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Considering recently computed formation and migration energies of kinks on non-dissociated dislocations, we have compared the relative
mobilities of glide partial and shuffle perfect dislocations in silicon. We found that the latter should be more mobile over all the available
stress range, invalidating the model of a stress driven transition between shuffle and glide dislocations. We discuss several hypotheses
that may explain the experimental observations.

In a seminal paper in 1996, Duesbery and Joés brought forward an explanation for the preference for
dislocation motion on glide rather than shuffle planes in diamond cubic materials like silicon [1]. Using a
model based on kink pair nucleation and dislocation line energy calculations, they proposed that for low
stress, partial dislocations located in glide planes should be the more mobile species. On the contrary, in
this paper, we show that perfect dislocations located in shuffle planes have the highest mobility, for all
stresses, when kinks formation and migration energies are taken into account in the calculations.

The diamond cubic structure can be viewed as two interpenetrant face centered cubic lattices displaced
by §(111) relative to each other. As a consequence, compared to the fcc structure, there are two inequivalent
families of (111) planes, the so-called widely spaced shuffle and narrowly spaced glide planes (Figure 1).
Gliding dislocations, with a perfect Burgers vector equal to $[110], are located in (111) planes, like in fcc
materials, and so may belong to glide or shuffle planes.

Most of the experimental and theoretical studies on diamond cubic materials refer to silicon as a model.
At high temperatures, i.e. in the ductile regime, all observations agree that the plasticity of silicon is
governed by dissociated screw and 60° dislocations, composed respectively of two 30°, or one 30° and one
90° Shockley partial dislocations [2,3]. The two partials are separated by an intrinsic stacking fault which
can exist only in glide (111) planes. The 30° partial dislocation is less mobile than the 90° [4], and therefore,
will govern the plastic response at high temperature. The situation is less clear at low temperature, i.e. in
the brittle regime. In fact, deformation experiments performed under pressure confinement, or in scratch
tests, indicate that dislocations are not dissociated [5]. Several kinds of orientations have been found, such
as 30°, screw, 60°, and even an unresolved 41° dislocation. Whether these dislocations are located in shuffle
or glide planes is not firmly established, although there is a general consensus that they belong to shuffle
planes [6-9].

To understand the respective role of glide and shuffle dislocations during plastic deformation, the quantity
of interest is the dislocation mobility. Simple geometrical arguments would suggest that a shuffle dislocation
core is the easiest to move, because it requires to break only a single bond compared to three for the glide
dislocation core. This point is confirmed by calculations of the Peierls stress, which is about at least one
order of magnitude larger for partial glide dislocations than for undissociated shuffle dislocations [10,11].
However, in covalent materials like silicon, dislocations move by formation and migration of kink pairs [3].
Within this model, the line energy calculations performed by Duesbery and Jo6s unambiguously indicated
that the free energy for the formation of a kink pairs was lower for a glide partial than for a shuffie perfect
dislocation, for stress below 0.01x (u being the shear modulus). According to this result, in the low stress
regime, glide partials should move by thermal activation before shuffle perfect dislocations, in agreement
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Figure 1. (color online) (101) projection of the diamond cubic structure, with the two sets of (111) planes, shuffle (full lines) and glide
(dashed lines). Also shown are the two possible positions of the non-dissociated screw core.

with experiments. Also, these calculations indicated that above a certain stress threshold, this behavior
would be reversed. Again, this is in agreement with experiments made in the high stress regime. Also,
Rabier and Demenet have recently shown that the stress at which the glide / shuffle transition would
occur is in the range 0.008-0.016x [12], bracketting the 0.01x value found by Duesbery and Joéds [1].

The Duesbery and Jods model provides a reasonable explanation and a unified view for the two different
sets of experimental results, while remaining remarkably simple. In this model, it is easier to form a kink
pair on a glide partial than on a shuffle perfect dislocation because in the latter a larger line energy
increase is required. However, being purely elastic, it does not include atomistic effects occuring during the
migration of a kink, or in the very beginning of the kink pair formation, and it also neglects the possible
reconstruction of the dislocation cores. Since the publication of the work by Duesbery and Jods, there
have been several experimental and theoretical investigations of these atomistic effects, essentially for glide
partial dislocations. For instance, many studies have focussed on core reconstructions [13-16]. Important
quantities for dislocation mobility are the formation and migration energies of a single kink, Fj and W,,
respectively, since they can be used for determining the dislocation velocity in the Hirth and Lothe theory of
thermally activated motion of dislocations [3]. For the partial dislocations, several different measurements
have been made, yielding formation energy Fj values ranging from 0.4 to 0.7 eV, and migration energy
W, values ranging from 1.2 to 1.8 eV [17]. More recently, using high-resolution electron microscopy, Kolar
et al. have determined that Fj = 0.80 eV and W, = 1.24 eV for a 30° partial dislocation [4]. Besides,
many calculations have been performed, but the results are not conclusive enough because of the large
scatter of computed energies [18-21]. For non-dissociated dislocations, to our knowledge, no experimental
data are available for kinks. Nevertheless, kinks on a non-dissociated shuffle screw dislocation have been
recently investigated by means of first principles and atomistic potential simulations, taking advantage of
the Nudged Elastic Band method [22]. These calculations indicated that the kink formation energy ranges
from 0.90 eV to 1.36 eV, whilst the migration energy is very low, and ranges from 20 meV to 160 meV.

Hence, in comparison with the original work from Duesbery and Jods, we have at our disposal data
characterizing the formation and migration of kinks on both dissociated and non-dissociated dislocations.
For the 30° partial dislocations, we consider two sets of (Fy, W,,) values. The first is the average of the
various experiments reported in ref. [17], i.e. (0.55 eV, 1.5 eV). The second set are data measured by
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Figure 2. (color online) Activation energy for the thermally activated motion of dislocation as a function of applied stress, for
Q = F* + Wy, (left panel) and Q = F*/2 4+ Wy, (right panel). For a 30° partial dislocation, two (F}, Wy, ) sets of data have been used,
(0.55 eV,1.5 V) (dashed line) and (0.80 eV,1.24 eV) (dot-dashed line), whereas for a shuffle screw dislocation, we have considered the
computed values (1.13 eV,0.09 eV) [22] (full line). The original data from Duesbery and Jods have also been reported (circles for the
30° partial dislocation and triangles for the screw dislocation).

Kolar et al., i.e. (0.80 eV,1.24 eV) [4]. For the non-dissociated screw, the average (1.13 eV,0.09 eV) of the
calculated values [22] are used. According to Hirth and Lothe [3], the energy for the nucleation of a kink
pair is

Kb2h?

F(x) =2F, — — obhzx (1)
with b the magnitude of the Burgers vector, h the kink height, x the distance between kinks, K an elastic
factor [23], and o is the effective stress applied on the dislocation. The condition for propagation of the

kinks is x > «*, with 2* defined by [0F (z)/0x],_,. = 0. F(z*) = F™*, the activation energy for creating a
stable kink pair, is then

F* =2[F — VKB a%] 2)

Here, we do not consider entropic contributions that are expected to be negligible. The velocity of
a dislocation is proportional to exp(—Q/kT), @ being the activation energy of the process. @ is then
the important quantity for determining which of dissociated or non-dissociated dislocations are the more
mobile species. According to Hirth and Lothe [3], when the characteristic length of the dislocation segment
is smaller than the average distance between thermal kinks, Q@ = F* + W,,, (regime R;). Otherwise, @ is
equal to F*/2 + W, (regime Rs). The figure 2 shows the variation of @ as a function of o, for both R
and Ry regimes, obtained from the equation (2). There is a striking difference compared to the original
data from Duesbery and Jods, also reported in the figure, that is the absence of an intersection between
the 30° partial and screw dislocations curves. This suggests that the shuffle screw dislocation should be



more mobile than the 30” glide partial dislocation, for all stresses.

First, it is interesting to analyze why our calculations lead to an outcome completely different from that
of the previous study from Duesbery and Jods. In the expression (2), the energy decrease as a function of
stress depends on the coefficient v Kb3h3. Since the K factors for a 30° partial and a screw dislocation
are only marginally dissimilar, the main difference is coming from the b> factor. Since bscrew/b30e = V3,
the energy decrease as a function of stress is larger for the screw dislocation than for the 30° partial,
in agreement with Duesbery and Jods [1]. So we are left with Fj and W,,, that characterize the stress-
independent formation and migration of a kink. F}, is lower for the 30° partial dislocation than for the
screw dislocation, consistent with the fact that for the latter, the line energy increase is larger. Finally, the
main factor comes from the large difference between migration energies. While W, is large for partials,
due to complex reorganization of atomic bonds [24], it is at least one order of magnitude lower for the
screw dislocation because in that case, kink migration occurs by breaking and formation of a single highly
stretched bond [22]. Therefore, it is simply the inclusion of migration energies that drastically changes the
results compared to the Duesbery and Jo6s model.

These results have important implications regarding the understanding of silicon plasticity, and the so-
called glide / shuffle transition. The curves shown in the figure 2 indicate that if the mobility of dislocations
is only controlled by formation and migration of kink pairs, the shuffle perfect screw dislocations will always
be more mobile than glide partial dislocations for all stresses. Obviously, this conflicts with the model of
a glide / shuffle transition driven by stress, due to Duesbery and Joés [1], based solely on the calculation
of the kink pairs formation.

Before proposing arguments for explaining this discrepancy, we discuss the validity of our calculations.
First, in this work we have favored a shuffle core for the screw dislocation [25], although it has been shown
that a glide core is energetically more stable [26,27]. Our choice has been motivated by the fact that the
glide core is necessarily reconstructed along the dislocation line, yielding a structure close to reconstructed
partial dislocation cores. It is likely that the migration mechanism for a kink on the glide core is similar
to what is obtained for partial dislocations, then with a migration energy of the order of 1 eV. Associated
with the expected higher kink formation energy for perfect dislocations, it is reasonable to assume that a
non-dissociated reconstructed glide screw dislocation should not be mobile for the temperature and stress
domains usually considered.

Second, we discuss how selected energy parameters (F*,WW,,) could modify our results. It is a critical
point since there is a large uncertainty on measured and calculated values, especially for the 30° partial
dislocation. Using together both the lowest experimentally reported formation and migration energies, one
may again expect a transition between shuffle and glide in the case of the Ry regime (Figure 2, left panel).
According to the measurements made by Rabier and Demenet, the stress value associated with the glide /
shuffle transition is in the range 0.008-0.0164x [12]. Keeping the lowest experimentally reported migration
energy equal to 1.2 eV, such a range corresponds to a 30° partial kink formation energy between 0.21 eV
and 0.32 eV, appearing to be in agreement with some calculations [18,20], but maybe too low compared
to experiments. It is likely that the formation energy Fj is close to 0.7-0.8 €V, in agreement with the value
obtained by Kolar et al. [4]. This is also confirmed by Cai et al. who have reproduced the experimental
dislocation velocity curves in a kinetic Monte Carlo model, using the values (0.7 eV,1.2 eV) [28], close to
the data shown in figure 2.

Third, it is also possible that the mobilities of the non-dissociated screw and 30° partial dislocations are
best described by different regimes. In fact, it is not firmly established whether R; or Rs dominates for
30° partial dislocations, while there is no information for non-dissociated dislocations. The most favorable
case for recovering an intersection is obtained when the activation energy of the 30° partial dislocation is
given by Q = F*/2 + W,,, i.e. the regime Ry (Figure 2, right panel), whereas the mobility of the screw
dislocation is controlled by @ = F* 4+ W,, in the R; regime (Figure 2, left panel). Unlike the Duesbery
and Joés model, such a glide / shuffle transition would then be explained by a change of mobility regimes,
according to the average separation between thermal kinks. Such a scenario is supported by an interesting
study by Scarle et al. suggesting that the regime Rs should be used for kink formation energies lower than
0.4-0.5 eV [29]. In this case, keeping 1.2 eV for the migration energy, the kink formation energy of the
30° partial dislocations should range from 0.17 eV and 0.45 eV, in order to agree with the reported stress



range 0.008-0.016p. As discussed previously, these values seem low compared to recent experiments.

Although the possible issues described in the paragraph above cannot be completely ruled out, it appears
that other arguments have to be considered in order to reconcile theory with experiments. Our investi-
gations, as well as the study by Duesbery and Joos, are based on the assumption that dislocations move
by formation and migration of kink pairs. In the following, we discuss other possible mechanisms, going
beyond this simple picture, that may be at play when a dislocation moves. For instance, it has been postu-
lated that the presence of discrete dragging points along the dislocation line could govern the dislocation
mobility [30]. Such pinning points could be nonconservative jogs or locally highly stable arrangements of
bonds in the dislocation core. They could also be impurities, as reported by Kolar et al. [4]. Other processes
may be activated by temperature, such as local perturbations in the dislocation core structure, reducing
the dislocation mobility. Such a process is possible for screw dislocations, and has been obtained for some
materials [31]. In all these cases, the mobility of the screw dislocations could not be linked only to the
formation and migration of kinks.

A second point concerns the character of the dislocations considered in our investigations and in the study
by Duesbery and Jods. While the role of the 30° partial dislocation is firmly established, it is not absolutely
sure that the plastic behavior of silicon at low temperature is governed by screw dislocations. Saka et
al. have reported the presence of both screw and 30° perfect dislocations after nanoindentations [9, 32].
These dislocations have also been observed by Rabier et al. in different experiments [33], in addition
to a peculiar nondissociated dislocation characterized by a 41° orientation [5]. The structure of non-
dissociated dislocations with 30° and 41° orientations is not known, and these dislocations might play
a role during the plastic deformation. Finally, the transition between shuffle and glide modes could also
be explained by the dissociation of the perfect shuffle into partial glide dislocations. Such a shuffle-glide
transformation is energetically favored, explaining why the inverse transformation seems difficult to obtain
[34]. In principle, given an initial distribution of perfect shuffle dislocations, one may expect to observe
a thermally activated dissociation above a threshold temperature, which may depend on the applied
stress. Experimentally, contradictory results have been reported. Rabier and Demenet have investigated
the evolution of a population of perfect shuffle dislocations during in situ annealing in a transmission
electron microscope with temperatures up to 685°C, without any evidence of dissociation [12]. Conversely,
Saka et al., using similar apparatus and under supersaturation of interstitials, have reported a shuffle-glide
dissociation for temperatures of 400°C [9,32]. These results call for additional investigations of a possible
dissociation mechanism, and of the possible role of point defects in the process.

In this letter, we have revisited the so-called shuffle-glide controversy associated with the dislocation
mobility in silicon. On the basis of our recent results concerning shuffle screw dislocations [22], and the
available data for partial dislocations, we have shown that the model proposed by Duesbery and Jods of
a stress driven transition between shuffle and glide dislocations [1] was not conclusive. Several possible
scenarios are proposed as alternative explanations, and discussed in relation with available experimental
and theoretical results. In the given state of knowledge, it is difficult to draw definite conclusions on this
matter, and additional investigations are required for a better understanding of the relation between the
structure of dislocations at the atomic scale and their mobility.

The authors are grateful to Pr. Guy Vanderschaeve and Dr. Amand George for critical reading of the
manuscript. This work was supported by the SIMDIM project under contract N°© ANR-06-BLAN-250.
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