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DENSITY AND EQUIDISTRIBUTION OF ONE-SIDED

HOROCYCLES OF A GEOMETRICALLY FINITE HYPERBOLIC

SURFACE

BARBARA SCHAPIRA

Abstract. On geometrically finite negatively curved surfaces, we give neces-
sary and sufficient conditions for a one-sided horocycle (hsu)s≥0 to be dense in
the nonwandering set of the geodesic flow. We prove that all dense one-sided
orbits (hsu)s≥0 are equidistributed, extending results of [Bu] and [Scha2]
where symmetric horocycles (hsu)−R≤s≤R were considered.

1. Introduction

Hedlund [H] proved that the horocyclic flow (hs)s∈R on the unit tangent bun-
dle of a finite volume hyperbolic surface is minimal, that is all nonperiodic orbits
(hsv)s≥0 (called in [H] ”right-semihorocycles”, and here positive half-horocycles)
are dense.

On geometrically finite surfaces, i.e. surfaces whose fundamental group is finitely
generated, it is known (see [E], [Da]) that all nonwandering and non periodic orbits
of the horocyclic flow are dense in the sense that the closure of (hsv)s∈R contains the
nonwandering set of the geodesic flow. On general hyperbolic surfaces, keeping this
definition of “dense” horocyclic orbit, we know ([E] [Da] [St]) how to characterize
dense orbits : a horocycle is dense iff it is centered at a horospherical point.

However, as soon as the fundamental group of the surface is of the second kind,
i.e. its limit set is strictly included in the boundary at infinity S1 (see section 2),
we can easily find horocycles (hsu)s∈R that are globally dense in the nonwandering

set Ω of the geodesic flow (in the sense that (hsu)s∈R ⊃ Ω), but with one side dense
and the other not.

In this note, answering a question of O. Sarig, we characterize these horocycles
with one side dense and the other not. If u ∈ T 1S, and ũ is any of its lifts on the
unit tangent bundle T 1D of the hyperbolic disc, we denote by u− ∈ S1 (resp. u+)
the negative (resp. positive) endpoint in the boundary S1 = ∂D of the geodesic
line defined by ũ. We prove:

Theorem 1.1. Let S be a geometrically finite hyperbolic surface. Let u ∈ T 1S
be s.t. its full unstable horocyclic orbit (hsu)s∈R is dense in Ω. Then the positive
half-horocycle (hsu)s≥0 is dense in Ω iff u− is not the first endpoint of an interval
of S1 \ ΛΓ (where the circle S1 is oriented in the counterclockwise direction).

On general hyperbolic surfaces, this theorem remains valid for vectors u ∈ T 1S
that are periodic for the geodesic flow (see proposition 3.12).
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In fact, inspsired by ideas of [C], we introduce the notion of right horospherical
vector, and prove (proposition 3.9) that on general hyperbolic surfaces, a positive
half-horocycle (hsu)s≥0 is dense iff u is a right horospherical vector. We deduce
Theorem 1.1 from the fact that on geometrically finite surfaces, right horospherical
vectors are easy to characterize.

Our initial motivation was the study of equidistribution properties of horocycles.
Furstenberg’s unique ergodicity result [F] for the horocyclic flow ensures that on
the unit tangent bundle T 1S of a compact hyperbolic surface, all horocyclic orbits
are equidistributed towards the unique (hs)-invariant measure λ: for all u ∈ T 1S

and f : T 1S → R continuous,
1

T

∫ T

0

f ◦hsu ds→

∫

T 1S

f dλ, where λ is the Liouville

measure. Of course, the same result holds for (hsu)s≤0.
This result was extended by Dani and Smillie [DS] to finite volume hyperbolic

surfaces: all nonperiodic one-sided orbits (hsu)s≥0 are equidistributed towards λ.
On geometrically finite hyperbolic surfaces, there is [Ro] [Bu] a unique (hs)-

invariant ergodic measure m that has full support in the nonwandering set of (hs);
and it is infinite. Therefore, as in Hopf ergodic theorem, one considers ratios∫ T
−T f ◦ hsu ds

∫ T
−T g ◦ h

su ds
and one can prove [Bu][Scha2] that they converge to

∫
T 1S f dm∫
T 1S

g dm

for all continuous functions f, g : T 1S → R with compact support, and all nonwan-
dering and non periodic vectors u ∈ T 1S. In these two articles, equidistribution is
obtained for symmetric horocycles (hsu)−T≤s≤T only, and not for one-sided horo-
cycles (hsu)0≤s≤T . Symmetric averages are very natural from a geometric point
of view, but not from the ergodic point of view, where a difference of behaviour
between the negative and the positive orbit is an interesting phenomenon.

In theorem 1.1, we characterized dense horocycles that have one side dense and
the other not. For these horocycles, one cannot hope equidistribution of both one-
sided orbits. However, according to Hopf ergodic theorem, almost all one-sided
horocycles should be equidistributed towards m.

On geometrically finite hyperbolic surfaces, the above phenomenon of dense horo-
cycles with a nondense side is the only obstruction to the equidistribution of one-
sided horocycles. Indeed, with methods of [Scha1] and [Scha2], we get:

Theorem 1.2. Let S be a geometrically finite surface, and u ∈ T 1S such that
(hsu)s≥0 is dense in the nonwandering set of the geodesic flow. Then (hsu)s≥0 is
equidistributed towards the unique invariant measure m which has full support in
the nonwandering set of (hs)s∈R.

In other words, for all continuous functions with compact support f, g : T 1S → R,
with

∫
T 1S g dm > 0, we have

∫ T
0
f ◦ hsu ds

∫ T
0
g ◦ hsu ds

→

∫
T 1S

f dm∫
T 1S g dm

, when T → +∞ .

Note that periodic orbits are obviously equidistributed to the Lebesgue measure
on the orbit. Of course, theorem 1.2 also holds for negative orbits (hsu)s≤0.

Most results extend to surfaces of variable negative curvature. However, to avoid
too many preliminaries, we postpone the discussion on such surfaces to the end of
the paper.
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Section 2 is devoted to preliminaries. Theorem 1.1 is proved in section 3, where
we also discuss the case of geometrically infinite surfaces, and theorem 1.2 in section
4.

I thank warmly O. Sarig for the question at the origine of this note, F. Dal’bo
for her comments on the first version of this work, Yves Coudene for several helpful
discussions, and all members of the former french ANR project on infinite ergodic
theory for our fruitful work together.

2. Preliminaries

Hyperbolic geometry. The hyperbolic disc D = D(0, 1) is endowed with the

metric 1
4

dx2

(1−|x|2)2 . Let o be the origin of the disc. Denote by π : T 1D → D the

canonical projection. The boundary at infinity is S1 = ∂D.

The map z ∈ D 7→ i(1+z)
1−z is an isometry between D with the above metric and the

upper half plane H = R×R∗
+ endowed with the hyperbolic metric dx2+dy2

y . There-

fore, the group of isometries preserving orientation of D identifies with PSL(2,R)
acting by homographies on H = R × R∗

+. It acts simply transitively on the unit

tangent bundle T 1D, so that we identify these two spaces through the map which
sends the unit vector (1, 0) tangent to D at o = (0, 0) on the identity element of
PSL(2,R).

The Busemann cocycle is the continuous map defined on S1 × D2 by

βξ(x, y) := lim
z→ξ

(d(x, z) − d(y, z)) .

Define the map v ∈ T 1D 7→ (v−, v+, βv−(π(v), o)) , where v± are the endpoints in
S1 of the geodesic defined by v, and π(v) ∈ D is the basepoint in S of v. It defines
a homeomorphism between T 1D and ∂2D × R := S1 × S1 \ Diagonal× R.

Let Γ be a discrete subgroup of PSL(2,R). Its limit set is ΛΓ = Γo \ Γo ⊂ S1.
The group Γ acts properly discontinuously on the ordinary set S1 \ ΛΓ, which is a
countable union of intervals.

A point ξ ∈ ΛΓ is a radial limit point if it is the limit of a sequence (γn.o) of
points of Γ.o that stay at bounded distance of the geodesic ray [oξ) joining o to ξ.
Let Λrad denote the radial limit set.

The point ξ ∈ ΛΓ is horospherical if any horoball centered at ξ contains infinitely
many points of Γ.o. In particular, Λrad is included in the horospherical set Λhor.

An isometry of PSL(2,R) is hyperbolic if it fixes exactly two points of S1, it
is parabolic if it fixes exactly one point of S1, and elliptic in the other cases. Let
Λp ⊂ ΛΓ denote the set of parabolic limit points, that is the points of ΛΓ fixed by
a parabolic isometry of Γ.

Any hyperbolic surface is the quotient S = Γ\D of D by a discrete subgroup Γ
of PSL(2,R) without elliptic element. Its unit tangent bundle T 1S identifies with
Γ\PSL(2,R).

In this note, we always assume Γ be nonelementary, that is #ΛΓ = +∞. More-
over, we are mainly interested in geometrically finite surfaces S, i.e. surfaces whose
fundamental group Γ is finitely generated. In such cases, the limit set ΛΓ is the dis-
joint union of Λrad and Λp [Bow]. Moreover, the surface is a disjoint union of a com-
pact part C0, finitely many cusps (isometric to {z ∈ H, Im z ≥ cst}/{z 7→ z+ 1}),
and finitely many ’funnels’ (isometric to {z ∈ H, Re(z) ≥ 0, 1 ≤ |z| ≤ a}/{z 7→
az} = {z ∈ H, Re(z) ≥ 0}/{z 7→ az}, for some a > 1.
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When S is compact, ΛΓ = Λrad = S1. It is said convex-cocompact when it is
a geometrically finite surface without cusps. In this case, ΛΓ = Λrad is strictly
included in S1 and Γ acts cocompactly on the set (ΛΓ ×ΛΓ) \Diagonal×R ⊂ T 1D.
(We identify now the two homeomorphic spaces T 1D and S1 × S1 \Diagonal×R.)
When S has finite volume, there are no funnels and ΛΓ = S1.

Geodesic and horocycle flows. A hyperbolic geodesic in D is a diameter or a
half-circle orthogonal to S1. A horocycle of D is a circle tangent to S1. It can also
be defined as a level set of a Busemann function. A horoball is the (euclidean) disc
delimited by a horocycle. A vector v ∈ T 1D is tangent to a unique geodesic of D.
Moreover, it is orthogonal to exactly two horocycles passing through its basepoint
π(v), and tangent to S1 respectively at v+ and v−. The set of vectors w ∈ T 1D

such that w− = v− and based on the same horocycle tangent to S1 at v− is the
strong unstable horocycle or strong unstable manifold W su(v) ⊂ T 1D of v The
strong stable manifold W ss(v) is defined in the same way.

The geodesic flow (gt)t∈R acts on T 1D by moving a vector v of a distance t along
its geodesic. In the identification of T 1D with PSL(2,R), this flow corresponds to
the right action by the one-parameter subgroup

{
at :=

(
et/2 0

0 e−t/2

)
, t ∈ R

}
.

The strong unstable horocyclic flow (hs)s∈R acts on T 1D by moving a vector v of a
distance |s| along its strong unstable horocycle. There are two possible orientations
for this flow, and we consider the choice corresponding to the right action by the
one parameter subgroup

{
ns :=

(
1 0
s 1

)
, s ∈ R

}

on PSL(2,R). This flow turns vectors along their strong unstable horocycle, so that
{hsv, s ∈ R} = W su(v). The horocyclic orbits are the strong unstable manifolds of
the geodesic flow in the sense that

W su(v) = {w ∈ T 1D, d(g−tv, g−tw) → 0 quand t→ +∞} .

Moreover, it satisfies

gt ◦ hs = hse
t

◦ gt .

These two right-actions are well defined on the quotient space T 1S ≃ Γ\PSL(2,R).
The nonwandering set Ω of the geodesic flow is the set Γ\(Λ2

Γ ×R). The horocyclic
flow is topologically transitive (see [Da]) in the sense that there exists u ∈ T 1S such

that (hsu)s∈R ⊃ Ω. It allows to see that the nonwandering set E of the horocyclic
flow is the set Γ\(ΛΓ × S1 × R) of vectors such that v− ∈ ΛΓ.

In our situation (nonelementary hyperbolic surfaces) we know that the length
spectrum of the fundamental group Γ of S is nonarithmetic, that is the set {l(γ)}
of lengths of closed geodesics generates a dense subgroup of R. We will use this
crucial fact in the sequel.

Local product structure of the geodesic flow. The geodesic flow on the unit
tangent bundle of any hyperbolic surface (including D) is a hyperbolic flow. In
particular, it has a (uniform) local product structure : for all ε > 0, there exists
δ > 0 s.t. if d(u, v) ≤ δ, there is a vector w = [u, v] in W su

ε (gtu) ∩W ss
ε (v), where
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W ss
ε (v) is the intersection of the strong stable horocycle of v with the ball centered

at v of radius ε and |t| ≤ ε.

u v
[u, v]

Figure 1. Local product in the hyperbolic disc D

3. Density of positive half-horocycles

Recall that W su(v) = {hsv, s ∈ R} is compact iff v− ∈ Λp, and dense in Ω
iff v− ∈ Λhor (see [Da]). Denote by W su

+ (v) = {hsv, s ≥ 0} the positive half-
horocycle.

We suppose in the sequel that S1 is oriented in the counterclockwise direction.

Geometry of funnels.

Remark 3.1. If the surface S = D/Γ has a funnel isometric to {z ∈ H, Re(z) ≥
0}/{z 7→ az}, with a > 1, the geodesic line Re(z) = 0 of D induces on the quotient
the closed geodesic closing the funnel. Any geodesic line crossing this closed geodesic
and entering into the funnel never returns back to the other side. In particular, the
limit set ΛΓ does not intersect the right half line R∗

+.

From this elementary remark, we deduce the following key facts.

Fact 3.2. On a geometrically finite hyperbolic manifold, the only points on the
boundary of an interval of S1 \ΛΓ are hyperbolic. More precisely, both extremities
of such an interval are the endpoints p± of the axis of a lift of the closed geodesic
bording the corresponding funnel.

Fact 3.3. Assume S be geometrically finite. If v− ∈ Λhor is the first endpoint of
an interval of S1 \ ΛΓ, then W su

+ (v) is not dense in Ω and (g−tv)t≥0 is asymptotic
to the closed geodesic turning around a funnel.

v

ṽ

v−

Figure 2. A vector whose right horocycle is not dense in Ω
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Right horocyclic vectors and right horocyclic points. If v ∈ T 1D, we denote
by Hor(v) ⊂ D the horoball centered at v− and containing the base point of v in
its boundary. We denote by Hor+(v) ⊂ Hor(v) the “right part” of the horoball,
i.e. the set of basepoints of vectors of ∪t≥0W

su
+ (g−tv).

Fix a point o ∈ D. If S is a geometrically finite surface, we assume that o belongs
to a lift of the compact part of S.

In [C], a vector v ∈ T 1S is called horospherical if there exists z ∈ Ω, ti → +∞
and vi ∈ W su(v)∩Ω s.t. g−tivi → z ∈ Ω. It is equivalent to saying that v− ∈ Λhor,
that is that all horoballs centered at v− contain infinitely many points of the orbit
Γ.o (see lemma 3.7 below for a proof).

Definition 3.4. If v ∈ T 1D, and α > 0, we define the cone of width α around v
as the set C(v, α) of points at distance at most α from the geodesic ray (g−tv)t≥0

inside the horoball Hor(v).

Definition 3.5. Let S be a nonelementary hyperbolic surface. A vector v ∈ T 1S
is a right horocyclic vector if for a lift ṽ ∈ T 1S, for all α > 0 and D > 0, the orbit
Γ.o intersects the right horoball Hor+(g−Dṽ) minus the cone C(g−Dṽ, α).

ṽ

γn.o

v−

γ1.o

Figure 3. Lift of a right-horocyclic vector

Of course if v is a right horocyclic vector, then v− is horospherical, and equiva-
lently v is a horospherical vector in the sense of [C].

Remark 3.6. This definition depends only of v− (indeed, if w is another vector
with v− = w−, any cone around w is included in a cone around v). A point ξ ∈ ΛΓ

which is the negative endpoint of a right horocyclic vector will therefore be called
a right horocyclic point.

Lemma 3.7. Let S be a non elementary hyperbolic surface. A vector v ∈ T 1S is
a right horocyclic vector if and only if there exists z ∈ Ω such that for all α, there
exists a sequence tn → +∞, vn ∈ W su

+ (v) s.t. g−tnvn converges to z ∈ Ω, but
g−tn ṽn /∈ C(ṽ, α), where ṽ and ṽn are lifts resp. of v and vn on the same horocycle
of T 1D.

The definition of right horocyclic vector is easier, but the above equivalent prop-
erty will be more useful in the sequel.

Proof. Let us begin with the following elementary fact.

Fact 3.8. There exists R > 0, such that for all ξ ∈ ΛΓ, there exists η ∈ ΛΓ, such
that the geodesic (ξη) intersects the ball B(o,R).
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Indeed, assuming it is false, we could find a sequence Rn → ∞, ξn ∈ ΛΓ,
ξn → ξ ∈ ΛΓ, s.t. for all η ∈ ΛΓ, the distance d(o, (ξnη)) is greater than Rn.
Passing to the limit, for η 6= ξ, we obtain d(o, (ξη)) = +∞, which gives a contra-
diction.

Now, let v be a right horocyclic vector. Let Dn → +∞, αn → +∞, and ṽ be
a lift of v to T 1D. There exists a point γn.o in Hor+(g−Dn ṽ) \ C(ṽ, α). Using
fact 3.8, we can find η ∈ ΛΓ, η 6= v−, s.t. the geodesic (ṽ−η) intersects the ball

B(γn.o, R). Choose a vector w̃n ∈ Ω̃ ∩ T 1B(γn.o, R) tangent to this geodesic. It
satisfies w−

n = v−, w+
n = η, w̃n = g−tn ṽn, tn ≥ Dn −R, ṽn ∈W su

+ (ṽ), and w̃n does
not belong to the cone C(ṽ, αn −R). Passing to T 1S, we get a sequence of vectors
wn of the compact set T 1B(o,R) ∩ Ω. Up to a subsequence, it converges to some
z ∈ Ω. We proved that there exists z ∈ Ω, s.t. for all α > 0, there exists tn → +∞,
and vn ∈W su

+ (v) s.t. g−tnvn → z, and g−tn ṽn /∈ C(ṽ, α).

Conversely, assume the existence of such a z ∈ Ω. Fix α > 0 and D > 0.
Let ρ = d(o, π(z)), α > 0, and β = α + ρ + 1. There exists tn → ∞, vn ∈
W su

+ (v), g−tnvn → z, and ṽn /∈ C(ṽ, β). For n large enough, tn ≥ D + ρ + 1, and
d(g−tnvn, z) ≤ 1. There exists an element γn.o ∈ B(π(g−tn ṽn), ρ). By construction,
this element is inHor+(g−Dṽ)\C(g−Dṽ, α). Thus, ṽ is a right horocyclic vector. �

Proof of theorem 1.1. We will prove

Proposition 3.9. Let S be a nonelementary hyperbolic surface. A vector ṽ ∈ T 1D

is a right horocyclic vector if and only if W su
+ (v) is dense in Ω, where v ∈ T 1S is

the projection of ṽ.

and

Lemma 3.10. Let S be a nonelementary geometrically finite surface. If v− ∈ Λhor,
v is a right horocyclic point iff v− is not the first endpoint of an interval of S1 \ΛΓ.

Theorem 1.1 is an immediate consequence of these two results. Let us now prove
them.

Fact 3.11. If y ∈ W su
+ (x), then W su

+ (y) ⊂W su
+ (x).

Proof. Evident with the parametrization of W su by the horocyclic flow. �

For a vector v ∈ T 1S, we denote by ṽ a lift to T 1D, and by v± ∈ S1 the enpoints
of this lift on the boundary.

Proposition 3.12. Let S be a nonelementary surface. If p ∈ Ω is a periodic vector
for the geodesic flow, then W su

+ (p) is dense in Ω if and only if p− is not the first

endpoint of an interval of S1 \ ΛΓ.

This result is valid on any nonelementary negatively curved surface, without
geometrical finiteness assumption.

Recall first that on a nonelementary negatively curved surface, the length spec-
trum is non arithmetic (see [Da]), that is the set of lengths of periodic orbits
{l(γ), < γ > periodic} generates a dense subgroup of R.

Proof. Note first that if p ∈ T 1S is a periodic vector for the geodesic flow and p−

is the first endpoint of an interval ]p−η[ of S1 \ ΛΓ, then W su
+ (p) cannot be dense

in Ω. Indeed, the vectors of W su
+ (p) pointing in ]p−η[ do not even belong to Ω.
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Assume now that p− is not the first endpoint of an interval of S1 \ΛΓ. We follow
[C] almost verbatim.

First, gRW su
+ (p) is dense in Ω (see also [C, Lemma1]). Indeed, there exists x ∈ Ω,

s.t. (gtx)t≥0 is dense in Ω. Let x̃ (resp. p̃) be a lift of x (resp. p) to T 1D, and x+

its positive endpoint in S1. The orbit Γ.x+ is dense in ΛΓ. As p− is not the first
endpoint of an interval of S1 \ΛΓ, we can find a sequence x+

n ∈ Γ.x+ converging to
p−, with x+

n ≥ p− (in the counterclockwise order).

p̃

ṽn

x+
n

p−

Figure 4. Construction of a dense geodesic in the weak unstable
manifold Wwu(p)

If n is large enough, the unique vector ṽn of W ss(p̃) ∩ (p−x+
n ) belongs to the

positive half-horocycle W su
+ (p̃), so that on T 1S, vn ∈W su

+ (p) and gRvn is dense in

Ω. Therefore, gRW su
+ (p) is dense in Ω.

Now, let us show that W su
+ (p) is dense in gRW su

+ (p). (We still follow [C]). Fix
ε > 0, and a periodic vector p0 ∈ T 1S, s.t. ∃m,n ∈ Z, with |ml(p) + nl(p0)| < ε.
Without loss of generality, assume n ≥ 0. Let δ = δ(ε, p0) > 0 be the constant
appearing in the local product structure property around p0 (see end of section 2).

As p− is not the first endpoint of an interval of S1 \ ΛΓ, we can lift p0 to p̃0 in
such a way that p+

0 ∈ [p−p+].
Let v ∈ W su

+ (p) ∩Wws(p0) be the vector obtained as the projection on T 1S of

the unique ṽ of W su
+ (p̃) ∩Wws(p̃0). If p+

0 is well chosen (i.e. close enough to p−),
we have W su

2ε (v) ⊂ W su
+ (p). The geodesic orbit (gtv)t∈R is negatively asymptotic

to the periodic orbit of p, positively asymptotic to the periodic orbit of p0.
The end of the proof consists in using once again the local product structure

to construct an orbit which is negatively asymptotic to the orbit of p, positively
asymptotic to the orbit of p, and “in the middle” goes from the orbit of p to the
orbit of p0 following the orbit of v, turns a certain number of times around the
periodic orbit of p0, and later comes back to the orbit of p.

Choosing the number of turns around the orbit of p0 will allow to construct
vectors of W su

+ (p) arbitrarily close to any vector of the closed orbit (gtp)t∈R.

First, the vector v belongs to W su
+ (p), and p is periodic, so that there exists

τ ≥ 0, satisfying g−τv ∈ W su
ε (g−τp) = W su

ε (p). Choose the smallest such τ1,
and let v1 = g−τ1v. There exists s1 ≥ τ1 s.t. gs1v1 = gs1−τ1v ∈ W ss

δ/2(p0); s1
is the “time” needed to come from an ǫ-unstable neighbourhood of p to a δ/2-
neighbourhood of the orbit of p0, following the orbit of v. As p0 is periodic, note
that for all nonnegative integer i ≥ 0, gs1+il(p0)v1 ∈W ss

δ/2(p0).

There exists a vector w ∈W su
δ/2(p0) ∩W

ws(p). Let s2 > 0 s.t. gs2w ∈ W ss
ε (p).

For all k ∈ N, ass d(w, gs1+k.n.l(p0)v1) ≤ δ, we use the local product structure
of the geodesic flow, and obtain a vector of W su

ε (gs1+knl(p0)±εv1) ∩W
ss
ε (w). The

resulting geodesic orbit on T 1S is negatively and positively asymptotic to the orbit
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of p, going from p to p0, ε-shadowing the orbit of p0 during the time k.nl(p0) and
coming back to the orbit of p.

The key point (and the only difference with [C]) is that the “gluing” was done
between some vector gtv, t ≥ 0 of the positive geodesic orbit of v, and a vector
“coming back” from p0 to p. It ensures that the resulting geodesic orbit intersects
W su
ε (gtv). As W su

ε (v) contains g−tW su
ε (gtv), this orbit intersect therefore W su

ε (v)
which is included in the positive unstable horocycle W su

+ (p).
Note that the time s1 needed to go from p to p0, and the time s2 to come back,

depend only on ε, and not on k, so that we can choose k ∈ N as large as we need.
Let us repeat verbatim the final argument of [C]. For all ε > 0, we found s1 > 0,

s2 > 0, s.t. for all k ∈ N, there exists u ∈W ss
2ε (p), and sk ∈ R, with |sk− s1− s2| <

2ε, and g−sk−knl(p0)u ∈ W su
ε (p). Let j ∈ Z be the greatest integer such that

jl(p) < −sk − knl(p0). Then, gjl(p)u = gjl(p)+sk+knl(p0)g−sk−knl(p0)u ∈ W ss(p) is
ε-close to the vector gsk+kl(p0)p on the periodic orbit of p. This vector also coincides
with gsk+knl(p0)+m′l(p)p for all m′ ∈ Z. In particular, taking m′ = km, we find a
vector on W ss(p) very close to gs1+s2+k(ml(p0)+nl(p))p for all positive integers k ∈ N.
As the length spectrum is non arithmetic, any point on the (periodic) geodesic orbit

of p is ε close to such a point. Thus, W su
+ (p) contains (gtp)t∈R, and therefore also

gRW su
+ (p) which is dense in Ω. This ends the proof. �

Proof of proposition 3.9 The case of periodic vectors p follows from proposi-
tion 3.12 and the proof of lemma 3.10. We consider now only nonperiodic vectors.

Assume first that W su
+ (v)∩Ω is dense in Ω, and prove that v is a right horocyclic

vector.
Let p be a vector on a periodic geodesic, l(p) its length, and d(p) the distance

between o and its orbit. Fix α > 0 and D > 0. Without loss of generality, we
assume D ≥ l(p) + d(p) + 2. Consider the cone C = C(g−Dṽ, α), where ṽ is a lift of
v to T 1D. Remark that the distance between (the basepoint of) hs(g−Dṽ) and the
cone C goes to infinity when s→ +∞.

Fix ε ∈]0, 1[. By density of W su
+ (v) in Ω, we can find an infinite sequence

vk ∈ W su
+ (v), vk = hskv, sk → ∞, s.t. vk is so-close to p that (g−tvk)0≤t≤2D and

(g−tp)0≤t≤2D stay ε-close each other. We deduce that g−2Dvk is at distance ε from
g−2Dp, hence from the orbit of p, and therefore at distance less than 1+ l(p)+ d(p)
from the projection π(o) of o on S. Lift v to ṽ ∈ T 1D, and vk to ṽk ∈ W su

+ (ṽ) As

vk = hskv goes to infinity on W su
+ (v), the distance between g−2Dṽk and C goes to

infinity. Therefore, we can assume this distance be greater than l(p) + d(p) + 2.
There exists a point of Γ.o at distance at most d(p) + l(p) + 1 of g−2Dvk. By con-
struction, this point is inside Hor+(g−Dv) \ C(v, α). This construction works for
all α > 0 and D > 0 large enough, so that ṽ is a right horospherical vector.

Let us establish now the other direction, adapting methods of [C]. Let v be
a right horocyclic vector. We will prove that there exists a periodic vector p ∈
W su

+ (v), with W su
+ (p) dense in Ω.

Let tn → ∞, vn ∈ W su
+ (v)∩Ω, vn → ∞ on the leaf, s.t. g−tnvn converges to some

z ∈ Ω, with g−tn ṽn staying outside a given cone C(v, 2). Let p be a periodic vector
s.t. W su

+ (p) is dense in Ω. Choose εk → 0 and let δk be the constant associated to
εk by the local product structure property around z.
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Using this product structure, we construct an orbit negatively asymptotic to the
negative orbit of z, and positively asymptotic to the orbit of p. More precisely, we
can find sk ≥ 0, and wk ∈ W su

δk/2
(z) ∩Wws(p), s.t. for all t ≥ sk, g

twk is εk-close

to the orbit of p. Note that wk is δk/2-close to z.
Now, let nk be large enough so that tnk

≥ 2sk and d(g−tnk vnk
, z) ≤ δk/2. In

particular, the distance between g−tnk vnk
and wk is at most δk.

As vnk
∈ W su

+ (v) and g−tnk vnk
is not in the cone C(v, 2), the local strong stable

manifold W su
2εk

(g−tnk vnk
) is included in W su

+ (g−tnk v). This fact will be crucial for

the end of the proof; indeed, we will now glue the past orbit of g−tnk vnk
with the

future orbit of wk, and the resulting orbit intersects the positive horocyclic orbit
W su

+ (v). Let us detail this gluing. Let ṽ be a lift of v, ṽnk
the lift of vnk

on W su
+ (ṽ),

z̃k (resp. w̃k) be the lift of z (resp wk) δk/2-close to g−tnk ṽnk
. Consider the

geodesic joining v− to w̃+
k . By the above, this geodesic crosses W su

2εk
(g−tnk vnk

) ⊂

W su
+ (g−tnk v), and therefore also W su

+ (ṽ).
Let ỹk be the unique vector ofW su

+ (ṽ) on this geodesic. By construction (g−tỹk)t≥0

is asymptotic to v−, and g−tỹk belongs to a 2εk-neighbourhood of w̃k for t ≃ tnk
,

and then it becomes positively asymptotic to (gtw̃k)t≥−tnk
. In particular, on T 1D,

as sk is the “time” needed on the orbit of wk to join the εk-neighbourhood of the
orbit of p, for t ≥ sk − tnk

, the orbit of yk becomes 2εk-close to the orbit of p. We
chose tnk

≥ 2sk so that for t = 0, yk is 2εk-close to the orbit of p.
As this orbit is a compact set, up to a subsequence, we can assume that yk

converges. It implies that there exists 0 ≤ σ ≤ l(p) st gσp ∈W su
+ (v). Of course gσp

is periodic and W su
+ (gσp) is dense in Ω. Fact 3.11 implies now that W su

+ (v) ∩ Ω is
dense in Ω.
�

Proof of lemma 3.10 Assume first that v− is the first endpoint of an interval
of S1 \ΛΓ. As the property of being right horospherical or not depends only on v−,
we can assume that v is a periodic vector on the closed geodesic closing the funnel.

By definition of a funnel, it becomes clear that if o was chosen in a lift of the
compact part of S, the intersection of the open right horoball Hor+(v) with Γ.o is
empty. Thus, ṽ is not a right horospherical vector.

Suppose now that v is not a right horospherical vector. There exists a cone
C(v, α) and a right horoball Hor+(g−T v), s.t. Γ.o does not intersect Hor+(g−T v)\
C(v, α). Let us shrink the horoball from a distance d equal to the diameter of the
compact part C(S) of S. Thus, the set Hor+(g−T−dv) \ C(v, α) does not intersect

the Γ-orbit Γ.C̃(s) of the lift of the compact part. In other words, viewed on S,
the projection of Hor+(g−T−dv) \ C(v, α), which is a connected set, is necessarily
included in a cusp or a funnel. It implies immediately that v− is a parabolic point
or is the first endpoint of an interval of S1 \ ΛΓ. By assumption, v− cannot be
parabolic, so that the result is proven. �

Geometrically infinite surfaces. On these surfaces, the situation is -not surpris-
ingly - more complicated, and we only discuss here partial results on the behaviour
of positive (resp. negative) half-horocycles.

Proposition 3.12 gives a complete answer for periodic vectors. Recall the

Theorem 3.13 (Hedlund, [H], thm 4.2 ). Let S = D/Γ be a hyperbolic surface
of the first kind, i.e. such that ΛΓ = S1. Let v ∈ T 1S be s.t. (g−tv)t≥0 returns
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infinitely often in a compact set. Then the positive half-horocycle (hsv)s≥0 is dense
in T 1S.

In [Sa-Scha], in the case of an abelian cover of a compact surface (also a surface
of the first kind), we proved the equidistribution, and therefore the density of all
positive half-horocyclic orbits (hsv)s≥0 of vectors v whose asymptotic cycle is not
maximal.

Question 3.14. It would be interesting to understand completely the behaviour
of half-horocycles. For example,

(1) On a surface of the first kind (ΛΓ = S1), are all horospherical vectors also
right horocyclic vectors (generalization of Hedlund’s theorem) ? Or can we
find a counterexample ?

(2) On a surface of the second kind, can we construct counterexamples to
Hedlund’s theorem? Or sufficient conditions to be right horocyclic ?

4. Proof of Theorem 1.2

In this section, S is a nonelementary geometrically finite surface.

Measures. Let δΓ be the critical exponent of Γ, defined by δΓ := lim supT→∞ #{γ ∈
Γ, d(o, γ.o) ≤ T }. The well known Patterson construction provides a conformal den-
sity of exponent δΓ on S1, that is a collection (νx)x∈D of measures, supported on

ΛΓ ⊂ S1, s.t. νo(S
1) = 1, γ∗νx = νγ.x for all γ ∈ Γ, and dνx

δνy
(ξ) = exp(−δΓβξ(x, y)).

The Patterson-Sullivan measure mps on T 1S, or Bowen-Margulis measure, is
defined locally as the product

dmps(v) = exp (δΓβv−(o, π(v)) + δΓβv+(o, π(v))) dνo(v
−)dνo(v

+)dt

in the coordinates Ω ≃ Γ\(Λ2
Γ × R).

Under our assumptions on S, it is well known [Su] that the Bowen-Margulis
measure is finite and ergodic1, that there exists a unique conformal density of
exponent δΓ, that all measures νx are nonatomic and give full measure to the
radial limit set. Moreover, the Bowen-Margulis-Patterson-Sullivan measure is the
measure of maximal entropy of the geodesic flow, and it is fully supported on the
nonwandering set Ω of the geodesic flow.

Denote by µpsH+ the conditional measure of mps on the strong unstable horocycle
H+(u) = (hsu)s∈R. It satisfies dµpsH+(v) = exp (δΓβv+(o, π(v))) dνo(v

+). To the
measure mps is also associated a transverse measure invariant by the horocyclic
foliation, that is a collection (µT ) of measures on all transversals T to the strong
unstable foliation, invariant by all holonomies of the foliation.

The classification of ergodic invariant measures for the horocyclic flow is well
known ([Bu], [Ro]). Except the probability measures supported on periodic horo-
cycles, and the infinite measures supported on wandering horocycles, there is a
unique ergodic invariant measure fully supported in the nonwandering set E ≃
Γ\(ΛΓ × S1 × R) of (hs)s∈R. It is an infinite measure, defined locally by

dm(v) = ds(v) exp (δΓβv−(o, π(v))) dνo(v
−)dt,

where ds(v) denotes the natural Lebesgue measure on (hsv)s∈R associated with the
parametrization by (hs).

1In fact, this result is false in general in variable negative curvature, and the assumption (∗)
added in section 5 ensures finiteness and ergodicity of this measure
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Sketch of the proof. The strategy of the proof is exactly the same as in [Scha1]
and [Scha2]. We consider ’one-sided versions’ of all results of these articles. Due
to the lengths of the proofs of technical results in [Scha1], we just recall the main
arguments, and point out the few differences.

The main lines of the proof are as follows. We do not prove directly equidistri-
bution of horocyclic orbits to the unique “interesting” ergodic invariant measure,
because this measure is infinite. We consider auxiliary averages on horocycles.
Using classical arguments (tightness in theorem 4.2 and classification of invariant
measures due to Burger [Bu] and Roblin [Ro]), we prove equidistribution of these
auxiliary averages towards the finite Bowen-Margulis measure (theorem 4.1). We
deduce then theorem 1.2 from the preceding.

Let ψ : T 1S → R be a continuous compactly supported map. Denote by (hsu)ba
the segment of orbit (hsu)a≤s≤b. Consider the following averages :

M+
r,u(ψ) =

1

µpsH+((hsu)R0 )

∫

(hsu)R
0

ψ(v) dµpsH+ (v) .

These averages are supported on Ω. We prove

Theorem 4.1. Let S be a nonelementary geometrically finite hyperbolic surface,
and u ∈ E ⊂ T 1S. If the positive orbit (hsu)s≥0 is dense in Ω, then it is equidis-
tributed : for all ψ : T 1S → R continuous with compact support, we have

M+
r,u(ψ) →

∫

T 1S

ψ dmps , when r → ∞.

As in [Scha2], we deduce easily theorem 1.2 of theorem 4.1. In the proof of
theorem 4.1, the difficult parts are the classification of (hs)-invariant measures (see
[Bu] and [Ro]) and the following tightness argument.

Theorem 4.2. Let S be a nonelementary geometrically finite hyperbolic surface,
and u ∈ E ⊂ T 1S. For all ε > 0, there exist a compact set Kε,u ⊂ Ω and r0 > 0
such that for r ≥ r0, M

+
r,u(Kε,u) ≥ 1 − ε.

Proof of theorem 4.2. This is the only non immediate part. For simplicity,
assume that S has exactly one cusp. (If it has no cusp, Ω is compact, so that
theorem 4.2 is obvious.) Denote by (ξi)i∈N = Γ.ξ1 the Γ-orbit of parabolic limit
points of ΛΓ. As S is geometrically finite, there is a Γ-invariant family of disjoint
horoballs Hi of D, based at ξi, such that ⊔i∈NHi = Γ.H1, Γ acts cocompactly on
(Λ2

Γ × R) \ ∪iT
1Hi. Assume that H1 is the closest horoball to the origin o, that

the distance from o to ∂H1 is bounded by the diameter of the compact part C0 of
S, and that the geodesic ray [oξ1) does not intersect other horoballs Hi, i 6= 1. Let
Π be the subgroup of Γ stabilizing H1. Its critical exponent δΠ is equal to 1/2 on
hyperbolic surfaces. Moreover, 1 > δΓ > δΠ for a nonlattice not convexe-compact
geometrically finite group. (2)

Let o ∈ D be fixed outside all horoballs Hi, ξ ∈ S1 and t ≥ 0. Let ξ(t) be the
point of the geodesic ray [oξ) at distance t of o, and define the set V (o, ξ, t) as the

2Indeed, [Pe] as the surface has infinite volume, it contains a funnel. Let ξ /∈ ΛΓ, and p /∈ Γ
a parabolic isometry fixing ξ. Using the divergence of Γ and [DOP, Prop.2], we obtain 1 ≥

δ<p>∗Γ > δΓ. As all parabolic subgroups of Γ are divergent, the same proposition [DOP, Prop.2]

gives δΓ > δΠ for all Π parabolic subgroups of Γ.
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set of points η ∈ S1 whose projection on [oξ) is at distance at least t of o. By abuse
of notation, we call such sets shadows, because they are comparable to Sullivan’s
shadows (it is a classical fact, see for example [Scha1]). We denote by V (o, ξ, t)+

(resp. V (o, ξ, t)−) the positive (resp. negative) half-shadow, that is the subset of
points of V (o, ξ, t) that are greater (resp. less) than ξ in the counterclockwise order.

If Hi is a horoball based at ξi, denote by si the distance between o and ∂Hi,
or in other words the instant when the geodesic ray [oξi) enters in Hi. Notation
a(t) = B±1 means that 1

B ≤ a(t) ≤ B for all t ≥ 0.
Following exactly [Scha2, prop. 3.4], we get :

Proposition 4.3. Let S be a geometrically finite hyperbolic surface. There is a
constant B > 0 such that for all ξi ∈ Λp and all t ≥ si, where si = βξi(o, ∂Hi), we
have

νo(V (o, ξi, t)
+) = B±1e−δΓte(1−δΓ)(t−si) .

We will need the following immediate refinement of the above statement. Let
s ≥ 0 be large enough so that Be(1−2δΓ)s ≤ 1

2B . We have

νo(V (o, ξi, t)
+ \ V (o, ξi, t+ s)+) = (2B)±1e−δΓte(1−δΓ)(t−si) . (4.1)

In other words, ’most’ of the measure is in the boundary of the shadows. Of course,
the same result holds for V (o, ξi, t)

− \V (o, ξi, t+ s)−. It also holds, with a different
constant, for V (o, ξi, t)

+ \ V (o, ξi, t+ s).
Consider now a horocycle (hsu)s∈R, with u− ∈ Λrad, u /∈ Hi for all i ∈ N. Denote

by vi = hσiu, i ∈ N the unique vector of this horocycle such that v+
i = ξi, and hi the

height of vi in the horoball Hi (i.e. the unique real number s.t. g−hivi ∈ T 1∂Hi).
As noticed in [Scha2, lemma 4.3], there is a (small) constant α > 0, s.t.

(hsvi)|s|≤e(hi−α)/2 ⊂ (hsu)+∞
0 ∩ T 1Hi ⊂ (hsvi)|s|≤ehi/2 .

For all i ∈ N, define the horoball HN
i ⊂ Hi as the horoball s.t. the distance

between ∂Hi and ∂HN
i is equal to N . Using the above proposition, we prove that

Lemma 4.4. Let u ∈ E, with u− ∈ Λrad. There is a constant C > 0 such that

µpsH+((hsvi)|s|≤e(hi−N)/2)

µpsH+((hsvi)e(hi−N)/2≤s≤ehi/2)
≤ Ce−(2δΓ−1)N → 0 when N → ∞

uniformly in i ∈ N.

This lemma says that the ’time’ (measured with the measure µpsH+) spent by a

horocycle in a horoball HN
i is small compared to the ’time’ needed to go from ∂HN

i

to ∂H0
i .

Recall that as S is a geometrically finite hyperbolic surface, δΓ > δΠ = 1/2.

Proof. We only sketch the proof, and refer to [Scha1]. Let C0 be the compact part

of S, and C̃0 a connected lift to D containing o.
As u− ∈ Λrad, for all i ∈ N, there exists Ti ≥ hi/2 s.t. g−Tivi ∈ ΓC̃0. By

definition of µpsH+ we get

µpsH+((hsvi)|s|≤e(hi−N)/2)

µpsH+((hsvi)e(hi−N)≤s≤ehi/2)
=

µpsH+((hsg−Tivi)|s|≤e(hi−N)/2−Ti )

µpsH+((hsg−Tivi)e(hi−N)/2−Ti≤s≤ehi/2−Ti )
.
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As the distance from π(g−Tivi) to γ.o is less than the diameter of the compact part
C0, up to uniform constants, the above quantity is uniformly close to

νγ.o(V (γ.o, ξi, Ti − hi/2 +N/2))

νγ.o (V (γ.o, ξi, Ti − hi/2)+ \ V (γ.o, ξi, Ti − hi/2 +N/2)+)
.

for some γ ∈ Γ. Proposition 4.3 and estimate (4.1) give the desired control. �

Following [Scha1], we can now prove theorem 4.2. Define K̃ε,u := Λ2
Γ × R \

⊔i∈NT
1HN

i , for N = N(ε) large enough. Denote by Iu,r,N the set of i ∈ N such
that (hsu)R0 intersects the unit tangent bundle T 1HN

i to the shrinked horoball
HN
i at height N inside Hi. As (hsu)s∈R is one-dimensional, and u ∈ T 1C0, for

all j ∈ Iu,r,N except maybe one boundary term denoted by i0 = i0(r), we have
(hsu)r0 ∩ T

1HN
i = (hsu)s∈R ∩ T 1HN

i . We deduce

M+
r,u(⊔i∈NT

1HN
i ) ≤

µpsH+(⊔i∈Iu,r,N (hsu)r0 ∩ T
1HN

i )

µpsH+(⊔i∈Iu,r,N (hsu)r0 ∩ T
1H0

i )

≤

∑
j∈Iu,r,N , j 6=i0(r) µH+((hsvi)|s|≤e(hi−N)/2) + µH+((hsvi0)|s|≤e(hi0

−N)/2)
∑

j∈Iu,r,N , j 6=i0(r) µH+((hsvi)|s|≤ehi/2) + µH+((hsvi0)
−e(hi−N)/2

−ehi/2 )

Lemma 4.4 allows to conclude that for N large enough, uniformly in r ≥ 0, the
measure M+

r,u(Γ.T
1HN

1 ) is less than ε.
Comparing with [Scha1], the only difference is that here there is only one bound-

ary term i0(r).

Proof of theorem 4.1. We follow [Scha2]. Thanks to theorem 4.2, all limit points
of (M+

r,u)r≥0 are probability measures. As in [Scha2, lemma 3.6], we observe that
such a limit gives measure zero to the set of periodic horocycles.

Moreover, it is not difficult to see [Scha2, lemma 3.5] that a limit point of
the family (M+

r,u)r≥0 when r → ∞ can be written as the product of a transverse

invariant measure to the strong unstable foliation by the measure µpsH+ . The only
fact to check is that µpsH+((hsu)0≤s≤R) → +∞ as R → ∞, and it can be done by
the argument of [Scha2, Lemma 4.2], usin the fact that the positive half-horocycle
(hsu)s≥0 is dense.

The uniqueness ([Ro]) of a transverse measure of full support in the nonwander-
ing set E giving measure 0 to periodic horocycles allows to conclude the proof.

Proof of theorem 1.2. As (hsu)+∞
0 is dense, and therefore recurrent, the proof is

exactly the same as in [Scha2]. The idea is to restrict the attention to a small flow
box B, and to compare the transverse measures on a transversal T of B induced

on one side by the averages M+
r,u(ψ) and on the other side by ratios

R r
0
ψ◦hsu ds

R r
0

1B◦hsu ds
.

5. Surfaces with variable negative curvature

Most results proved here extend to surfaces of variable negative curvature. More
precisely, we assume that all sectional curvatures are pinched between two negative
constants. Some definitions of the notions used here differ sightly, and we refer to
the preliminary sections of [Scha1] or [Scha2] for details. The main difference is
that there is no canonical parametrization of horocycles by a nice horocyclic flow,
even if it is possible to define such a flow (see [Mrc] ).
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The motivated reader can check that the proof of theorem 1.1 an all results of
section 3 extend verbatim to the situation of pinched negatively curved surfaces.

Concerning the equidistribution, we need to be more careful. We add an as-
sumption, denoted by (∗) in [Scha1] and [Scha2], which allows to control the
geometry of the cusps, and ensures in particular that the Bowen-Margulis measure
is finite. With this restriction, theorem 1.2 is valid on pinched negatively curved
geometrically finite surfaces.
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