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Presentation and improvement of an AFM-based system for the
measurement of adhesion forces

Micky Rakotondrabe, Member, IEEE, and Patrick Rougeot

Abstract— The aim of this paper is the presentation
and improvement of an AFM-based system dedicated
to measure adhesion forces.

Because an AFM-lever presents a high linearity and
a high resolution, it can be used to characterize forces
that appears between two micro-objects when their
relative distance is small. In this paper, an AFM is
used to evaluate the adhesion forces versus the dis-
tance. Especially, the pull-off and the Van Der Waals
forces can be quantified. Unfortunately, the presence
of the hysteresis on the piezotube distorts the mea-
surement and makes the whole system imprecise.
Hence, a Prandtl-Ishlinskii hysteresis compensator is
introduced. To show the efficiency of the improved
measurement system, experiments on different mate-
rials where performed.

I. Introduction

When two small objects, regularly less than one mil-
limeter sizes, are interacted, forces that are negligible
in classical sizes become important. These forces, called
adhesion forces, are highly dependent on the surface of
the microscopic objects and are paramount relative to
the volume force (weight) [1]. Adhesion forces could be
due to electrostatic, Van Der Waals or humidity of the
media inside which the interaction happens [2].

In micromanipulation or microassembly, the achieve-
ment of the tasks are often compromised by the ad-
hesion forces. A familiar example is the difficulty to
release a micro-object during a robotic microassembly
task (Fig. 1) (example in [3]). Due to the predominance
of the adhesion forces relative to the weight, the micro-
object sticks on the manipulator when releasing it.

In order to account the adhesions forces during the
design or in the control of systems dedicated to mi-
cromanipulation/microassembly, it is necessary to quan-
titatively or qualitatively have an évaluation of them.
For that, theoretical formulation and analysis have been
raised [4][5]. To validate the theory, the latter reference
notably used an AFM-based measurement system to
estimate the adhesions forces. While the experimental
results well fit to the prediction, the measurement system
only works with low value of adhesion forces (less than
30nN). Indeed, the nonlinearity (hysteresis) of the piezo-
tube were not taken into account and the accuracy of
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Fig. 1. Difficulty to release a micro-object during a microassembly
task.

the measurement system is lost when working measuring
forces with high amplitude.

In this paper, the measurement system is extended to
high amplitude forces. The experiments are performed
with values up to 400nN . To ensure the linearity of
the system, and then the accuracy, the hysteresis is
compensated. A Prandtl-Ishlinskii model is especially
used due to its precision and embarkability.

The paper is organized as follow. First, the measure-
ment system is presented. Afterwards, we detail the
improvement of its accuracy by compensating the hys-
teresis. Finally, the experimental results with glass and
gold substrates end the paper.

II. Presentation of the force measurement
system

The aim of the system is to permit the characterization
of the adhesion forces (Van Der Waals forces, elec-
trostatic force, capillary forces) between micro-objects.
These adhesion forces appear when the distance between
the two interacted objects are small or when they are in
contact.

Because of the micro and nanometric range of the force
to be characterized, the system is based on an AFM-
system. In fact, it provides a high resolution.

A. Presentation of the system
Fig. 2 pictures the principle of the micro-force mea-

surement system:
• A substrate represents a micropart whose adhesion

forces are to be characterized. The position of the
substrate can be precisely adjusted using a motor-
ized XYZ-table.

• An AFM-lever is used to characterize the adhesion
forces. In fact, the characterized adhesions forces are



the interaction force between the substrate and the
tip of the AFM-lever.

• A piezoelectic tube actuator (piezotube) is used
for the XYZ positioning of the AFM-lever. In this
analysis, the piezotube only works on the Z-axis in
order to perform an approach and a retract of the
AFM-lever relative to the substrate.

• An optical sensor, based on a sensitive photodiode-
diode, measures the deflection δl of the AFM-lever.
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Fig. 2. Principle of the force measurement system.

A general view of the equipment is presented in Fig. 3.
The used piezotube can perform 0 ↔ 4µm of range
in its Z-axis. The motorized XYZ-table is used to pre-
cisely align the substrate under the AFM-lever. Finally,
a computer with a homemade software (C code) gives
the possibility to make automatic measurement cycles, to
control the system and to read-out and save the measured
signals from the sensor.

B. Principle of the adhesion forces measurement
Let F designate the whole adhesions forces between

the tip of the AFM-lever and the substrate. This force is
given by:

F = kAFM · δl (1)

where kAFM is the stiffness of the AFM-lever. We
consider that the force and the AFM-lever’s deflection
δl have the same positive direction.

To characterize the adhesion forces, we measure the
force F versus the relative distance between the AFM-
lever and the substrate. To perform that, the AFM-lever
is approached up to the substrate until the contact and a
preload force Fmax are obtained. Afterwards, the AFM-
lever is moved away.

AFM support

AFM-lever

XYZ-table

substrate

Fig. 3. Presentation of the setup.

Let the Fig. 4 present the principle of one measurement
cycle, i.e. an approach-retract cycle. Because the relative
distance between the AFM-lever and the substrate are
not measurable, we use the expansion δp of the piezotube
(see Fig. 2). The results, i.e. plots of F versus δp, permit
analyzing the adhesion forces. We first suppose that the
measurement of δp is available.

When a voltage excitation U is applied to the piezo-
tube, it extends. If the distance between the AFM-lever
and the substrate are large enough, the interaction force
between them is insignificant and the AFM-lever does
not bend (Fig. 4-a). So, the measured force F is equal to
zero (Fig. 4-b).

If δp is continuously increased by increasing U , there
will be a distance at which the interaction force is enough
to attract the AFM-lever. Therefore, the latter start
bending (Fig. 4-c). As the AFM-lever’s deflection is neg-
ative, a negative interaction force F is obtained (Fig. 4-
d). This interaction force include the Van Der Waals
forces, the elctrostatic force and the capillary force. Their
repartition strongly depends on different parameters:
the ambient humidity, the surface characteristics of the
objects, etc.

At a critical distance, the tip of the AFM-lever is
suddenly pulled to stick on the substrate (Fig. 4-e). The
corresponding force is called FB (Fig. 4-f).

If δp is still increased, the deflection δl of the AFM-
lever becomes first null and then positive (Fig. 4-g).
Hence, the measured force F ranges from FB (negative)
to FC (positive) (Fig. 4-h). The maximum value Fmax =
FC corresponds to the preload. The Van Der Waals forces
are given by Fvdw = FB [5].

Now let us move away the AFM-lever from the sub-
strate by decreasing δp. The deflection δl becomes null
and then negative (Fig. 4-i). As pictured in Fig. 4-j, the
force ranges from FC > 0 up to a negative value.

When the force F reaches a limit value FD < 0,
the contact between the tip of the AFM-lever and the



substrate is suddenly broken. As a result, the deflection
δl (and therefore the intensity of F ) brusquely decreases
(Fig. 4-k, l). The force FD corresponds to the pull-off
force [5].

From Fig. 4-l, the approach curve is defined by the
following sequence:

O → A → B → C (2)

and the retract curve by:

C → D → E → O (3)

Considering that the behavior of the AFM-lever is
linear, the slope of C → D should be equal to
the slope of the B → C . This slope should corre-
spond to the stiffness kAFM of the AFM-lever. We have
previously supposed that δp was measured. Nevetheless,
one of the main limitations to the measurement and
control in micro/and nano- systems is the lack of con-
venient and easily integrable sensors. This is why open-
loop control techniques are often used [6][7][8]. Notably,
it is impossible in the presented system to introduce a
sensor to measure δp as the lower part of the system
is dedicated to the location of the XYZ-table and the
substrate. Therefore, we will estimate the expansion of
the piezotube from the applied voltage U . This part will
be detailed in the next section.

III. Estimation of the expansion δp of the
piezotube

Let us open loop control the piezotube. In the static
mode, in order to obtain δp = δref

p , the gain of the
feedforward controller should be U

δref
p

= 1
dp

, where dp

is a piezoelectric constant and δref
p is the reference input

(Fig. 5-a). Therefore, we can use the available data
δref
p instead the unavailable δp to perform the plots of

Fig. 4. Unfortunately, the piezotube exhibits hysteresis
effect and the δref

p differs from δp. Then, to improve the
accuracy, we use a feedforward controller that accounts
the hysteresis (Fig. 5-b). We choose the Prandtl-Ishlinskii
(PI) model and its compensator because its ease of
implementation and low memory consumption make it
very practical.

A. Modeling the hysteresis Γ (U) using the PI model

Let Γ (U) be the operator that models the static
hysteresis of the piezotube. In the PI model, Γ (U) is
approximated by the sum of many elementary back-
lashes (Fig. 6-a). Each backlash is characterized by its
bandwidth bωi and is weighted by a gain wi [9]. We
have bwi = 2ri, where ri is the radius (or threshold)
of the backlash. Fig. 6-b shows an example of hysteresis
approximated by three elements [10].

From Fig. 6-b, the kth output can be formulated as
follow:
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Fig. 4. Principle of the micro-forces measurement.



piezotube

(a)

(b)

ref

pd
U pδpδ

piezotube
ref

ref U pδpδ
pδ

1

(  )1    −Γ

Fig. 5. Principle of the micro-forces measurement.

 

 

 

.

.

.

δp

δp

δp1

δp2

δp3

U

U

backlash

(a)

(b)

gain

r1-r1

r2-r2

rn-rn

w1

w2

wn

  

 

 

 

 

 
    

 

1
bw

2
bw

3
bw

2 UA⋅

Fig. 6. Schemes showing the principle of the PI model.

δpk =
k∑

i=1

(bwk+1 − bwi) · wi (4)

Hence, a tensorial formulation can be got:

{δp} = [A] · {w} (5)

where [A] is a triangular matrix constructed from the
different bandwidth values.

To model and identify the hysteresis by the PI model,
we use the following steps.

• Apply at least a half period of sine voltage U to the
piezocantilever. The amplitude of the corresponding
output δp should cover the end use range.

• If the obtained hysteresis curve is not in the positive
section of the (U, δp)-plane, shift the curve.

• Define the number n of the elementary backlashes.
• Split the input U domain into n+1 uniform or non-

uniform partitions. As example, Fig. 6-b pictures
four partitions and presents an approximation of
hysteresis with three backlashes. The bandwidth
bwi and the output vector {δp} are easily obtained
according to the Fig. 6-b.

• Construct the matrix [A] from the bandwidth bwi

using the (equ 4).
• Finally, compute the parameter {w} using the fol-

lowing formula:

{w} = [A]−1 · {δp} (6)

B. Compensation of the hysteresis

To compensate a hysteresis Γ (U) that has been mod-
elled with a PI model, another PI hysteresis model is put
in cascade with it. Hence, the inverse model Γ−1

(
δref
p

)
is also a sum of elementary backlashes each one charac-
terized by a bandwidth bw′

i, a threshold r′i = bw′
i

2 and a
weighting gain w′

i.
The compensation principle is given in the Fig. 7: to

obtain a linear input-output
(
δref
p , δ

)
with a unit gain,

the direct model curve (U, δp) and the inverse model
curve

(
δref
p , U

)
should be symmetric themselves [11].
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Fig. 7. Schemes showing the compensation of a hysteresis [11].

Using the principle pictured in Fig. 7, the parameters
of the inverse model are computed as follow [11]:

r′k =
k∑

j=1

wj · (rk − rj) ; k = 1 · · ·n (7)

and



w′
1 = −1

w1

w′
k = −wk 

w1+
kP

j=2
wj

!
·
 

w1+
k−1P
j=2

wj

! ; k = 2 · · ·n (8)

C. Experimental results on the δp estimation

In order to identify the Γ (U) operator, a sine input
U has been applied to the piezotube. The frequency is
chosen to be largely than the cutt-off frequency of the
piezotube dynamic. The aim is to avoid the frequency
effect on the shape of the hysteresis curve [12]. We choose
f = 0.1Hz. On the other hand, we choose n = 15
backlashes to model the hysteresis. If n is too low the
model accuracy is bad, but if n is too high the model
complexity is increased. Fig. 8 shows the experimental
result and the simulation of the identified model Γ (U).
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Fig. 8. Hysteresis curves: experimental result and identification
result.

A compensator Γ−1
(
δref
p

)
has been computed. To

check its efficiency, a sine reference input δref
p with 3µm

of amplitude is applied. Fig. 9 pictures the experimental
result and points out that the hysteresis which was
initially about 25% (= h

H .100%) is clearly deleted.

IV. Force measurement: experimental results

The first experiment concerns the analysis of adhesion
forces between the AFM-lever and a glass substrate. To
show the efficiency of the compensator, the experiment
was performed on the system with and without hysteresis
compensator. Tests with two preloads were carried out:
FC ≈ 200nN and FC ≈ 400nN . The results are pictured
in Fig. 10-a for the former and in Fig. 10-b for the latter.
They show that the pull-off force, equal to FD ≈ 150nN ,
is independant on the preload. On the other hand, the re-
sults clearly show that when the experiment is performed
without the hysteresis compensator, the force evolution
defined by the curve seems wrong. Indeed, during the
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Fig. 9. Experimental result of the hysteresis compensation.

contact between the AFM-lever and the substrate, the
stiffness of the AFM-lever can be experimentally esti-
mated:

kAFM =
∂F

∂δp
=

∂F

∂δl
(9)

It seems that both the approach and the retract
curves give wrong values. They should provides kAFM =
200

[
nN
µm

]
which corresponds to the stiffness of the used

AFM-lever. As a conclusion, when the hysteresis is not
compensated, the measured force is not coherent and
cannot be used to evaluate the evolution of the adhesion
forces. However, when the hysteresis is compensated, the
approach and the retract curves well coincide.

The same experiment was performed between the
AFM-lever and a gold substrate (Fig. 11). Here, the
preload is chosen to be FC ≈ 75nN (Fig. 11-a) and
then FC ≈ 150nN (Fig. 11-b). Similarly to the previous
remarks, the results with the hysteresis compensator give
coherent force evolution. Finally, the measured pull-off
force is FD ≈ 120nN whatever the preload is.

V. Conclusion

This paper presents an AFM-based force measurement
system and its improvement. The final objective is to
have a system that can characterize the adhesion forces
between the AFM-lever and a substrate. Because of the
hysteresis characteristic of the piezotube, the measure-
ment system presents an imprecision of the measured
force. Hence, a hysteresis compensator has been com-
puted and implemented. The Prandtl-Ishlinskii model
has been chosen because of its accuracy and embark-
ability. Finally, experiments with two different objects
(AFM-lever/glass and AFM-lever/gold) were performed
in order to validate the efficiency of the improved mea-
surement system.
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