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Small amplitude modelling of acoustic damping cavities

Geoff Searby

CNRS-IRPHE and ONERA Consultant
49 rue F. Joliot-Curie

Technopole de Chateau-Gombert

13384 MARSEILLE France

Abstract

We will first recall the classical results for the laminar dissipation of acoustic energy in
the boundary layer of a forced resonator. We then show how this result can be used in
conjunction with a Helmholtz solver to calculate the laminar damping of a cavity of arbitrary
geometry. The approach is validated by application to a trivial geometry for which the result
is known analytically (HF1 step 1). We then present the results for the remaining test cases
(HF1 steps 2, 3 and 4). The computational effort is lightweight, ranging from a few seconds
of cpu time for step one to a few minutes for the 3-D case, step 4. These test cases are non-
reacting, but the approach can be extended to accommodate strong temperature variations,
provided the temperature and density fields are known. Finally we discuss the limitations
of this approach and possible reasons for differences between these calculations, full DNS
calculations, and experimental measurements on real chambers.

1 Introduction

High frequency instability in liquid-fuelled rocket engines is still an open problem [1, 2]. Various
methods have been used to increase the dissipation rate of acoustic disturbances in rocket engine
combustion chambers with the objective of increasing the stability margin of the motors. Among
the well known damping devices are baffles, acoustic liners and quarter-wave resonators. These
devices are conceptually simple. Quarter-wave cavities are known to be efficient to increase the
stability margin when placed close to the injection plate. However these devices have a relatively
narrow dissipation bandwidth and each cavity needs to be tuned to a specific chamber resonance.
The optimum tuning of damping cavities cavities and the associated acoustic damping can be
calculated analytically only for trivial geometries. For realistic geometries it is necessary to resort
to numerical simulation. In this paper we present a simple time-domain method to estimate the
damping rate of an arbitrary geometry.

Two distinct damping mechanisms are associated with acoustic dampers. The first mecha-
nism arises from viscous drag and heat transfer at the cavity walls. This is a linear mechanism,
and the associated acoustic resistance is independent of the acoustic amplitude. This mechanism
dominates at low acoustic amplitudes and it is important for the linear stability of propulsion
devices. The second mechanism arises from the formation of vortex eddies at the exit from
the damping cavity. This is a nonlinear mechanism and the associated acoustic resistance in-
creases with the velocity of the flow at the entrance to the cavity[3, 4, 5]. The latter mechanism
dominates at high acoustic amplitudes and determines the dynamic stability characteristics.
The relative contribution of these two mechanisms described by the acoustic Strouhal number
Stee = wR/l, where R is the radius of the cavity exit and 4 is the amplitude of the acoustic
velocity at the cavity exit[6]. For St,. > 1 the viscous mechanisms dominate. Since the two
mechanisms are physically independent, the associated acoustic resistances are additive, at least
up to moderately non-linear acoustic levels.

This paper is concerned only with the linear viscous and thermal damping. We first recall
the classical results for laminar energy dissipation in the boundary layer of a forced resonator.
We then show how this result can be used to calculate the laminar damping of a cavity of
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Figure 1: Typical velocity profile in an acoustic boundary layer.

arbitrary geometry, with the help of a lightweight Helmholtz solver. This approach is validated
on a closed cylindrical cavity, for which the analytical solution is known (HF1 step 1). We then
apply the method to the 2-D test case (HF1 steps 2 and 3), where we will give more detailed
results than requested. Finally the method is applied to the fully 3-D case, HF1 step 4. In
the conclusion we will discuss some possible limitations of the method. The approach described
here is presented in more detail in a paper published recently in the Journal of Propulsion and
Power [7].

2 Laminar boundary layer theory

Viscous and thermal losses at the walls are diffusive and obey qualitatively identical laws. The
viscous dissipation is proportional to the product of the velocity gradient at the wall and the
shear viscosity. The thermal dissipation is proportional to the product of the temperature
gradient at the wall and the thermal conductivity.

2.1 Viscous losses

The viscous loss in an acoustic cavity was first calculated by Stokes [8]. Here we will use the
boundary layer formulation given by G.K. Batchelor [9]. We consider only the (quasi-)steady
state situation, where any time dependence is on a scale long compared to the acoustic period.

We consider a plane infinite wall immersed in a semi-infinite fluid. The y coordinate is normal
to the wall, see figure 1. Let the bulk of the fluid, oscillate with velocity u = 4, cos(wt) along
the x axis, in a plane parallel to the wall. If transient effects are neglected, and if the velocity
gradients parallel to the wall are negligible (i.e. if the acoustic wavelength is very large compared
to the thickness of the acoustic boundary layer) then it can be shown that the unsteady velocity
profile in the liquid is given by

u'(y, t) = Gy [exp (—gy) cos (wt - é{/) — cos (wt)} , (1)

where 9, is a measure of the thickness of the unsteady viscous boundary layer

6= y2, (2)

v is the kinematic viscosity and w is the angular frequency. The velocity in the fluid oscillates
with a “wavelength” 27/2v/w. A typical order of magnitude for the thickness of an acoustic
boundary layer is 100pm
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The force per unit area exerted by the wall on the liquid is given by F' = pv(0u'/9dy) |,—,
and so

A

F= pl/% (sin(wt) — cos(wt)) (3)

v
It is interesting to note that the force is not in phase with the velocity in the bulk of the
fluid (v = 4y cos(wt)): there is a resistive (in phase) component and a reactive (90° phase
lag) component. Averaged over an acoustic period, only the resistive component contributes to
energy dissipation (dEs/dt = Fiy).

dFE, 1 ug
<dt > - 2™, )
1 45 Jwv
= 59% o (5)

where F is the energy per unit area.
The total rate of energy dissipation by viscous forces in an acoustic cavity can then calculated
by integrating equ.(5) over all the solid walls

G, = o), ®

2.2 Thermal losses

Acoustic oscillations are adiabatic if the wavelength, A, satisfies A\ > 2w Dy, /c ~ 0.5 um, where
Dyp, is the thermal diffusivity and c is the speed of sound. In combustion chambers this inequality
is always true, so the acoustic pressure oscillations give rise to temperature oscillations:
v—1Tp

0T = TFOP (7)
where Ty and Py are the average temperature and pressure respectively, p is the oscillating
acoustic pressure, P = Py + psin(wt), and +y is the ratio of specific heats. In the presence of an
isothermal wall there will be an oscillating heat flux to the wall. This heat flux is irreversible
and also contributes to energy dissipation. The calculation for the unsteady heat flux proceeds
in a similar way to the calculation of the unsteady viscous stress and was calculated by Nielsen
[10]. The final result for the rate of energy loss per unit area is:

<dES> _17—1}972 wDyy, ®)
dt th_2 Y P() 2

where Dy, is the thermal diffusivity. For a perfect gas, the sound velocity is related to the mean
pressure Py = (pc?)/v and in this case equ.(8) is easily written in a form that is symmetrical to

equ.(5):
dE, 1 2 |wD,
() =50- kg e (9)

The total rate of acoustic energy dissipation in the system can be calculated by integrating
expressions (5) and (9) over the walls acoustic system.

dFE dFE dFE
- = 2N dS + / < S> ds 10
< dt >Tota1 /S< dt >u s\ dt /4 ( )

2.3 Damping rate
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To be rigorous, it is necessary integrate not only over both the walls of the damping cavity, but
also over the walls of the combustion chamber. To evaluate these integrals, is is sufficient to
know local amplitude of the acoustic velocity and pressure oscillations in front of the wall, but
outside the acoustic boundary layer. In the following, we will use that the acoustic amplitudes
calculated for non-stick (slip) adiabatic walls. This approximation will be good if the acoustic
damping is not too large.

The total acoustic energy in the system can be calculated integrating the kinetic energy,
(1/2)pu? and the potential energy, (1/2)p?/(pc?) over the volume of the acoustic system:

1 1 1p%(z,t)
E== ~pu? e : 11
T/T/V (qu (z,t) + 3 e dV dt (11)

The integration is over one period of oscillation, 7" = 27 /w, and over the volume of the cylinder,
dV = Sdz.

The damping rate of energy in the system is then given by the ratio of the energy dissipation
rate to the total energy:

1dE
= —=— 12
oY (12)
Note that the damping rate of the pressure, o}, is one-half this quantity
1 dFE
R —— 1
P~ 9F at (13)

The damping rate calculated this way is independent of the amplitude of the acoustic wave used
to perform the calculations.

3 Test case step 1:
Application to a cylindrical resonator
We apply the above results to a cylindrical resonator closed at both ends. The cavity is directed

along the x axis, and is closed at = 0, L. If the attenuation is weak then the pressure and
velocity in a standing wave can be written

p(z,t) =  R[pcos(kx)exp(—iwt)]
u(z,t) = —S[igsin(kz)exp(—iwt)] (14)
p = pci

where @ and p are the peak amplitudes of the oscillations at the anti-nodes of velocity and
pressure respectively. If the attenuation is weak, they may be considered constant during a
period of oscillation. The integral equ.(11) is then easily evaluated to give:

A2

1 1
B =nR’L Lpi’ = nR’L .

1oz (15)

Viscous contribution

The viscous contribution to damping is given by the integral of equ.(5) over the side walls of
the cylinder. There is no contribution from the end walls, since the velocity there is zero.

dE 1
<> — 7RL-pi?,| 2. (16)
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The viscous contribution to the damping rate, o, = (1/E)(dE/dt), is then

2 Jwv

Thermal contribution

The thermal contribution to damping is given by the integral of equ.(9) over the side walls of
the cylinder. The integral must also be evaluated at the end wall(s), if the cylinder is closed,
since these locations are anti-nodes for the oscillations of pressure and temperature.

dE 1 9> |wDyy, 2R
—_ =7mRL —1)—— 1+ —. 18
<dt>th TRE O =D 5,0\ 2 (*1:) (18)

The thermal contribution to the damping rate is then:

— 2(’YR— 1) /wgth (1 n HTR) (19)

If the aspect ratio of the cylinder is high L > R, then the contribution from the end wall(s) can
be neglected.

Total damping of a cylindrical resonator

The total damping rate of energy is just the sum of the viscous and thermal contributions,
Oc = 0y + Ot

wr wDyy, <1 n @)

5 7 (20)

Equation (20) gives the damping rate of energy in the cavity. The damping rate of pressure
is one half the damping rate of energy :

e b () )

where we have expressed the thermal diffusivity in terms of the viscosity and the Prandtl number.
This expression is valid for weak damping. Equivalent expressions have been obtained by other
authors, such as Tijdeman[11], using a more rigorous formulation. A. Nicole [12] has obtained
an implicit equation for the resonant frequency and damping rate of a cylindrical cavity with
arbitrary strong viscous damping, however the thermal contribution was not taken into account.
Nicole’s expression reduces to (17) for weak damping and a thin boundary layer, 0,/w < 1 et
0/R < 1.

R =0.005m

L=0.5m

Figure 2: Geometry of the closed cylindrical cavity
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T (K) 2100. ¢ (m/s) 1884.5

p (kg/m?) 0.358 v 1.27

p(kg/m/s)  4.833107° x 50 | v(m?/s) 1.35107% x 50

Cp (J/kg/K) 6257.6 Pr oo (adiabatic walls)

Table 1: Gas properties used to calculate the damping of a closed cylinder

The geometry of the cylinder used in step 1 is shown in figure 2. Note that the aspect ratio
of the cylinder has been greatly deformed: the real aspect ratio is 50:1. Table 1 shows the gas
properties used in the calculations. The undamped eigenfrequency of the cylinder is just

Undamped eigenfrequency fo = i = 1884.5 Hz.
Using the values in table 1, the analytical value (equation (21) ) of the pressure damping rate
of the cylindrical cavity (figure 2) is found to be:

Analytical damping rate o, = 1264.3 s7L.

To first-order, the frequency of the damped cavity, f can be obtained from the undamped
eigenfrequency fy using the relation f = fo — 0,/(2m):

f= (fo - ‘Tp> — 1683.3 Hz.
2

In the next section we will show how a numerical Helmoltz solver can be used to obtain the
damping in an arbitrary geometry. This numerical solver has been validated on the present
geometry. The results are: undamped eigenfrequency = 1884.50 Hz, pressure damping rate
= 1264.31s7!, in perfect agreement with the underlying analytical model. The damping rate
given in equation (equation (21) was derived under the double approximation that

e The cavity diameter is very much larger than the thickness of the acoustic boundary layer
o The damping rate is negligible compared to the eigenfrequency of the chamber

These limitations are generally well verified in real-life systems, however in this particular test
case, neither approximation is well verified. In particular the damping rate is far from negli-
gible compared to the eigenfrequency. A. Nicole [12] has performed a more rigorous analytical
calculation for a cylindrical cavity with arbitrarily strong viscous damping (but excluding the
thermal contribution). Application of this implicit result to the present case gives: damped
frequency = 1686.0 Hz, pressure damping rate = 1413.3s7!. these “exact” results are a little
different to the results obtained using the above analysis for weak daming. However the two
analyses converge rapidly for more realistic (smaller) values of viscosity.

The three sets of results: analytical, numerical (both based on the same approach) and the
“exact” result of A. Nicole are summarised in table 2.

Analytical | Numerical | “Exact”
Undamped frequency, fo 1884.5Hz | 1884.5Hz | 1884.5Hz
Damped frequency, fo —o,/(27) | 1683.3Hz | 1683.3Hz | 1686.0 Hz
Damping rate, o, 1264.3s~1 | 1264.3s7! | 1413.357 1

Table 2: Results for step 1
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4 Test case step 2:
Application to axisymmetric coupled resonators

R, Main cavity
v L _ _ Adsofsymmetry _ _ _ Damping cavity |_¢_|32
L1 L2

Figure 3: Geometry of the two coupled cylindrical cavities

Analytical expressions, such as (14), for the acoustic field can be found only for trivial
geometries and are not available for more realistic geometries. To the best of my knowledge
even the simple geometry shown in figure 3 does not have a known analytical solution. However
it is possible to obtain a numerical solution using a standard software tool to solve the Helmholtz
equation.

4.1 The Helmholtz equation

The standard wave equation (d’Alembert’s equation) for small amplitude acoustic propagation
in a lossless medium is
0?p
ot?
where p is the unsteady acoustic pressure and c is the speed of sound in the medium. If the
acoustic oscillation is harmonic and quasi-stationary, such as at resonance, the spatial and time
dependencies of the acoustic field can be separated:

AV =0, (22)

p(x, ) = p(x) exp(~iwt).
The space-dependent part, p(x), of the acoustic pressure field must then satisfy Helmholtz’s

equation:
2

Vh(x) + 5 p(x) = 0 (23)

This differential equation is easily solved using standard software tools. The necessary inputs
are

o The speed of sound (which can be a function of position)
e The boundary conditions
The outputs are
e The eigenfrequencies, w, of the geometry defined by the boundary conditions
o The pressure field p(x) and the velocity field 4(x)

where

i(x) = ——Vp(x).



8 Geoff Searby, IRPHE

The numerical solutions for the pressure and velocity fields can then be used as before to calculate
the total energy in the system:

1 1 1p%(x)
E=— —pt?(x) + = 24
2/ 5Pl (x) 3 02 rdrdd (24)

and the total energy dissipation at the walls:

dE 1 [wuw e (v =D pi(x)
== /S iR (x) e 5 ) ds (25)

where 45 and ps are the values of the velocity and pressure at the walls. The pressure damping
rate is then given by equation (13). The solutions to the Helmholtz equation can be obtained
in a few seconds for a simple 2-D geometry, or in a few minutes for a 3—-D geometry.

Figure 4: Typical mesh for the geometry of figure 3.

4%

0%
0%
Axis of symmetry
Mode 1
37.9%
0%
0%

Axis of symmetry

Mode 2

Figure 5: Typical acoustic pressure fields for the geometry of figure 3. Ly = 0.2m Ly = 0.2m
Li=01m Ry =0.11m Ry =0.019m

In the following sections of this paper, the Helmholtz equation has been solved using a
commercial PDE solver called COMSOL. The domain has an unstructured triangular mesh.
For 2-D axisymmetric geometry of step 2, typically 6000 to 7000 cells were used, depending
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on the size of the damping cavity. A typical mesh is shown in figure 4. Figure 5 shows typical
solutions for the pressure fields of the first and second acoustic modes of the geometry of figure 3.
The flow streamlines are shown in red and the relative contributions for the damping from each
wall are also indicated. Since the walls are designated as adiabatic in this test, there is no
thermal dissipation and the two extremities do not contribute to the damping. It is interesting
to note that, for the second acoustic mode, the damping on the main cavity walls represents
46% of the total damping.

Eigenfrequencies from Helmholtz solver Linear damping from Helmholtz solver
10000 Damping cavity radius = 0.01 m 1400 Damping cavity radius = 0.01 m
—— Mode 1 N4 ——Mode 1
\ —+— Mode 2 1200 cavity —+— Mode 2
~ 8000 [\\
z
- \ —~ 1000
2
o ~
2 6000 o ’ \ [ —
g ® 800 ‘ “ \
g jo2}
= 4000 N\ e é 600 .
2 8 400
[h4 e SO
2000 ““"-‘MM 200 I / /
N SV s
0 0
0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Damping cavity length (m) Damping cavity length (m)

Figure 6: Evolution of the resonant frequencies and damping rates as functions of damping
cavity length. L1 = 0.2m Ly variable R = 0.11m Rs = 0.01 m.

Although not requested as part of this test case, figure 6 shows the undamped eigenfrequen-
cies and the damping rates of the first two modes as a function of the length of the damping
cavity, for a damping cavity radius Ry = 0.01 m. The properties of the gas in the system are
given in table 1. The resonant frequencies of the coupled system are, in general, different to
those of the isolated components. The resonant frequencies evolve in a very non-linear manner
with a change in the length of the damping cavity. This behaviour is generic, and is consistent
with a simple quasi 1-D analytical model of two coupled cavities [13]. It will be seen that the
resonant frequencies of the CRC evolve in a similar manner with the length of the damping
cavity. The evolution of the damping rates of the first two modes is shown in the right graph
of figure 6. The A/4 tuning is not optimal for the damping of mode 1. In fact it is a dangerous
tuning since the damping rate varies very quickly with cavity length (or with a change in sound
speed in the main cavity). A better tuning for damping mode 1 would be \/3.5 (Ly = 0.115m)
instead of A\/4. Another interesting tuning is A\/1.3 (Ly = 0.320m). For this cavity length, mode
1 is almost as strongly damped as with the A/4 tuning, but mode 2 is also strongly damped and
moreover the damping rates of both modes are relatively insensitive to cavity length.

Figure 7 shows the evolution of the frequencies and damping of the first two modes as a
function of the damping cavity radius. The length of the damping cavity is 0.1 m, corresponding
to the “standard” \/4 tuning with respect to he first mode of the main cavity.

Mode 1 is more strongly damped than mode 2. A closer investigation shows that the reason
for this difference is that the relative acoustic amplitude in the damping cavity is systematically
higher or mode one than for mode 2, leading to a higher dissipation in the damping cavity.

The results predict that the total damping rate increases as the radius of the damping cavity
is decreased. The physical reason for this is that the resulting increase in relative acoustic
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Eigenfrequencies from Helmholtz solver Linear damping from Helmholtz solver
5200 Damping cavity length =0.1 m 2000 Damping cavity length = 0.1 m
—e— Mode 1 —e— Mode 1
5000 | ——Mode 2 \ —— Mode 2
— |
—
4800 T 1500 -4 \
. . . ———- —
T 4600 |- o)
= \\ %
S 4400 = 1000
8 4200 R E
e T a
4000 500
\ \5
3800
3600 0
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.005 0.010 0.015 0.020 0.025
Radius of damping cavity (m) Radius of damping cavity (m)

Figure 7: Evolution of mode frequencies and damping rate as functions of damping cavity radius.
L1 =02m Ly =0.1m R; =0.11m R variable.

intensity inside damping cavity more than overweighs the decrease in surface area. Obviously,
this trend cannot continue indefinitely and the semi-analytical result will fail at small cavity
radii when boundary layer thickness becomes comparable to cavity radius.

The results requested for this test case are summarised in table 3, where the undamped
eigenfrequencies of figure 7 have been corrected for damping using the relation f = fy—o,/(27).

R =5mm R =10mm
Frequency Hz op Frequency Hz op
eigenvalue | corrected | s™! | eigenvalue | corrected | s7!
Mode 1 (4495) 4235 | 1631 (4309) 4185 | 779
Mode 2 (4752) 4687 | 411 (4796) 4754 | 263

Table 3: Results for step 2

5 Test case step 3:
Application to a 2—D model of the CRC

The CRC, or Common Research Chamber, is a small aspect ratio cylindrical chamber equipped
with a lateral damping cavity. The chamber radius is R, = 100mm and the chamber depth
is H. = 42mm. It is modelled here in 2-D as a circle of radius 100 mm equipped with a
rectangular damping cavity of width W = 10 mm and variable length between Lr = 0 mm and
Lr = 160mm. The geometry is shown in figure 8. The gas properties used in the simulations are
the same as the properties given in table 1, expect for the viscosity which was set to p = 10uq
instead of = 50ug. The chamber and cavity walls were adiabatic, except for the last calculation.

Figure 9 shows the evolution of the undamped eigenfrequencies of the first 8 modes of the
chamber as a function of the length of the damping cavity. The modes are labelled according to
their “parent” mode, meaning the structure of the mode when the cavity length tends to zero.
The presence of the damping cavity breaks the cylindrical symmetry of the chamber. For each of
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Figure 8: Geometry of the 2-D mode of the CRC. R, = 0.1m, W = 0.01 m, Lz variable.

2-D CRC Mode frequencies (8 modes)

16000 T T
——1To
""" 1T
14000 ::__gi
________________________________ ——1R
12000 [ N
§10000 - M
& 8000 b

i
6000 | R O o oo08 b
4000 B
"R tuning"l "1T tuning"
2000 5 ! '
0.00 0.04 0.08 0.12 0.16

Length of damping cavity (m)

Figure 9: Frequencies of the first 8 modes of the 2-D CRC as a function of cavity length
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the transverse modes of the chamber, the orientationally degenerate mode for Ly = 0 is broken
into two distinct modes, labelled nT,, and nT,. the “mr” modes have a pressure node aligned
with the axis of the damping cavity. There is no flow into or out of the cavity, and the frequency
of the mode is not affected by the presence of the cavity. The “c” modes are orthogonal to the
“m” modes. They have a pressure anti-node aligned with the axis of the damping cavity, and
they are strongly affected by its length. The modes with a radial parent do not have a “7” form

and also change in frequency with the length of the cavity.

Changing the length of the damping cavity changes not only the frequency of the “c” modes,
but also their geometrical shape. For example, the mode shown in figure 8 has a “1R” parent
mode (the green curve in figure 9) Here the cavity length has appproximately the “1R” tuning,
however when the cavity length is increased to 100 mm, the frequency of the mode has drops to
that of the 2T mode of an unperturbed disk, and the mode shape is also that of the 2T mode of
an unperturbed disk. However, for an arbitrary cavity length, the “c” modes have intermediate
shapes that are totally different from any unperturbed transverse mode. For mode detailed
explanations, see reference [13]. The general evolution of mode frequencies with cavity length is
similar to that of figure 6. The change in frequency is nonlinear with rapid changes for certain
lengths of the cavity.

2-D CRC Mode damping (5 modes)
500 T T T

400 |-~

300

1T tuning"l

200

Damping rate (s™")

100

N

0.00 0.04 0.08 0.12 0.16
Length of damping cavity (m)

Figure 10: Damping of the first 5 modes of the 2-D CRC as a function of cavity length

Figure 10 shows the damping rate of the first five modes of 2-D CRC as a function of the
cavity length. All the walls are adiabatic. The two arrows show the length of the damping
cavities requested for this test case. The results are qualitatively similar to those found for
the axisymmetric coupled cavities. Again, the so-called A\/4 tuning, with Lr = 85 mm, is not
optimal to damp the 1To mode. A cavity length of Lr = 120 mm will give a higher damping
and also a better tolerance to a tuning error.

The results request for this step are summarised in table 4. The frequencies given in the table
are the eigenfrequencies corrected for damping. The first-order correction, f = fo — op/(27),
has been used .
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Adiabatic walls Isothermal walls
L =41mm L =85 mm L =41 mm
Mode | Freq. Hz | o, s~ | Freq. Hz op s~! | Freq. Hz op st
1T, 5373 30 4559 261
2T, 8417 203 5927 181 8400 305
3T, 12595 77 12595 77

Table 4: Results for step 3

6 Test case step 4:
Application to a 3—D model of the CRC

VAR A
O
AL Ve

Figure 11: Unstructed mesh used in the 3-D model of the CRC

The CRC has been modelled in full 3-D. The chamber radius is R, = 100 mm, and the
chamber height is H. = 42mm. The damping cavity has a fixed radius of 5mm and a length
that has been varied from 0 mm to 160 mm. Since the objective here is to simulate the damping
of a real combustion chamber, all the walls are isothermal. The mesh is unstructured with
typically 70000 to 8000 cells, depending in the length of the damping cavity. The execution
time of the Helmholtz solver on a laptop computer was approximately 5 minutes per geometry,
including post-processing to obtain the damping rates. Figure 11 shows the mesh geometry.

T (K) 293. ¢ (m/s) 345
p(kg/m?)  1.20 Pr 0.773
p(kg/m/s) 2.04107° | v(m?/s) 1.701075

Table 5: Gas properties (ambient air) used to calculate the damping of the 3-D CRC

The properties of the gas used in these calculations are shown in table 5. They correspond to
the properties of ambient air at 20°C. Figure 12 shows the first six eigenfrequencies of the 3-D
CRC as a function of the cavity length. These frequencies are undamped eigenfrequencies, they
have not been corrected for damping. The behaviour is qualitatively identical to those of the
axisymmetric coupled chambers (figure 6), and of the 2-D CRC (figure 9). The presence of the
damping cavity breaks the orientationally degenerate transverse modes into “7” modes that are
insensitive to the cavity length, and “o” modes whose frequencies vary strongly with the cavity
length. The mode frequencies do not change linearly with cavity length, but tend to change
rapidly for certain critical lengths of of the cavity. The modes have been labelled according to
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the shape of the “parent” mode, i.e. the shape of the mode as the length of the cavity tends to

Zero.

2500

3-D CRC Mode frequencies

2000 |- ‘\

Frequency (Hz)

o \
1000

500

0.00 0.04

0.08

0.12 0.16

Length of damping cavity (m)

Figure 12: Eigenfrequencies of the first 6 modes of the 3-D CRC as a function of the cavity

length

3-D CRC Mode damping

100 __ Cavityradius5mm |~ 1To
1T
—2To
----- 2T
80 "4 T
R tuning
o
o 60
®
D
£
o
g 40
)
o
20
0 Y ¥ ¥
0.00 0.04 0.08 0.12 0.16

Length of damping cavity (m)

Figure 13: Damping rates of the first 5 modes of the 3-D CRC as a function of the cavity length.

All walls are isothermal.

Figure 13 shows the damping rate, o, of the first five modes as a function of the cavity
length. Again the behaviour is qualitatively similar to that of the 2-D CRC. The black arrows
show the three lengths of the cavities requested for this step. The cavity length L = 41 mm is
well adapted to damp the 1R mode. However it is clear that the cavity lengths Lr = 51 mm and
85 mm are not optimal to damp the 2T, and 1T, modes. However, contrary to the 2-D case,
there is no single cavity length that provides good damping of both the 2T, and 1T, modes.
The damping of the nT7 modes is insensitive to the length of the damping cavity.
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Lrp=0mm | L =41lmm | Lr =51mm | Lgr =85mm | Lg = 120 mm
/ Op f Op f Op f Op f Op
Mode | Hz s~1 Hz s1 Hz s71 Hz s71 Hz s~1
1T, | 1009 | 10.6 | 1004 | 11.0 | 1002 | 11.3 | 925 | 47.8 | 682 55.5
1T, | 1009 | 10.6 | 1009 | 10.6 | 1009 | 10.6 | 1009 | 10.6 | 1009 | 10.6
2T, | 1675 | 15.1 | 1650 | 21.1 | 1526 | 68.0 | 1042 | 29.9 | 1014 | 12.1
2T, | 1675 | 15.1 | 1675 | 15.1 | 1675 | 15.1 | 1675 | 15.1 | 1675 15.1
1R | 2102 | 13.3 | 1915 | 80.3 | 1711 | 31.4 | 1677 | 16.0 | 1671 16.4

Table 6: Results for step 4 with cavity lengths = Omm, 41 mm, 51 mm, 85 mm, 120mm and
isothermal walls. The eigenfrequencies have been corrected for damping.

The frequencies and damping rates of the first five modes for five selected cavity lengths are
given in table 6. In this table the undamped eigenfrequencies of figure 12 have been corrected
for damping using the first-order relation f = fy — 0,/(2m).

7 Discussion

7.1 Are these results reliable?

Yes and No! There is no problem with numerical accuracy: the numerical results agree very
closely (< 1%o) with the analytical solution presented above, when the latter is known (2-D
rectangle, 2-D disk, axisymmetric cylinder...). It has been verified that the numerical results
are independent of the mesh resolution for the meshes used here. It thus is expected that there
is no significant numerical error for the non-trivial geometries

Possible sources of error thus lie in the analytical expressions that have been used to compute
the damping rates. The analysis has two components:

e Boundary layer theory
o Eigenmode acoustic analysis
The corresponding analytical expressions are exact, but with a number of restrictions such as:
e No mean flow
¢ Very small amplitude acoustics
e Small damping rate compared to the frequency

We will first examine the hypotheses and approximations used in the boundary layer theory.

7.2 Approximations and limitations arising from boundary layer theory

1) The boundary layer theory used here supposes that the acoustic pressure and velocity are
invariant by translation along the walls. The equivalent approximation is that the acoustic wave-
length is very large compared to the boundary layer thickness. This (quasi 1-D) approximation
is good for real systems.

2) The boundary layer theory supposes that the acoustic medium is semi-infinite. The
equivalent approximation is that the boundary layer thickness negligible compared to all cavity
dimensions. This approximation is good for real systems

Other restrictions, not important for test cases here, but which may be important in real
systems are:
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o Effect of turbulence is neglected. The turbulence level inside damping cavities is low, so
this will not be a problem. Elsewhere it is probably not important provided that the
Kolmogoroff scale is considerably greater than the acoustic boundary layer thickness.

e Temperature and composition gradients are neglected. The mean-flow boundary layers are
much thicker than the acoustic boundary layers, so one should use the gas properties cal-
culated at the wall temperature (supposed known) and not the mean burnt gas properties
in the bulk of the chamber.

e The effect of mean flow is neglected. There is no mean flow in damping cavities, so it is
not a problem there. However but it will change the calculated contribution of damping
by combustion chamber walls.

e The effect of cross flow at cavity exit is neglected. At present I do not know how to
estimate eventual errors introduced by this phenomenon.

7.3 Approximations and limitations arising from eigenmode analysis

1) The frequencies given by the Helmholtz solver are (undamped) eigenfrequencies. The real
frequencies of damped systems have smaller values. The first order correction for the frequency
shift of an acoustic resonator, due to damping, is f = fy — 0,,/(27), where fj is the undamped
eigenfrequency. This correction can easily be included. The mode frequencies in tables 2, 3, 4
and 6 have been corrected using this expression.

2) The flowfields are calculated neglecting the flow resistance (due to dissipation) at cavity
entrance. The amplitude of the acoustic wave inside the cavity will be over-evaluated when
cavity entry resistance is higher than the entry reactance. As a consequence, the damping
produced by the cavity walls will also be over-estimated. The expected ratio of over-evaluation
is (R? + x?)/x? where R and y are the cavity resistance and reactance. The equivalent cavity
entrance resistance can be computed from the dissipation rate and the local acoustic velocity at
the cavity entrance [7]. These are known quantities.

3) The Helmholtz equation is exact in the limit of vanishingly small acoustic amplitude. The
acoustic flow is then the solution of a potential equation and is thus irrotational. Boundary
layer separation and recirculation zones in the acoustic flow are thus totally excluded. For a
finite acoustic amplitude, boundary layer separation will occur at sharp edges, such as the exit
of a damping cavity. At low to moderate acoustic amplitude, it can be shown that the power is
dissipated by recirculation at the cavity exit is negligible in comparison with the dissipation at
the chamber walls.

However comparison with numerical simulation shows that boundary layer separation at
the cavity exit also modifies the shape of the acoustic flow field, and hence the modifies the
distribution of velocity and pressure along the walls. Boundary layer separation thus modifies
the damping rate by changing the velocity and pressure distribution along the walls. We believe
that this phenomenon is responsible for the major part of the difference (=~ 10%) between
the present results and the CEDRE results of A. Nicole for the geometries of steps 2-4. As a
check we have compared our results for step 2 (axisymmetric cavities) when the sharp junction
between the two cavities is replaced by a smooth round chamfer. As the radius of the chamfer
is increased, the damping rates calculated by the two approaches tend to a common value.
When the radius of the chamfer was greater than the diameter of the damping cavity, there
was no visible boundary layer separation in the CEDRE simulations (for 10~* relative acoustic
amplitude), and the damping rates from the two approaches were in very good agreement.



Proceedings of the 1st REST Modelling Workshop 17

This unexpected phenomenon is probably the greatest source of error identified so far. The
above remarks concerning the comparison between this approach and DNS will also apply to
the comparison with experimental measurements on the CRC.

4) In real experiments additional damping may arise from small interstices between modules.

5) In real experiments non-linear damping (acoustic jets) will occur if the acoustic displace-
ment at the cavity exit is of the order, or greater than the cavity radius[14]. This linear limit
can also be written u/w > Reavity-

Other restrictions, not important for test cases here, but which may be important in real
systems are:

e There is no mean flow. It is well-known that resonant frequencies are modified by mean
flow in the chamber. Acoustic flow, wall gradients and damping will also be modified It
would be possible to account for some Mach effects by solving the aero-acoustic equations
instead of the Helmholtz equation. This has not been done yet.

e The analysis has supposed that there is no turbulence and no inhomogeneities. Large scale
temperature and density variations can be included in the Helmholtz solver (although it
has not been necessary here). However internal damping due to small scale fluctuations
cannot be included.

e The effect of an exhaust nozzle was not taken into account. At present it is not possible
to model a choked exhaust nozzle. However it is possible to specify an arbitrary wall
impedance (if known) in replacement of the nozzle.

8 Conclusions and perspectives

A combination of laminar boundary layer theory and a solver for the Helmholtz equation has
been used to provide a simple lightweight method to estimate linear damping rate of the test
cases proposed in this workshop. The method is applicable to arbitrary complex geometries.
The necessary cpu time is of the order of a few seconds for a simple 2-D geometry and of the
order of 5 minutes for the 3-D CRC with one damping cavity.

It would not be difficult to apply the method to a combustion chamber equipped with a
damping ring of n cavities.

This approach has been validated by DNS for the trivial geometry of a regular cylinder closed
at both ends. The approach is strictly laminar, but the thin acoustic boundary layer should
remain laminar even for turbulent flows. However the method does not take account effect of
boundary layer separation and recirculation on mode shape and velocity distributions. It does
not include the contribution of other non-linear phenomena, such as the formation of acoustic
jets at high acoustic amplitudes.

The approach can be extended to include space dependant gas properties (temperature,
composition). It is also possible to imagine that that this frequency domain approach could be
coupled to a time domain code. The frequency domain code could provide damping information
to the time domain code (to be modelled by some impedance condition, for example), and the
time domain code could provide density and temperature fields for the frequency domain code.
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