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In this paper, we consider a competition model between n species in a chemostat including both monotone and non-monotone growth functions, distinct removal rates and variable yields. We show that only the species with the lowest break-even concentration survives, provided that additional technical conditions on the growth functions and yields are satisfied. We construct a Lyapunov function which reduces to the Lyapunov function used by S. B. Hsu [SIAM J. Appl. Math., 34 (1978), pp. 760-763] in the Monod case when the growth functions are of Michaelis-Menten type and the yields are constant. Various applications are given including linear, quadratic and cubic yields.

Introduction.

In this paper we study the global dynamics of the following model of the chemostat in which n populations of microorganisms compete for a single growth-limiting substrate:

S ′ (t) = D[S 0 -S(t)] - n i=1 f i (S(t))x i (t) x ′ i (t) = [p i (S(t)) -D i ]x i (t), i = 1 • • • n, (1.1)
where S(0) ≥ 0 and x i (0) > 0, i = 1 • • • n and S 0 , D and D i are positive constants. In these equations, S(t) denotes the concentration of the substrate at time t; x i (t) denotes the concentration of the ith population of microorganisms at time t; f i (S) represents the uptake rate of substrate of the ith population; p i (S) represents the per-capita growth rate of the ith population and so the function y i (S), defined by y i (S) = pi (S) fi(S) is the growth yield; S 0 and D denote, respectively, the concentration of substrate in the feed bottle and the flow rate of the chemostat; each D i represents the removal rate of the ith population. For general background on model (1.1), in the constant yield case y i (S) = Y i , the reader is referred to the monograph of Smith and Waltman [START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF].

The global analysis of this model was considered by Hsu, Hubbell and Waltman [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF], in the Monod case [START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF] when the growth functions are of Michaelis-Menten form,

p i (S) = a i S b i + S , (1.2) 
and the yields are constant y i (S) = Y i , and D i = D for i = 1 • • • n. The authors showed that only the species with the lowest break-even concentration survives. Thus the competitive exclusion principle (CEP) holds: only one species survives, namely the species which makes optimal use of the resources. Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] applied a Lyapunov argument to give a simple and elegant proof of the result in [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] for the case of different removal rates D i . The Lyapunov function V H used by Hsu is

V H = S λ1 σ -λ 1 σ dσ + c 1 x1 x * 1 ξ -x * 1 ξ dξ + n i=2 c i x i , (1.3) where c i = 1 Yi ai ai-Di , i = 1 • • • n, x * 1 = DY 1 S 0 -λ1 D1
and λ 1 = b1D1 a1-D1 is the lowest break-even concentration of the species.

Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] extended the results of [START_REF] Hsu | Limiting behavior for competing species[END_REF] by allowing more general growth functions. These authors used the Lyapunov function

V W L = S 0 -λ 1 D 1 S λ1 p 1 (σ) -D 1 S 0 -σ dσ + 1 Y 1 x1 x * 1 ξ -x * 1 ξ dξ + n i=2 α i Y i x i , (1.4) 
where α i , i = 2 • • • n are positive constants to be determined. They identified a large class of growth functions, including many prototypes of growth functions often found in the literature, where the constant α i in (1.4) can always be found. Despite the fact the α i cannot be found for all growth functions, the work of Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] represents a major step in the extension of the result of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] to general growth functions.

The CEP has also been proved under a variety of hypotheses by Armstrong and McGehee [START_REF] Armstrong | Competitive exclusion[END_REF], Butler and Wolkowicz [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF], Wolkowicz and Xia [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] and Li [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF]. The hypotheses used in [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF][START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF][START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] are summarized in Table 1 of [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF]. However, the problem is not yet completely solved: the CEP holds for a large class of growth functions but an important open question remains: is the CEP true assuming only that the f i are monotone with no restriction on the D i ? This major open problem remains unresolved, see in particular [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF][START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF]. For other studies and complements on the use of Lyapunov techniques in the chemostat, see [START_REF] Gajardo | Competitive exclusion principle in a model of chemostat with delays[END_REF][START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Mazenc | Harmand Stabilization in a two-species chemostat with Monod growth functions[END_REF][START_REF] Mazenc | Harmand Further results on stabilization of periodic trajectories for a chemostat with two species[END_REF][START_REF] Mazenc | On the stability of periodic solutions in the perturbed chemostat[END_REF].

The variable yield case was considered, for n = 1, 2 by Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF], with a particular interest to linear and quadratic yields, and by Huang, Zhu and Chang [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. The model (1.1), with variable yields, was considered by Arino, Pilyugin and Wolkowicz [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. For biological motivations concerning the dependence of the yields on the substrate, see [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] and the references therein.

Notice that, in the case when the growth functions are of Michaelis-Menten form (1.2), the Lyapunov function (1.4) does not reduce to the Lyapunov function (1.3). Our aim in this paper is to extend the Lyapunov function (1.3) of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] to the chemostat with a more general class of growth functions and variable yields. Our Lyapunov function is given by

V = S λ1 p 1 (σ) -D 1 f 1 (σ) dσ + x1 x * 1 ξ -x * 1 ξ dξ + n i=2 α i x i (1.5)
where α i , i = 2 • • • n are positive constants to be determined. This Lyapunov function is just a multiple of the Lyapunov function (1.3) that Hsu used in [START_REF] Hsu | Limiting behavior for competing species[END_REF] in the Monod case, see Section 3.1. It is also a multiple of the one used in [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] Page 1039 or [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF] Section 3.3, in the case of one species, general growth function and constant yield, see Section 3.2.

The paper is organized as follows. In section 2 we prove our main result (see Theorem 2.2) and we compare it with the main result in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] (see Theorem 2.3), where the yields are assumed to be constant. It should be noticed that, in the case when the yields are constant, our result follows from the result in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF]. Actually, both theorems 2.2 and 2.3 are corollaries of a more general result, which is valid in the case when the yields are variable [START_REF] Sari | Global dynamics of the chemostat with variable yields[END_REF]. In Section 3.1 we consider the Monod model with constant yields. In Section 3.2 we consider the one species case and we show that our Lyapunov function can be used to obtain the same result as in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. In Section 3.3 we show that for the Monod model with constant yields replaced by either linear or quadratic functions of S, under certain additional technical assumptions, the CEP still holds (see Corollary 3.1). In Section 3.4 we consider the model of Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] which was used to demonstrate that a periodic orbit was possible in the case of variable yield model. In this model, with two species, where one yield is constant and the other is cubic in S, we show that our Lyapunov function can be used to prove that for some values of the parameters the CEP holds (see Corollary 3.2). In Section 3.5 we identify a class of growth functions, including Lotka-Volterra and Michaelis-Menten growth functions where our Lyapunov function works. Concluding remarks are given in Section 4.

2. Global asymptotic stability. We make the following assumptions on the functions p i and f i :

• p i , f i : R + → R + are continuous,
• p i (0) = f i (0) = 0 and for all S > 0, p i (S) > 0 and f i (S) > 0. Following Butler and Wolkowicz [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF], we make the following assumptions on the form of the growth functions p i : there exist positive extended real numbers λ i and µ i with

λ i ≤ µ i ≤ +∞ such that p i (S) < D i if S / ∈ [λ i , µ i ],
and

p i (S) > D i if S ∈]λ i , µ i [.
Hence there are at most two values, S = λ i and S = µ i , called the break-even concentrations, satisfying the equation p i (S) = D i . We adopt the convention µ i = ∞ if this equation has only one solution and λ i = ∞ if it has no solution.

It is known (see Theorem 4.1 [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]) that the non-negative cone is invariant under the flow of (1.1) and all solutions are defined and remain bounded for all t ≥ 0. System (1.1) can have many equilibria: the washout equilibrium E 0 = (S 0 , 0, • • • , 0), which is locally exponentially stable if and only if for all i = 1 • • • n, S 0 / ∈ [λ i , µ i ] and the equilibria E * i and E * * i where all components of E * i and E * * i vanish except for the first and the (i + 1)th, which are

S = λ i , x i = x * i = F i (λ i ), for E * i and S = µ i , x i = x * * i = F i (µ i ), for E * * i respectively, where F i (S) = D S 0 -S f i (S) .
The equilibrium E * i lies in the non-negative cone if and only if λ i ≤ S 0 . If λ i < λ j for all i = j and F ′ i (λ i ) < 0 then it is locally exponentially stable. It coalesces with E 0 when λ i = S 0 . The equilibrium E * * i lies in the non-negative cone if and only if µ i ≤ S 0 and is locally exponentially unstable if it exists. Its coalesces with E 0 when µ i = S 0 . Besides these equilibria, the system (1.1) can have a continuous set of non-isolated equilibria in the non-generic cases where two or more of the break-even concentrations are equal. In what follows we assume, that λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 . Hence E 0 is locally exponentially unstable and the equilibrium

E * 1 = (λ 1 , x * 1 , 0, • • • , 0), where x * 1 = F 1 (λ 1 ) = D S 0 -λ1 f1(λ1)
, lies in the non-negative cone. It is locally exponentially stable if and only if F ′ 1 (λ 1 ) < 0. We consider the global asymptotic stability of E * 1 .

Before presenting the results, we need the following lemma, Lemma 2.1. The solutions S(t), x i (t), i = 1 • • • n of (1.1) with positive initial conditions are positive and bounded, and if λ i < S 0 < µ i for some i = 1 • • • n, then S(t) < S 0 for all sufficiently large t.

Proof. The proof is similar to the proof of Lemma 2.1 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] obtained for the model (1.1) in the case where the yields are constant. We have the following result. Theorem 2.2. Assume that 1.

λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 . 2. There exist constants α i > 0 for each i ≥ 2 satisfying λ i < S 0 , such that max 0<S<λ1 g i (S) ≤ α i ≤ min λi<S<ρi g i (S), (2.1)
where g i (S) = fi(S) f1(S) p1(S)-D1 pi(S)-Di and ρ i = min(µ i , S 0 ). 3. The function F 1 (S) = D S 0 -S f1(S) satisfies F 1 (S) > F 1 (λ 1 ) if S ∈]0, λ 1 [, and 
F 1 (S) < F 1 (λ 1 ) if S ∈]λ 1 , S 0 [. Then the equilibrium E *
1 is globally asymptotically stable for system (1.1) with respect to the interior of the positive cone.

Proof. From Lemma 2.1 it follows that there is no loss of generality in restricting our attention to 0 ≤ S < S 0 . Consider the function V = V (S, x 1 , • • • , x n ) given by (1.5), where α i are the positive constants satisfying (2.1). The function V is continuously differentiable in the positive cone and positive except at the point E * 1 , where it is equal to 0. The derivative of V along the trajectories of (1.1) is given by

V ′ = [p 1 (S) -D 1 ] [F 1 (S) -x * 1 ] + n i=2 x i θ i (S),
where

θ i (S) = [p i (S) -D i ] [α i -g i (S)]
. First, note that, using hypotheses 1 and 3, the first term of the above sum is always non-positive for 0 < S < S 0 and equals 0 for

S ∈]0, S 0 [ if and only if S = λ 1 . If S ∈ [λ 1 , λ i ] then p i (S) < D i and p 1 (S) > D 1 so that g i (S) < 0 < α i for any choice of α i > 0. Similarly if µ i < S 0 and S ∈ [µ i , S 0 ]
then p i (S) < D i and p 1 (S) > D 1 so that g i (S) < 0 < α i for any choice of α i > 0.

On the other hand, if S ∈ [0, λ 1 ] then p i (S) < D i and, using (2.1), g i (S) ≤ α i so that θ i (S) < 0. Finally, if S ∈ [λ i , ρ i ] then p i (S) > D i and g i (S) ≥ α i so that θ i (S) < 0. Thus θ i (S) < 0 for every S ∈]0, S 0 [, provided that the numbers α i satisfy (2.1). Hence V ′ ≤ 0 and V ′ = 0 if and only if S = λ 1 and x i = 0 for i = 2 • • • n. By the Krasovskii-LaSalle extension Theorem, the ω-limit set of the trajectory is E * 1 . In the case when the yields are constant, y i (S) = Y i , (1.1) takes the form

S ′ = D[S 0 -S] - n i=1 p i (S) Y i x i , x ′ i = [p i (S) -D i ]x i , i = 1 • • • n. (2.2)
Using the Lyapunov function (1.4), Wolkowicz and Lu (see Theorem 2.3 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF]) proved the following result Theorem 2.3. Assume that 1.

λ 1 < λ 2 ≤ • • • ≤ λ n , and λ 1 < S 0 < µ 1 . 2. There exist constants α W L i > 0 for each i ≥ 2 satisfying λ i < S 0 such that max 0<S<λ1 g W L i (S) ≤ α W L i ≤ min λi<S<ρi g W L i (S), (2.3) where g W L i (S) = pi(S) D1 p1(S)-D1 pi(S)-Di S 0 -λ1
S 0 -S and ρ i = min(µ i , S 0 ). Then the equilibrium E * 1 is globally asymptotically stable for system (2.2) with respect to the interior of the positive cone. It should be noticed that, in the case when the yields are constant, conditions (2.3) are consequences of conditions (2.1) in Theorem 2.2. Indeed, we have

g W L i (S) = (S 0 -λ 1 )Y i D 1 f 1 (S) S 0 -S g i (S) = (S 0 -λ 1 )Y i D D 1 g i (S) F 1 (S) .
Thus, hypotheses 2 and 3 of Theorem 2.2 imply hypothesis 2 of Theorem 2.3. Hence, in the case when the yields are constant, Theorem 2.2 follows from Theorem 2.3. It is of interest to identify classes of growth functions where conditions (2.1) are satisfied, and hence Theorem 2.2 can be applied. We give below a result which will be used in the following section to verify easily that conditions (2.1) are satisfied. This proposition is similar to Corollary 2.4 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF].

Proposition 2.4. Suppose that for each i ≥ 2, w i (S) = g i (S) S-λi S-λ1 satisfies max 0<S<λ1 w i (S) ≤ min λi<S<ρi w i (S). (2.4) Then conditions (2.1) are satisfied.

Proof. The function h i (S) = S-λ1 S-λi is decreasing on [0, λ 1 ] and on ]λ i , +∞[ and admits 1 as a horizontal asymptote. Thus (see Figure 3.1, right)

max 0<S<λ1 h i (S) = h i (0) < 1 < h i (ρ i ) = min λi<S<ρi h i (S). (2.5)
By (2.4) and (2.5) the functions g i (S) = w i (S)h i (S) satisfy (2.1).

Applications.

In this section we show how Theorem 2.2 can be fruitfully used to analyze the stability properties of systems whose yield functions depend on the variable S. We begin with the classical Monod case where the yields are constant and the growth functions are of Michaelis-Menten form.

3.1. The Monod case. Consider the particular case where the growth functions p i (S) are given by (1.2) and the yields are constant. System (1.1) takes the form

S ′ = D(S 0 -S) - n i=1 a i S b i + S x i Y i , x ′ i = a i S b i + S -D i x i , i = 1 • • • n. (3.1)
We consider the case where, for all i = 1 • • • n, a i > D i . In that case:

λ i = b i D i a i -D i , µ i = ∞, g i (S) = w i S -λ 1 S -λ i , where w i = a i Y 1 (a 1 -D 1 ) a 1 Y i (a i -D i ) .
By Proposition 2.4, the conditions (2.1) are satisfied. Since

F 1 (S) = Y 1 D(S 0 -S) b 1 + S a 1 S and F ′ 1 (S) = -Y 1 D S 2 + b 1 S 0 a 1 S 2 ,
the first derivative of the function F 1 (S) is negative. Hence, hypothesis 3 in Theorem 2.2 is satisfied. The global stability of the equilibrium E * 1 of (3.1) follows from Theorem 2.2. This result was obtained by Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF], using the Lyapunov function (1.3). Notice that, in this case, the Lyapunov function (1.5) is simply V = a1-D1 a1Y1 V H where V H is the Lyapunov function (1.3) used by Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF].

S gi λ1 λi Ai λ 1 λ i Ai c 1 c i S hi λ1 λi λ 1 λ i 1 Fig. 3.1.
On the left, the graph of the function g i (S) for p i (S) = a i S b i +S and y i (S) = Y i (1 + c i S): hypothesis 2 in Corollary 3.1 is not satisfied. On the right the graph of the function h i (S) = S-λ 1 S-λ i .

3.2. One species. In the case n = 1, (1.1) takes the form

S ′ = D(S 0 -S) -x 1 f 1 (S), x ′ 1 = [p 1 (S) -D 1 ]x 1 (3.2)
If λ 1 < S 0 < µ 1 and hypothesis 3 in Theorem 2.2 is satisfied then the equilibrium E * 1 = (λ 1 , x * 1 ) of (3.2), where x * 1 = D S 0 -λ1 f1(λ1) is globally asymptotically stable with respect to the interior of the positive quadrant. This result follows from Theorem 2.2 since in the case where n = 1 the condition (2.1) is obviously satisfied. The global asymptotic stability of E * 1 was obtained previously by Arino, Pilyugin and Wolkowicz [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. These authors used the following Lyapunov function

V AP W = S 0 -λ 1 f 1 (λ 1 ) S λ1 p 1 (σ) -D 1 S 0 -σ dσ + x1 x * 1 ξ -x * 1 ξ dξ.
They proved (see [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF], Theorem 2.11) that if 1 -f1(S)(S 0 -λ1) f1(λ1)(S 0 -S) has exactly one sign change for S ∈ (0, S 0 ) then E * 1 is globally asymptotically stable. The condition on the change of sign is equivalent to hypothesis 3 in Theorem 2.2. Notice that the Lyapunov function we obtain is not proportional to the Lyapunov function V AP W considered in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. However, in the case when the yields is constant the global asymptotic stability of the equilibrium E * 1 of the system

S ′ = D(S 0 -S) -x 1 p 1 (S) Y 1 , x ′ 1 = [p 1 (S) -D 1 ]x 1 ,
can be obtained, using the following Lyapunov function (see [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] page 1039 or [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF], Section 3.3)

V W BL = S λ1 p 1 (σ) -D 1 p 1 (σ) dσ + 1 Y 1 x1 x * 1 ξ -x * 1 ξ dξ.
In this case we simply have V = Y 1 V W BL , where V is our Lyapunov function (1.5).

3.3. Michaelis-Menten growth functions and linear or quadratic yields. Consider the particular case of (1.1), where the growth functions p i (S) are given by (1.2), and the yields y i (S) = p i (S)/f i (S) are linear

y i (S) = Y i (1 + c i S) (3.3) or quadratic y i (S) = Y i (1 + c i S 2 ). (3.4)
where Y i > 0 and c i ≥ 0. System (1.1) takes the form

S ′ = D(S 0 -S) - n i=1 a i S b i + S x i y i (S) , x ′ i = a i S b i + S -D i x i , i = 1 • • • n. (3.5)
Corollary 3.1. Consider system (3.5) where the yields are given by (3.3) or (3.4). Assume that 1.

λ 1 < λ 2 ≤ • • • ≤ λ n and λ 1 < S 0 , where λ i = biDi ai-Di . 2. For each i ≥ 2 satisfying λ i < S 0 we have c i λ 1 ≤ c 1 λ i . 3. The function F 1 (S) = D S 0 -S a1S (b 1 + S)y 1 (S) satisfies F 1 (S) > F 1 (λ 1 ) if S ∈ ]0, λ 1 [, and F 1 (S) < F 1 (λ 1 ) if S ∈]λ 1 , S 0 [. Then the equilibrium E *
1 is globally asymptotically stable for (3.5) with respect to the interior of the positive cone.

Proof. For linear yields (3.3) we have

g i (S) = w i (S) S -λ 1 S -λ i , where w i (S) = A i 1 + c 1 S 1 + c i S , A i = a i Y 1 (a 1 -D 1 ) a 1 Y i (a i -D i ) .
Two cases can be distinguished. If By Proposition 2.4 the functions g i (S) = w i (S)h i (S) satisfy (2.1). If c 1 < c i then from the expression

g ′ i (S) = A i c 1 -c i (1 + c i S) 2 S -λ 1 S -λ i + A i 1 + c 1 S 1 + c i S λ 1 -λ i (S -λ i ) 2 ,
we deduce that g ′ i (S) < 0 for all 0 ≤ S ≤ λ 1 and S > λ i . Hence (see Fig. 3.1, left) max

0<S<λ1 g i (S) = g i (0) = A i λ 1 λ i and min λi<S<S 0 g i (S) = g i (S 0 ) > g i (+∞) = A i c 1 c i .
Under hypothesis 2 there exists α i satisfying (2.1). The result follows by Theorem 2.2. For quadratic yields (3.4) we have

g i (S) = w i (S) S -λ 1 S -λ i , where w i (S) = A i 1 + c 1 S 2 1 + c i S 2 , A i = a i Y 1 (a 1 -D 1 ) a 1 Y i (a i -D i ) .
Thus

g ′ i (S) = A i 2(c 1 -c i )S (1 + c i S 2 ) 2 S -λ 1 S -λ i + A i 1 + c 1 S 2 1 + c i S 2 λ 1 -λ i (S -λ i ) 2 .
Next, the proof is mutatis mutandis the same as the proof given above for the case of linear yields (3.3). This result contains as a particular case the result of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] which corresponds to the case where the yields are constant. Indeed, for constant yields c i = 0, so that hypotheses 2 and 3 in Corollary 3.1 are satisfied. Remark. For linear or quadratic yields the function F 1 (S) is not monotone in general on the interval ]0, S 0 [, and it is not easy to give a condition on the parameters for which hypothesis 3 in Corollary 3.1 holds. However, in each example, the graphical depiction of this hypothesis is very simple as shown in Fig. 3.2.

3.4. Pilyugin-Waltman's example. This system was given in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] as a model of the competition in the chemostat exhibiting limit cycles. The existence of the limit cycles is a consequence of the variable yield in the model. The model takes the form

S ′ = 1 -S -2S 0.7+S x1 1+cS 3 -m2S 6.5+S x2 120 x ′ 1 = [ 2S 0.7+S -1]x 1 x ′ 2 = [ m2S 6.5+S -1]x 2 .
(3.6)

In their study Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] fixed c = 50 and considered m 2 as a bifurcation parameter. They showed that for m 2 ≥ 9.85 the system exhibits sustained oscillations. In this section we fix m 2 = 10 and we consider c ≥ 0 as a bifurcation parameter. In this case we have

λ 1 = 0.7 2 -1 = 0.7, λ 2 = 6.5 10 -1 ≈ 0.72, F 1 (S) = (1 -S)(0.7 + S)(1 + cS 3 ) 2S .
Straightforward computations lead to the formula

F ′ 1 (λ 1 ) = 49 2000 c - 17 14 . 
Hence F ′ 1 (λ 1 ) > 0 if and only if c > c 2 where c 2 = 17000 343 . An analysis of the behavior of the function F 1 (S) shows (see Fig. 3.3) that there exist two bifurcation values c 0 and c 1 , 0 < c 0 < c 1 < c 2 , such that the function F 1 (S) is decreasing on ]0, S 0 [ if and only if 0 ≤ c ≤ c 0 and the function 

S 0 0, 2 0,4 0,6 0,8 1,0 0 0,5 1,0 1,5 2,0 S 0 0,2 0,4 0,6 0,8 1,0 0 0,5 1,0 1,5 2,0 S 
F 1 (S) has two extrema S 1 , S 2 ∈]0, λ 1 [ satisfying F 1 (S 1 ) < F 1 (λ 1 ) < F 1 (S 2 ) if and only if c ∈]c 1 , c 2 [. S 0 0,2 0,4 0,6 0, 8 1,0 0 0,5 1,0 1,5 2,0 S 0 
g 2 (S) = w 2 (S) S -λ 1 S -λ 2 where w 2 (S) = 1 + cS 3 216 .
For c ≥ 0, the function w 2 (S) is non-decreasing. By Proposition 2.4, the condition (2.1) with i = 2 holds (see Fig. 3.4, right), and the result follows from Theorem 2.2.

Pilyugin and Waltman showed by numerical simulations that their system exhibits limit cycles in the case where c = 50 and m 2 ≥ 9.85 (see Fig. 4 in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]). The example was revisited by Huang, Zhu and Chang [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF] who claimed that the limit cycle of the system should remain only on the face x 2 = 0 (see [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF], Remark 2). We do not agree with this claim. We performed ourselves numerical simulations and actually the limit cycle is contained within the positive cone as shown in Fig. 4 in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] and not in the face x 2 = 0 as claimed in [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. On the center, the magnification of the neighborhood of λ 1 = 0.7 shows that F ′ 1 (λ 1 ) > 0. On the right, the magnification of the neighborhood of λ 1 = 0.71 shows that F ′ 1 (λ 1 ) < 0.

Huang, Zhu and Chang [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF] made a simple modification by replacing 2S/(0.7 + S) with 2S/(0.71 + S) in (3.6) and obtained an example exhibiting competitive exclusion. The model takes the form

S ′ = 1 -S -2S 0.71+S x1 1+50S 3 -m2S 6.5+S x2 120 x ′ 1 = [ 2S 0.7+S -1]x 1 x ′ 2 = [ m2S 6.5+S -1]x 2 . (3.7) 
It is claimed, without proof, in [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF] that the equilibrium E * 1 is globally asymptotically stable. Hypothesis 3 in Theorem 2.2 is not satisfied (see Fig. 3.5, left) and we cannot prove the global asymptotic stability of E * 1 . However an explanation of the high sensitivity when 0.7 is replaced by 0.71 is easy to find. Actually the plots of the function F 1 (S) in the case of (3.6), where c = 50 and (3.7) are very similar (see Fig. 3.5, left), but a magnification of the neighborhood of the value S = λ 1 shows the differences (see Fig. 3.5, center and right). In (3.6), F ′ 1 (λ 1 ) > 0. Hence the equilibrium E * 1 is locally exponentially unstable. In (3.7), F ′ 1 (λ 1 ) < 0. Hence the equilibrium E * 1 is locally exponentially stable.

3.5. Further applications. In this section we describe a class of growth functions p i (S) and yields y i (S) for which constants α i satisfying (2.1) exist and hence Theorem 2.2 can be applied. It is convenient to use the notation

P i (S) = S -λ i p i (S) -D i p i (S) =⇒ p i (S) = D i P i (S) P i (S) + λ i -S . (3.8)
Remark. We can take any functions P i (S) that are positive for 0 < S ≤ S 0 and satisfy P i (0) = 0 and use the righthand side of formulas (3.8) to define the functions p i (S). The function P i (S) must satisfy the condition P i (S) > S -λ i , so that le denominator in p i (S) remains positive. If we find a class of yield functions y i (S) such that the conditions (2.4) hold, where the functions w i (S), considered in Proposition 2.4, are given by w i (S) = y 1 (S) y i (S)

P i (S) P 1 (S)
then we can use Proposition 2.4 to obtain the global asymptotic stability of the equilibrium E * 1 . The Holling type II (Michaelis-Menten or Monod) growth functions p i (S) = D i m i S (m i -1)S + λ i (3.9) correspond to the choice P i (S) = m i and m i > 1. The Holling type III (or sigmoidal) growth functions

p i (S) = D i m i S 2 (a i + S)(b i + S) , with m i = (a i + λ i )(b i + λ i ) λ 2 i (3.10)
correspond to the choice P i (S) = (ai+λi)(bi+λi)S 2 (ai+bi)λiS+aibi(S+λi) . Here µ i = +∞. The prototype for a non-monotone growth function

p i (S) = D i m i S (a i + S)(b i + S) , with m i = (a i + λ i )(b i + λ i ) λ i (3.11) corresponds to the choice P i (S) = (ai+λi)(bi+λi) aibi-λiS
. Here µ i = aibi λi . The growth functions (3.9-3.11) were considered by Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] who indicated for each combination of them that it is always possible to find appropriate constants α W L i satisfying the criterion (2.3).

Hereafter we define two new classes of functions, which are not considered in the literature, for which our results apply. A class of monotone growth functions of the form (3.8) is obtained with P i (S) = α i S + αS 1+βS , where α > 0, β > 0 and α i ≥ 1. In this case we have

p i (S) = D i α i S(1 + α + βS) αα i S + (1 + βS)(α i S -S + λ i ) .
For constant yields y i (S) = Y i the functions w i (S) = Y1αi Yiα1 are constant and hence conditions (2.4) are satisfied. For linear yields (3.3) we have w i (S) = Y1αi Yiα1 1+c1S 1+ciS . If c 1 ≥ c i then w i (S) is non-decreasing and hence conditions (2.4) are satisfied. For quadratic yields (3.4) we have w i (S) = Y1αi Yiα1 1+c1S 2 1+ciS 2 . If c 1 ≥ c i then w i (S) is nondecreasing and hence conditions (2.4) are satisfied.

A class of non-monotone growth functions of the form (3.8) is obtained with P i (S) = α i S 2 and α i > 1 4λi . In this case we have

p i (S) = D i α i S 2 α i S 2 -S + λ i .
For constant yields y i (S) = Y i the functions w i (S) = Y1αi Yiα1 are constant and hence conditions (2.4) are satisfied. For linear yields (3. 4. Discussion. In this paper we considered a mathematical model (1.1) of n species of microorganisms in competition in a chemostat for a single resource. The model incorporates both monotone and non-monotone growth functions, distinct removal rates and variable yields. We demonstrated that the CEP holds for a large class of growth functions and yields.

In the case where the yields are constant, it is known [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF] that the CEP holds provided that D i = D for all i, the set Q = i∈N ]λ i , µ i [ is connected, and S 0 ∈ Q, where N = {i : λ i < S 0 }. Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] conjectured that this result can be extended to the case of different removal rates. Under hypothesis 1 in Theorem 2.2, it is clear that the set Q is connected, and S 0 ∈ Q. The condition λ 1 < λ i for i = 1 in hypothesis 1 can be stated without loss of generality, by labelling the populations such that the index i = 1 corresponds to the lowest break-even concentration, but the condition λ 1 < S 0 < µ 1 in hypothesis 1 cannot be stated without loss of generality. If µ 1 < S 0 , it is not possible to show the CEP by the methods that we used. To the best of our knowledge, in the case of different removal rates and non-monotone growth functions, the CEP has been proved only under the assumption S 0 < µ 1 [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF]. However, Rapaport and Harmand [START_REF] Rapaport | Biological control of the chemostat with nonmonotone response and different removal rates[END_REF] considered the case of two populations and proposed conditions on the growth functions such that the CEP holds under the condition µ 1 < S 0 . It should be interesting to extend their methods to more general cases. We leave this problem for future investigations.

In the case of constant yields, numerical simulations of model (1.1) have only displayed competitive exclusion. Our results concern also the case of variable yields, for which it is known [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]] that more exotic dynamical behaviors, including limit cycles and chaos, are possible. Thus in the case of variable yields, it is of great importance to have criteria ensuring the global convergence to an equilibrium with at most one surviving species. Under certain technical restrictions, we extended the result of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] to the case of linear or quadratic yields.

Our proof relies on the construction of non-strict Lyapunov functions, i.e. Lyapunov functions whose derivatives along the trajectories are non-positive. We conjecture that the strictification techniques of Chapter 5 of [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] can be used to construct strict Lyapunov functions, i.e. Lyapunov functions whose derivative along the trajectories are definite negative, which next can be used to establish some robustness properties. This can be the subject of further research.
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 21 Fig. 2.1. Graphical depictions of the hypotheses 2 and 3 in Theorem 2.2. On the left, hypothesis 2. On the right, hypothesis 3.

c 1 ≥

 1 c i then the function w i (S) is non-decreasing over [0, +∞[. Thus max 0<S<λ1 w i (S) ≤ min λi<S<ρi w i (S).
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 32 Fig. 3.2. The graph of the function F 1 (S) for p 1 (S) = a 1 S b 1 +S (where a 1 = 2.1/1.1, b 1 = 0.5/1.1 and λ 1 = 0.5) and y 1(S) = Y 1 (1 + c 1 S). On the left, the case c 1 = 1.8 for which hypothesis 3 in Corollary 3.1 is not satisfied. On the right, the case c 1 = 1 for which this hypothesis is satisfied.
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 33 Fig. 3.3. Graphs of the function F 1 (S) for p 1 (S) = 2S/(0.7 + S) and y 1 (S) = 1 + cS 3 in the cases c = c 0 , c 1 , c 2 .
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 34 Fig. 3.4. Graphical verification of hypotheses 2 and 3 in Theorem 2.2 for (3.6) with c = 8 and m 2 = 10. On the left, the graph of the function F 1 (S). On the right the graph of the function g 2 (S).
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 35 Fig.3.5. On the left, the plot of F 1 (S) for (3.6) or(3.7) where c = 50 and m 2 = 10. On the center, the magnification of the neighborhood of λ 1 = 0.7 shows that F ′ 1 (λ 1 ) > 0. On the right, the magnification of the neighborhood of λ 1 = 0.71 shows that F ′ 1 (λ 1 ) < 0.
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 22 3) we have w i (S) = Y1αi Yiα1 1+c1S 1+ciS . If c 1 ≥ c i then w i (S) is non-decreasing and hence conditions (2.4) are satisfied. For quadratic yields (3.4) we have w i (S) = Y1αi Yiα1 1+c1S If c 1 ≥ c i then w i (S) is nondecreasing and hence conditions (2.4) are satisfied.

  Corollary 3.2. The equilibrium E * 1 is locally exponentially unstable if and only if c > c 2 . If 0 ≤ c < c 1 then the equilibrium E * 1 is globally asymptotically stable . Proof. Since λ 1 < λ 2 and F ′ 1 (λ 1 ) > 0 if and only if c > c 2 the equilibrium E * 1 is locally exponentially stable if and only if c > c 2 . Hypothesis 3 in Theorem 2.2 is satisfied if and only if 0 ≤ c < c 1 (see Fig. 3.4, left). The function g 2 (S) is defined by
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