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Abstract 

The paper proposes a new calibration method for parallel manipulators that allows efficient 

identification of the joint offsets using observations of the manipulator leg parallelism with respect to 

the base surface. The method employs a simple and low-cost measuring system, which evaluates 

deviation of the leg location during motions that are assumed to preserve the leg parallelism for the 

nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm 

estimates the joint offsets that are treated as the most essential parameters to be identified. The validity 

of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed 

by experimental results. The sensitivity of the measurement methods and the calibration accuracy are 

also studied. 
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1. Introduction 
 

Parallel kinematic machines (PKM) are commonly claimed to offer several advantages over serial 

manipulators, such as high structural rigidity, better payload-to-weight ratio, high dynamic capacities and high 

accuracy (Tlusty et al., 1999; Merlet, 2000; Wenger et al., 2001). At present, the conventional serial kinematic 

structures have already achieved their performance limits, which are bounded by high component stiffness required 

to support sequential joints, links and actuators (Tsai, 1999). Thus, the PKM are prudently considered as promising 

alternatives to their serial counterparts that offer faster, more flexible, less costly and more accurate solutions. 

However, while the PKM usually exhibit a much better repeatability as compared to serial mechanisms, they 

may not necessarily posses a better accuracy, which is limited by manufacturing/assembling errors in numerous 

links and passive joints (Wang and Masory, 1993; Daney, 2003; Renaud et al., 2006; Fassi et al., 2007; Legnani et 

al., 2007). Besides, for non-Cartesian parallel architectures, some kinematic parameters (such as the encoder offsets) 

cannot be determined by direct measurement. These motivate intensive research on PKM calibration, which recently 

attracted attention of both academic and industrial experts. 

Similar to the serial manipulators (Schröer et al., 1995), the PKM calibration procedures are based on the 

minimization of a parameter-dependent error function, which incorporates residuals of the kinematic equations (i.e. 

differences between the measured and computed values of the sensor readings). For the parallel manipulators, the 

inverse kinematic equations are considered computationally more efficient, since most PKMs admit a closed-form 

solution of their inverse kinematics (contrary to the direct kinematics, which is analytically solvable for the serial 

machines but is usually unsolvable in a closed-form for the PKM) (Innocenti, 1995; Iurascu & Park, 2003; Jeong et 

al., 2004; Huang et al., 2005). But the main difficulty with the inverse-kinematics-based calibration is the full-pose 

measurement requirement (position and orientation of the end-effector), which is very hard to implement accurately 

(Thomas et al., 2005). Hence, a number of studies have been directed at using the subset of the pose measurement 

data (Daney & Emiris, 2001), which, however, creates another problem: the identifiability of the model parameters 

(Besnard & Khalil, 2001).  

Popular approaches in the parallel robot calibration deal with one-dimensional pose errors using a double-ball-

bar system or other measuring devices (Rauf et al., 2004, 2006; Williams, 2006) as well as imposing mechanical 

constraints on some elements of the manipulator (Daney, 1999). However, in spite of hypothetical simplicity (joint 

measurements are needed only), it is hard to implement in practice since an accurate extra mechanism is required to 

impose these constraints. Additionally, such methods reduce the workspace size and consequently the identification 

efficiency (Zhuang et al., 1999). 
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Another category of the methods, the self- or autonomous calibration (Khalil & Besnard, 1999; Wampler et al., 

1995; Zhuang, 1997; Hesselbach, 2005), is implemented by minimizing the residuals between the computed and 

measured values of the active and/or redundant joint sensors. Adding extra sensors at the usually unmeasured joints 

is very attractive from a computational point of view, since it allows getting the data in the whole workspace and 

potentially reduces impact of the measurement noise. However, only a partial set of the parameters may be 

identified in this way since the internal sensing is unable to provide sufficient information for the robot end-effector 

absolute location. Besides, in practice, these methods are not always economically and technologically feasible 

because usually it is hard to add these extra sensors to an existing mechanism. 

More recently, several hybrid calibration methods were proposed that utilize intrinsic properties of a particular 

parallel machine allowing one to extract the full set of the model parameters (or the most essential of them) from a 

minimum set of measurements. An innovative approach was developed by Renaud et al. (2004, 2005) who applied 

the vision-based measurement system for the parallel manipulators calibration from the leg observations. In this 

technique, the primary data (manipulator leg poses) are extracted from the image, without any strict assumptions on 

the leg locations or on the corresponding end-effector poses (only leg observability is needed). While defining 

advantages of this method, the authors stress that the legs can be observed more easily than the end-effector and the 

use of a camera does not imply any modification of the mechanism. The only assumption is related to the 

manipulator architecture (the mechanism is actuated by linear drives located on the base). However, current 

accuracy of the camera-based measurements is not high enough yet to widely apply this method in industrial 

environment. 

This paper focuses on the identification of the most essential subset of geometrical parameters (joints offsets) 

for the Orthoglide-type mechanisms. These mechanisms are actuated by linear drives located on the manipulator 

base and therefore admits technique of Renaud et al. (2004, 2005) for calibration from the leg observations. But, in 

contrast to the known works, our approach assumes that the leg location is observed for specific manipulator 

postures, when the tool-center-point moves along the Cartesian axes. For these postures and the nominal 

geometrical parameters, the legs are strictly parallel to the corresponding Cartesian planes. So, the deviation of the 

manipulator parameters influences on the leg parallelism that gives the source data for the parameter identification. 

The main advantage of this approach is the simplicity and low cost of the measuring system that can avoid using 

computer vision. It is composed of standard comparator indicators attached to the universal magnetic stands. It is 

obvious that such hardware perfectly suits industrial requirements. 

The remainder of the paper is organized as follows. Section 2 describes the manipulator geometry, its inverse 

and direct kinematics, and also contains the sensitivity analysis of the leg parallelism at the examined postures with 

respect to the joint encoder offsets. Section 3 focuses on the parameter identification, with particular emphasis on 
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the calibration accuracy under the measurement noise and selection the best set of the calibration equations. Section 

4 contains experimental results that validate the proposed technique, while Section 5 summarizes the main results 

and contribution of the paper. 

 

2. Kinematic modelling 
 
2.1. Manipulator geometry 
 

The Orthoglide is a three degrees-of-freedom parallel manipulator actuated by linear drives with mutually 

orthogonal axes. Its kinematic architecture is presented in Fig. 1 and includes three identical parallel chains, which 

will be further referred as “legs”. Kinematically, each leg is formally described as PRPaR  - chain, where P, R and 

Pa denote the prismatic, revolute, and parallelogram joints respectively (Fig.2). The output machinery (with a tool 

mounting flange) is connected to the legs in such a manner that the tool moves in the Cartesian x-y-z space with 

fixed orientation (translational motions). 

 
(a) (b) 

  
 

Fig. 1. The Orthoglide mechanism - kinematic architecture (a) and general view (b). 
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Fig 2. Kinematics of the Orthoglide leg. 
 



A.Pashkevich et al.   Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions 5

In Figs. 1, 2, the base points A1, A2 and A3 are fixed on the ith linear axis such that A1A2 = A1A3 = A1A2 , the point 

Bi is at the intersection of the first revolute axis ii and the second revolute axis ji of the ith parallelogram, and the 

point Ci is at the intersection of the last two revolute joints of the ith parallelogram. When each BiCi is aligned with 

the linear joint axis AiBi , the Orthoglide is in an isotropic configuration and the tool centre point P is located at the 

intersection of the linear joint axes. In this posture, the base points A1, A2 and A3 are equally distant from P. The 

symmetric design and the simplicity of the kinematic chains (all joints have only one degree of freedom) contribute 

to lower the Orthoglide manufacturing cost. 

The Orthoglide is free of singularities and self-collisions. Its workspace has a regular, quasi-cubic shape. The 

input/output equations are simple and the velocity transmission factors are equal to one along the x, y and z direction 

at the isotropic configuration, like in a serial PPP machine (Wenger et al., 2000). The latter is an essential advantage 

of the Orthoglide architecture with respect to the machining applications. 

Another specific feature of the Orthoglide mechanism, which will be further used for calibration, is displayed 

during the end-effector motions along the Cartesian axes. For example, for the x-axis motion in the Cartesian space, 

the sides of the x-leg parallelogram must also retain strictly parallel to the x-axis. Hence, the observed deviation of 

the mentioned parallelism may be used as the data source for the calibration algorithms. 

For a small-scale Orthoglide prototype used in for the experimental part of the paper, the workspace size is 

approximately equal to 200200200 mm3 with the velocity transmission factors bounded between 1/2 and 2 

(Chablat & Wenger, 2003). The legs nominal geometry is defined by the following parameters:  L = 310.25 mm, 

d = 80 mm, r = 31 mm where L, d are the parallelogram length and width, and r is the distance between the points Ci 

and the tool centre point P (see Fig. 2). Within the workspace, the manipulator is able to reach the Cartesian velocity 

of 1.2 m/s and the acceleration of 17 m/s2 while carrying a payload of 4 kg. 

 
 

2.2. Modelling assumptions 
 
Following previous studies on the parallel mechanism accuracy (Wang & Massory, 1993; Renaud et al., 2004, Caro 

et al., 2006), the influence of the joint/link defects is assumed relatively small compared to the joint positioning 

errors that are mainly caused by the encoder offsets. The latter is also justified by the authors experience with the 

Orthoglide prototype, where manufacturing tolerances 0.01 mm for the links and joints were achieved relatively 

easily, using common commercially available equipment. However, usual assembling techniques produced the joint 

offset errors about 0.5 mm and motivated development of dedicated calibration method that are presented in this 

paper. These methods are based on the following modelling assumptions that are partially validated during the 

experimental study (see Section 4):  
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(i) the manipulator parts are supposed to be rigid-bodies connected by perfect joints, without clearances; 

(ii) the articulated parallelograms are assumed to be identical and perfect, which insure that their sides stay 

parallel in pares for any motions; 

(iii) the manipulator legs (composed of one prismatic joint, one parallelogram, and two revolute joints) are 

identical and generate a four degree-of-freedom motion each; 

(iv) the linear actuator axes are mutually orthogonal and intersected in a single point to insure a translational 

three degree-of-freedom movement of the end-effector; 

(v) The actuator encoders are assumed to be perfect but their location (zero position) is defined with some 

errors that are treated as the offsets to be estimated. 

Using these assumptions, an efficient calibration technique will be developed based on the observation of the 

parallel motions of the manipulator legs. 

 
 
2.3. Kinematic model 
 

Let us first briefly present the Orthoglide kinematic model, which is described in details in the previous papers 

(Chablat & Wenger, 2003; Pashkevich et al., 2006).  

Under the adopted assumptions, the articulated parallelograms may be replaced by kinematically equivalent 

single rods of the same length. Besides, a simple transformation of the Cartesian coordinates (the shift by the vector 

(r, r, r)T ) allows to eliminate the tool offset. Hence, the Orthoglide geometry can be described by a simplified 

model, which consists of three rigid links connected by spherical joints to the tool centre point (TCP) at one side and 

to the allied prismatic joints at another side (Fig. 3). Corresponding formal definition of each leg can be presented as 

PSS, where P and S  denote the actuated prismatic joint and the passive spherical joint respectively.  
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Fig. 3. Orthoglide simplified model (a) and its isotropic configuration (b). 
 

 

Thus, if the origin of the reference frame is located at the intersection of the prismatic joint axes and the x, y, z-

axes are directed along them, the manipulator geometry may be described by the following equations 
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  2 2 2 2( )x x x y yp p p L         

 
22 2 2( )x y y y zp p p L          (1) 

  22 2 2( )x y z z zp p p L         

where p = (px, py, pz) is the output position vector,  = (x, y, z) is the input vector of the prismatic joints variables, 

 = (x, y, z) is the encoder offset vector, and L is the length of the parallelogram principal links. Besides, 

we assume that the joint variables satisfy the following prescribed joint limits  

  min max ; , ,i i x y z       (2) 

defined in the control software (for the Orthoglide prototype studied here, they were set as min=-100 mm and 

min=+60 mm).  

It should be noted that, for this convention and for the case  = (0, 0, 0), the nominal isotropic posture of the 

manipulator corresponds to the Cartesian coordinates p0 = (0, 0, 0) and to the joints variables 0 = (L, L, L), see 

Fig. 3b. In this posture, moreover, the x-, and y-legs are oriented strictly parallel to the Cartesian plane XY. But the 

joint offsets cause the deviation of the TCP location and corresponding deviation of the parallelism, which may be 

computed applying the direct kinematic algorithm for the joint variables  = (L+x, L+y, L+z). On the other 

hand, in the calibration experiments, this deviation can be detected by evaluating the parallelism of the x- and y-legs 

with respect to the manipulator base surface (xy-plane). This can be easily done by measuring distances from the leg 

ends to the base surface and computing the difference. However, the capability of this technique is limited by 

evaluating the offset of the z-axis encoder only, since the Orthoglide mechanical design does not allow making 

similar measurements for the remaining pairs of the legs, with respect to the xz- and yz-planes. 

Hence, within the adopted model, four parameters (x, y, z, L) define the manipulator geometry, but 

because of the rather tough manufacturing tolerances used for the prototype, the leg link is assumed to be known and 

only the joint offsets (x, y, z) are in the focus of the proposed calibration technique. 

 
 
2.4. Inverse and direct kinematics 
 

To derive calibration equations, first let us expand some previous results on the Orthoglide kinematics 

(Pashkevich et al., 2006) taking into account the encoder offsets. The inverse kinematic relations are derived from 

the equations (1) in a straightforward way and only slightly differ from the “nominal” case 

 2 2 2
x x x y z xp s L p p         

 2 2 2
y y y x y yp s L p p        (3) 

 2 2 2
z z z x y zp s L p p         
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where sx, sy, sz  { ±1} are the configuration indices defined for the “nominal” manipulator as signs of  x – px , y –

 py, z – pz, respectively. It is obvious that expressions (3) define eight different solutions to the inverse kinematics, 

however the Orthoglide assembling and joint limits reduce this set for a single case corresponding to the 

sx= sy= sz= 1. 

For the direct kinematics, the equations (1) can be subtracted pair-to-pair that gives the following expression for 

the unknowns px, py, pz (for details, see Pashkevich et al., 2005) 

 

  ; , ,
2

i i
i

i i

t
p i x y z

 
 

 
  

 
  (4) 

 
where t is an auxiliary scalar variable. This reduces the direct kinematics to the solution of a quadratic equation 

At2 + Bt + BC = 0 with coefficients  

( )( ) ( )( ) ( )( )x x y y x x z z y y z zA                         ; 

2 2 2( ) ( ) ( )x x y y z zB             ;    2 2 2 2( ) ( ) ( ) 4 4x x y z z zC L               . 

Of the two possible solutions 2( 4 ) (2 )t B m B ABC A    , 1m    of the quadratic formula, only the one 

corresponding to m=+1 is admitted by the orthoglide prototype (because of the selected assembly mode). 

 
 
2.5. Sensitivity analysis  
 

To evaluate the encoder offset influence on the legs parallelism with respect to the Cartesian planes XY, YZ, and 

YZ, let us derive first the differential relations for the TCP deviation for three types of the Orthoglide postures: 

(i) “maximum displacement” postures for the directions x, y, z  (Fig. 4a); 

(ii) isotropic posture in the middle of the workspace (Fig. 4b); 

(iii)  “minimum displacement” postures for the directions x, y, z (Fig. 4c); 

 
XMax posture Isotropic posture XMin posture 
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Fig. 4. Specific postures of the Orthoglide manipulator 

(corresponding to the x-leg leg motion along the Cartesian axis X ) 
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These postures are of particular interest for the calibration since in the “nominal” case (zero encoder offsets) the 

corresponding leg is parallel to the relevant pair of the Cartesian planes. On the other hand, the considered 

parallelism can be perturbed by the deviation of the TCP that defines location of points Ci (see Fig. 2), while the 

opposite sides of the legs are mechanically constrained by the actuator joint axes (points Bi in Fig.2). 

The differential kinematical model may be derived from the Orthoglide Jacobian, the inverse of which is 

obtained from (1) in a straightforward way (see Pashkevich et al., 2006 for details): 

 1

1

( , ) 1

1

y z

x x x x

x z

y y y y

yx

z z z z

p p

p p

p p

p p

pp

p p

 

 

 



 
 

  
    

   
 
 
   

ρ
J p ρ

p
 (5) 

It should be noted that, for computing convenience, the above expression includes both the Cartesian coordinates 

, ,x y zp p p  and the joint coordinates , ,x y z   , but only one of these sets may be treated as independent because of 

the inverse/direct kinematic relations. 

For the isotropic posture, the differential relations are computed in the neighbourhood of the point 

p0 = (0, 0, 0)   and     0 = (L, L, L), 

which after substitution to (5) gives the identity Jacobian matrix  

 0 0 3 3( , ) J p ρ I  (6) 

It means that in this case the TCP displacement is related to the joint offsets by trivial equations  

  , , ,i ip i x y z    , (7) 

and each joint offset influences on the TCP deviation independently and with the scaling factor of 1.0 . Taking into 

account the Orthoglide geometry, this deviation may be estimated by evaluating parallelism of the legs with respect 

to the Cartesian planes (i.e. measuring difference of distances from the leg ends to the relevant plane). However, as 

mentioned in subsection 2.3, this technique is feasible for the z-direction only, hence it may produce an estimation 

of  z  merely. 

For the “maximum displacement” posture in the x-direction (see Fig. 4a), the differential relations are derived 

in the neighbourhood of the point 

( sin , 0, 0)L p ;      ( sin , cos , cos )L L L L   ρ  

where  is the angle between the y-, z-legs and corresponding Cartesian axes: maxasin( / )L  . After the 

substitution into (5), this gives the inverse Jacobian as a lower triangle matrix, which admits analytical inverse 

yielding 
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  
1 0 0

( ), ( ) 1 0

0 1

T

T




 
 
   
  

J p ρ , (8) 

where tan( )T  . Hence, the differential equations for the TCP displacement may be written as 

 ; ;x x y x y z x zp p T p T                   (9) 

and the joint offset influences on the TCP deviation is estimated by factors 1.0 and T. It is also worth mentioning 

that measurement of the x-leg parallelism with respect to the XY-plane gives an equation for estimating the offset 

x (provided that the offset z has been obtained from the isotropic posture). 

Similar results are valid for the “maximum displacement” postures in the y- and z-directions (differing by the 

indices only), and also for the “minimum displacement” postures. In the latter case, the angle  should be computed 

from an equation minasin( / )L  .  

Table 1. 

Sensitivity of the TCP location for the representative Orthoglide postures 
 

Posture Leg Plane Deviation Typical value* 

Isotropic 

X 
XY z 1.00  

XZ y 1.00  

Y 
XY z 1.00 

YZ x 1.00 

Z 
XZ y 1.00 

YZ x 1.00 

Max / Min 
X-displacement X 

XY T x + z 1.000.34 

XZ T x + y 1.000.34 

Max / Min 
Y-displacement Y 

XY T y + z 1.000.34 

YZ T y + x 1.000.34 

Max / Min 
Z-displacement Z 

XZ T z + y 1.000.34 

YZ T z + x 1.000.34 

 
 

The results on the TCP sensitivity with respect to the joint offsets are summarized in Table 1 that gives also 

numerical values corresponding to the hypothetical joint offset  = (1 mm, 1 mm, 1 mm) and to the angle  = 20° 

that are typical for the Orthoglide prototype studied in the experimental part of the paper. Analysis of these values 

allows concluding that the leg parallelism is rather sensitive to the joint offsets. Thus, relevant deviations px, py, 

pz, may be used for the offset identification. 
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3. Calibration methods 
3.1 Measurement techniques 
 

To identify the Orthoglide kinematic parameters specified in the previous section, we propose two calibration 

methods, which employ different measurement techniques for the leg/surface parallelism. The first of them (Fig. 5a) 

assumes two measurements for the same leg posture (to assess distances from both leg ends to the base surface). The 

second technique assumes a fixed location of the measuring device but two distinct leg postures, which ensure 

positioning of the leg ends in the neighbourhood of the device. It is obvious that, for the perfectly calibrated 

manipulator, both methods give zero differences for each measurement pair. Conversely, the non-zero differences 

contain source information for the joint offset identification. 

The following sub-sections contain detailed descriptions of these measurement techniques and relevant 

identification procedures. In particular, sub-sections 3.2 and 3.3 introduce respectively the single- and double-pose 

methods along with corresponding literalised calibration equations. Sub-section 3.4 describes a non-linear 

calibration routine that is based on the minimisation of the residual-square sum.  Finally, sub-section 3.5 focuses on 

the calibration accuracy and sensitivity to the measurement noise.       

 

(a) 
absolute measurements  

(b) 
relative measurements 

 

Manipulator legs 

d1 
d2 zx

+ = d2 - d1 

Base plane 

 

 

Manipulator legs 

d1

Manipulator legs

d2

Base plane 

Base plane 

Posture #1 

Posture #2 

zx
+ = d2 - d1 

 

Fig. 5. Measuring the leg/surface parallelism using single-posture-double-sensor (a) and 
double-posture-single-sensor (b) methods. 

 
 
 
3.2. Calibration using single-posture measurements 
 
Using the single-posture measurements and taking into account the Orthoglide design limitations allowing locating 

gauges on the XY surface only (i.e. for the z-direction measurements), the calibration experiment may be arranged 

in the following way. 

Step 1. Locate the manipulator in the isotropic posture and measure parallelism of the X- and Y-legs with 

respect to the XY-surface: 0
xz , 0

yz  
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Step 2. Locate sequentially the manipulator in the “X-maximum” and “X-minimum” postures and measure 

parallelism of the X- legs with respect to the XY-surface: +
xz , 

xz  

Step 3. Locate sequentially the manipulator in the “Y-maximum” and “Y-minimum” postures and measure 

parallelism of the Y- legs with respect to the XY-surface: +
yz , 

yz  

In the above description, the variable following the -symbol denotes the measurement direction (z in all cases), the 

subscript defines the manipulator leg, and the superscript indicates the manipulator posture for this leg. For example, 

+
xz  denotes the z-direction deviation of the X-leg for the “X-maximum” posture. 

Using expressions from sub-section 2.5 presented in Table 1, the system of the calibration equations may be written 

as follows 

 

0

0

1

2

1

2

0 0 1

0 0 1

0 1

0 1

0 1

0 1

x

y
x

x
y

x
z

y

y

z

z

a z

a z

a z

a z













  
                             
  
      

 (10) 

where 1 1a T  and 2 2a T , which may be also computed as 2 2
1 max maxa L    and 2 2

2 min mina L   . 

For instance, for the Orthoglide prototype (see subsection 2.1) a10.20 and a2-0.34. 

This overdetermined system of six linear equations in three unknowns may be solved in a straightforward way, 

using the Moore-Penrose pseudoinverse. However, from the application point of view, it is worth to separate the 

equations for three pairs and sequentially solve them for x, y, z : this approach yields the following 

expressions for the joint offsets  

 

0 0

1 2
2 2
1 2

1 2

2 2
1 2

2

( ) ( )

( ) ( )

x y
z

x z x z
x

y z y z
y

z z

a z a z

a a

a z a z

a a



 

 


 

 

  
 

    
 



    
 



 (11) 

which are computationally convenient but may produce slightly higher residuals than the standard pseudoinverse.  

 

However, the measurement procedure for this method is rather complicated in comparison with an alternative one, 

described in the following subsection. It should be stressed that the single-posture method requires separate 

measurements of  1d  and 2d  (see Fig. 5a) that are further used for computing the difference 2 1d d , while the 

alternative technique directly evaluates this difference using a single measuring device. It is obvious that the first 
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method is based on the absolute measurements that are very sensitive to the gauge calibration, while the second 

approach (based on the relative measurements) does not require any calibration of the gauges.   

 
 
3.3. Calibration using double-posture measurements 
 

Since in this case a single gauge is used only, it is possible to assess the leg parallelism with respect to both 

relevant planes (XY and XZ for the X-leg, for instance). This advantage is charged however by using two legs 

postures, allowing sequentially locating both leg ends close to the gauge. For this measuring technique, the 

calibration experiment may be arranged in the following way: 

Step 1. Locate the manipulator in the isotropic posture and place two gauges in the middle of the X-leg 

ensuring required measurement directions (orthogonal to the leg and parallel to the Cartesian axes Y 

and Z); get the gauge readings. 

Step 2. Locate sequentially the manipulator in the “X-maximum” and “X-minimum” postures, get the gauge 

readings, and compute differences +
xy , +

xz , 
xy , 

xz  

Step 3+. Repeat steps 1, 2 for the Y- and Z-legs and compute differences +
yx , +

yz , 
yx , 

yz , and +
zx , 

+
zy , 

zx , 
zy . 

The system of calibration equations can be also derived using expressions from Table 1, but in two steps. First, 

it is required to define the gauge location that is assumed to be positioned at the leg middle point in the isotropic 

posture.* Hence, for the X-leg for instance, it is the midpoint of the line segment bounded by the TCP (x, y, 

z) and the centre of the X-axis prismatic joint (L+x, 0, 0). This yields the following differential expressions for 

the leg midpoints: 

2 ; 2 ; 2

2 ; 2 ; 2

2 ; 2 ; 2

( )
( )
( )

x y z

x x z

x y z

L

L

L

  
  
  

   
   
   

X - leg Gauges :

Y - leg Gauges :

Y - leg Gauges :

 

Afterwards, in the “X-maximum” posture, the X-leg location is also defined by two points, namely, (i) the TCP, and 

(ii) the centre of the X-axis prismatic joint. Their coordinates are defined as follows (see Fig. 4a and Table 1) 

; ;

; 0 ; 0

( )
( )

x x y x z

x

LS T T

L LS
  



    


    


Tool centre point :

X - joint centre :
 

Then, the equations of a straight-line passing along the X-leg may be written as 

 
( ) (1 ) ( )

( ); ( )
x x

x y x z

x LS L LS

y T z T
 

 

   
     

     
     

 (12) 

*This assumption is not critical here because, as follows from relevant analysis, potential errors in the initial location 
of the gauge produce identification errors that are negligible as compared to the measurement noise.  
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where sin( ); tan( )S T    , and  is a scalar parameter, [0, 1]. Since the gauge x-coordinate remains the 

same independently of the current posture, the parameter  may be obtained from the equation 2 xx L    , 

which gives the following solution: 

 0.5 S   . (13) 

Hence, the Y- and Z-gauge readings for the X-leg in the “X-maximum” posture are  

 
(0.5 ) (0.5 )

(0.5 ) (0.5 )

x y

x z

y S T S

z S T S

  

  

 

 

     

     
 (14) 

and, finally, the deviations of the X-leg measurements while it changes its posture from the “X-maximum” to the 

isotropic one are 

 
(0.5 )

(0.5 )

x x y

x x z

y S T S

z S T S

  

  

 

 





     

     
 (15) 

A similar approach may be applied to the “X-minimum” posture, as well as to the equivalent postures for the 

Y- and Z-legs. This gives the following system of twelve linear equations in three unknowns 

 

1 1

1 1

2 2

2 2

1 1

1 1

2 2

2 2

1 1

1 1

2 2

2 2

0

0

0

0

0

0

0

0

0

0

0

0

y

x

y

x

z
x

y
y

z
z

y

z

x

z

x

b c x

c b y

b c x

c b y

b c y

c b z

b c y

c b z

b c x

c b z

b c x

c b z





























  
     
   
  
  
   
    
                  
   
  
   
       










 (16) 

where sin ; (0.5 sin ) tani i i i ib c      and 1 maxasin( ) 0;L    2 minasin( ) 0L   . For instance, 

for the Orthoglide prototype (see subsection 2.1)   b1  0.19, c1   0.14   and   b2    -0.32, c2  0.06. 

The reduced version of this system may be obtained if one assesses the leg/plane parallelism by the difference 

between the “maximum” and “minimum” postures. The latter leads to the system of six linear equations in three 

unknowns 
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0

0

0

0

0

0

y

x
x

z
y

y
z

z

x

xb c

yc b

yb c

zc b

xb c

zc b





  
       
                    
  
      

 (17) 

where 1 2 1 2;b b b c c c     and y y yx x x     ; x x xy y y     , etc. For the Orthoglide prototype this 

values are as follows: b  0.52, c  0.20. 

Both systems (16) and (17) may be solved using the pseudoinverse of Moore-Penrose, which ensures 

minimizing the residual square sum. But as follows from the simulation study, for rather essential joint offsets 

(about 5 mm and more) the differential equations may produce non-accurate results. For this reason, the next 

subsection focuses on the non-linear calibration equations and their solution through the straightforward 

minimization of the square sum of the residuals.  

 
 
3.4. Non-linear calibration equations 
 

From a general point of view, the considered calibration problem may be presented as the fitting of the 

experimental data to the Orthoglide kinematic model incorporating the joint offsets. Hence, it is necessary to obtain 

numerical algorithms that allow computing all the examined deviations for any given offsets. 

To present relevant results in a concise form, let us introduce special notations for the direct and inverse 

kinematic models of the “nominal” Orthoglide (with zero offsets): 

 1
0 0( ); ( )f f if   p ρ ρ p ρ 0  (18) 

Then, in the isotropic posture, the TCP position may be expressed as 

  0 0 0
0, , , ,x y z x y zp p p f L L L            , (19) 

while expressions for the position of the prismatic joints remain the same:  

0 0

0 0

0 0

( )
( )
( )

x

y

z

L

L

L






 
 

 
sma

X - leg Prismatic Joint :

Y - leg Pri tic Joint :

Y - leg Prismatic Joint :

 

Hence, the leg midpoints defining the gauge locations may be computed as follows: 

 0 0 02 ( ) 2; 2; 2;g g g
x x x x y x zx L p y p z p        

 0 0 02; 2 ( ) 2; 2;g g g
y x y y y y zx p y L p z p       (20) 

 0 0 02; 2; 2 ( ) 2;g g g
z x z y z z zx p y p z L p         

where the subscripts ‘x, y, z’ define the leg and the subscript ‘g’ refers to the gauge.  

For the “X-maximum” posture, the TCP position is computed as 
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  0, , , ,x x x
x y z x y zp p p f L LS LC LC                 , (21) 

where cos( ); sin( )C S    , while the position of the X-link prismatic joints is described by the expression 

( ; 0; 0)xL LS    . Hence, the equations of a straight-line passing along the X-leg may be written as 

 
(1 ) ( )

;

x
x x

x x
y z

x p L LS

y p z p

  

 



 

     

 
 (22) 

where  is a scalar parameter, as above, which is determined by the x-coordinate of the gauge g
xx x . Solution of 

this equation yields 

 
02 2 2x x x

x
x x

L LS p

L LS p










   


   
 (23) 

that allows one to compute the Y- and Z-gauge readings for the X-leg as x x
yp   and x x

zp   respectively and to 

get the final expression for the desired deviations of the X-leg: 

 
0

0

( ) 2

( ) 2

x x
x y y

x x
x z z

y p p

z p p

 

 

  

  

   

   

ρ

ρ
 (24) 

where symbol (.) is used to distinguish functions of the joint offsets  and the experimental values, which are 

denoted by . 

A similar approach may be applied to the “X-minimum” posture, as well as to the equivalent postures for the 

Y- and Z-legs. Relevant expressions are summarized in Table 2 where symbol ‘’ stands for both the “maximum” 

and “minimum” postures and angle  is defined by the joint limits: 1 maxasin( ) 0;L    

2 minasin( ) 0L   .  

The obtained expressions allow posing the following optimisation problem for the joint offset identification  

    2 2
( ) ( ) miny y z zF x x x x    


       

ρ
ρ ρ K , (25) 

which gives the desired values of x, y, z. It may be also presented in the reduced form by replacing the pairs 

of the deviations ( , )y yx x   , ( , )x xy y   , etc. by their differences y y yx x x     ; x x xy y y     , etc. Both 

problems may be solved numerically by means of the standard gradient search technique using the Jacobians from 

Eqs. 16 and 17. 
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Table 2 
Expressions for the non-linear calibration model 

Content Expressions 

 

 

TCP 
locations 

 0 0 0
0, , , ,x y z x y zp p p f L L L             

   zyx
x

z
x

y
x

x LCLCLSLfppp  
 ,,,, 0

 

   zyx
y

z
y

y
y

x LCLSLLCfppp  
 ,,,, 0

 

   zyx
z

z
z

y
z

x LSLLCLCfppp  
 ,,,, 0

 

 

 

Scaling 
factors 

x
x

x

xxx

pLSL
pLSL




 


 2/2/2/ 0

 

y
y

y

yyy

pLSL

pLSL




 


 2/2/2/ 0

 

z
z

x

zzz

pLSL

pLSL




 


 2/2/2/ 0

 

 

Leg  
deviations 

0 0( ) 2; ( ) 2;x x x x
x y y x z zy p p z p p               ρ ρ

0 0( ) 2; ( ) 2;y y y y
y x x y z zx p p z p p               ρ ρ

0 0( ) 2; ( ) 2;z z z z
z x x z y yx p p y p p               ρ ρ  

 

 
3.5. Calibration accuracy 
 

Because of the measurement noise, the developed technique may produce the biased estimates of the model 

parameters. Thus, for practical application, it is worth to evaluate the statistical properties of the calibration errors. 

Within the linear calibration equations, the impact of the measurement noise may be evaluated using general 

techniques from the identification theory, under the standard assumptions concerning the measurement errors i : 

zero-mean independent and identically distributed Gaussian random variables with the standard deviation . Let us 

consider separately two cases corresponding to the six-equation and twelve-equation systems (7), (8), since they 

differ in residual covariance. 

For both linear systems (16) and (17), the variance-covariance matrix of the identification parameters is written 

as (Ljung, 1999) 

 1 1( ) ( ) ( ) ( )T T T T        V ρ J J J E s s J J J  (26) 

where E(.) denotes the mathematical expectation, J is the Jacobian, and s is the vector of the measurement errors.  
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In the six-equation case, the vector s consists of the statistically independent components corresponding to 

the deviations , ,y x zx y y  K  and is expressed through differences of the measurement errors at the min/max leg 

postures: 

 (6) , , ,
Ty y x x x x

x x y y z z                s K . (27) 

where the subscripts and the superscripts are defined similar to subsection 3.4. Hence, the covariance is the 66 

identity matrix  

   2
(6) (6) 6 62T I    E s s  (28) 

and the expression (26) is reduced to  
 1 2

(6) (6)( ) 2( )T   V ρ J J  (29) 

However, in the twelve-equation case, the vector s includes some dependent components  

 0 0 0 0 0
(6) , , , ,

Ty x x x y x x x x z
x x y y x x y y z z                     s K , (30) 

corresponding to the pairs ( , )y yx x   , ( , )x xy y   … ( , )x xz z   , since each leg deviations are measured twice 

(for the Max/Min postures) but with respect to the same isotropic location. So, the covariance is the 1212 non-

identity matrix  

   2
(12) (12) 12 12

T     E s s G  (31) 

expressed as 

4 4

12 12 4 4 4 4

4 4

2 0 1 0

0 2 0 1
;

1 0 2 0

0 1 0 2



  



 
   
       
    

 

G 0 0

G 0 G 0 G

0 0 G

. 

Consequently, the covariance (26) is presented as  

 1 1 2
(12) (12) (12) (12) (12) (12)( ) ( ) ( )T T T      V ρ J J J G J J J  (32) 

These expressions allow us to compute a scalar performance measure for the calibration accuracy   that may be 

defined as the square-averaged standard deviation of the calibration errors for the joint offsets x,  y, z  

  1
( )

3
trace  V ρ    (33) 

where the subscript ‘’ is used for distinguishing with the standard deviation of the measurement noise  . 

For the Orthoglide prototype described in subsection 2.1, the latter expression yields 2.06   in the case 

of twelve equations and 1.98    in the six-equation case. This justifies using the six-equation method because 

of simplicity and slightly higher identification accuracy in comparison with the twelve-equation technique.  
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While confirming this conclusion theoretically, it is worth mentioning that reduction of the equation number 

from 12 to 6 usually increases the calibration error by the factor 2 . However, using the deviations 

, ,y x zx y y  K  (measured between the Max and Min postures) instead of , ,y y zx x y    K  (measured between 

the isotropic and Max/Min postures) increases the deviation measurement sensitivity that gives reduction of 

 1( )Ttrace J J . In particular, for the case study, max 0.19L   and min 0.32L   while 

max min( ) 0.52L   . It means that the sensitivity increase compensates reduction of the equation number. 

For the non-linear calibration equations (see subsection 3.4), the impact of the measurement errors was 

investigated using the Monte-Carlo method. The simulation results (obtained for 20 replications with 10000 runs for 

 = 0.01 mm and two values of ) are presented in Table 3. They coincide with the above linear-approximation 

expressions and also justify advantages of the six-equation method for the practical applications. 

Table 3 
 Simulation results on impact of the measurement errors for  = 0.01 mm 

Calibration technique 
std() 

(offset 0.1 mm) 
std() 

(offset 1.0 mm) 

Six-equation method 0.0198 mm 
(0.0003) 

0.0199 mm 
(0.0002) 

Twelve-equation method 0.0207 mm 
(0.0003) 

0.0207 mm 
(0.0004) 

 

 
 
 

4. Experimental results  
 
4.1. Experimental setup 
 

The measuring system is composed of standard comparator indicators attached to the universal magnetic stands 

allowing fixing them on the manipulator bases. The indicators have a resolution of  10 m and are sequentially used 

for measuring the X-, Y-, and Z-leg parallelism while the manipulator moves between the Max, Min and isotropic 

postures (it is obvious that for industrial applications, it is better to use more sophisticated, high precision digital 

indicators with the resolution of  1 m or less, which yield more accurate calibration results). 

For each measurement, the indicators are located on the mechanism base in such a manner that a corresponding 

leg is admissible for the gauge contact for all intermediate posters (Fig. 6). The Min and Max postures are 
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constrained by the software joint limits and defined as min=-100 mm and  max= 60 mm respectively. The initial 

position of the indicator corresponds to the leg middle for the manipulator isotropic posture. 

 

     

Fig. 6. Experimental Setup. 
 
 
During experiments, the legs were moved sequentially via the following postures: Isotropic  Max  Min   

Isotropic   … . To reduce the measurement errors, the measurements were repeated three times for each leg. Then, 

the results were averaged and used for the parameter identification. It should be noted that the measurements 

demonstrated very high repeatability compared to the encoder resolution (dissimilarity was less than 0.02 mm). 

 

4.2. Calibration results and their analysis 
 

To validate the developed calibration technique and the adopted modelling assumptions, we carried out three 

experiments targeted to the following objectives: 

Experiment #1: validation of modelling assumptions (it lead to the mechanical retuning ) 

Experiment #2: collecting experimental data used for the parameter identification;  

Experiment #3: validation of calibration results using the identified model parameters. 

Experiment #1. The first calibration experiment produced rather high parallelism deviation, up to 2.37 mm as 

shown in Table 4. It was unexpected since the Orthoglide demonstrated quite good quality and accuracy of milling 

in previous tests. However, the milling tests were perfect just because of the high uniformity of the Orhoglide 

workspace due to the advantages of the manipulator architecture. 

The straightforward application of the proposed calibration algorithm to this data set was not optimistic: in the 

frames of the adopted kinematic model, the root-mean-square (r.m.s.) deviation for the legs can be reduced down 

from 1.19 mm to 1.07 mm only (see Table 4). On the other hand, the statistical estimation of the measurement noise 

parameter  (based on the residual analysis) also yielded an unrealistic result:    1.0 mm.  It impels to conclude 

that the manipulator mechanics requires more careful tuning, especially location of the linear actuator axes that are 
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assumed to be mutually orthogonal and intersected in a single point (see subsection 2.2). Thus, the manipulator 

mechanics was retuned, in particular the locations of the actuator axes were adjusted mechanically using the single-

pose measurement technique described in subsection 3.2.  

Experiment #2. The second calibration experiment (after mechanical tuning) yielded lower parallelism 

deviations, less than 0.70 mm (see Table 4), which is on average twice better than in the first experiment. For these 

data, the developed calibration algorithm yielded the joint offsets that are expected to reduce the root-mean-square 

deviation down from 0.62 mm to 0.28 mm, i.e. by three times. Besides, the estimated value of    0.28 mm is more 

realistic taking into account both the measurement accuracy and the manufacturing/assembling tolerances. 

Accordingly, the identified values of the joint offsets x = -0.53 mm, y = 0.59 mm, y = -1.76 mm were 

incorporated in the Orthoglide control software. 

Experiment #3. The third experiment was targeted to the validation of the calibration results, i.e. assessing the 

leg parallelism while using the model parameters identified from the second data set. It demonstrated very good 

agreement with the expected values of xy, xz, …zy. In particular, the maximum deviation reduced down to 

0.34 mm (expected 0.28 mm), and the root-mean-square value decreased down to 0.21 mm (expected 0.20 mm). 

On the other hand, further adjusting of the kinematic model to the third data set gives both negligible 

improvement of the deviations and very small alteration of the model parameters (see Tables 4 and 5). It is evident 

that further reduction of the parallelism deviation is bounded by the manufacturing and assembling errors or, 

probably, the non-geometric errors.  

Discussion. As follows from the above analysis, the calibration experiments confirm validity of the proposed 

identification technique and its ability to tune the joint offsets from observations of the leg parallelism. The achieved 

accuracy coincides with the quality of the Orthoglide prototype manufacturing and assembling. 

Another related conclusion deals with the comparison of the six-equation and twelve-equation identification 

methods (see subsections 3.4 and 3.5) using real data sets, which do not necessary follow the classical assumptions 

on the measurement errors (Gaussian zero-mean random variables). As follows from Table 5, both methods 

produced roughly the same values of the model parameters, however the six-equation method is more 

computationally attractive and, thus, more suitable for the practice.  
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Table 4 
 Experimental data and expected improvements of accuracy 

Data Source xy xz yx yz zx zy  r.m.s. 
mm mm mm mm mm mm  mm 

 Initial settings (before mechanical tuning and calibration) 

Experiment #1 +0.52 +1.58 +2.37 -0.25 -0.57 -0.04  1.19 

Expected improvement 
-0.94 +0.63 +1.07 -0.84 -0.27 +0.35  0.74 

 After mechanical tuning (before calibration) 

Experiment #2 -0.43 -0.37 +0.42 -0.18 -1.14 -0.70  0.62 

Expected improvement 
-0.28 +0.25 +0.21 -0.14 -0.13 +0.09  0.20 

 After calibration 

Experiment #3 -0.23 +0.27 +0.34 -0.10 -0.09 +0.11  0.21 

Expected improvement 
-0.29 +0.23 +0.25 -0.17 -0.10 +0.08  0.20 

 
 
 

Table 5 
Model parameters obtained using the six- and twelve equation methods 

Experiment 
Calibration method 

Model parameters  Residual 
r.m.s. 
mm 

x 

mm 
x  

mm 
x  

mm  

       

Experiment #1 
Six-equation 2.17 1.69 -1.42  0.74 

Twelve-equation 2.07 1.66 -1.30  0.75 

       

Experiment #2 
Six-equation -0.53 0.59 -1.76  0.20 

Twelve-equation -0.52 0.55 -1.69  0.21 

       

Experiment #3 
Six-equation 0.07 0.14 0.00  0.20 

Twelve-equation 0.12 0.00 0.10  0.21 
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5. Conclusions  
 

Recent advances in parallel robot architectures encourage related research on kinematic calibration of parallel 

mechanisms. This paper proposes a new calibration method for parallel manipulators, which allows efficient 

identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base 

surface. Presented for the Orthoglide-type mechanisms, this approach may be also applied to other manipulator 

architectures that admit parallel leg motions (along the Cartesian axes) or, in more general cases, that allow locating 

the leg in several postures with a common intersection point.  

The proposed calibration technique employs a simple and low-cost measuring system composed of standard 

comparator indicators attached to the universal magnetic stands. They are sequentially used for measuring the 

deviation of the relevant leg location while the manipulator moves the tool-centre-point in the directions x, y and z. 

From the measured differences, the calibration algorithm estimates the joint offsets that are treated as the most 

essential parameters that are difficult to identify by other methods. 

The presented theoretical derivations deal with the sensitivity analysis of the proposed measurement method, 

selecting the best set of the calibration equation, and also with the calibration accuracy. It has been proved that the 

highest accuracy is achieved for the measuring the leg parallelism at the extreme leg postures, while additional 

measurements at the isotropic posture does not reduce the identification error. The validity of the proposed approach 

and the efficiency of the developed numerical algorithm were confirmed by the calibration experiments with the 

Orthoglide prototype, which allowed reducing the residual root-mean-square by three times. 

To increase the calibration precision, future work will focus on the development of the specific assembling 

fixture ensuring proper location of the linear actuators and also on the expanding the set of the identified model 

parameters and compensation of the non-geometric errors that are not compensated within the frames of the adopted 

model. 

 

 
References 

 
Besnard, S., Khalil, W. (2001). Identifiable parameters for parallel robots kinematic calibration. In IEEE 

International Conference on Robotics and Automation (pp. 2859-2866), Seoul, Korea. 

Caro, S., Wenger, Ph., Bennis, F. & Chablat, D. (2006). Sensitivity Analysis of the Orthoglide, a 3-DOF 

Translational Parallel Kinematic Machine. ASME Journal of Mechanical Design, 128 (2),  392-402. 

Chablat, D., Wenger, Ph. (2003). Architecture Optimization of a 3-DOF Parallel Mechanism for Machining 

Applications, the Orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410.  

Daney, D. (1999). Self calibration of Gough platform using leg mobility constraints. In World Congress on the 

Theory of Machine and Mechanisms (pp. 104–109), Oulu, Finland. 



A.Pashkevich et al.   Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions 24

Daney, D. (2003). Kinematic Calibration of the Gough platform. Robotica, 21(6), 677-690. 

Daney, D., Emiris I.Z. (2001). Robust parallel robot calibration with partial information. In IEEE International 

Conference on Robotics and Automation (pp. 3262-3267), Seoul, Korea. 

Fassi I., Legnani G., Tosi D. &  Omodei A. (2007). Calibration of Serial Manipulators: Theory and Applications. In: 

Industrial Robotics: Programming, Simulation and Applications, Proliteratur Verlag, Mammendorf, 

Germany, (pp. 147 – 170).  

Hesselbach, J., Bier, C., Pietsch, I., Plitea, N., Büttgenbach, S., Wogersien, A. & Güttler, J. (2005).  Passive-joint 

sensors for parallel robots. Mechatronics, 15(1), 43-65. 

Huang, T., Chetwynd, D. G., Whitehouse, D. J., & Wang, J. (2005). A general and novel approach for parameter 

identification of 6-dof parallel kinematic machines. Mechanism and Machine Theory, 40(2), 219-239. 

Innocenti, C. (1995). In Computational Kinematics’95, J-P. Merlet and B. Ravani (eds.), Algorithms for kinematic 

calibration of fully-parallel manipulators (pp. 241-250), Dordrecht: Kluwer Academic Publishers.  

Iurascu, C.C. & Park, F.C. (2003). Geometric algorithm for kinematic calibration of robots containing closed loops. 

ASME Journal of Mechanical Design, 125(1), 23-32. 

Jeong, J., Kang, D., Cho, Y.M., & Kim, J. (2004). Kinematic calibration of redundantly actuated parallel 

mechanisms. ASME Journal of Mechanical Design, 126(2), 307-318.  

Khalil, W. & Besnard, S. (1999). Self calibration of Stewart–Gough parallel robots without extra sensors. IEEE 

Transactions on Robotics and Automation, 15(6), 1116–1112. 

Legnani, G., Tosi; D., Adamini, R. & Fassi, I.. (2007). Calibration of Parallel Kinematic Machines: theory and 

applications. In: Industrial Robotics: Programming, Simulation and Applications, Proliteratur Verlag, 

Mammendorf, Germany, (pp. 171 – 194). 

Ljung, L. (1999). System identification : theory for the user (2nd ed),  New Jersey : Prentice Hall. 

Merlet, J.-P. (2000). Parallel Robots. Dordrecht: Kluwer Academic Publishers. 

Pashkevich A., Chablat D. & Wenger P. (2006). Kinematics and workspace analysis of a three-axis parallel 

manipulator: the Orthoglide. Robotica,  24(1), 39-49. 

Pashkevich A., Wenger P. & Chablat D. (2005). Design strategies for the geometric synthesis of Orthoglide-type 

mechanisms. Journal of Mechanism and Machine Theory, 40(8), 907-930. 

Rauf, A., Kim, S.-G. & Ryu, J. (2004). Complete parameter identification of parallel manipulators with partial pose 

information using a new measurements device. Robotica, 22(6), 689-695. 

Rauf, A., Pervez  A. & Ryu, J. (2006). Experimental results on kinematic calibration of parallel manipulators using a 

partial pose measurement device. IEEE Transactions on Robotics, 22 (2), 379-384. 

Renaud, P., Andreff, N., Gogu, G. & Martinet, P. (2005). Kinematic calibration of parallel mechanisms: a novel 

approach using legs observation. IEEE Transactions on Robotics, 21(4), 529-538.  

Renaud, P., Andreff, N., Pierrot, F., & Martinet, P. (2004). Combining end-effector and legs observation for 

kinematic calibration of parallel mechanisms. In IEEE International Conference on Robotics and Automation 

(pp. 4116-4121), New-Orleans, USA. 

Renaud, P., Vivas, A., Andreff, N., Poignet, P., Martinet, P., Pierrot, F. & Company, O. (2006). Kinematic and 

dynamic identification of parallel mechanisms. Control Engineering Practice, 14(9), 1099-1109  



A.Pashkevich et al.   Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions 25

Schröer, K., Bernhardt, R., Albright, S., Wörn, H., Kyle, S., van Albada, D., Smyth, J.  & Meyer, R. (1995). 

Calibration applied to quality control in robot production.  Control Engineering Practice, 3(4), 575-580.  

Thomas, F., Ottaviano, E., Ros, L., & Ceccarelli, M. (2005). Performance analysis of a 3–2–1 pose estimation 

device. IEEE Transactions on Robotics, 21(3), 288- 297. 

Tlusty, J., Ziegert, J.C. & Ridgeway, S. . (1999). Fundamental comparison of the use of serial and parallel 

kinematics for machine tools, CIRP Annals, 48(1), 351-356. 

Tsai, L.W.  (1999). Robot analysis: the mechanics of serial and parallel manipulators. New York:John Wiley & 

Sons. 

Wampler, C.W., Hollerbach, T.M. & Arai, T. (1995). An implicit loop method for kinematic calibration and its 

application to closed chain mechanisms. IEEE Transactions on Robotics and Automation, 11(5), 710–724. 

Wang, J. & Masory, O. (1993). On the accuracy of a Stewart platform - Part I: The effect of manufacturing 

tolerances. In IEEE International Conference on Robotics and Automation (pp. 114–120), Atlanta, USA. 

Wenger, P. & Chablat, D. (2000). Kinematic analysis of a new parallel machine-tool : the orthoglide. In 7th 

International Symposium on Advances in Robot Kinematics (pp. 305-314), Portoroz, Slovenie. 

Wenger, P., Gosselin, C. & Chablat, D. (2001). Comparative study of parallel kinematic architectures for machining 

applications. In Workshop on Computational Kinematics (pp. 249-258.), Seoul, Korea. 

Williams, I., Hovland, G. & Brogardh, T. (2006). Kinematic error calibration of the gantry-tau parallel manipulator. 

In IEEE International Conference on Robotics and Automation (pp. 4199-4204), Orlando, USA. 

Zhuang, H. (1997). Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE 

Transactions on Robotics and Automation, 13(3), 387–397. 

Zhuang, H., Motaghedi, S.H. & Roth, Z.S. (1999). Robot calibration with planar constraints. In IEEE International 

Conference of Robotics and Automation (pp. 805-810), Detroit, USA. 



A.Pashkevich et al.   Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions 26

Figure captions 

Fig. 1. The Orthoglide mechanism - kinematic architecture (a) and general view (b). 

Fig 2. Kinematics of the Orthoglide leg. 

Fig. 3. Orthoglide simplified model (a) and its isotropic configuration (b). 

Fig. 4. Specific postures of the Orthoglide manipulator corresponding to the x-leg leg motion along the 
Cartesian axis X 

Fig. 5. Measuring the leg/surface parallelism using single-posture-double-sensor (a) and double-posture-
single-sensor (b) methods. 

Fig. 6. Experimental Setup. 
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Table 1 
Sensitivity of the TCP location for the representative Orthoglide postures 

 

Posture Leg Plane Deviation Typical value* 

Isotropic 

X 
XY z 1.00  

XZ y 1.00  

Y 
XY z 1.00 

YZ x 1.00 

Z 
XZ y 1.00 

YZ x 1.00 

Max / Min 
X-displacement X 

XY T x + z 1.000.34 

XZ T x + y 1.000.34 

Max / Min 
Y-displacement Y 

XY T y + z 1.000.34 

YZ T y + x 1.000.34 

Max / Min 
Z-displacement Z 

XZ T z + y 1.000.34 

YZ T z + x 1.000.34 
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Table 2 
Expressions for the non-linear calibration model 

Content Expressions 

 

 

TCP 
locations 

 0 0 0
0, , , ,x y z x y zp p p f L L L             

   zyx
x

z
x

y
x

x LCLCLSLfppp  
 ,,,, 0

 

   zyx
y

z
y

y
y

x LCLSLLCfppp  
 ,,,, 0

 

   zyx
z

z
z

y
z

x LSLLCLCfppp  
 ,,,, 0

 

 

 

Scaling 
factors 

x
x

x

xxx

pLSL
pLSL




 


 2/2/2/ 0

 

y
y

y

yyy

pLSL

pLSL




 


 2/2/2/ 0

 

z
z

x

zzz

pLSL

pLSL




 


 2/2/2/ 0

 

 

Leg  
deviations 

0 0( ) 2; ( ) 2;x x x x
x y y x z zy p p z p p               ρ ρ

0 0( ) 2; ( ) 2;y y y y
y x x y z zx p p z p p               ρ ρ

0 0( ) 2; ( ) 2;z z z z
z x x z y yx p p y p p               ρ ρ  
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Table 3 
 Simulation results on impact of the measurement errors for  = 0.01 mm 

Calibration technique 
std() 

(offset 0.1 mm) 
std() 

(offset 1.0 mm) 

Six-equation method 0.0198 mm 
(0.0003) 

0.0199 mm 
(0.0002) 

Twelve-equation method 0.0207 mm 
(0.0003) 

0.0207 mm 
(0.0004) 
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Table 4 
 Experimental data and expected improvements of accuracy 

Data Source xy xz yx yz zx zy  r.m.s. 
mm mm mm mm mm mm  mm 

 Initial settings (before mechanical tuning and calibration) 

Experiment #1 +0.52 +1.58 +2.37 -0.25 -0.57 -0.04  1.19 

Expected improvement 
-0.94 +0.63 +1.07 -0.84 -0.27 +0.35  0.74 

 After mechanical tuning (before calibration) 

Experiment #2 -0.43 -0.37 +0.42 -0.18 -1.14 -0.70  0.62 

Expected improvement 
-0.28 +0.25 +0.21 -0.14 -0.13 +0.09  0.20 

 After calibration 

Experiment #3 -0.23 +0.27 +0.34 -0.10 -0.09 +0.11  0.21 

Expected improvement 
-0.29 +0.23 +0.25 -0.17 -0.10 +0.08  0.20 
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Table 5 
Model parameters obtained using the six- and twelve equation methods 

Experiment 
Calibration method 

Model parameters  Residual 
r.m.s. 
mm 

x 

mm 
x  

mm 
x  

mm  

       

Experiment #1 
Six-equation 2.17 1.69 -1.42  0.74 

Twelve-equation 2.07 1.66 -1.30  0.75 

       

Experiment #2 
Six-equation -0.53 0.59 -1.76  0.20 

Twelve-equation -0.52 0.55 -1.69  0.21 

       

Experiment #3 
Six-equation 0.07 0.14 0.00  0.20 

Twelve-equation 0.12 0.00 0.10  0.21 

 
 

 


