Ω h , ess lim

s→0 + K |u(Ψ(s, σ)) -u τ (σ)|dtdH n-1 = 0. ( 9 
)
Let us note that a regular Lipschitz deformation can be defined if Ω h is, for example, a star-shaped domain (see [START_REF] Chen | Divergence-Measure fields and hyperbolic conservation laws[END_REF] for more details).

In this framework, the boundary condition ( 5) on the outer frontier of the hyperbolic zone is written for almost all t ∈ (0, T ),

H n-1 -a.e. on Γ h \ Γ hp , ∀k ∈ R, b h F h (u τ , k) • ν h ≥ 0, (10) 
which is equivalent to the well-known pointwise Bardos, LeRoux and Nédélec formulation given in [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF].

To begin with, let us highlight some local informations included in inequality [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. Indeed, it first contains an entropy formulation on the hyperbolic domain since, Proposition 1. Let u be a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. Then for any real number k and any ϕ ∈ D((0,

T ) × R n ) with ϕ ≥ 0, Q h |u -k|∂ t ϕdxdt + Q h b h (x)Φ h (u, k) • ∇ϕdxdt - Q h G h (u, k)ϕdxdt ≥ Σ hp b h (σ)Φ h (u τ , k) • ν h ϕdtdH n-1 + Σ h \Σ hp b h (σ)Φ h (0, k) • ν h ϕdtdH n-1 - Σ h \Σ hp b h (σ)Φ h (u τ , 0) • ν h ϕdtdH n-1 (11)
where

G h (u, k) = sgn(u -k)(g h (t, x, u) + ∇b h (x) • f h (k)) and Φ h (a, b) = sgn(u -k)(f h (a) -f h (b))
Proof. Thanks to Remark 1, we have for any

ϕ ∈ D(Q h ) with ϕ ≥ 0, Q h (|u -k|∂ t ϕ + b h (x)Φ h (u, k) • ∇ϕ -G h (u, k)ϕ)dxdt ≥ 0. ( 12 
)
Let (ω ε ) ε>0 be a sequence of functions such that for every ε,

ω ε ∈ C ∞ (Ω h ) and        0 ≤ ω ε ≤ 1 on Ω h , ω ε (x) = 1 if x ∈ Γ h , ω ε (x) = 0 if d(x, Γ h ) > ε, (ε∇ω ε ) ε is bounded on Ω h .
We choose in [START_REF] Yu | Existence of strong traces for generalized solutions of multidimensional scalar conservation laws[END_REF] the test function ϕ(1 -ω ε ) and we take the limit with respect to ε. From the nondegeneracy condition [START_REF] Kruzhkov | First-order quasilinear equations with several independent variables[END_REF] and Lemma 1, it comes lim

ε→0 + Q h b h (x)Φ h (u, k) • ∇ω ε ϕdxdt = Σ h b h (σ)Φ h (u τ , k) • ν h dtdH n-1 . Thus Q h (|u -k|∂ t ϕ + b h (x)Φ h (u, k) • ∇ϕ -G h (u, k)ϕ)dxdt ≥ Σ h b h (σ)Φ(u τ , k) • ν h dtdH n-1 .
We split the frontier of Q h into Σ h and Σ h \ Σ hp . The boundary condition [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] provides

Σ h \Σ hp b h (σ)Φ h (u τ , k) • ν h dtdH n-1 ≥ Σ h \Σ hp b h (σ)Φ h (0, k) • ν h ϕdtdH n-1 - Σ h \Σ hp b h (σ)Φ h (u τ , k) • ν h ϕdtdH n-1
The conclusion follows.

Entropy inequality [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF] is not sufficient to prove the uniqueness on the hyperbolic area: as stated forward in ,in (19), it only provides an L 1 (Q h )-error between two solutions with respect to their interface values and initial data. That is why we are interested now in the behavior of a weak entropy solution u to (1) on the parabolic zone. We prove that it fulfills a local variational equality that involves entering data from the hyperbolic domain: Proposition 2. Let u be a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. Then ∂ t u belongs to L 2 (0, T ; V ). Moreover, for any ϕ ∈ L 2 (0, T ; V ),

T 0 ∂ t u, ϕ dt + Qp (∇φ(u) -b p f p (u)) • ∇ϕdxdt + Q p g p (t, x, u)ϕdxdt - Σ hp b h f h (u τ ) • ν h ϕdtdH n-1 = 0. ( 13 
)
Proof. We sketch this proof, the reasoning being the same as in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF]. By a density argument [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF] is still true for any function ϕ of D(0, T ; H 1 0 (Ω)). Let ξ ∈ D(0, T ; V ) and ξ an extension of ξ to D(0, T ; H 1 0 (Ω)) . We choose in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF] the test function ϕ = ξλ ε with, for any positive constant ε,

λ ε ∈ C ∞ (Ω p ) such that    λ ε (x) = 1 if x ∈ Ω p , λ ε (x) = 0 if x ∈ Ω h , d(x, Γ hp ) ≥ ε, ε∇λ ε ∞ is bounded.
Then we take the limit with respect to ε in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF]. Thanks to (8) and ( 9) we assert that lim

ε→0 + Q h b h (x) ξf h (u) • ∇λ ε dxdt = Σ hp b h f h (u τ ) • ν h ξdtdH n-1 ,
and that provides [START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF].

Now we give a consequence of Proposition 2 where we may recognize a certain form of the relation ( 2) and that will be helpful to express the transmission condition along Σ hp . To this purpose we introduce a sequence of D(Ω), denoted by (β ε ) ε>0 , such that

       ∀ε > 0, 0 ≤ β ε ≤ 1, β ε = 1 if x ∈ Γ hp , ∀ε > 0, β ε = 0 if x ∈ Ω, d(x, Γ hp ) ≥ ε, ε∇β ε ∞ is bounded, ∀x ∈ Ω \ Γ hp , lim ε→0 + β ε (x) = 0. ( 14 
)
Then we have [START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF]. Then for any ψ of

Lemma 2. Let u in L ∞ (Q) satisfying
H 1 0 (Q), lim ε→0 + Q p sgn η (φ(u) -φ(k))ψ∇φ(u) • ∇β ε dxdt = Σ hp (b h f h (u τ ) -b p f p (u φ )) • ν h sgn η (φ(u) -φ(k))ψdtdH n-1 ,
where

u φ = φ -1 (φ(u) |Σ hp ).
Proof. From Proposition 2 it comes for any ϕ of L 2 (0, T ; V ):

T 0 ∂ t u, ϕβ ε dt + Q p (∇φ(u) -b p f p (u)) • ∇ϕβ ε dxdt + Q p g p (t, x, u)ϕβ ε dxdt + Q p (∇φ(u) -b p f p (u)) • ∇β ε ϕdxdt - Σ hp b h f h (u τ ) • ν h ϕdtdH n-1 = 0.
We choose the test function

ϕ = sgn η (φ(u) -φ(k))ψ |Q p , where ψ ∈ D(Q), ψ ≥ 0.
We use the F.Mignot time-integration by parts formula (see [START_REF] Gagneux | Madaune-Tort: Analyse mathématique de modèles nonlinéaires de l'ingénierie pétrolière[END_REF], p.31) to state:

T 0 ∂ t u, ϕβ ε dt = - Qp I η (u, k)β ε ∂ t ψdxdt.
Therefore,

lim ε→0 + T 0 ∂ t u, ϕβ ε dt = 0. Since f p (u) = f p • φ -1 (φ(u)) and f p • φ -1 is continuous, we claim that: lim ε→0 + Qp b p f p (u) • ∇β ε ϕdxdt = - Σ hp b p f (u φ )sgn η (φ(u) -φ(k)) • ν h ψdxdt Thus lim ε→0 + Q p ∇φ(u) • ∇β ε sgn η (φ(u) -φ(k))ψdxdt = Σ hp (b h f h (u τ ) -b p f p (u φ )) • ν h sgn η (φ(u) -φ(k))ψdtdH n-1 .
That completes the proof.

Lemma 2 allows us to write a transmission condition along Σ hp that is in fact included in the global formulation (3) on the whole Q. This is a key point of the uniqueness proof. Observe that this interface relation is written as a pointwise inequality on Σ hp that requires the knowledge of strong traces coming from the hyperbolic area and from the parabolic one for a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. Indeed the next entropy jump condition holds:

Lemma 3. Let u be a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. Then a.e. in (0, T ), H n-1 -a.e. on Γ hp , for any

k ∈ I(u τ , u φ ), sgn(u τ -u φ )b h (f h (u τ ) -f h (k)) • ν h ≥ 0. ( 15 
)
Proof. For any real number ε > 0, we consider in (3) the test function ϕ ε = ψβ ε with ψ ∈ H 1 0 (Q), ψ ≥ 0 (that is possible by a density argument). Thus, for any real number k,

Q I η (u, k)β ε ∂ t ψdxdt - Q sgn η (φ(u) -φ(k))β ε ∇φ(u) • ∇ψdxdt - Q sgn η (φ(u) -φ(k))ψ∇φ(u) • ∇β ε dxdt + Q b(x)β ε {sgn η (φ(u) -φ(k))f (u) -F η (u, k)} • ∇ψdxdt + Q b(x)ψ{sgn η (φ(u) -φ(k))f (u) -F η (u, k)} • ∇β ε dxdt - Q {sgn η (φ(u) -φ(k))g(t, x, u) + ∇b(x) • F η (u, k)}ψβ ε dxdt + Σ hp (b h F h,η (u, k) -b p F p,η (u, k)) • ν h ψdtdH n-1 ≥ 0.
All the integrals involving the function β ε itself goes to zero with ε. To take the limit with respect to ε in the second line we use Lemma 2 and for the forth one we split the integration field into Q p and Q h so that on the parabolic zone, we have by introducing the trace u φ , lim

ε→0 + Qp b p (x)ψ{sgn η (φ(u) -φ(k))f p (u) -F p,η (u, k)} • ∇β ε dxdt = - Σ hp b p {sgn η (φ(u) -φ(k))f p (u φ ) -F p,η (u, k)} • ν h ψdtdH n-1
and on the hyperbolic one, in view of (9), we ensure that lim

ε→0 + Q h b h ψ{sgn η (φ(u) -φ(k))f h (u) -F h,η (u, k)} • ∇β ε dxdt = Σ hp b h {sgn η (φ(u τ ) -φ(k))f h (u τ ) -F h,η (u τ , k)} • ν h ψdtdH n-1 .

Eventually it follows, for any

ψ ∈ H 1 0 (Q), - Σ hp (b h f h (u τ ) -b p f p (u φ )) • ν h sgn η (φ(u) -φ(k))ψdtdH n-1 .
-

Σ hp b p {sgn η (φ(u) -φ(k))f p (u φ ) -F p,η (u, k)} • ν h ψdtdH n-1 + Σ hp b h {sgn η (φ(u τ ) -φ(k))f h (u τ ) -F h,η (u τ , k)} • ν h ψdtdH n-1 + Σ hp (b h F h,η (u, k) -b p F p,η (u, k)) • ν h ψdtdH n-1 ≥ 0.
Consequently, for any positive η and any real number k,

-(b h f h (u τ ) -b p f p (u φ )) • ν h sgn η (φ(u) -φ(k)) -b p {sgn η (φ(u) -φ(k))f p (u φ ) -F p,η (u, k)} • ν h + b h {sgn η (φ(u τ ) -φ(k))f h (u τ ) -F h,η (u τ , k)} • ν h + (b h F h,η (u, k) -b p F p,η (u, k)) • ν h ≥ 0
a.e. on (0, T ), H n-1 a.e. on Γ hp . By taking the limit with respect to η in the above inequality we obtain

(sgn(u τ -k) -sgn(u φ -k))b h (f h (u τ ) -f h (k)) • ν h ≥ 0,
that is [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] when k belongs to I(u τ , u φ ).

Now we are able to state the uniqueness property that is a time-Lipschitzian dependence in L 1 (Ω) of a weak entropy solution to (1) with respect to its initial condition.

Theorem 1. Assume that there exists a constant C > 0 and a real number θ ∈ [ 1 2 , 1] such that, for all

(a, b) ∈ [φ(M 2 (T )), φ(M 1 (T ))] 2 , |(f p • φ -1 )(a) -(f p • φ -1 )(b)| n ≤ C|a -b| θ . ( 16 
)
Let u and v be two weak entropy solutions to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF] for initial data u 0 and v 0 . Then for almost all t ∈ (0, T ),

Ω |u(t, .) -v(t, .)|dx ≤ e M g t Ω |u(t, .) -v(t, .)|dx.
Proof. First we introduce (ρ j ) j∈N a sequence of mollifiers on R and W j , the sequence of mollifiers on R n+1 defined by

∀j > 0, ∀p = (t, x) ∈ R n+1 , W j (p) = ρ j (t) n i=1 ρ j (x i ).
In a first step, we focus on the parabolic area and we use the method of doubling the time variable only.

Let γ be a nonnegative element of D(0, T ). We consider the mapping α j : (t, t) → γ((t+ t)/2)ρ j ((t-t)/2). Note that, for j small enough, α j belongs to D((0, T ) × (0, T )). Then we choose in ( 13) written for u in variables (t, x), the test function ϕ(t, x) = sgn η (φ(u(t, x)) -φ(v( t, x)))α j (t, t) and we integrate with respect to t over [0, T ]. In [START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF] written for v in variables ( t, x) the test function ϕ( t, x) = -sgn η (φ(u(t, x)) -φ(v( t, x))) and we integrate with respect to t over [0, T ]. We add up and it comes (by sake of simplicity, we add a "tilde" superscript to any unknown in the t variable).

T 0 T 0 ∂ t u -∂ t ṽ, sgn η (φ(u) -φ(ṽ)) α j dtd t + T 0 Q p sgn η (φ(u) -φ(ṽ))|∇(φ(u) -φ(ṽ))| 2 n α j dxdtd t - T 0 Qp sgn η (φ(u) -φ(ṽ))b p (f p (u) -f p (ṽ)) • ∇(φ(u) -φ(ṽ))α j dxdtd t + T 0 Qp (g p (t, x, u) -g p ( t, x, ṽ))sgn η (φ(u) -φ(ṽ))α j dxdtd t = T 0 Σ hp sgn η (φ(u) -φ(ṽ))b h f h (u τ ) • ν h α j dtdH n-1 d t - T 0 Σ hp sgn η (φ(u) -φ(ṽ))b h f h (ṽ τ ) • ν h α j dtdH n-1 d t (17)
By using the Young's inequality (with p = 2) in the third line of (17) we obtain

T 0 Q p sgn η (φ(u) -φ(ṽ))|∇(φ(u) -φ(ṽ))| 2 n α j dxdtd t - T 0 Q p sgn η (φ(u) -φ(ṽ))b p (f p (u) -f p (ṽ)) • ∇(φ(u) -φ(ṽ))α j dxdtd t ≥ -1 2 T 0 Qp sgn η (φ(u) -φ(ṽ))b 2 p |f p (u) -f p (ṽ)| 2 n α j dxdtd t + 1 2 T 0 Qp sgn η (φ(u) -φ(ṽ))|∇(φ(u) -φ(ṽ))| 2 n α j dxdtd t
So, by virtue of (16), we claim the existence of a constant C > 0 such that

T 0 Q p sgn η (φ(u) -φ(ṽ))|∇(φ(u) -φ(ṽ))| 2 α j dxdtd t - T 0 Qp sgn η (φ(u) -φ(ṽ))b p (f p (u) -f p (ṽ)) • ∇(φ(u) -φ(ṽ))α j dxdtd t ≥ -C T 0 Qp b 2 p |φ(u) -φ(ṽ)| 2θ sgn η (φ(u) -φ(ṽ))α j dxdtd t.
Since θ ≥ 1 2 , the term in the right-hand side of the above inequality tends to 0 as η goes to 0 + . For the evolutionary term of (17) we use again the time integration by parts of F.Mignot Lemma ( [START_REF] Gagneux | Madaune-Tort: Analyse mathématique de modèles nonlinéaires de l'ingénierie pétrolière[END_REF] p.31) to assert that

T 0 ∂ t u, sgn η (φ(u) -φ(ṽ)) α j dt = - Q p u ṽ sgn η (φ(τ ) -φ(ṽ))dτ ∂ t α j dxdt and T 0 ∂ t ṽ, sgn η (φ(u) -φ(ṽ)) α j d t = - Qp u ṽ sgn η (φ(u) -φ(τ ))dτ ∂ tα j dxd t
Then we take the limit with respect to η in (17) and that gives:

- T 0 Q p |u -ṽ|(∂ t α j + ∂ tα j )dxdtd t ≤ T 0 Q p |g p (t, x, u) -g p (t, x, ṽ)|α j dxdtd t + T 0 Σ hp sgn(φ(u) -φ(ṽ))b h (f h (u τ ) -f h (ṽ τ )) • ν h α j dH n-1 dtd t.
Finally when j goes to +∞ we get

- Q p |u -v|γ (t)dxdt ≤ M gp Q p |u -v|γ(t)dxdt Σ hp sgn(u φ -v φ )b h (f h (u τ ) -f h (v τ )) • ν h γ(t)dtdH n-1 . ( 18 
)
Next we focus on the hyperbolic area. We use here the classical method of doubling (all) the variables due to S.N.Kruzhkov [START_REF] Kruzhkov | First-order quasilinear equations with several independent variables[END_REF]. Briefly speaking, for all (p, p) ∈ ((0, T ) × R n ) 2 , we set

ψ j (t, x, t, x) = ψ j (p, p) = γ((t + t)/2)ζ((x + x)/2)W j (p -p) where γ ∈ D(0, T ) with γ ≥ 0, ζ ∈ D(R n ) with ζ ≥ 0.
The variables ( t, x) being frozen, we choose in [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF] written for u in variables (t, x), k = ṽ = v( t, x) and ϕ(t, x) = ψ j (p, p). Now, the variable (t, x) being frozen in [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF] written for ṽ in variables ( t, x), we choose k = u = u(t, x) and ϕ( t, x) = ψ j (p, p). We integrate over Q h with respect to the corresponding frozen variables and we add the two resulting inequalities. That yields

Q h ×Q h |u -ṽ|(∂ t ψ j + ∂ tψ j )dpdp + Q h ×Q h Φ(u, ṽ) • (b h ∇ x ψ j + bh ∇ xψ j )dpdp - Q h ×Q h (G h (u, ṽ) + G h (ṽ, u))ψ j dpdp ≥ Q h Σ h \Σ hp b h sgn(ṽ)(f h (ṽ) -f h (0)) • ν h ψ j (σ, p)dtdH n-1 σ dp + Q h Σ h \Σ hp bh sgn(u)(f h (u) -f h (0)) • ν h ψ j (p, σ)d tdH n-1 σ dp - Q h Σ\Σ hp b h sgn(u τ )(f h (u τ ) -f h (0)) • ν h ψ j (σ, p)dtdH n-1 σ dp - Q h Σ\Σ hp bh sgn(ṽ τ )(f h (ṽ τ ) -f h (0)) • ν h ψ j (p, σ)d tdH n-1 σ dp + Q h Σ hp b h Φ h (u τ , ṽ) • ν h ψ j (σ, p)dtdH n-1 σ dp + Q h Σ hp bh Φ h (ṽ τ , u) • ν h ψ j (σ, p)d tdH n-1 σ dp
There is no difficulty to take the limit with respect to j in the previous inequality and we obtain

- Q h |u -v|γ (t)dxdt ≤ - Q h sgn(u -v)(g h (t, x, u) -g h (t, x, v))γ(t)dxdt - Σ hp sgn(u τ -v τ )(f h (u τ ) -f h (v τ )) • ν h b h γ(t)dH n-1 dt. (19)
Observe that as soon as, for a.e. σ in Σ hp , the mapping τ → b h (σ)f h (τ ) • ν h (σ) is nondecreasing, the second term in the right hand side of (19) falls. As a consequence, it warrants the uniqueness on the hyperbolic zone in first and then on the parabolic one by coming back to (18) and using that u τ = v τ a.e. on Σ hp . This framework that has been investigated in earlier works [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF][START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF]. Here, we add inequalities (18) and (19). Consequently

- Q |u -v|γ (t)dxdt ≤ M g Q |u -v|γ(t)dxdt + Σ hp b h sgn(u φ -v φ )(f h (u τ ) -f h (v τ )) • ν h γ(t)dH n-1 dt - Σ hp b h sgn(u τ -v τ )(f h (u τ ) -f h (v τ )) • ν h γ(t)dH n-1 dt. ( 20 
)
For almost all t in ]0, T [, H n-1 a.e. on Γ hp , we set

J = (sgn(u φ -v φ ) -sgn(u τ -v τ ))b h (f h (u τ ) -f h (v τ )) • ν h .
Our aim is to prove that J ≤ 0 on Σ hp . To do so we make a pointwise reasoning and so we have to distinguish several cases.

If sgn(u φ -v φ ) = sgn(u τ -v τ ) or u τ = v τ , then J = 0. If (sgn(u φ -v φ ) = -sgn(u τ -v τ ) or u φ = v φ ) and u τ = v τ , then J = -2b h sgn(u τ -v τ )(f h (u τ ) -f h (v τ )) • ν h .
Let us assume that u τ < v τ , the reasoning when u τ > v τ being similar. In this framework [START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF] written for u and for v and we add the two resulting inequalities. We have

J = 2b h (f h (u τ ) -f h (v τ )) • ν h . Here we consider three different cases. i) if v φ ∈]u τ , v τ [, we choose k = v φ in
b h (f h (u τ ) -f h (v τ )) • ν h ≤ 0. ii) if v φ ≤ u τ , we have v φ ≤ u τ < v τ . Then we choose k = u τ in (15) written for v. That gives b h (f h (v τ ) -f h (u τ )) • ν h ≥ 0. iii) if v φ ≥ v τ , then u τ < v τ < u φ . We choose k = v τ in (15) written for u and -b h (f h (u τ )-f h (v τ )) ≥ 0.
Consequently we deduce from (20) that

- Q |u -v|γ (t)dxdt ≤ M g Q |u -v|γ(t)dxdt.
Finally we consider, for almost all t in (0, T ), a sequence of test functions approximating the characteristic function I [0,t] . Then we use the initial condition (4) and the Gronwall's Lemma to close the proof of Theorem 1.

The existence property

We use the vanishing viscosity method to approximate a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. To do so we introduce a viscous problem related to ( 1) and prove that it has a unique weak solution that fulfills some a priori estimates uniform with respect to the viscous parameter. Then by applying E.Yu.Panov's works [START_REF] Yu | Property of strong precompactness for bounded sets of measure valued solutions of a first-order quasilinear equation[END_REF][START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF] providing -under suitable non-degeneracy conditions for the flux f h and f p -a precompactness property in L 1 for the sequence of viscous solutions -we are able to establish that this sequence converges (in the L 1 -sense) towards a weak entropy solution to (1).

The viscous problem

Let µ be a positive real number. We set

λ µ (x) = I Ω p (x) + µI Ω h (x), φ µ = φ + µI R ,
and we consider of viscous problem related to (1) that means that we are interested in the existence and uniqueness of a measurable and bounded function

u µ satisfying    ∂ t u µ + div x (b(x)f (u µ )) + g(t, x, u µ ) = div x (λ µ (x)∇φ µ (u µ )) in Q, u µ = 0 on Γ, u µ (0, .) = u 0 on Ω. (21) 
In order to deal with bounded solutions, we introduce the following assumptions on f h and f p that will discussed below, see proof of (24) in Proposition 3: we suppose that H n-1 a.e. on Γ hp , for almost all t in (0, T ),

(b p f p (M 1 (t)) -b h f h (M 1 (t))) • ν h ≥ 0, ( 22 
) (b p f p (M 2 (t)) -b h f h (M 2 (t))) • ν h ≤ 0. ( 23 
)
We also introduce the functional space

W (0, T ) = {v ∈ L 2 (0, T ; H 1 0 (Ω)), ∂ t v ∈ L 2 (0, T ; H -1 (Ω)
)}, and denote by ., . the pairing between H -1 (Ω) and H 1 0 (Ω). This way we may state Proposition 3. Under (22) and (23) there exists a unique solution

u µ ∈ W (0, T ) ∩ L ∞ (Q) to (21) such that M 2 (t) ≤ u µ (t, .) ≤ M 1 (t) for all t ∈ [0, T ], a.e. in Ω, ( 24 
)
u µ (0, .) = u 0 a.e. in Ω. ( 25 
)
Moreover, for any v ∈ H 1 0 (Ω), and for almost all t ∈ (0, T ), u µ satisfies the variational equality

∂ t u µ , v + Ω ((λ µ (x)∇φ µ (u µ ) -b(x)f (u µ )) • ∇v + g(t, x, u µ )v)dx = 0. ( 26 
)
Proof. We focus on the proof of (24). In a first step we use a troncation process. For any real numbers a, b and c we set B(a, b, c) = max{a, min{b, c}}. Then, for a fixed * µ, we introduce the auxiliary problem

      
Find u µ in W (0, T ) such that a.e. on (0, T ) and for all v ∈ H 1 0 (Ω),

∂ t u µ , v + Ω ((λ µ (x)φ µ (u µ )∇u µ -b(x)f (u µ )) • ∇v + g(t, x, u µ )v)dx = 0 u µ (0, .) = u 0 a.e. on Ω (27) 
where

u µ = B(M 2 (t), u µ , M 1 (t)).
Let us prove that (24) -( 26) is equivalent to (27). It is clear that if u µ satisfies (24) -( 26) then u µ fulfills (27). Conversely let u µ be a solution to (27). To obtain the majorization for u µ in (24) we may consider in (27) the test-function v η = sgn η (u µ -M 1 (t)) + and we integrate over (0, s), for any s ∈ (0, T ). One adds and substracts ∂ t M 1 (t), u µ in the evolution term. Furthermore, since v η is supported on

{u µ > M 1 (t)} we have (by denoting Q s = (0, s) × Ω) Qs (-b(x)f (u µ )) • ∇v η + g(t, x, u µ )v η )dxdt = Q s (-b(x)f (M 1 (t))) • ∇v η + g(t, x, M 1 (t))v η )dxdt
For the convection term, we use a Green's formula to obtain

- Q s b(x)f (u µ )) • ∇v η dxdt = i∈{h,p} Q i,s f i (M 1 (t)) • ∇b i (x)v η dxdt + Σ hp (b p f p (M 1 (t)) -b h f h (M 1 (t))) • ν h v η dtdH n-1
Then, in view of (22), we ensure that the interface integral is nonnegative. Owing to the definition of v η the diffusion term is also nonnegative. Then, when η goes to 0 + thanks to the Lebesgue dominated convergence Theorem it yields,

Ω (u µ (s, x) -M 1 (s)) + dx + Q s M 1 (t)sgn(u µ -M 1 (t)) + dxdt + i∈{h,p} Q i,s (f i (M 1 (t)) • ∇b i + g i (t, x, M 1 (t)))sgn(u µ -M 1 (t)) + dxdt ≤ 0.
Due to the definition of M 1 , everywhere on Q i,s ,

M 1 (t) + (f i (M 1 (t)) • ∇b i + g i (t, x, M 1 (t))) ≥ 0,
and the conclusion follows.

In a similar way, to prove the minorization in (24) we may consider the test function v η = -sgn η (u µ -M 2 (t)) -in (27) and we use (23) to state that the integral over Σ hp that appears when we deal with the convection term is nonnegative.

Thus the existence property for (21) is reduced to an existence result to (27). To do so we use the Schauder-Tychonoff fixed point Theorem as in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF] while the uniqueness of a solution to (24)-( 26) is obtained by a Holmgren-type duality method (see [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF]).

Let us now collect an a priori estimate for the sequence (u µ ) µ>0 proper to study its limit when µ goes to 0 + . Proposition 4. There exists a positive constant C independent of µ such that

(λ µ ) 1/2 ∇ φ(u µ ) 2 L 2 (Q) n + (µλ µ ) 1/2 ∇u µ 2 L 2 (Q) n ≤ C, ( 28 
)
where φ(u µ ) =

u µ 0 φ (τ )dτ .
Proof. We choose v = u µ in (26) and integrate over ]0, T [. We have:

T 0 ∂ t u, u dt = 1 2 u µ (T, .) 2 L 2 (Ω) - 1 2 u 0 2 L 2 (Ω) ≤ 1 2 u µ (T, .) 2 L 2 (Ω) .
Moreover,

Q b(x)f (u µ ) • ∇u µ dxdt = Q b(x)div u µ 0 f (τ )dτ dxdt = i∈{h,p} Q i b i (x)divF i (u µ )dxdt.
where

F i (u µ ) = u µ 0 f i (τ )dτ .
So by a Green's formula on each Q i , i = h, p, the convection term can be written as

i∈{h,p} Q i ∇b ( x)F i (u µ )dxdt + Σ hp (b p (σ)F p (u µ ) -b h (σ)F h (u µ )) • ν h dtdH n-1 .
Thanks to (24), we assert that the convection term is bounded independently of µ. The reaction term is also clearly bounded (as a consequence of (24) and for the diffusion term we write:

Q λ µ ∇φ µ (u µ ) • ∇u µ dxdt = Q λ µ φ (u µ )|∇u µ | 2 n dxdt + µ Q λ µ |∇u µ | 2 n dxdt
where,

Q λ µ φ (u µ )|∇u µ | 2 n dxdt = Q ( λ µ |∇ φ(u µ )| n ) 2 dxdt.
This way,

Q λ µ ∇φ µ (u µ ) • ∇u µ dxdt = (λ µ ) 1/2 ∇ φ(u µ ) 2 L 2 (Q) n + (µλ µ ) 1/2 ∇u µ 2 L 2 (Q) n
The conclusion follows.

The viscous limit

Since the estimates (24) and (28) are not sufficient not allow us to pass to the limit with µ on the parabolic zone (mainly it misses an estimate on the time derivative of u µ| Q p in L 2 (0, T ; V )), we use E.Yu.Panov's results in [START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF]. The author introduces a so-called nonlinear condition for the flux f p so that the sequence (u µ| Q p ) µ>0 is precompact in L 1 (Q p ). Indeed assume that:

Assumption 1. For almost all x ∈ Ω p , for all ξ ∈ R n with ξ = 0, the functions λ → b p (x)f p (λ) • ξ and λ → φ(λ)ξ 2 are not linear simultaneously on any non-degenerate intervals.

Then, as soon as ( 24) and (28) hold, there exists a subsequence, still denoted (u µ| Q p ) µ>0 , that converges strongly in L 1 (Q p ). This way, we may state: Theorem 2. The sequence (u µ ) µ>0 of solutions to (21), admits a subsequence that converges strongly in

L 1 (Q) towards a function u ∈ L ∞ (Q).
Moreover u is the weak entropy solution of the problem (1).

Remark 3. The strong convergence property on Q p could also be obtained if we replace Assumption 1 by the following one

φ is Hölder continuous with an exponent τ ∈ (0, 1), as it is supposed in [START_REF] Jimenez | Entropy formulations for a class of scalar conservation laws with spacediscontinuous flux functions in a bounded domain[END_REF].

Proof of theorem 2. Thanks to Assumption 1 we make sure that we can extract a subsequence of (u µ| Q p ) µ>0 that strongly converges in L 1 (Q p ). Besides, from [START_REF] Yu | On the strong precompactness property for entropy solutions of an ultra-parabolic equation with discontinuous flux[END_REF] and by virtue of ( 8) we know that we can extract a subsequence of (u µ| Q h ) µ>0 that strongly converges in L 1 (Q h ). Thus there exists a subsequence of (u µ ) µ>0 that converges strongly in L 1 (Q) towards a function u of L ∞ (Q). It remains to show that u is a weak entropy solution to [START_REF] Aguilar | Coupling of Multidimensional Parabolic and Hyperbolic Equations[END_REF]. To this purpose we choose in (26) the test function

v η µ = sgn η (φ(u µ ) -φ(k))ϕ, where k ∈ R, ϕ ∈ D([0, T ) × Ω), ϕ ≥ 0. We integrate over [0, T ] to have T 0 ∂ t u µ , v η µ dt + Q ((λ µ ∇φ µ (u µ ) -b(x)f (u µ )) • ∇v η µ + g(t, x, u µ )v µ η )dxdt = 0. ( 29 
)
An integration-by-parts in the evolution term gives

T 0 ∂ t u µ , v η µ dt = - Q I η (u µ , k)∂ t ϕdxdt - Ω I η (u 0 , k)ϕ(0, .)dx.
Due to the definition of sgn η and φ µ , we obtain for the diffusion term

Q λ µ ∇φ µ (u µ ) • ∇v η µ dxdt ≥ Q λ µ sgn η (φ(u µ ) -φ(k))∇φ(u µ ) • ∇ϕ dxdt +µ Q λ µ sgn η (φ(u µ ) -φ(k))∇u µ • ∇ϕ dxdt.
Note that the second term of the right-hand side goes to zero with µ thanks to estimate (28). The convection term is written as

- i∈{h,p} Q b i (x)f i (u µ ) • ∇φ(u µ )sgn η (φ(u µ ) -φ(k))ϕ dxdt - i∈{h,p} Q b i (x)sgn η (φ(u µ ) -φ(k))f i (u µ ) • ∇ϕ dxdt.
Since the µ and η-limits in second line does not bring difficulties we focus on the first line for i = h, the reasoning for i = p being similar. We denote

J µ,η = - Q h b h (x)f h (u µ ) • ∇φ(u µ )sgn η (φ(u µ ) -φ(k))ϕ dxdt.
Thus, owing to definition of F h,η ,

J µ,η = - Q h b(x)divF h,η (u µ , k)ϕ dxdt.
So, by a Green's formula, we have

J µ,η = Q h F h,η (u µ , k) • (∇b h ϕ 2 + ∇ϕb h )dxdt - Σ hp b h F h,η (u µ , k) • ν h ϕ dH n-1 dt.
Now we take the limit with respect to µ. For the interface integral we assert that the sequence (F h,η (u µ , k)ϕ) µ>0 weakly converges towards F h,η (u, k)ϕ in L 2 (Σ hp ) n . Indeed, we notice first that since φ(u µ ) ∈ L 2 (0, T ; H 1 (Ω)), for almost all t ∈ (0, T ), H n-1 a.e., (φ(u

µ ) |Ω h ) |Γ hp = (φ(u µ ) |Ω p ) |Γ hp . Moreover, F h,η (., k) being a Lipschitz function, for 1 ≤ q < ∞, (F h,η (u µ , k)) µ>0 strongly converges towards F h,η (u, k) in L q (Q p ) n .
Besides, by virtue of (28), the sequence

(F h,η (u µ , k)) µ>0 is uniformly bounded in L 2 (0, T ; V ) n ∩ L ∞ (Q) n . So (F h,η (u µ , k)ϕ) µ>0 weakly converges, up to a subsequence, towards F h,η (u, k)ϕ in L 2 (0, T ; V ) n .
Therefore, as the trace operator from L 2 (0, T ; V ) into L 2 (Σ hp ) is linear and continuous, (F h,η (u µ , k)ϕ) µ>0 weakly converges towards F h,η (u, k)ϕ in L 2 (Σ p ) n and then in L 2 (Σ hp ) n . Consequently, lim µ→0 + J µ,η = J η where

J η = Q h F h,η (u, k) • (∇b h ϕ + ∇ϕb h )dxdt - Σ hp b h F h,η (u, k) • ν h ϕ dH n-1 dt.
Then, we can pass to the limit with respect to µ in each term of (26) to have Now it remains to prove that u fulfills (4)-( 5). We consider in (30) a test function ϕ in D([0, T [×Ω h ) and take the limit with respect to η. We obtain

- Q h (|u -k|∂ t ϕ + b h (x)Φ(u, k) • ∇ϕ) dxdt + Q h sgn(u -k)(g h (t, x, u) + ∇b h (x) • f h (k))ϕ dxdt ≤ Ω h
|u 0 -k|ϕ(0, .) dx.

Thus, we refer to F.Otto's work in [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] (see also [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF]Chap. 2]) to ensure that ess lim t→0 + Ω h |u(t, x) -u 0 (x)|dx = 0.

In order to show that u fulfills the initial condition on the parabolic zone, we choose a test function ϕ = ϕ 1 ϕ 2 where ϕ 1 belongs to D([0, T [) and ϕ 2 to D(Ω p ), ϕ 1 , ϕ 2 ≥ 0. We pass to the limit with respect to η and we can state that The above inequality implies that u satisfies (4) (see [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF] for more details).

To prove (5), we consider the family of boundary entropy -entropy flux pair (see [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF][START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF]) defined by, for any δ > 0, H δ (τ, k) = ((dist(τ, I[0, k])) 2 + δ 2 ) 1/2 -δ and

Q h,δ (τ, k) = τ k ∂ 1 H δ (λ, k)f h (λ)dλ.
Then we come back to the viscous problem (21) and choose in (26) the test function v = ∂ 1 H δ (u µ , k)ϕ where ϕ belongs to D((0, T )×Ω h ), ϕ ≥ 0 and ϕ 2 = 0 on Γ hp . Let us note that ∂ 1 H δ (u µ , k)ϕ is an element of L 2 (0, T ; H 1 0 (Ω h )) so that Green's formula does not give rise to integrals over Σ hp . We integrate over (0, T ) and, noticing that τ → H δ (τ, .) is a convex function, it provides

- Q h (H δ (u µ , k)∂ t ϕ + b h Q h,δ (u µ , k) • ∇ϕ -G h,δ (u µ , k)ϕ) dxdt ≤ -µ Q h ∂ 1 H δ (u µ , k)∇ϕ • ∇φ(u µ )dxdt where G h,δ (u µ , k) = uµ k ∂ 2 11 H δ (τ, k)f h (τ )dτ • ∇b h + g h (t, x, u µ )∂ 1 H δ (u µ , k).
By virtue of Theorem 2 and (28) to deal with the right hand side, there is no difficulties to take the limit with respect to µ. That gives

- Q h (H δ (u, k)∂ t ϕ + b h Q h,δ (u, k)∇ϕ -G h,δ (u, k)ϕ) dxdt ≤ 0.
From [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF] it follows that, for any ζ in L 1 (Σ h \ Σ hp ) with ζ ≥ 0, ess lim

s→0 -Σ h \Σ hp b h G h,δ (u(σ + sν h ), k) • ν h ζ dtdH n-1 ≥ 0, that is Σ h \Σ hp b h G h,δ (u τ , k) • ν h ζ dtdH n-1 ≥ 0,
in view of [START_REF] Màlex | Weak and mesure-valued solutions to evolutionary PDEs Applied Mathematics and Mathematical Computation[END_REF]. That yields first to boundary condition (5) by observing that (Q h,δ ) δ uniformly converges towards F h as δ goes to 0 + et so to [START_REF] Otto | Initial-boundary value problem for a scalar conservation law[END_REF].

Q

  I η (u µ , k)∂ t ϕdxdt + Ω I η (u 0 , k)ϕ(0, .) dx -Q sgn η (φ(u) -φ(k))∇φ(u) • ∇ϕ dxdt + Q b(x){sgn η (φ(u) -φ(k))f (u) -F η (u, k)} • ∇ϕ dxdt -Q {sgn η (φ(u) -φ(k))g(t, x, u) + ∇b(x) • F η (u, k)}ϕ dxdt + Σ hp (b h F h,η (u, k) -b p F p,η (u, k))ϕ • ν h dtdH n-1 ≥ 0,(30) and (3) follows.

  is identified with a nonincreasing and bounded function and consequently has an essential limit when t tends to 0 + . Since h goes to zero with t it comes, for any ϕ 2 ∈ C ∞ c (Ω p ) with ϕ 2 ≥ 0, ess limt→0 + Ω p |u(t, x) -k|ϕ 2 dx ≤ Ω p |u 0 -k|ϕ 2 dx.
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